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Abstract

While the classification of non-interacting crystalline topological insulator phases by equivariant K-theory has become
widely accepted, its generalization to anyonic interacting phases – hence to phases with topologically ordered ground states
supporting topological braid quantum gates – has remained wide open.

On the contrary, the success of K-theory with classifying non-interacting phases seems to have tacitly been perceived
as precluding a K-theoretic classification of interacting topological order; and instead a mix of other proposals has been
explored. However, only K-theory connects closely to the actual physics of valence electrons; and self-consistency demands
that any other proposal must connect to K-theory.

Here we provide a detailed argument for the classification of symmetry protected/enhanced su2-anyonic topological order,
specifically in interacting 2d semi-metals, by the twisted equivariant differential (TED) K-theory of configuration spaces of
points in the complement of nodal points inside the crystal’s Brillouin torus orbi-orientifold.

We argue, in particular, that:

(1) topological 2d semi-metal phases modulo global mass terms are classified by the flat differential twisted equivariant
K-theory of the complement of the nodal points;

(2) n-electron interacting phases are classified by the K-theory of configuration spaces of n points in the Brillouin torus;
(3) the somewhat neglected twisting of equivariant K-theory by “inner local systems” reflects the effective “fictitious” gauge

interaction of Chen, Wilczeck, Witten & Halperin (1989), which turns fermions into anyonic quanta;
(4) the induced su2-anyonic topological order is reflected in the twisted Chern classes of the interacting valence bundle over

configuration space, constituting the hypergeometric integral construction of monodromy braid representations.

A tight dictionary relates these arguments to those for classifying defect brane charges in string theory [SS22-Any], which we
expect to be the images of momentum-space su2-anyons under a non-perturbative version of the AdS/CMT correspondence.
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1 Introduction
A profound and celebrated conjecture in condensed matter theory (reviewed in §2) says that symmetry-protected/enhanced
“topological phases” of non-interacting1 gapped crystalline materials – “topological insulators” – are classified, up to adia-
badic deformations (Rem. 1.1), by the twisted equivariant topological K-theory of their Brillouin tori, orbi-orientifolded by
the crystallographic point group and/or by CPT quantum symmetry groups. There is some experimental evidence and some
theoretical arguments for this conjecture, which have been repeated in a wealth of publications on the subject, but there have
remained conceptual gaps (see Rem. 2.7) large enough that one of the most highly cited sources for the statement actually
dis-claimed it:

Although [K-theory] is used in the condensed matter literature, it is not clear to us that it is well motivated.
[FM12, p. 57]

To start with, on this point we observe below (see Fact 2.3) that careful mathematical analysis of free-electron field
theory in background fields shows [KS77][CHO82] that (relativistic) quantum ground states of free electrons in Coulumb
potentials are classified by Fredholm operators, and hence that valence electron states in crystals ought to be classified by
Bloch families of Fredhom operators (Conjecture 2.4). But it is a classical result that families of Fredholm operators are,
in turn, classified by K-theory; in fact it is the Fredholm-operator picture which most naturally supports twisted equivariant
K-theory ([AS04][SS21-Bun][SS22-Any][SS22-TED]). We suggest that this logic is what ties K-theory to the classification
of topological insulators (Fact 2.5).

At the same time, much of the thrust in the field of topological phases of matter lies beyond topological insulator-phases
[TV13] in semi-metallic and/or topologically ordered interacting phases (recalled in §3): It is topological order which supports
the most drastic expected application of topological physics – namely to topological quantum computation by braiding of
anyonic defects (Rem. 1.1, [SS22-TQC]); and it is topological semi-metal phases which may be the most realistic substrate
for topological order, namely for momentum-space anyons (Rem. 3.9).

In summary, this means that a major open problem in the condensed matter theory of topological phases has been to
provide a detailed argument for a classification of crystalline topological phases subsuming all of: (1) free, (2) semi-metallic,
(3) interacting, and (4) topologically ordered phases, such that – at least on free and globally gapped phases – it reduces to
the twisted equivariant K-theory of the orbi-orientifolded Brioullin torus.

Here we offer such a detailed argument, leading to the conjecture (Conjectures 3.7, 3.19) that the complete classification of
crystalline topological phases of matter – subsuming the traditional folklore for topological insulators but encompassing also
interacting SPT semi-metal phases and their anyonic topological order – is given by the twisted equivariant differential (TED)
K-theory of configuration spaces of points inside the complement of nodal points in the orbi-orientifolded Brillouin torus.
We phrase this as a conjecture to stay true to the standards in mathematical physics, but the level of supporting arguments we
provide seems to be no less than what supports related statements in topological condensed matter theory.

The key mathematical insight which makes this work is the recent result of the authors [SS22-Any]: A “well-known”,
but previously somewhat neglected, extra twisting of equivariant K-theory by “inner local systems” makes the twisted equiv-
ariant K-theory of “internal” Zκ ⊂ U(1)-symmetry (§2.3) have (twisted) Chern characters in de Rham cohomology with
local systems of coefficients. Furthermore, on configuration spaces this twisted cohomology constitutes the “hypergeometric
integral-construction” of anyonic braid group representations. This is the content of the concluding section §3.3.

In unwinding this mathematical statement we find a neat match between the various physical phenomena involved and
the fine detail of the inner workings of stacky Fredholm-operator TED-K theory. For instance, beyond the now famous
reflection of the “10-fold way” of CPT quantum symmetries in the internal twists of KR-theory (Fact. 2.12, which we review
in streamlined form in §2.2) we find that the traditional “fictitious gauge field”, which encodes the effective interactions of
anyonic quanta (Table 2), is identified with the “inner local system”-twist of TED-K theory; and the logarithmic conformal
block structure of topologically ordered ground states emerges from the “delocalized” direct sum nature of equivariant K-
theory (see below Figure 13).

In [SS22-Any], these same mathematical results were matched to phenomena expected for defect branes in string theory,
as part of the authors’ program of understanding “M-theory” in terms of the generalized cohomology of Cohomotopy moduli
stacks (see [SS22-Conf][CSS21]). Indeed, there is a tight dictionary (Table 1) relating condensed matter theory (CMT) to
stringy brane physics via TED-K-theory, reminiscent of the expectations in the AdS/CMT correspondence (Rem. 2.8).

1 Here “non-interacting” means that the screened/dressed electrons in the crystalline material may be well approximated as not interacting with each
other, but just with the effective classical Coulomb field of the crystal lattice (e.g. [Li06, §4.5], cf. Fact 2.3). Technically, this means that the ground state of
the crystalline material is well approximated by filling the lowest single-electron Bloch states (recalled as Fact 2.1 below). We go beyond this approximation
in §3.2
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By way of outlook, the comprehensive reflection which we establish, of crystalline topological phases of matter in the
mathematics of TED-K-theory of configuration spaces, provides new theoretical leverage for further investigations, notably
into topological quantum computation (Rem. 1.1). We are discussing this in [SS22-TQC].

Outline:
§2 reviews the expected/accepted K-theoretic classification of crystalline free fermion topological phases. Here we prepare

the ground for §3 by phrasing all K-theory constructions in terms of the cohesive moduli stack of Fredholm operators,
developed in [SS21-Bun][SS22-Any][SS22-TED]. The dictionary (Table 1) between this twisted equivariant K-theory
and the physics of valence electrons (as well as that of stable D-branes, see Rem. 2.8) is so close that readers familiar
with one of the sides may regard it as providing the explanation of the other(s).

§3 presents our argument for generalizing the K-theory classification beyond topological insulators, namely to (2d) topolog-
ical semi-metals and to their interacting topologically ordered phases.

In closing this introduction we recall the following general principle, which appears in several guises in the main text.

Remark 1.1 (Adiabatic transformations of parameterized quantum systems). A parameterized quantum system is a
set of quantum systems continuously parameterized by a “classical” parameter space. A basic example are time-dependent
quantum systems, dependent on a time classical parameter. The examples of interest here are:

1. Bloch states parameterized by a Bloch momentum (Fact 2.1);
2. topologically ordered phases of matter parameterized by the (time-dependent) positions of anyonic defects (§3.2).

The quantum adiabatic theorem ([BF28][Ka50][Nen80]) states that in the limit of arbitrarily slow movement of its parameters
(relative to the relaxation time of the quantum system), a parameterized quantum system remains in a joint eigenstate of a
given commuting set of quantum observables, even if the eigenvalues change significantly. This means that the paths in the
parameter space of a parameterized quantum system define, by adiabatic movement of the system along these paths, unitary
transformations of the system’s eigenspaces, compatible under composition of paths. These are known as (non-abelian) Berry
phases ([Be84][WZ84], review includes [St20, §2][CS21, §IV.C]).

The adiabatic parameter-action on ground-states of quantum materials is one model for quantum computation (“adiabatic
quantum computation”, e.g. [AL16][CLBFN15]). When these adiabatic quantum gates depend only on the isotopy classes of
paths in parameter space, and when these are non-trivial – such as when the parameter space is a configuration space (47) of
positions/momenta of defect anyons in a 2d crystal/Brillouin torus (Table 5) – then we are dealing with topological quantum
computation via braid quantum gates.

This is a popular idea (review includes [St20][FS18][RW18], going back to [Ki03][FKLW03][FLW02][NSSFS08]) but
has remained somewhat elusive, both theoretically (cf. [Ki06, p. 8][SRN15, p. 7-8]) as well as experimentally ([Kou+21]
[Kou+22]). The new theory presented in §3 may help elucidate the issue.

Brillouin torus

wI/κ

nodal point

time
braiding

T̂2

kI

kI

some ground state for
fixed defect positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

another ground state for
fixed defect positions

k1,k2, · · · at time t2

Figure 1 – Adiabatic braid quantum gate. Schematically indicated is the unitary transformation induced on the topolog-
ically ordered ground state (as discussed below in §3.3) of an effectively 2-dimensional topological semi-metal (as in §3.1)
under adiabatic braiding (Rem. 1.1) of nodal points in the Brillouin torus (Rem. 3.9).

3



2 TED-K classifies free topological phases
The following is a joint review, with some new developments, of:
1. the basic idea of non-interacting gapped topological phases of crystalline quantum materials (topological insulators),
2. the general concept of twisted equivariant KR-theory, and
3. the classification of symmetry protected crystalline topological phases by the twisted equivariant K-theory of the mate-

rial’s crystallographic orbi-orientifold Brillouin torus.

The basic idea of topological phases of quantum materials is the following syllogism:
(A) The topic of topology (e.g. [Mu00][tD08]) is, in essence, invariance under “gentle” (continuous) deformations.
(B) The eponymous hallmark of quantum physics (e.g. [Na03, §1][La17]) is transitions occurring in potentially discrete

quanta of energies.
(C) Therefore, a quantum material’s ground state whose possible excitations are separated by an energy gap is invariant

under deformations which are “gentle” (technically: adiabatic, Rem. 1.1) in that they do not bring in energy above the
gap. The global properties of such gapped systems in their ground state should hence be well-described by topology.

In itself, the phenomenon of energy gaps in quantum physics is not exotic, on the contrary: For practically isolated atoms,
such as those in dilute gases, the energy gaps between their excitations are famous since the dawn of quantum theory. But
since there is no external parameter to tune these gapped ground states, there is no non-trivial topological property associated
with them.

However, when many atoms condense to form tightly packed solid matter such as crystalline materials, then the electron
orbitals of the individual atomic sites in the crystal overlap to form mixed states whose energy gaps generically shrink away
(e.g. [Li06, Fig. 4.3, 4.17]). Hence if very special conditions are met so that a condensed matter system retains an energy gap,
then it may have a degenerate ground state below that gap which is characterized by non-trivial topological properties (such
as a non-trivial valence bundle). These are the exotic topological phases of matter of interest here (e.g. [FC13][MM21]).

We now elaborate on all this in more detail.

2.1 Relativistic electron vacua and topological K-theory

Crystalline Brillouin torus of quasi-momenta. In the spirit of Klein’s Erlanger program, the geometry of (ideal) d dimen-
sional crystals is essentially the group and representation theory of their symmetry groups: Such a crystallographic group
Gchr (e.g. [Hi1903][Mi72, §2][Fa81][En86]) – is an extension by a full lattice Zd ≃ Λ ↪! Rd (e.g. [EMS04, §1.2.1]) –
representing translations along the crystal lattice – of a finite point group G ⊂ O(d) of orthogonal transformations:2

1 1

Crystal
lattice
(full)

Λ Rd Euclidean
translation

group

Crystallographic
group

(discrete)
Gcr Rd ⋊O(d)

Euclidean
isometry

group

Point
group
(finite)

Gpt O(d)
Euclidean
rotation
group

1 1

(1)

The corresponding dual lattice (e.g. [RS78, p. 311][To17, §2.2.2], in CMT often: “reciprocal lattice” [Ki53, p. 27])
characterizes the space of distinguishable wave-vectors/momenta (of electrons, phonons, ...) in the crystal, which is the
Brillouin torus (e.g. [FM12, p. 57]):

Brillouin
torus

T̂d :=

all
Euclidean momenta

Hom
(
Λ, R

)/ trivial
lattice momenta

Hom
(
Λ, Z

)
≃

Pontrjagin dual group

Hom
(
Λ, U(1)

)
. (2)

Notice that the Brillouin torus inherits an action of the point group Gpt; we come back to this below in §2.2:

Gpt ↷ T̂d = Hom
(
Gpt ↷Λ, U(1)

)
(3)

2Historically, the original notion of “crystallographic group” was less explicit, defined to be any discrete subgroup Gcr ⊂ Rd ⋊ O(d) such that the
corresponding quotient group is compact (review in [Fa81, §III]). That this implies (a) the translations sub-group being a full lattice and (b) the point group
being finite, as shown in (1), is known as Bieberbach’s first theorem ([Bi1910, §III][Fa81, Thm. 14][Ch86, Thm. I 3.1], see also [To20, Thm. 2.3]).
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Bloch states of electrons and the valence vector bundle. By lattice-translation invariance, the energies of excitations of a
crystal depend independently on:
1. their wave-vector k, which ranges through the Brillouin torus T̂d (2);
2. their internal degrees of freedom, such as the atomic sites in a unit cell, their atomic orbitals and the spin degrees of freedom

of the electrons that are involved in the excitation.

Figure 2. Schematics of a Bloch wave state in a periodic (crystalline)
Coulomb potential background (e.g. [Rö04, Fig. 2.1][Li06, Fig. 4.5]
[Van18, Fig. 4.1, 4.9]). The actual Bloch wave functions are periodic only
up to a complex phase (not shown here) depending on the inverse wave-
length k (see Fact 2.1).
The possible positronic admixture indicated in the figure (cf. [KS77, (2.3)]
[Th92, §1.4.6]) is traditionally first disregarded in solid state physics, but
later implicitly re-invoked to account for spin-orbit coupling (cf. Ex. 3.5).
We find that taking positronic contributions to the valence bundle into into
account (see Fact 2.3) is crucial for bringing out the expected K-theoretic
classification of topological insulators (see Fact 2.5).

V
Coulomb
potential

∣∣∣u",v"
u#,v#

〉
electron/positron

wavefunction

Fact 2.1 (Energy levels of free electron/positrons in the Coulomb potential of a crystal lattice). The Hilbert space of
states of a single electron propagating in the Coulomb potential of the lattice of nuclei inside a crystal ([RS78, p. 312]) may
be identified with the space of square integrable sections of an infinite-rank Hilbert space bundle T̂d ×B over the Brillouin
torus T̂d (2), such that the total Hamiltonian is the direct integral [RS78, (137)] of Hamiltonians Hk acting on the fibers (the
“Bloch-Floquet transform”, e.g. [RS78, Thm. XIII.99][FM12, (D.19-22)][MP15, §1.1]):

Quantum system of
single electron/positron

in crystal lattice
Direct integral of

Bloch wave systems

Hilbert space of
quantum states B

∫
k∈T̂2

(H ⊕H) ddk ≃ L2
(
T̂2; (H ⊕H)

)
Square integrable sections
of relativistic Bloch bundle

↷ ↷

Hamiltonian
operator H 7−!

∫
k∈T̂2

Hk ddk Direct integral of
Bloch Hamiltonians

∼
Bloch-Floquet transform (4)

The collections of available energies at fixed k (hence the eigenvalue spectra of the Bloch Hamiltonians Hk) form graphs
over the Brillouin torus, called the energy bands (e.g. [See04, §2][Li06, §1], see Figure 3).
In its ground state under given ambient conditions (strain, temperature, etc.), the material is in the Fock state which inhabits
all the electron quantum states of energy ≤ µF , where µF ∈ R is the chemical potential (or Fermi energy). If this energy lies
in a band gap then the band right below the gap energy is called the valence bundle, while the band right above is called the
conduction bundle. Accordingly, we will say that the sub-bundle of Bloch states of energy below the gap (e.g. [FM12, Prop.
D.13]) is the valence bundle: 3

Valence
bundle V =

{
k ∈ T̂d , |ψ⟩ ∈ Bk

∣∣∣ ∣∣⟨ψ|Hk|ψ⟩
∣∣ ≤ µF

}
⊂ B Bundle of all

relativistic
Bloch states

(5)

Depending on the position of the lowest energy bands in relation to the maximal energy at which modes are excited
(“occupied”) in the material (the Fermi energy or “chemical potential” µF ) the material is (e.g. [RS78, p. 314]):

1. a metal/conductor if the chemical potential is inside an energy band;
2. a semi-conductor if the chemical potential is inside a small gap between two bands;
3. an insulator if the chemical potential is inside a substantial gap between bands.

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands

 bands of
valence bundle metal/conductor semi-conductor insulator

un-occupied

occupied

Figure 3 – Electron band structure in crystals. The remaining case of semi-metals is shown in Figure 6.

We are to be concerned with topological insulators: those insulators whose valence bundle has a non-trivial K-class.

3Sometimes (e.g. in [Pa06] and its followups ([DNL11][MP15]), the “valence bundle” (5) is called the “Bloch bundle”. This seems unnecessarily
confusing (cf. [FC13, p. 5]), since “Bloch bundle” would instead seem to be the canonical name for the full bundle B of all Bloch states.
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The electron/positron field and Fredholm operators. Fact 2.1 serves to determine the energy levels of single electrons
in the crystal (Figure 3). But even in the approximation of non-interacting1 electrons in a background of fixed (possibly
screened) nuclei in the crystal, the proper description of the electronic ground state – hence of the valence bundle – requires
treating them as excitations of the “second quantized” free relativistic Dirac field (e.g. [Th92][St98]) subject to the classical
electromagnetic background sourced by the comparatively heavy nuclei (see also [Bon18][HLS05]).

Indeed, the electron’s spin-orbit coupling (e.g. [Ma19, (10)]) – a key phenomenon underlying the existence of topological
insulators outside of an external magnetic field (quantum spin Hall materials [MHZ11]) – is a relativistic effect invisible
in the non-relativistic approximation. But in this relativistic description, the single electron Hilbert space H is necessarily
accompanied by a copy of the single positron4 Hilbert space, to form a Z2-graded Hilbert space H ⊕H of the single Dirac
particle.

We now observe (Fact 2.3 below) that these charged electron/positron ground states are naturally encoded by Fredholm
operators and, as such, naturally classified by K-theory (Fact 2.5 below). To appreciate this, recall that a Fredholm operator
([AA67, App.], review in [Ar02, §33]) is a bounded linear map between Hilbert spaces, whose kernel and cokernel are of
finite dimension:{

ψ ∈ H
∣∣ ∀φ ⟨φ |F |ψ⟩= 0

}
≃ ker(F)
finite-dimensional kernel

H H coker(F)
finite-dimensional cokernel

≃
{

ψ ∈ H | ∀φ ⟨ψ|F |φ⟩ = 0
}
.

Fredholm operator

F
bounded linear

(6)

The index of a Fredholm operator is the difference of these dimensions:
Fredholm index

ind(F) := dim
(
ker(F)

)
− dim

(
coker(F)

)
∈ N . (7)

Example 2.2 (Raising and lowering operators). To get an intuition for Fredholm operators, choose an ordered Hilbert space
basis

{
|En⟩ |n ∈N

}
for H (4) with linear shift operators c,a given by c|En⟩ := |En+1⟩, a|En+1⟩ := |En⟩, a|E0⟩= 0. Then, for

all n,m ∈ N, the following composite raising/lowering operator is Fredholm, with its index measuring a net shift in “energy
levels”:

F := cnam ⇒ ker(F) ≃ span
{

Ek | k < m
}
, coker(F) ≃ span

{
Ek | k < n

}
, ind(F) = m−n .

The nature of this simple example may help to conceptualize the following profound example:

Fact 2.3 (Fermi sea ground states of the relativistic free electron/positron field in the Coulomb potential of a crystal
lattice). The Fermi sea ground states of the free electron/positron field in a classical Coulomb potential (“dressed vacua”,
see Figure 2) are characterized by Fredholm operators (6) of the form

F = γ ◦P+UP+ , (8)
where

(i) P+ denotes the projector onto the single dressed electron Hilbert space H ;
(ii) U denotes the unitary operator [KS77, (3.9)] on the single particle Hilbert space H ⊕H which implements (e.g. [Th92,

§10.2.1]) on the corresponding fermionic Fock space the transformation from the dressed to the bare field vacuum;
(iii) γ denotes an isomorphism exchanging the electron/positron summands: γ ◦P± = P∓ ◦ γ;

such that the total charge is given by the Fredholm index (7):

Electron states in
dressed vacuum ker(F)

single electron
Hilbert space

H H
⊕ ⊕
H

single positron
Hilbert space

H coker(F)
Positron states in
dressed vacuum

F†F

dressed vacuumFredholm operator

(9)

Total charge in
dressed vacuum

ind(F) =

number of electrons in
dressed vacuum state

dim
(
ker(F)

)
−

number of positrons in
dressed vacuum state

dim
(
coker(F)

)
= dim

(
coker(F†)

)
− dim

(
ker(F†)

)
.

(10)

Proof. The first statement is due to [KS77] (the dressed vacuum appears in equation (3.48) there), while the second is made
explicit in [CHO82]. In presenting this, there is freedom in choosing various isomorphisms; notably, in (8) we have used the
freedom to postcompose the expression P+UP+ considered in [CHO82, p. 364] with the isomorphism γ so that as to make
not only its kernel but also its cokernel be subspaces of the dressed electron- and positron-Hilbert space, respectively (9).

4Here we speak of the fundamental but dressed electron/positron field ([KS77, (3.2)]) propagating in the electromagnetic background field ([KS77, (1.1)
(2.12)]) that is sourced by the crystal’s nuclei and their tightly bound electrons. On the other hand, in solid state physics it is tradition to speak of an effective
“electron/hole” field, which practically refers to the creation/annihilation operators in ad-hoc Fock space Hamiltonians (such as lattice hopping models)
which are imagined to provide a tractable effective description of the complicated real physics embodied by the fundamental electron/hole field.
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Relativistic Bloch Hamiltonians and topological K-theory. The (anti-)particle physics of Fact 2.3 clearly suggests to
regard the Fredholm operator F as odd-graded and as a summand in a self-adjoint operator F̂ := F +F†, as shown above.
Strikingly, this also turns out, much less obviously so ([AtSi69][Ka70]), to be the most fruitful mathematical definition of
Fredholm operators; so that we take the space of all Fredholm operators (suitably topologized, see [AS04, Def. 3.2][FHT11,
Def. A.39]) to be:

Fred0
C :=

 Bounded self-adjoint operators
of odd degree on H ⊕H

with finite-dimensional (co-)kernels

 =


Bounded oper. F̂ : H 2 H 2bounded

C-linear

Odd degree F̂ ◦β = −β ◦ F̂

Self-adjoint F̂∗ = F̂ := F +F∗

Fredholm dim
(
ker
(
F̂
))

< ∞


. (11)

Here β :=
(

1 0
0 −1

)
denotes the grading operator as usual in Dirac theory (e.g. [Th92, (1.9)]).

In combining Fact 2.1 with Fact 2.3, the following statement seems rather plausible and its proof should be a fairly
straightforward variation on the analysis in [KS77]. But, since here is not the place to enter into detailed solid state physics,
we state this as a conjecture (cf. Rem. 2.7 below):

Conjecture 2.4 (Families of relativistic Bloch vacua). Under passage through the Bloch-Floquet transform of Fact 2.1:
(i) The analogous statement of Fact 2.3 applies to each of the Bloch Hamiltonians (4) of relevance for topological insulators.

(ii) The resulting family F
T̂2 of Fredholm operators over the Brillouin torus is continuous.

(iii) Its homotopy class corresponds to the physical deformation class of the crystalline material.

The first two points of Conjecture 2.4 mean that the Fredholm operator (9) decomposes into a family of what we might
call “Bloch Fredholm operators”, being a continuous function of momenta in the Brillouin torus with values in the space Fred
(11):

Bloch family of
Fredholm operators F

T̂2 : T̂2 −−−−−!
cnts

Fred0
C

Topological space of
all Fredholm operators. (12)

This is, equivalently, a morphism of Bloch state bundles (4) which is fiberwise Fredholm, so that its kernel and cokernel are
finite-rank sub-bundles, to be thought of here as the valence bundle of electron and of positron states, respectively:

Bloch bundle of electron states

T̂2 ×B T̂2 ×B coker
(
F†
T̂2

)
valence bundle

of electron states

T̂2 ×B T̂2 ×B
Bloch bundle of positron states

coker
(
F
T̂2

)
anti-valence bundle

of positron states

F†
T̂2F

T̂2

Bloch family of dressed

vacuum Fredholm operators

(13)

The third point of Conjecture 2.4 means that homotopies of such Fredholm families, namely continuous 1-parameter defor-
mations of them

F
T̂2 ∼

htpy
F ′
T̂2

:

T̂2 ×{0}

T̂2 × [0,1] Fred0
C ,

T̂2 ×{0}

F
T̂2

∃

F
T̂2

correspond to sufficiently gentle (e.g. adiabatic, Rem. 1.1) deformations of the physical material and its properties.

Now it is a famous fact about topological K-theory ([Ka70][AS04, p. 14][FHT11, §A.5], which the non-expert reader
may take as the definition) that for any compact domain space X , such homotopy classes of Fredholm operators are in natural
bijection to the K-cohomology group of X (the Atiyah-Jänich Theorem [Jä65][AA67], see [BB77][Ka78]), namely to the
group completion

{
[V ]− [W ]

∣∣ [V ], [W ]
}

of the semigroup (under fiberwise direct sum) of stable equivalence classes [V ] of
complex vector bundles V on X :

Homotopy classes of continuous
families of Fredholm operators

{
X −−!

cnts
Fred0

C

}/
∼htpy

KU0(X) Complex K-cohomology

FX 7−!
[
ker(FX )

]
−
[
coker(FX )

]
.

∼
(14)

In more generality, there is an analogous statement – discussed around (19) below – for the case that the crystal’s dynam-
ics, and hence the families of Fredholm operators that characterize its ground state valence bundle, obey certain “quantum
symmetries”, in which case the “K-theory” appearing here is to be understood as referring twisted equivariant K-theory.

Therefore:
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Fact 2.5 (K-Theory classification of topological insulators). Assuming Conjecture 2.4, the deformation classes of non-
interacting crystalline topological insulators are classified by the topological K-theory class of the formal difference between
the electronic valence bundle and the positronic anti-valence bundle over the material’s Brillouin torus.

Proof. By Fact 2.3 and Conjecture 2.4, the topological phase is characterized by the homotopy class of the family of Fredholm
operators over the Brillouin torus which characterizes the dressed electron/positron field vacua of the Bloch Hamiltonians.
By (14), this is the K-theory class of the virtual difference of the kernel and cokernel of these Fredholm operators.

Remark 2.6 (The role of relativistic band theory for topological phases). Concretely, the crux of the above discussion is
the following: In a proper relativistic treatment, the valence electron bundle of a topological insulator is accompanied by an
anti-valence bundle of positrons which – while locally annihilating with valence electrons – may globally annihilate only up
to a residue class in K-theory, thus reflecting the topological phase of the material.

Compare this to the arguments traditionally provided in the literature:

Remark 2.7 (State of the K-theory classification of topological phases in the previous literature).
(i) The proposal of [Ki09], that topological insulators are classified by some form of K-theory has become folklore (e.g.
[Th16][SSG17][SdBKP18]); but the available justification offered in existing literature seems not to have gone beyond the
original motivation from [Ki09, p. 4], which – in its entirety – reads:

We generally augment by a trivial system, i.e., a set of local, disjoint modes, like inner atomic shells.
This corresponds to adding an extra flat band on an insulator.

(ii) It seems to us that:
(a) The quoted statement has not actually been supported by Bloch theory, in general. (Compare [Pa06][DNL11][FMP14a]

[FMP14b][MP15] for the kind of strong assumptions and hard analysis that is required to prove similar statements).
(b) Even if this could be justified, it would motivate only the passage to the semigroup of stable- or Murray-von Neumann-

equivalence classes (e.g. [RLL09, Def. 2.2.1, Prop. 2.2.2, 2.2.7]), but not passage to their K-theory class, which
involves further group completion (e.g. [RLL09, Def. 2.3.3, Def. 3.1.4]; see [Bl86, §1.7] for translation).

Indeed, in [FM12], which has practically become the other main reference for the claim that K-theory classifies topological
phases, the authors openly say that no such claim is made (p. 57):

Although [K-theory] is used in the condensed matter literature, it is not clear to us that it is well motivated.

(iii) Accordingly, it had remained unclear (cf. [Th15, §3], p. 7) even which K-theory class is supposed to characterize the
topological phase: The first proposal of [FM12, p. 57] (“Type F”, p. 56) was to use the class of the formal difference
between the valence bundle and some finite-rank conduction bundle, in an apparent attempt to identify the physics role of
the group completion. The second proposal (“Type I”, p. 57), which is tacitly followed by later authors (notably [SSG17,
§III.A][SdBKP18]) chooses to classify just the valence bundle, without commenting on how to find then a physics interpreta-
tion of the virtual bundles appearing in the K-theory classification, and highlighting that there is then no mathematical place
for the physically important Hamiltonian inversion (i.e., the case c =−1 in [FM12, Def. 3.7] then plays no apparent role, as
highlighted in lines 6-8 on p. 56, leading to the truncated classification statement of Cor. 10.28 there).
(iv) It seems to us that all these issues are resolved (as stated in Fact 2.5) by Fact 2.3 about proper relativistic band theory,
where it is the admixture of positronic contributions that accurately brings out all the structure seen in the K-theory. While
this still relies on a conjecture about details of the solid state physics (Conjecture 2.4), this conjecture makes no surprising
claims and is concrete enough to allow fairly straightforward (if possibly laborious) verification.
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Remark 2.8 (Analogy with D-branes in string theory and CMT/ST duality).
(i) The discussion culminating in Remark 2.6 reveals a close analogy (shown in Table 1) between the K-theory classification
of:
(1) topological phases in solid state physics, as discussed here in §2, and specifically of anyonic topological order as

discussed below in §3;
(2) stable D-branes in string theory ([Wi01], see [Fr08][GS17][GS19]) and here specifically of anyonic defect branes as

discussed in [SS22-Any].
(ii) Indeed, the AdS/CMT correspondence predicts (e.g. [ZLSS15][HLS18][Za21]) that solid state systems as in the left
column of Table 1 may effectively approximate the worldvoume field theory on N ≫ 1 coincident classical (“black”) branes
in string theory.
(iii) Table 1 suggests an identification between topological phases and D-brane vacua which remains valid for individual D-
branes (N ∼ 1, and here notably for those that are stable but non-supersymmetric) whose quantum ground states are elements
of K-theory groups, here specifically of finite torsion subgroups (such as those classifying T I-semimetals in Exp. 3.3) for
which a large N-limit does not even make sense.
(iv) But for such small value of N (i.e. in the large 1/N-limit) that is relevant for many topological phases of matter (cf. all
the finite torsion subgroups in (31)), the string theory-side of the would-be AdS/CMT correspondence is known to be strongly
coupled, and hence requires a formulation of the widely expected but elusive “M-theory”. It is in the context of proposing a
(partial) mathematical solution (“Hypothesis H”, see pointers in [SS21-MF] and in [SS22-Any, Rem. 4.1]) to the problem of
formulation M-theory that the reflection of anyonic topological order withing TED-K-theory was discovered in [SS22-Any].
(v) In particular, it is the passage from the K-theory of the plain domain space (here: of the Brillouin torus (2)) to that of
its configuration space of points (see §3.2) which “Hypothesis H” predicts ([SS22-Conf]) as the non-perturbative – meaning:
strongly-interacting – completion of brane charge quantization laws.

Quantum
field theory

on coincident
N branes

Classical
(super-) gravity

Full
M-theory

Perturbative
string theory

traditional
AdS/CMT duality

large N, large λ

full
AdS/CMT duality

any N, any λ

stringy
AdS/CMT duality

large N, any λ

small ’t Hooft coupling λ :=gsN≪∞

⇔

large curvature, string scale effects

small N≪∞ ⇔ non-perturbative effects

Figure 4 – Regimes ofs ST/CMT-duality. Holographic duality (Rem. 2.8) has been widely discussed in the regime of
weakly coupled stringy bulk theory, and here mostly in the weakly curved regime of (super-)gravity. This is because the full
duality – subsuming the case of small numbers N of branes – involves (see pointers in [SS21-MF]) the expected but elusive
non-perturbative completion of string theory to “M-theory”. In [SS22-Conf][SS22-Any] we explain how our “Hypothesis
H” about M-theory (see pointers in [SS21-MF]) predicts that the full duality involves brane charges in the K-cohomology of
configuration spaces of points. In §3.3 we find this to correctly match the dual phenomenon of anyonic defects.
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Topological phases Topological K theory String/M theory

Single-electron state
in d-dim crystal

Line bundle over
Brillouin d-torus

Single probe D-brane
of codimension d

§2

Single positron state Virtual line bundle
over Brillouin torus

Single anti D-brane
of codimension d

Bloch-Floquet transform Hilbert space bundle
over Brillouin d-torus

Unstable (tachyonic)
D9/D9-brane state

Dressed Dirac
vacuum operator

Family of
Fredholm operators Tachyon field

Valence bundle of
electron/positron states

Virtual bundle of their
kernels and cokernels

stable D-brane state
after tachyon condensation

Topological phase K-theory class Stable D-brane charge

Symmetry protection Twisted equivariance Global symmetries

CPT symmetry KR/KU/KO-theory Type I/IIA/IIB §2.2

Crystallographic symmetry Orbifold K-theory Spacetime orbifolding §2.2

Gauged internal symmetry Inner local system-twist Inside of orbi-singularity §2.3

Topological order Twisted differentiality Gauge symmetries §3

Berry connection Differential K-theory Chan-Paton gauge field §3.1

Mass terms Differential K-LES Axio-Dilaton RR-field
§3.2

Nodal point charge Flat K-theory Defect brane charge

Anyonic defects TED-K of Configurations Defect branes §3.3

N band nodes N-punctured
Brillouin torus N defect branes

Interacting n-electron states
around N band nodes

Vector bundle over
n-point configuration space in
N-punctured Brillouin torus

Interacting n probe branes
around N defect branes

su2-anyon species Holonomy of
inner local system

SL(2,Z)-charges
of defect branes

Anyon braiding TED-K Gauss-Manin connections Defect brane monodromy [SS22-TQC]

folklore
novel

Table 1 – Rosetta stone CMT ↔ TED-K ↔ ST.
The mathematics of TE(D)-K-theory is widely conjectured (and partially known) to equivalently describe non-perturbative vacua in two rather different
looking but supposedly “dual” situations in physics:
– On the left, the topological ground states of crystalline materials in condensed matter theory (observed in experiment on mesoscopic atomic scales);
– On the right, the stable quantum ground states of D-branes in string theory (hypothetical physics at truly microscopic sub-nuclear scale).
The upper parts of this dictionary are more widely appreciated in existing literature, while less has previously been known or even just conjectured about
the items further down in the table.
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2.2 Quantum symmetries and twisted equivariant K-theory
Quantum symmetries and twisted equivariant KR-theory. More precisely, in general the dynamics inside a given crys-
talline material (its Hamiltonian) obeys certain quantum symmetries, and only those Bloch modes suitably respecting these
symmetries can actually be excited. We discuss now (following [FM12] and [SS21-Bun]) how taking this into account means
to understand the K-theory in Fact 2.5 as twisted equivariant KR-theory.

First, by the classical Wigner theorem (reviewed and amplified in [Fr12][FM12, §1]), adapted to electron/positron systems:

A quantum symmetry is a projective
〈

unitary or
anti-unitary

〉
operator

〈
preserving or
exchanging

〉
the electron/positron Hilbert spaces.

Concretely, the quantum symmetries form the semidirect product of the projective unitary group on the Z2-graded elec-
tron/positron Hilbert space H ⊕H (6) with (a) grading involution P, (b) complex conjugation T , (c) the combination C :=PT :

Even projective unitary group

U(H )×U(H )

U(1)
⋊
( grading

involution

Z2︸︷︷︸
{e,P}

×
complex

conjugation

Z2︸︷︷︸
{e,T}

)
group of quantum symmetries

,
P ·
[
U+ ,U−

]
:=
[
U− ,U+

]
·P , C := P ·T .

T ·
[
U+ ,U−

]
:=
[
U+ ,U−

]
·T ,

(15)

These quantum symmetries naturally act by conjugation on the above Fredholm operators (6):(
U(H )×U(H )

U(1)
⋊
(
{e,P}×{e,T}

))
×Fred0

C
(−)·(−)

−−−−−−−−! Fred0
C (16)

[U+,U−] : F 7−! U−1
+ ◦F ◦U−

C · [U+,U−] : F 7−! U−1
− ◦F t ◦U+

P · [U+,U−] : F 7−! U−1
− ◦F∗ ◦U+

T · [U+,U−] : F 7−! U−1
+ ◦F ◦U− .

Here for P ·F we used (11) that the full Fredholm operator on the graded space is of the form
(

0 F†

F 0

)
.

In conclusion, a group G of quantum symmetries is a (finite) group G equipped with a group homomorphism to (15):

group acting by
quantum symmetries G U(H )×U(H )

U(1) ⋊
(
{e,P}×{e,T}

)
.

(̂−)
(17)

Through the defining action (15), this induces an action of G on the space of Fredholm operators. If G also acts on the
Brillouin torus T̂2, by crystallographic point group symmetries (3), then the map from the orbifold quotient (see [SS20-Orb])
to the moduli stack of the quantum symmetry group (see [SS21-Bun, Ex. 1.2.7]) encodes the crystal’s quantum symmetries:

twist of equivariant K-theory
encoding

crystal quantum symmetries
τ : T̂2�G

crystallographic
orbi-orientifold

BG
moduli stack of

quantum symmetries

B
(

U(H )×U(H )
U(1) ⋊

(
{e,P}×{e,T}

))
.

B(̂−)
(18)

Under the correspondingly refined Conjecture 2.4, the statement of Fact 2.5 is that (Fact 2.17): Topological phases
protected (Rem. 2.9) by quantum G-symmetries are labeled by homotopy classes of τ-equivariant maps from T̂2 to Fredholm
operators. In generalization of (14), these form the following twisted equivariant K-theory group (from [SS21-Bun, (4.128)]):

τ-twisted G-equivariant
KR-cohomology

Kτ
(
X�G

)
:=



Fred0
C�G

Quotient stack of odd self-adjoint Fredholm operators (11)
by conjugation action of quantum symmetries (16)

Fred0
C�
(

U(H )×U(H )
U(1) ⋊

(
{e,P}×{e,T}

))

T̂2�G BG B
(

U(H )×U(H )
U(1) ⋊

(
{e,

grading

involutio
n

P}×{e,
complex

conjugatio
n

T}
))

crystallographic
orbi-orientifold crystal symmetries quantum symmetries

B
(
{e,C}×{e,T}

)

(pb)
equivariant family of

Fredholm operators

B(̂−)

τ
(18) realized as

underlying
CPT- symmetry

(15)
C=

PT

/
∼htpy

(19)

We refer the reader to [SS20-Orb][SS21-Bun] for full details on such diagrams of stacks (see [SS22-Surv] for a gentle
exposition), but the following special cases should serve to illustrate the natural inner working of these diagrams.
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The twisted equivariance in (19) captures diverse phenomenon that in condensed matter theory are known as “symmetry
protection” and more generally as “symmetry enhancement” of topological phases of matter (Rem. 2.9), as shown inTable 2.

Twisted equivariance Sector of TED-K Type of symmetry protection

Projective involutions KR/KU/KO-theory Quantum CPT-symmetries Fact 2.12 [Ki09]
[FM12]

Orbifolding Orbifold K-theory Crystallographic symmetries Fact 2.17

Orbi-singularity Fixed point theory Internal symmetries §2.3

Orbi-singularity
with Inner local system

Twisted differential
Fixed point theory

“fictitious” gauge symmetries
(anyonic braiding phases)

§3.3

Table 2 – SPT/SET phases in TED K-theory. That twisted equivariant K-theory captures symmetry protection/enhancement (Rem. 2.9) by
CPT-symmetries and by crystallographic point symmetries is essentially the proposal of [FM12] (but cf. Rem. 2.7). The crucial case of internal
SET/SPT seems not to have been discussed in terms of equivariant K-theory before; we show in §2.3 how this connects to the widely expected
description in terms of higher group cohomology. Moreover, we find in §3.3 that the gauging of internal SPT/SET via inner local system-twists
of TED-K accounts for anyonic topological order.

Remark 2.9 (On symmetry protectected/enhanced topological phases of matter).
(i) By a phase of matter which is “symmetry protected” (“SPT”, [PBTO12][GW09]) or “symmetry enhanced” (“SET”,
[CGLW13, p. 3][CLM12, p 2]) one means a topological phase of matter which is G-equivariantly non-trivial, in that it
cannot be adiabatically deformed (Rem. 1.1) while respecting given G-quantum symmetry, to a topologically trivial phase. In
the case of SPT one in addition requires that the underlying topological phase (i.e. when forgetting the quantum symmetry)
is trivial.
(ii) Mathematically, this evidently corresponds to the basic phenomenon of equivariant homotopy classes (19) being finer
than plain homotopy classes (see [SS20-Orb, §B]).
(iii) Therefore we may translate “symmetry protected/enhanced phase” to “equivariant homotopy class” and hence via (19)
to “equivariant K-theory class” (cf. Table 1). For CPT- and crystallographic symmetries this is essentially the point that
was made in [FM12], which we review now. More generally, for internal symmetries (see Table 4) and for “fictitious gauge
symmetries” we further develop this in §2.3 and in §3.3 below.

CPT-protected topological phases and KR/KU/KO-theory. Specifically, a realization of the group element T (from (15))
as a quantum symmetry T̂ (see (17)) is a map (of smooth stacks [SS21-Bun], for exposition see [SS22-Surv]) of this form:

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
.

B
(
{e, P}×{e, T}

)
T 7−! T̂

(20)

In components, this means (see [SS21-Bun, Rem. 3.3.38, Ex. 3.3.27]) that T̂ is a simplicial map of this form:

• •

• •

T

TT e

T

≡

• •

• •

T

e TT

T

• •

• •

T̂

T̂T̂ e

T̂

c

≡

• •

• •

T̂

e T̂T̂

T̂

c

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

≡

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

Here the identification on the bottom right uses that T acts by complex conjugation on unitary operators (15). With this, the
identification on the far right shows that the phase must be real, c = c, which means that either

T̂ · T̂ = ±1 . (21)
The same holds for coboundaries of these cocycles, so that these two choices exhaust the gauge-equivalence classes of choices
in group cohomology H2

Grp
(
{e,T}; Z2

)
≃ Z2. Moreover, the directly analogous argument shows that the available choices

for Ĉ = P̂T are classified by
Ĉ ·Ĉ = ±1 . (22)
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On the other hand, for P̂ alone the phase could be any U(1)-valued cocycle on Z2 = {e,P}. But since H2
Grp
(
{e,P}; U(1)

)
≃ 0

these are all trivializable, so that there is only one gauge equivalence class of choices P̂ for realizing P as a quantum symmetry:

P̂ · P̂ = +1 . (23)

Remark 2.10 (CPT-symmetry). As the notation indicates, the above analysis reproduces the structure of the Charge/Parity/
Time-symmetry (CPT) theory of the relativistic Dirac equation (e.g. [Th92, §3.4]), identifying (e.g. [Th92, Ex. 3.11]):

– P with the unitary operation of “parity reversal” ([Th92, (2.147)]),
– T with the anti-unitary operation of time-reversal (e.g. [Th92, Thm. 3.10, cf (1.26)]),
– C := PT with the operation of “charge conjugation” (e.g. [Th92, Thm. 3.10, cf (1.81)]).

Notice how this definition of C expresses the fundamental fact (e.g. [SW01][Le16]) of both theoretical and experimental
physics that the combination C ·P ·T is an exact symmetry of observed fundamental processes (since with this definition it is
given by multiplication with C ·P ·T = (P ·T ) ·P ·T = P2 ·T 2 = e · e = e).

It is somewhat remarkable that this situation of CPT-symmetry in fundamental physics finds such an accurate and natural
reflection in the structure of twisted equivariant K-theory.

Example 2.11 (Time-reversal symmetry and KR-theory). If X = T̂d ≃ Rd/Zd is thought of as a Brillouin torus of quasi-
momenta k in a crystal (as in Fact 2.1), then in condensed matter theory it is understood by default that the element T ∈ {e,T}
in (20) acts on this torus by “inversion” (point reflection) of quasi-momenta (this in addition to its action (16) on Fredholm
operators by complex conjugation):

T̂d T̂d

[k] 7−! [−k] ,

T Fred Fred
F 7−! F .

T
(24)

We always mean this inversion action when we write the orbifold T̂d�{e,T} (to be contrasted with the quotient by the trivial
action, which we denote by T̂d ×∗�{e,T I}, see Ex. 2.15). With this inversion action (24) of T on T̂d understood, the
{e, T̂}-equivariant k ∈ T̂d-parameterized families of Fredholm operators (19) are those that satisfy

F[k] = F [−k] . (25)

If, furthermore, the quantum symmetry action of T on Fred is given by T̂ 2 = +1, then the homotopy classes of these “time-
reversal equivariant” Fredholm families constitute the cohomology group of T̂d known as “Atiyah’s Real K-theory” (with a
capital “R”, to be distinguished from the “real K-theory” groups denoted KO), or KR-theory, for short:

KR
(
T̂d) =


Fred0

C�{e,T}

T̂d�{e,T} B{e,T}

/
∼htpy

. (26)

In the string theory literature, under the dictionary of Table 1, these are known as orientifolds [Gu00][SS19-Tad].
Under the identification of Fact 2.5 this classifies topological phases of time-reversal invariant insulators (e.g. [Van18,

§2.1.6]) whose valence quasi-particles behave like bosons.

Noticd that the inversion action (24) has 2d fixed points, forming the set

{0, 1/2}d ⊂ Rd Rd/Zd ≃ T̂d .

These are also called the time-reversal invariant momenta (TRIM, e.g. [Van18, p. 51]). Over these fixed points, the equiv-
ariance condition (25) becomes an invariance-condition (see also Ex. 2.15 below). We now consider the spaces of invariant
Fredholm operators under all possible quantum CPT-symmetries.

Fact 2.12 (The 10-fold way of twistings of CPT-equivariant K-theory). There are evidently 10 possibilities for realizing
the quantum CPT-symmetries (21) - (23), shown in the top part of Table 3.

The remainder of Table 3 indicates the corresponding twisted equivariant K-theory groups (19), following via Karoubi’s
theorem (Prop. 2.13 with Lem. 2.14 below). In a different but closely related form ([Ki09, Table 2], reviewed e.g. in
[CTSR16, Table IV]), this has become famous as the 10-fold way; our Table 3 expresses instead the Fredholm-operator
version of the statement in [FM12, Prop. 6.4, B.4]. In actuality, this “10-fold way” (see Fact 2.12) is another incarnation of
Bott periodicity (e.g. [HJJS08, §15]) being a 2-fold periodicity over the complex numbers and an 8-fold periodicity over the
real numbers, for a total of 2+8 = 10 distinct possibilities:
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Equivariance group G = {e} {e,P} {e,T} {e,C} {e,T}×{e,C}

Realization as
quantum symmetry τ :

T̂ 2 = +1 −1 +1 −1 −1 +1

Ĉ2 = +1 −1 +1 +1 −1 −1

Maximal induced
Clifford action

anticommuting with
all G-invariant odd
Fredholm operators

E−3 = iT̂Ĉβ

E−2 = iĈβ iĈβ

E−1 = P̂β Ĉβ Ĉβ Ĉβ

E+0 = β β β

(
β 0
0 −β

)
β β β β β β

E+1 =
(

0 1
1 0

)
Ĉβ Ĉβ Ĉβ

E+2 =
(

0 i
i 0

)
iĈβ iĈβ

E+3 =
(

0 −T̂
T̂ 0

)
iT̂Ĉβ

E+4 =
(

0 iT̂
iT̂ 0

)
τ-twisted G-equivariant
K-theory of fixed loci Kτ = KU0 KU1 KO0 KO4 KO2 KO6 KO1 KO3 KO5 KO7

Table 3 – CPT Quantum symmetries as twists of equivariant KR-theory. The table indicates how the K-theoretic “10-fold way”-classification
proposed in [Ki09] and elaborated on in [FM12] comes about, via Thm. 2.13, in terms of fixed loci of spaces of Fredholm operators (27) whose
homotopy quotients by quantum symmetries (16) classify twisted equivariant K-theory (19).

• The top part shows the 10 different ways to choose quantum symmetry lifts (̂−) (17) of subgroups of the CPT group
{e,P}×{e,T} (20) according to the analysis around (21), (22), (23).

• The middle part shows how, under the action (16) of quantum symmetries on odd Fredholm operators F̂ , F̂ ◦β =−β ◦ F̂ ,
these quantum symmetries equivalently constitute a collection of Clifford generators anti-commuting with all the Fredholm
operators that are fixed by these quantum symmetries. For example, the second column shows that when parity symmetry
{e,P} acts, with its essentially unique lift (23) to a quantum symmetry P̂, then invariance of F̂ under the conjugation
action, F̂ ◦ P̂ = P̂◦ F̂ , equivalently means that that F̂ , β and P̂β anti-commute:

F̂ ∈
(
Fred0

C
)P̂ ⇔ F̂ ∈ Fred0

C and F̂ ◦ (P̂β ) = −(P̂β )◦ F̂ .

• The bottom part shows how these compatible Clifford actions exhibit the spaces of Fredholm operators fixed by the quan-
tum symmetries (27) as classifying spaces for KU- and KO-theories (by Karoubi’s theorem, Prop. 2.13 and using Lemma
2.14).
The analysis indicated in Table 3 shows that subspaces of odd Fredholm operators (11) which are fixed by one of the 10

possible quantum CPT symmetries are of the following form, for p ∈ N and K = C or K= R (the latter if T and/or C = PT
are contained in the given subgroup):

Space of self-adjoint Fredholm operators graded-commuting with p+1 Clifford generators

Fred−p
K :=


Bounded opers. F̂ : H 2 H 2bounded

K−linear

self-adjoint F̂∗ = F̂ := F +F∗

Fredholm dim
(
ker
(
F̂
))

< ∞

∣∣∣∣∣∣∣∣∣
graded comm.

Ei ◦ F̂ =−F̂ ◦Ei
with

Bounded oper. E0, · · · ,Ep : H 2 H 2bounded
K−linear

(anti-)self-adjoint (Ei)
∗ = sgni ·Ei

Clifford gen. Ei ◦E j +E j ◦Ei = 2sgni ·δi j

 (27)

where:

• we have abbreviated sgni :=
{

+1 | i ≥ 0 ,
−1 | i < 0;

• it is understood that the ±1-eigenspaces of the Clifford generators Ei are both infinite-dimensional.
With this, the reader may take the following Prop. 2.13, generalizing (14), to be the definition of the KU- and KO-theory
groups:

Proposition 2.13 (ASK-theorem [Ka70][AtSi69]). The Fredholm operator spaces (27) classify the K-theory groups that go
by the following names:
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{
X −−−!

cnts
Fredp

K

}/
∼htpy

=


KUp(X) ≃

Bott per.
KUp+2(X) | K= C ,

KOp(X) ≃
Bott per.

KOp+8(X) | K= R .

(28)

This is the result indicated in the last row of Table 3.
Before we turn to discussing examples, notice that in order to be able to apply Karoubi’s theorem (Prop. 2.13) to deduce

the last row in Table 3, one needs the following observation, to confirm that the operators shown in the middle part of Table 3
are (anti-)self-adjoined as required in (27):

Lemma 2.14 (Adjointness of quantum CPT). If the quantum symmetry operator T̂ (20) squares to +1 or −1 (21) then it is
self-adjoint or anti-self-adjoint, respectively; similarly for the operator Ĉ (22):

(T̂ )2 =±1 ⇒ (T̂ )∗ = ±Ĉ∗,

(Ĉ)2 =±1 ⇒ (Ĉ)∗ = ±Ĉ∗ .

Proof. We write (−)t for the transpose operation on complex-linear operators over the complex numbers, and (−) for complex
conjugation. The star-operation A∗ := A t on complex linear operators agrees with the canonical star operation on their
underlying real-linear operators AR , in that (A∗)R = (AR)

∗ , since iR is a skew-symmetric real operator. In particular the
parity operator satisfies P∗ = P, regarded either over the complex or over the real numbers. With complex conjugation itself
regarded as a real-linear operator, T := (−), we have in addition:

T ◦AR = (A)R ◦T , T ∗ = T .

Moreover, the lifts in (20) are of the form T̂ = URT and Ĉ = URPT for U a unitary operator (hence complex-linear with
U−1 =U∗ =U t ). Using all this we have (suppressing now the (−)R -subscript on U , for readability):

U−1U t =U tU t =
(
UU
)t
=
(
U(TUT )

)t
=
(
(UT )(UT )

)t
=
(
T̂ 2)t

= (±1)t =±1 ,

which means
U t =±U ,

and hence
(T̂ )∗ = (UT )∗ = T ∗U∗ = TU t

=U tT =±UT =±T̂ .

Example 2.15 (Joint time-reversal and inversion symmetry (space-time inversion symmetry)). The situation where time
reversal acts as a quantum symmetry (21) on Fredholm operators but trivially on the Brillouin torus may be understood as the
combination T I of:
• an inversion symmetry I (point reflection in) acting by [k] 7! [−k] on quasi-momenta (29) but trivially on Bloch observables:

T̂d T̂d

[k] 7−! [−k] ,

I Fred Fred
F 7−! F

I
(29)

• With the time-reversal symmetry T (24) of Ex. 2.11, acting non-trivially both on momenta and on Bloch observables:
Such T I symmetry is exhibited, notably, by graphene (e.g. [CS21, pp. 41]).

Under this combined time-reversal- and inversion-symmetry (e.g. [FWDF16, §II.B][Van18, §2.1.6, 5.5.2])

T̂d T̂d

[k] 7−! [k] ,

T I Fred Fred
F 7−! F

T I
(30)

the equivariantly indexed Fredholm operators (19) are those satisfying Fk = Fk, hence are the real Fredholm operators. In this
case, Table 3 shows that the topological insulating phases of time-reversal- and inversion-symmetric crystals are classified by
quaternionic K-theory:

K(T̂ 2 =+1)
(
X ×∗�{e,T}

)
≃ KO0(X)

K(T̂ 2 =−1)
(
X ×∗�{e,T}

)
≃ KO4(X) ,

n = 0 1 2 3 4 5 6 7 8 9 · · ·

KO0(Sn
∗
)
= Z Z2 Z2 0 Z 0 0 0 Z Z2 · · ·

KO4(Sn
∗
)
= Z 0 0 0 Z Z2 Z2 0 Z 0 · · ·

(31)

We come back to this example of T I-symmetric topological materials below in Ex. 3.3 in the discussion of classification of
topological semi-metals.
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Example 2.16 (No quantum symmetry and Chern insulators). Mathematically, the simplest example is certainly that of no
non-trivial quantum symmetry. In this case, Table 3 shows that the corresponding topological insulator phases are classified
by plain complex K-theory:

K0(X) ≃ KU0(X)

n = 0 1 2 3 4 5 6 7 8 9 · · ·

KU0(Sn
∗
)
= Z 0 Z 0 Z 0 Z 0 Z 0 · · ·

For effectively 2-dimensional materials, this means (by comparison with Figure 7) that these “un-protected” topological
phases are classified by the integers. From the theory of characteristic Chern classes ci (e.g. [MiSt74]), this integer may be
identified with the first Chern number c1[V ] =

∫
T̂2 c1(V ) of the valence bundle V :

KU0(T̂2
∗
)

≃ KU0(S2
∗
)

≃ Z
[V ] c1[V ] .

For this reason, the topological insulators which are “un-protected” by any quantum symmetry are also called Chern insulators
(e.g. [Van18, §5.1]). While this is mathematically the most immediate case, in solid state physics Chern insulators are
typically thought of as realized only with some effort by breaking symmetries in a material which by itself does enjoy time-
reversal quantum symmetry and/or inversion symmetry (Ex. 2.15).
In closing this example, notice that:
• on the one hand, time-reversal symmetry is easily broken by placing a material into a strong magnetic field B, in which

the Bloch state with momentum vector k is subject to a Lorentz force B · k which is opposite that for the time-reversed
momentum −k. This is the situation of quantum Hall materials;

• On the other hand, a T -breaking effect intrinsic to the material, present also in the absence of an external magnetic field,
can be induced from spin-orbit coupling but is much more subtle to analyze and realize. This was the achievement of the
Haldane model ([Ha15], [Van18, §5.1.1]), see Ex. 3.5.

Topological crystalline insulator phases and orbifold K-theory. Beware that the 10-fold way of Fact 2.12 applies only
to global CPT-symmetries which act trivially on the crystal. This case does (effectively) occur (Ex. 2.15, Ex. 3.5), but
in general, the C- and T-symmetries (20) act by reflection on the Brillouin torus (Ex. 2.11) and form semidirect products
with the crystallographic point group symmetries (1). These we will call the external symmetry group (Table 4), and we
call the orbifold quotient (see pointers in [SS20-Orb]) by this group action on a momentum space the crystallographic orbi-
orientifold:

ex
ter

nal

sym
metr

y

Gext :=
cry

sta
llo

gr
ap

hic

poin
t sym

metr
y

Gpt ⋊
( CP-symmetries

{e,T}×{e,C}
)

⊢
crystallographic
orbi-orientifold

X�Gext . (32)

The topological insulator-phases which are protected/enriched (Rem. 2.9) by such an external symmetry are known as topo-
logical crystalline insulators-phases: [Fu11][SMJZ13][SC14][AF15][KdBvWKS17][LWQG20].

For emphasis, we restate the classification statement so far, making this fully explicit:

Fact 2.17 (Classification of external-SPT/SET phases). To the extent that topological phases are classified by twisted
equivariant K-theory (cf. Fact 2.5), the external-SPT/SET phases are classified specifically by the TED-K theory (19) of the
crystallographic orbi-orientifold (32):

{
Gext-SPT/SET

crystalline insulator phases

}
=

∏

[τ]

KRτ
(
T̂d�Gext

)
≃

∏

[τ]



Fred0
C�
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)

T̂d�Gext B
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)
τ

/
∼htpy

.

2.3 Internal symmetry protection and K-valued group cohomology.
Internal symmetries in crystalline materials. In addition to CPT symmetries (§2.2) and crystallographic symmetries Gpt
(§2.2), hence in addition to external symmetries (32), a crystalline material may exhibit internal symmetries, which typically
arise from symmetries among electron degrees of freedom located separately at each atomic site of the underlying crystal
lattice, whence they are also called on-site symmetries.
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Example 2.18 (Spin rotation symmetry). If external magnetic fields and spin-orbit coupling are both negligible, then the
energy of the electrons in the material is typically independent of their spin, and the Spin(3)≃ SU(2)-group of spin rotations
will be an internal symmetry of the system, including in particular the spin flip operation

| "⟩ S
 ! | #⟩ (33)

with respect to any experimentally preferred spin-basis. More generally, if a number κ of (spinful) electron orbitals around
any one atomic site have negligible energy difference, then their permutation group Sym(κ) will act as an approximate internal
symmetry group on the system.

Mathematically, this simply means that an internal symmetry group is a direct factor subgroup

Gint ⊂ Gext ×Gin ≃ G (34)

(of the equivariance group G that enters the relevant twisted G-equivariant K-theory (19)), whose action on the Brillouin torus
domain is trivial:

T̂d�G ≃ T̂d�Gext ×∗�Gint . (35)

In this sense, also the parity symmetry P (15) is an internal symmetry, while time-reversal T is not (Ex. 2.11) and neither is
spatial inversion (29), but their combination T I again is an internal symmetry (Ex. 2.15), as indicated in Table 4:

Symmetries
G

External
Gext

Internal
Gint

Crystallographic
Gpt, e.g. {e, I}

Time-reversal
{e,T}, {e,C}

On-site
e.g. {e,P}, {e,S}

G︷ ︸︸ ︷
Gpt ⋊{e,T/C}︸ ︷︷ ︸

Gext

×{e,P}×{e,S}︸ ︷︷ ︸
Gint

T̂d�G ≃
orbi-orienti-folded Brillouin torus

T̂d�Gext ×∗�Gint

Symmetry name Action

Gpt Crystallographic point transformation Orthogonal transformation on BT (1)

I Inversion Point reflection on BT (29)

T Time reversal Point reflection on BT & complex conj. on obs. (24)

C Charge conjugation Point reflection on BT & complex conj. + deg. flip on obs.
(15)

P Parity reversal No action on BT & degree flip on obs.

S Spin flip No action on BT & some projective action on obs. (33)

Table 4 – Possible symmetry groups of electron dynamics in a crystalline material. Here “BT” refers to the Brillouin torus T̂d (2), while “obs”
refers to the ground state observables, i.e., the Fredholm operators (13).

Any of these symmetries may be respected in a given quantum material (e.g. none of them, which is the case of plain Chern
insulators, Ex. 2.16). In experimental practice, symmetries are often approximately respected, hence effectively respected up
to some scale of resolution but broken at higher resolution. (Ultimately, at sub-atomic resolution the dynamics of the nuclei
in the crystal lattice will become visible and the entire picture of electron dynamics in a fixed background field breaks down.)

The list of possible external symmetries displayed is meant to be exhaustive, but there can be any number of further
internal symmetries, reflecting the internal degrees of freedom at each crystal site (e.g. accidental orbital energy degeneracies
that remain unresolved).

Remark 2.19 (Internal-symmetry protection in the literature). Even with the conjectured classification of external-SPT
phases in twisted equivariant K-theory (as in §2.2, §2.2) becoming widely appreciated (beginning with [Ki09]) it was felt
that K-theory could apply only to systems well-approximated by (fermionic and) free dynamics, and that internal-symmetry
protection specifically of interacting phases needed an approach different from K-theory. (We address the issue of interacting
phases in K-theory below in §3.2).
(i) A first influential proposal asserted [CGLW13][CGLW12] that “bosonic” and interacting Gint-SPT phases of dimension d
are classified by the group cohomology of Gint in degree d+1 with coefficients in U(1) (and that for fermionic and interacting
such systems an analogous statement holds for a suitable notion of group super-cohomology was claimed in [GW14]). In
our language of stacks, such group cohomology is given by homotopy classes of maps as shown on the right here (e.g.
[FSS20-Cha, Ex. 2.4]): group cohomology

Hd+1
grp
(
Gint ; U(1)

)
≃
{

BGint Bd+1U(1)
}/

∼htpy
.
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A physics motivation for this proposal is offered in [CLW11, §V]. However, this proposal is now “known not to be com-
plete” [WS14, p. 2]; in fact, on the general question of classification of SPT/SETs: “a completely general understanding is
lacking, and many questions remain. [· · · ] the current understanding of fractionalization of quantum numbers, along with the
classification and characterization of SETs is incomplete.” [BPCW19, p. 3].
(ii) Another proposal has been put forward in [BPCW19][Wan18, §2.2] based (somewhat tacitly) on the reasonable idea that
Gint-symmetry protection should mean that all relevant structures found in the underlying topological phase/order acquire
Gint-equivariant enhancements. Concretely, using the common (also conjectural, but see Rem. 3.12) assumption that an
anyonic topological order is characterized by a unitary fusion category C , the proposal of [BPCW19, (1)] says that the Gint-
symmetry enrichments of the given topological phase are classified by (we paraphrase slightly, see [FSS20-Cha, Rem. 2.9])
the 2-group cohomology of Gint with coefficients in the automorphism 2-group Aut(C ) of C (i.e., the 2-group whose objects
are braided monoidal endofunctors C ! C which are equivalences of braided monoidal categories, and whose morphisms
are compatible natural isomorphisms between these, this is implicit in [BPCW19, (81)]):

2-group
cohomology

H1
grp
(
Gint ;

Automorphism 2-group
of unit. fusion category

of anyon species

Aut(C )
)

≃
{

BGint BAut(C )

Equivalence classes of
maps of moduli 2-stacks }/

∼htpy
. (36)

Due to the 2-groupal nature of Aut(C ) there are ordinary but higher degree group cohomology classes in H3(Gint; A ) un-
derlying this 2-group cohomology, with coefficients in (we again paraphrase slightly) the Picard group A := Pic(C )/∼ (of
invertible anyons species).
(iii) The proposal (36) is conceptually robust relative to its assumption: To the extent that unitary fusion categories indeed
reflect aspects of topological orders in solid state physics, their internal-symmetry protected incarnation essentially must be
such a 2-group cohomology class (36) if the notion of fusion categories is at all the appropriate mathematical structure to
speak about topological order.
(iv) Still, the question remains how to connect this proposal to the widely expected K-theory classification of free topolog-
ical phases. This physics demands that the K-theory classification of (symmetry protected) topological phases ought to be
recovered by a more general classification of (symmetry protected) topological order in the special case or limit of “trivial
order”. However, the fusion category C reflecting trivial order is itself trivial, and has trivial automorphism 2-group, so that
(36) collapses in this case.

Internal-SPT in TED-K-theory. We now observe that our stacky formulation of twisted equivariant K-theory (19) allows
us to read off which kind of (higher) group cohomology must classify Gint-symmetry-protected phases. (For the moment we
discuss this for non-interacting phases to which (19) is thought to apply, by Fact 2.3, but the argument will generalize verbatim
to the case of interacting phases, as discussed below in §3.2). All we need here is the evident assumption (35) on the nature of
“internal symmetry” Gint, together with the mapping stack adjunction (reviewed in [SS20-Orb, Prop. 2.31][SS21-Bun, Prop.
3.2.44]), which says that for any triple X , Y and Z of stacks, there are natural equivalences between the following types
of maps between them: {

X ×Y Z
(x,y) 7! f (x,y) }

∼ ∼
mapping stack adjunction{

X Map
(
Y , Z

)x 7!(y 7! f (x,y)) } {
Y Map

(
X , Z

)y 7!(x 7! f (x,y)) }
.

(37)

Hence we get the two identifications of the TED-K cohomology group in the presence of internal symmetries (35) shown in
Fig. 5
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TE-K cohomology group

KRτ
Gext×Gint

(X) =



symmetry protected
topological observables

Fred0
C� U(H )2

U(1) ⋊Z2
2

X�Gext
external

×∗�Gint
internal

symmetry

B
(

U(H )2

U(1) ⋊Z2
2

quantum symmetries

)
τ

equivariant
twist

TE-K cocycle

/
∼htpy



moduli stack of internal -symmetry protected topological observables

Map
(

BGint, Fred0
C� U(H )2

U(1) ⋊Z2
2

)

X�Gext Map
(

BGint, B
(

U(H )2

U(1) ⋊Z2
2

))
moduli stack of internal quantum symmetries

inner
local system

TE-K
G cocycle

/
∼htpy

mapping stack adjunction

on internal factor

mapping stack adjunction
on external factor

moduli stack of external-symmetry protected topological phases

Map
(

X�Gext, Fred0
C� U(H )2

U(1) ⋊Z2
2

)

BGint Map
(

X�Gext, B
(

U(H )2

U(1) ⋊Z2
2

))
moduli stack of external quantum symmetries

τ̃

∞-group cohom. cocycle

/
∼htpy

Figure 5. An “internal symmetry” group Gint in TED-K theory is one whose action on the remaining domain space/orbifold is trivial, hence which
exhibits the domain as being “inside a Gint-orbi-singularity” (35).

The above Fig. 5 shows how the mapping stack adjunction (37) identifies the TED-K cohomology groups with respct to
such an internal symmetry Gint with both:
1. inner local system-twisted Gint-fixed TE-K-theory of the given domain, and
2. ∞-group cohomology of Gint with coefficients in the symmetry ∞-group of external-SPT phases on the given domain.

Here the adjunction on the right identifies the TED-K cohomology group with an ∞-group cohomology of a form analo-
gous to the above proposal (36):

H1+τ̃
grp
(
BGint ; Aut(V )

)
≃
{

Gint BAut
(
V
)}/

∼htpy
. (38)

On the right we have the automorphism ∞-group of the underlying external-SPT phase

[V ] ∈ KRτ(−,∗)(X�Gext
)

in the twisted external-equivariant K-theory cocycle space:

Aut
(
V
)

:= ΩV

(
Map

(
X�Gext, Fred0

C�
U(H )2

U(1)
⋊Z2

2

))
, (39)

both regarded as sliced over the moduli stack of external-equivariant twists. In conclusion we have:

Fact 2.20 (Classification of internal-SPT/SET phases). To the extent that topological phases are classified by twisted
equivariant K-theory (cf. Fact 2.5), the internal-symmetry protected/enriched such phases with underlying external-symmetry
protected phase [V ] (as in Fact. 2.17) are classified by the ∞-group cohomology (38) of the given internal symmetry group
Gint (34) with coefficients in the automorphism ∞-group (39) of V formed in the TED-K cocycle stack.

We observe that this should subsume the proposal of [BPCW19] that SPT phases are reflected in 2-groupal automor-
phisms (36) of the fusion category which characterizes the corresponding topological order: It remains to see how this
internal/external-SPT classification in TED-K theory reflects any anyonic topological order. This, too, turns out to be a
question which the mathematics of TED-K theory answers for us – we discuss this in §3.2 below.
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3 TED-K classifies interacting topological order
We now take the mechanism of K-theory classification of topological phases “beyond band insulators” (in the words of
[TV13]) in that we argue that TED-K theory naturally classifies the generalization of topological insulator phases to:

§3.1 – topological 2d semimetal-phases;
§3.2 – interacting topological phases;
§3.3 – topologically ordered phases.

3.1 Berry phases and Differential K-theory
Semi-metals and flat K-theory. In generalization of the situation of topological insulators (Figure 3), it may happen that a
quantum material is not strictly gapped but that the gap closes only over a lower-dimensional sub-manifold of “nodal points”
in the Brillouin torus (Figure 6, cf. [Van18, Fig. 5.20]). In this case one speaks of a topological semi-metal. These are
now often considered as 3-dimensional materials (e.g. [BHB11][FWDF16][AMV18][GVKR19]) but the concept applies
notably also to effectively 2-dimensional materials (general review includes [Van18, §5][FZWY21]), in fact the original and
archetypical example of a semi-metal is the effectively 2-dimensional graphene [WZ+12]5 (this was predicted already in
[Wal47], long before the modern terminology was coined, but observed only after graphene was synthesized by [NG+04]).
Figure 6. – Band structure of 2d semi-metals.
Top row: In a semi-metal there is a global gap between the valence band and the con-
duction band as for a topological insulator (Figure 3) except over a lower-dimensional
submanifold of nodal points in the Brillouin torus, where the two valence band and
the conduction band touch right at the Fermi sea level µF . (If the gap closes over an
isolated point then one speaks of a “Dirac point” or a “Weyl point”, depending on the
order of degenracy, while if it closes over a 1-dimensional submanifold one speaks of
a “nodal line”, etc.). This means that over the complement of the nodal points (shown
on the right) the band structure of a semi-metal is like that of a topological insulator
(cf. Figure 3), while over the nodal points the semi-metal band structure is singular.

Bottom row: The singularity at the nodal points in 2-dimensions is reflected in the
fact that the Berry curvature is typically tightly concentrated (often spiked) close to
the nodal points kI (and un-defined right at the nodal points), such that the comple-
ment of a tubular neighborhood of the nodal points in the Brillouin torus carries a
Berry connection which is effectively flat. This is the case notably for the Haldane
model (e.g. [At16, Fig. 2.7][DTC21]). Moreover, in the special case of materials with
time&space-reflection-symmetric Bloch dynamics the Berry curvature strictly van-
ishes away from nodal points, by symmetry reasons (see [XCN10, §III.B][Van18, p.
105] and Ex. 3.3), hence is to be thought as spiked right at the nodal points in the sense
of a Dirac delta-distribution. This is the case for graphene (e.g. [At16, (2.72)][CS21,
p. 41]). The general phenomenon is highlighted in [SF15, p. 3][ZNT21, p. 1], exam-

Energy E

kI
Dirac/Weyl
nodal point

µF

T̂2

Brillouin
torus

E

µF

T̂2 \{kI}
Complement of

small neighborhood
of nodal point

] [

of semi-metal

Berry
curvature Ω

curvature
spike

kI
T̂2

0

Ω

T̂2 \{kI}
0 ] [

∼flatBerryconnection

ples are in [FPGM10, Fig. 1][YXL14, Fig. 1][SSL15, Fig. 3][PRFM16, Fig. 1][At16, §3.4][WXL17, Fig. 3g] [KMM20][Jin+20, Fig. 3c][JRN21, Fig. 4]6.

Generally, the (hypothetical) adiabatic transport (Rem. 1.1) of gapped valence states (5) along closed curves in the
Brillouin torus (2) picks up a relative quantum phase factor ([Zak89][Van18, §3.4], see also [CN08][XCN10, §I.D]) known
as a Berry phase ([Be84], review includes[CS21, IV.C]). This is the holonomy of a canonical connection ∇ on the valence
bundle ([Si83][Na03, §10]). The holonomy of this connection around the non-trivial 1-cycles of the Brillouin torus (denoted
S1

a, S1
b in Figure 7) is a special case of Berry phase known as the Zak phase ([Zak89][Van18, pp. 106]); see also Figure 8.

Thinking of the 2-torus as the Brillouin torus of an effectively 2-dimensional semi-metal with nodal points at the given
punctures (see Figure 6), the holonomy of the flat Berry connection (see also Figure 8) around S1

a and S1
b (Figure 7) separately

gives the Zak phases while holonomy along non-trivial composites of edges gives the Berry phases associated with the nodal
points.

For example, if both Zak phases happen to be trivial, then, in the case of two punctures, the Berry phase around one nodal
point is the holonomy along the diagonal edge, and that around the other nodal point is necessarily the inverse of that (since
the diagonal edge goes clockwise around one puncture and anti-clockwise around the other).

5A tiny spin-orbit coupling in graphene de facto opens the gap at the would-be nodal points, making graphene theoretically a topological insulator; but
since the gap at the nodal points is too small to be visible in most experiments, graphene behaves like a semi-metal for most practical purposes.

6This essential vanishing of the Berry curvature away from a neighborhood of the nodal points in concrete examples of 2d semi-metals seems to not have
found a systematic theoretical discussion yet. It is a plausible consequence in situations where small effects, such as spin-orbit coupling, perturb the system
away from a point in parameter space where time&space-reflection-symmetries enforce the strict vanishing of the Berry curvature away from nodal points.
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Figure 7 – Homotopy type of the N-punctured 2-torus. The 2-torus with N ≥ 1 punctures is homotopy equivalent to the wedge sum of N +1 circles
(i.e., the gluing at their basepoint, denoted “pt” in the graphics, see e.g. [Mu00, §71][tD08, p. 31]). Two of these circles, denoted S1

a and S1
b, represent the

two non-trivial 1-cycles of the torus. (The usual identifications apply, of vertices and edges at the boundary of the square, as shown.) The un-punctured
torus is still stably homotopy equivalent to the wedge sum of these two circles with a 2-sphere that represents the un-punctured torus bulk (e.g. [FM12,
Thm. 11.8], shown on the bottom left above).

While it is intuitively plausible that the Berry phases around nodal points should be indicators of the topological phases
of 2d-semimetals, a full mathematical statement along these lines seems not to have received substantial attention before –
certainly not in a way that would connect to the K-theoretic classification of topological insulators according to the widely
accepted Fact 2.5, which however ought to be subsumed as a degenrate special case of the classification of semi-metals. We
now observe that a phenomenon well-known in the condensed matter literature strongly suggests that topological phases of
2d semi-metals are controlled by flat K-theory (we formulate this as Conjecture 3.1 below):
• For 2-dimensional semi-metals the Bianchi identity on the curvature 2-form is vacuous by degree-reasons7, but in practice

one observes that the 2-dimensional Berry curvature is still strongly constrained, namely it tends to be concentrated (spiked)
on a tubular neighborhood of the nodal points and to be practically vanishing away from the nodal points (e.g. [KMM20],
see Figure 6 for illustration and further references).

• When the Berry curvature is concentrated at or around the nodal points in this way, it means that on the complement
of a tubular neighborhood of the nodal points the Berry curvature vanishes for practical purposes, hence that the Berry
connection is practically flat on the complement.

• If a complex vector bundle admits a flat connection then all its Chern classes vanish. Now for 3d semi-metals the first
Chern class has often been argued to classify the topological charge carried by the nodal points (e.g. [Li+20, (3)][MT16]
[MT17]), but for 2d semi-metals Chern classes cannot carry any information, in that the ordinary cohomology of the
punctured torus vanishes in degree 2 and higher (see Figure 7).

• However, the datum of a flat connection itself entails “secondary” characteristic classes (e.g. [FSS20-Cha, §4.3]), which
for 2-dimensional semi-metals are the holonomies of the flat connection along any loop around nodal points. Due to the
flatness of the connection these Berry phases around nodal points are independent of the shape of the loop and must be
addressed as the topological charge carried by the nodal points, reflecting the obstruction to the semi-metal phase turning
into an insulating phase.

Figure 8. The flat Berry connection on the valence bundle over the com-
plement of (a tubular neighbourhood of) the nodal points in the Brillouin
torus of a 2d semi-metal (cf. Figure 6) has two contributions:
(1) The holonomy around 1-cycles in the full Brillouin torus (denoted

S1
a, S1

b in Figure 7) gives the Zak phases that may be present also in
topological insulators (i.e. in the absence of nodal points).

(2) The holonomy around nodal points reflects their “momentum-space
charge”, the obstruction to opening up the gap closure, measuring
how far the topological semi-metal phase is from being a topological
insulator.

Full
Brillouin torus T̂2

Node-punctured
Brillouin torus T̂2 \ {⃗k} B♭U(n)

coefficients for
flat Berry connections.

.

Open neighborhood of
the nodal punctures C\ {⃗k}

Zak phases

flat Berry phases

Berry phases around

nodal points

In view of Fact 2.5, this suggests that phases of 2-dimensional topological semi-metals ought to be classified by a version
of K-theory (evaluated on the complement of the nodal points) which is appropriate for flat vector bundles, or more generally
for vector bundles equipped with a trivialization of their Chern classes. The evident candidate cohomology theory is the
version of differential K-theory (e.g. [BS12][FSS20-Cha, Ex. 4.41]) known as flat K-theory, whose cohomology groups are
characterized as arranging into a hexagonal commuting diagram ([SiSu08, §2][BNV13, §6]), the lower part of which looks
as follows, where the bottom sequence of groups is long exact ([Ka87, §7.21][Ka90, Ex. 3][Lo94, (16)]):

7In contrast, for 3-dimensional semi-metals the Bianchi identity dF∇ = 0 satisified by the curvature 2-form of the Berry connection implies that nodal
points behave in momentum space much as Dirac’s hypothetical magnetic monopoles would behave in position space.
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KUn−2(X; C)
Differential K-theory

KUn−1
diff

(
X
)

KUn−1(X; C) .

KUn−1
♭ (X)

Flat K-theory

KUn−1(X)
Underlying plain K-theory

secondary
Chern character

forgetinclude
Chern

character

(41)

In analogy with Fact 2.5, this leads us to state:

Conjecture 3.1 (Flat TED-K-theory classification of semi-metals). The deformation classes of 2-dimensional crystalline
semi-metals are classified by the (twisted equivariant) flat K-cohomology class of their Berry-flat valence bundle over the
complement of (a tubular neighborhood of) the nodal points in the material’s (orbifolded) Brillouin torus. Here the restriction
of the (twisted equivariant) flat K-cohomology to small circles S1

I surrounding the I-th nodal points is identified with the class
of the Berry phase around that circle, hence with the topological charge carried by that nodal point:(

T̂2 \ {⃗k}
)
�G S1�G Neighborhood around

I-th nodal point

Twisted equivariant flat K-theory
of nodal-punctured Brillouin torus Kτ

♭

(
(T̂2 \ {⃗k})�G

)
Ki∗τ

♭

(
S1�G

) Group of
Berry phases around/
topological charges of

Ith nodal point

ιI

ι∗
I

(42)

and similarly the restriction to S1
a and S1

b is identified with the deformation classes of the corresponding Zak phase (Figure 8).

Remark 3.2 (Comparison to the literature). A comprehensive proposal for the classification of topological semi-metals
aligned with the K-theoretic classification of topological insulators (Fact 2.5) has not been available in the literature. We are
aware of the following partial suggestions:

(i) [YN14] means to classify the quantum symmetries which may fix nodal points – this is subsumed in Conjecture 3.1 by
employing equivariant K-theory.

(ii) [Schn18][Schn20] suggests (following [MF13][CTSR16]) that topologically protected band crossings are those for
which the linearized Hamiltonian in the vicinity of a nodal point does not admit a mass term (whose addition would
open a mass gap), hence for which the Clifford module structure (as in Table 3.) does not extend to one further Clifford
generator. It seems to be left open how this local argument is meant to classify the semi-metal globally. But since
addition of a Clifford generator has the effect of shifting the K-theory degree (Table 3), one may think of the left term
K•−1(· · ·) in (44) as implementing the quotient by globally defined mass terms, in this sense.

(iii) [MT16][MT17] propose global classification of semi-metals by the ordinary cohomology of the complement of the
nodal points, following tradition for 3d semi-metals in solid state physics (e.g. [Li+20, (3)]) and suggesting that this
might also appy to 2d semi-metals. It seems clear that this proposal needs to be refined form ordinary cohomology to
K-theory in order to connect to the classification of topological insulators by Fact 2.5, and we may think of Conjecture
3.1 as providing this refinement.

Example 3.3 (Classification of T I-symmetric 2d semi-metals). We check that the statement of Conjecture 3.1 reproduces
the expectation in the literature (e.g. [ZZ+16][FWDF16] [Van18, §5]), for the case of 2d semi-metals subject to joint time
and inversion symmetry T I (from Ex. 2.15): By the discussion around (31), the relevant twisted equivariant KR-theory in this
case is KO0 (assuming that the system’s excitations are bosonic, namely that T̂ 2 = +1, see (21)), and the plain KO0 groups
of the N-punctured torus (N ≥ 1) are a direct sum of copies of Z2 and hence pure torsion:

KO0
(
T̂2 \{k1, · · · ,kN}

)
≃

(40)
KO0

(∨
N+1

S1
)

≃
⊕
N+1

KO0(S1) ≃
(31)

⊕
N+1

Z2 .

This implies that the Chern(-Pontrjagin) character in this case is trivial (in fact, even its (co-)domain is trivial), so that the
relevant long exact sequence (41) implies that the flat KO0-cohomology of the N-punctured torus canonically coincides with
the plain KO0-cohomology:

KO−1(T̂2 \ {⃗k}; R
)

KO0
♭

(
T̂2 \ {⃗k}

)
KO0(T̂2 \ {⃗k}

)
KO0(T̂2 \ {⃗k}; R

)
0

⊕
{⃗k}

Z2
⊕
{⃗k}

Z2 0 .

ch−1
KO chKO

∼ (43)

This may be understood as saying that gapped and T I-equivariant (namely real) valence bundles on T̂2 \ {⃗k} carry, up to
adiabatic and T I-equivariant deformation equivalence, a unique flat Berry connection, whose holonomy – hence whose two
Zak phases and N Berry phases around the nodal points according to (42) – all take values in Z2. Hence, in this case,
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Conjecture 3.1 asserts that these values are the topological charges carried by the nodal points, whose joint image in the flat
TED-K-theory group of the full punctured Brillouin torus is the class of the given topological phase of the TI-symmetric
semimetal. But this is just the statement commonly expected in the literature, see [ZZ+16, §II.A][FWDF16, §II.B] [Van18,
5.5.2].

Specifically, notice that [FWDF16, (12)-(13)] identify (by arguing informally about the Bloch Hamiltonians of the semi-
metals, cf. Rem. 2.7) the group Z2 appearing here with the fundamental group of the orthogonal Grassmannian, hence with
the fundamental group of the stable classifying space BO (e.g. [Ko96, §1.3]). Since this is equivalently the classifying space
for (reduced) KO0 (e.g. [Ko96, p. 77, 86], cf. [ZZ+16, (6)]), the Z2-charges predicted by our Conjecture (3.1) coincide with
those traditionally expected not just abstractly (coincidentally), but naturally (operationally):

Nodal charge group
according to [FWDF16, §II.B] Z2 ≃ π1(BO)

≃ Map∗/(S1, BO)

≃ Map∗/(S1, KO0)

≃ KO0(S1)

≃
(43)

KO0
♭

(
S1) ≃ Z2

Nodal charge group
according to Conj. 3.1

This proves our Conjecture 3.1 for the case of T I-symmetric 2d materials, relative to the established understanding of the
relevant solid state physics. Of course, this T I-symmetric example is a comparatively simple special case of the conjecture,
due to the isomorphism (43); the general case will be richer. On the other hand, the T I-symmetric case seems to be the only
case for which classification of codimension=2 nodal loci in semi-metals has been discussed in the literature (as just recalled).
With this case verified, for all other cases our conjecture is now a prediction about general 2d semi-metals, which deserves to
be checked in theory and experiment.

Mass terms at Dirac/Weyl points. In the absence of any protecting/enriching symmetry, a topological semi-metal-phase is
called a Chern semi-metal-phase (Ex. 3.6 below), for the same reason as for Chern insulators (Ex. 2.16).
(1) In the case of 3d semi-metals with nodal points, the first Chern class of such a Chern insulator may have non-trivial

evaluation on small spheres surrounding these points, which is then naturally interpreted as the topological charge carried
by these nodal points. This situation of codimension=3 nodal points in 3d Chern semi-metals has found much attention
in the literature ([MT16][MT17]).

(2) However, for nodal points in 2d semi-metals (and nodal lines in 3d semi-metals) the Chern classes do not provide non-
trivial invariants (in fact the entire 2-cohomology of the punctured Brillouin torus vanishes, as shown in Figure 7). In this
case, an alternative proposal (see Rem. 3.4 below) for how to classify the topological stability of codimension=2 nodal
points is by the classification of mass terms. Namely, by the assumption that nodal points kI lie right at the chemical
potential, hence at the reference null value of the energy, E(kI)−µF = 0, and using that the dispersion relation tends to
be non-vanishing at the nodal point, dE

dk (kI) ̸= 0 (see Figure 9), it is traditionally argued ([Schn18, §II.A][Schn20, §2.1])
that:
• The dynamics of quasi-particle excitations around µF at momenta k = kI +∆k around the nodal points is to first order

in ∆k given by an effective massless Dirac equation. Depending on whether this equation describes Dirac fermions (4
components) or Weyl fermions (2 components), one calls the nodal point a Dirac point or Weyl point, respectively.

• The obstruction to opening the gap at the nodal crossing is the im-possibility to deform this equation by a mass term,
which for a Dirac equation means (cf. [FH16, Lem. 9.55]) to find a further Clifford generator that skew-commutes
with those already involved.

Figure 9. Near nodal points kI in
the Brillouin torus of a semi-metal,
the dispersion relation k 7! E(k)
exhibited by the energy bands is
thought to be approximated, to first
order in k − kI , by that of a mass-
less Dirac/Weyl equation, whence
the terminology Dirac point or Weyl
point.

Massless Dirac-type
dispersion relation

E(k)−µF = ±
√〈

(k/− k/I)2
〉

Energy E

kI
Dirac/Weyl
nodal point

µF

T̂2

Brillouin
torus

Massive Dirac-type
dispersion relation

E(k)−µF = ±
√〈

(k/− k/I +mγ0)
2
〉︸︷︷︸

mass term

Energy E

kI
Resolved

nodal point

µF +m
µF −m gap opening

T̂2

Brillouin
torus

When the material’s parameters can be and are adiabatically tuned (Rem. 1.1) such that this dispersion relation turns
into a massive Dirac equation, then the band gap at the former nodal crossing will “open up” in proportion to the coefficient

23



m of the effective mass term mγ0 in the Dirac equation. If this happens to all nodal points (while keeping the band gap
open everywhere else), it means that the topological semi-metal phase decays into a topological insulator-phase. A necessary
condition for such a mass term to exist at all is that a further Clifford generator γ0 is represented on the Bloch-Hilbert space
of electrons such that it skew-commutes with all Clifford momenta k/.

By Karoubi/Atiyah-Singer-type theorems (Prop. 2.13), such mass terms are typically again classified by topological K-
theory groups. Note that, interestingly, this means that the topological semi-metal-phase must be classified in a group modulo
the K-group of mass terms.

Remark 3.4 (Literature on mass term gap openings). In attempts towards the classification of topological semi-metal phases,
it has been argued ([CS14, §A.2], reviewed in [Schn18, §II.A][Schn20, §2.1] and following [MF13, §V][CTSR16, §III.C]) by
appeal to the ASK-Theorem (Prop. 2.13) or related statements, that possible choices of such mass-terms – hence of “nodal gap
openings” (Figure 9) – are again classified by topological K-theory. However, we need to beware of the following subtleties,
which may not always have received due attention in the literature:
(i) Mass terms indicate the absence of a semi-metal phase. Hence topological semi-metal-phases ought to be classified by

quotienting out a group of mass terms (cf. [FH16, Thm. 9.63]) from a group of potential charges at nodal points.
(ii) Since in general there are multiple nodal points which jointly satisfy constraints on their total topological charge (see

Ex. 3.5), the group of mass terms cannot be a K-theory group of a point, as considered in the above references, but must
somehow be identified with the K-theory group of the whole punctured Brillouin torus.

Both of these effects can be seen explicitly in the celebrated Haldane model:

Example 3.5 (The Haldane model). The archetypical example of transitioning between 2-dimensional topological semi-
metal- and insulator-phases by switching on a mass term (Figure 9) is the Haldane model ([Ha15], good review is in
[At16][DTC21]), originally motivated as a theoretical model for the non-trivial Chern insulator phase (Ex. 2.16) of graphene
with its spin-orbit coupling not neglected (which, however, has remained elusive to experimental detection). In fact, the
Haldane model is obtained (from a simple model for the semi-metal phase of graphene) by adding two summands:
1. an actual mass term of the form mγ0 (Figure 9), ie. for a constant m ∈ R;
2. an interaction or “background field” term t · I(k)γ0 for a non-constant function I on the Brillouin torus, scaled by another

parameter t ∈ R.
The interest in the Haldane model draws from the fact (see Figure 10) that at m ̸= 0 and beyond some interaction strength
|t| > tcrit(m) it realizes a non-trivial Chern-insulator phase (Ex. 2.16). But in fact, for m ̸= 0 but |t| ≤ tcrit – and hence in
particular for the case of a pure mass term deformation m ̸= 0, t = 0 – the Haldane model is in a topologically trivial Chern
insulator phase (ie. the valence bundle is gapped but has vanishing first Chern class, c1 = 0, and hence is isomorphic to a
trivial complex vector bundle).

This trivial insulator phase (with c1 = 0) of the non-interacting Haldane model at m ̸= 0 but t = 0 is traditionally per-
ceived as the problem which the seminal model building by Haldane did overcome, but for the purpose of uncovering the
mathematical classification of 2d semi-metal phases (Conj. 3.1) we highlight this as a most interesting datapoint:

To the extent that the properties of the Haldane model are generic for 2d semi-metal phases with effectively flat Berry
connection away from the nodal points (Figure 6), it shows that the deformation by an actual (namely constant) mass term
(Figure 9) leads to a Chern-insulator phase which, while non-vanishing Chern numbers are still associated with the vicinity
of each nodal point, is globally topologically trivial in that the total global Chern number vanishes.

Figure 10. Indicated is the phase diagram of
the Haldane model in dependence of the pure
mass term m and the interaction strength t.

mass m

t
interaction

semi-metal

c 1
=

0
c 1
̸=

0

top. insulator

The topological semi-metal phase right at the origin (m = 0, t = 0) is the graphene-like phase with two Dirac points. The
semi-metal phase on the slope t = tcrit(m) for m> 0 has a single Dirac point and interpolates between a trivial and a non-trivial
topological insulator phase. In particular, when the interaction vanishes, t = 0, and only a pure mass term m > 0 is turned on,
then the graphene-like semi-metal phase is gapped into a trivial insulator phase: The Berry curvature is still concentrated at
the locations kI where the Dirac points used to be – and hence reflects a local topological charge c1

[
V |S2

I

]
in the compactly
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supported K-theory around these points–, but the sum of these contributions, being the integral of the Berry curvature over
the whole Brillouin torus and hence equal to the first Chern class of the valence bundle, vanishes:

c1
[
V
]
= ∑

I
c1
[
V |S2

I

]
= 0 .

We now observe that this peculiar property of the Haldane model is accurately reflected by Conj. 3.1:

Example 3.6 (Classification of 2d Chern semi-metals). We may combine the flat K-theory exact sequence (41) with the
exact sequences induced from the homotopy cofiber sequence

Complement of
nodal points in
Brillouin torus

T̂2 \ {⃗k}
Brillouin torus

T̂2

Tubulur nbhds
of nodal points∨

kI

S2
I

(where S2
I denotes the white disk labeled kI in Figure 7, where the grey boundary area is all identified with a single basepoint)

to obtain the following exact sequence of exact sequences:

Zak phases

K-theory︷ ︸︸ ︷
K−1

(
T̂2
)

Ordinary cohomology︷ ︸︸ ︷
K−1

(
T̂2; C

)
Flat K-theory︷ ︸︸ ︷
K0
♭

(
T̂2
)

Zak phases among
Berry-Zak phases

Berry-Zak phases /
nodal point charges 0 ≃ ker(ch−1) K−1

(
T̂2 \ {⃗k}

)
valence bundles with mass term

K−1
(
T̂2 \ {⃗k}; C

)
naı̈ve nodal point charges

K0
♭

(
T̂2 \ {⃗k}

)
top. semi-metal phases

K0
(
T̂2 \ {⃗k}

)
≃ 0

Local Berry curv. /
local top. charges
at gapped nodes

0 ≃ ker
(
ch0) K0

(∨⃗
k S2
)

K0
(∨⃗

k S2; C
)

K1
♭

(∨⃗
k S2
)

K1
(∨⃗

k S2
)
≃ 0

Local top. charges
modulo gapped

node charges

Global
topological phases K0

(
T̂2
)

top. insulator phases

K0
(
T̂2; C

)
K1
♭

(
T̂2
)

∼ ∼ ∼

ch−1

Σ′

ch0

∼ ∼ ∼

(44)

Here:
1. The column labeled “ordinary cohomology” essentially coincides with the Mayer-Vietoris sequence considered in

[MT16, (2.3)] [MT17, (2)] (there thought of as applying to integer coefficients, but all pertinent arguments hold ver-
batim also for complex coefficients). The following argument is akin to that in these articles, but the shift in Brillouin
torus dimension from 3 (there) to 2 (here) makes a real difference for the physical interpretation: In 2d the Chern class
c1 and hence the K0-groups cannot reflect nodal point charges (which instead is accomplished now by K0

♭ ) but remain
indicative of the global gapped topological phases, in accord with Fact 2.5.

2 At the boundaries of the diagram we have used the nature of the homotopy type of the punctured torus (Figure 7) to
evaluate the given cohomology groups. For example (recalling that all cohomology groups we display are reduced) we
see that would-be topological insulator phases necessarily trivialize on the complement of some points:

K0(T̂2 \{k1, · · · ,kN}
)
≃ K0(∨

N+1
S1) ≃

⊕
n+1

K0(S1) ≃ 0 ,

while it is now the shifted K-group which reflects potential charges associated with the nodal points, both rationally

K−1(T̂2 \{k1, · · · ,kN}; C
)
≃
⊕

k

H2k+1(∨
N+1

S1; C
)
≃
⊕
N+1

H1(S1) ≃ CN+1

as well as integrally:

K−1(T̂2 \{k1, · · · ,kN}
)
≃ ZN+1 ch−1

↪−−−−−−! CN+1 ≃ K−1(T̂2 \{k1, · · · ,kN}; C
)
.

These boundary identifications are special to the symmetry un-protected case of Chern phases considered here, but
the structure of the diagram generalizes to (twisted) equivariant K-theory groups describing SPT/SET semi-metal
phases if the boundary groups are instead replaced by their appropriate cohomological truncation. For example, when
Kτ

G

(
T̂2\{⃗k}

)
does not vanish, then the analogous diagram still characterizes those SPT semi-metal phases whose image

in this group vanishes.
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3. In this vein, the green arrows indicate the long exact sequence implied by the Snake lemma, which yields no further
information in the case of Chern phases at hand, but may be non-trivial for SPT/SET phases.

Finally, the squiggly dashed arrows indicates where the “gapping” of band nodes by mass terms is reflected in this diagram:
Given a set of naive nodal point charges which happen to be “accidental” or “spurious” in that there exists a mass term which
opens the node crossings, then
(i) exactness of the middle horizontal exact sequence implies that the underlying semi-metal phase is trivial;
(ii) exactness of the left vertical exact sequence shows that the resulting local topological charges c1[S2

I ] (may each be non-
trivial but) have vanishing total topological charge ∑I c1

[
S2

I
]
= 0.

K−1
(
T̂2 \ {⃗k}

)
K−1

(
T̂2 \ {⃗k}; C

)
K0
♭

(
T̂2 \ {⃗k}

)
choice of

mass term
nodal point

charges 0

K0
(∨

N S2
)

local Berry
curvatures

K0
(
T̂2
)

0

∋

∋ ∋

but trivial
semimetal phase

gap out band nodes

∑
N
I=1

∋

necessarily trivial
insulator phase

∋

(45)

This is exactly the phenomenon seen in the Haldane model (Figure 10) for constant mass terms.

In summary, Examples 3.3 and 3.6 seem to provide decent evidence for Conjecture 3.1. The following discussion of
topological interacting phases does not strictly depend on this conjecture, but together the two give a coherent picture.

3.2 Interacting phases and TED-K of configurations
So far we considered Bloch band theory, which is based on the assumption that the (screened) electrons in the crystal may be
regarded as free, namely as not interacting with each other, but only with the effective background Coulomb field (this entered
in Fact 2.3). It is remarkable that this assumption works so well (when it does, such as for many topological phases of matter)
in that there is a good match between electron band theory and experimental observation: Apparently the strong mutual
Coulomb interaction between real pairs of electrons in a crystal averages out in these cases (a fully satisfactory theoretical
derivation of this phenomenon from first principles seems not to be available).

Topological order. However, it is thought that the free-electron approximation certainly does break down in other crystalline
materials and specifically in some topological phases of matter, a now famous phenomenon which goes by a variety of
technical terms that we may schematically organize into the following list of implications (which may be gleaned from
reviews such as [ZCZW19]):

Topological phase with...

Strong/long-range
interaction

Strong
quantum

correlation

Long-range
entanglement

Topological
entanglement

entropy

Topological
order Anyons

Figure 11 – Topological order from non-negligible electron-interactions.

Specifically, by topological order ([Wen91a][GW09, p. 2][ZCZW19, §III]), one means particularly rich topological
phases of 2-dimensional quantum materials which may host defects (or “non-local quasi-particle excitations”) whose adi-
abatic braiding (Rem. 1.1) around each other has the effect of transforming the Hilbert space of ground states according
to a non-trivial braid group representation, see around Table 5 and Figure 12 below. (If this braid representation is non-
abelian – hence if there are non-abelian anyons – then the ground state energy must be degenerate in that the Hilbert
space of joint ground states must be higher dimensional – this property was the original definition of “topological order”
[Wen89][WN90][Wen91b][Wen93][Wen95]).

7[ZLSS15, p. 527]: “In a way it appears obvious that the strongly interacting bosonic quantum critical state is subject to long-range entanglement.
Nonetheless, the status of this claim is conjectural. It is at present impossible to arrive at more solid conclusions that are based on rigorous mathematical
procedures.”
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It is thought that topological order is characterized by a non-vanishing constant contribution to the entanglement entropy
of the ground state – called topological entanglement entropy ([KP06][LW06], review in [Gr13][ZCZW19, §5]) – which
signifies the presence of long-range entanglement ([CGW10, §V]) in the ground state (and the absence of short-range entan-
glement [Ki11][Ki13][Fr14]).

Beware that this is often referred to as strong correlation (e.g. [Wen91a]) which, however, is meant as “quantum correla-
tion” and as such synonymous with “quantum entanglement” (cf. [ZCZW19, §1.5] and generally [LL03, p. 2]). In contrast,
classical long-range correlation is indicative of Landau-theory phases and hence orthogonal to topological order.

Last but not least, the typical source of long-range entanglement in the ground state are expected to be non-negligible
long-range electron-electron interactions (e.g. [ZLSS15, p. 527][LV22, p. 1]).

The open problem of classifying topological order. Little to no aspect of the schematic sequence of implications in Fig-
ure 11 has previously found a mathematical formulation akin to the K-theory classification of non-interacting topological
phases (Fact 2.5). In fact, the success of K-theory in capturing non-interaction topological phases seems to have been tacitly
understood as implying that K-theory cannot play a role in the classification of interacting topological phases.

We highlight now that this is not actually a problem of K-theory as such, but of the domain space on which it is evaluated:
The n-electron interactions are instead captured by the K-cohomology of the configuration space of n points (47) in the
Brillouin torus. This observation combined with the main theorem of [SS22-Any] suggests a mathematical formulation and
classification of anyonic topological order which captures the outermost part of the diagram in Figure 11.

K-theory of n-electron states over the configuration space of n points. As one considers non-negligible n-electron inter-
action, the relevant wavefunctions are superpositions (linear combinations) of Slater determinant states |Ψi1,··· ,in⟩,

Ψi1,··· ,in

((
k1,s1), · · · ,(kn,sn)) := ∑

σ∈Sym(n)
(−1)sgn(σ)

ψi1

(
kσ(1),sσ(1)) ·ψi2

(
kσ(2),sσ(2)) · · ·ψin

(
kσ(n),sσ(n)) (46)

(e.g. [SO82, §2.2.3][LCD86, p. 196]) of n-tuples of single electron Bloch wavefunctions |ψi⟩, regarded as functions of
momentum k ∈ Td and spin polarization s ∈

{
",#

}
(with respect to any fixed axis). To these Slater determinants, Bloch

theory still applies (“n-electron band theory”, e.g. [GLG88, p. 4]) and shows that the interacting energy bands become
functions on the product spaces of n-tuples of Bloch momenta:(

T̂d)n
=
{
(k1, · · · ,kn) ∈ T̂d} .

For n = 2 this is worked out for explicit examples in [HGZ21]. For n = 1 this reduces to ordinary band theory (Figure 3).

These interacting bands over
(
T̂d
)n will be the eigenvalue bands of vector bundles spanned by the underlying n-electron

states, much as is the case for n = 1, by standard Bloch theory (Fact 2.1). The only subtlety to beware of here is that all n-
electron wave-functions (of the same spin) necessarily vanish where any pair among the n electrons has coinciding momenta
– due to the skew-symmetry enforced by the Slater determinants (46), expressing the “fermion statistics” of electrons, and
hence the “Pauli exclusion principle” by which no two electrons inhabit the same single-particle state:

∃
i̸= j

(
ki = k j and si = s j) ⇒ Ψi1,··· ,in

(
(k1,s1), · · · ,(kn,sn)

)
= 0 .

Therefore, such a vector bundle of n-electron Bloch wavefunctions cannot exist over all of
(
T̂d
)n, since its fibers would

degenerate on the “fat diagonal”
∆∆

n
X

:=
{
(k1, · · · ,kn) ∈ X×n

∣∣∣ ∃
i ̸= j

ki = k j
}

⊂ X×n
.

But the n-electron Bloch vector bundle should exist over the complement of these problematic points (cf. [FGR96, p. 334]),
which is the configuration space of n “probe” points (e.g. [SS22-Conf, §2.2]):

Conf
{1, · · · ,n}

(
X
)

:= X×n \∆∆
n
X
. (47)

Notice how this manifestly embodies the Pauli Exclusion Principle: the points where electron states would coincide (in
momentum space X = T̂d) are excluded from the configuration space.

More generally, if there are N band nodes as in Figure 6, then the valence bundle in interacting n-electron approximation
should be a complex vector bundle over the configuration space of n (probe) points inside the complement of N (nodal) points
inside the Brillouin torus:

Slater-Bloch valence bundle of
interacting n-electron states Vn ⊂ ∏

(k1,··· ,kn)

Span
{ Slater determinants of Bloch states

Ψi1,··· ,in

((
k1,s1), · · · ,

(
kn,sn

))}
(i1, · · · , in)
(s1, · · · ,sn)

configuration space of
n “probe” points Conf

{1, · · · ,n}

(
T̂d \{k1, · · · ,kN}

in complement of N “nodal”
points inside the Brillouin torus

)
=

{
(k1, · · · ,kn) ∈

(
T̂d
)n
∣∣∣∣ ∀i̸= j

ki ̸= k j

Pauli
exclusion

and ∀
i,I

ki ̸= kI
nodal

singularities

}
.

(48)
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(Moreover, this should descend to a vector bundle over the un-ordered configuration space, but here we stick with the ordered
configuration space.)

In conclusion:

Conjecture 3.7 (K-Theory classification of crystalline SPT order). The adiabatic deformation classes of symmetry pro-
tected (Figure 2) topological order of interacting electrons (according to Figure 11), for non-negligible ≤ n-electron interac-
tions, is still classified by TED-K-theory (as in Fact 2.5 and Conj. 3.1), but now of the configuration space of n points (48) in
the complement of any given N nodal points inside the Brillouin torus:

symmetry protected
topological order

[
Slater-Bloch

valence bundle

Vn
]
∈ KR

SPT
classes

(“fictitious”)

gauging

τ

(( n-electron
interaction

Conf
{1, · · · ,n}

(
T̂d \

N band nodes

{k1, · · · ,kN}
))

�
symmetry

protection
Gext

)
. (49)

Remark 3.8 (Interacting topological phases subsume free topological phases). In the degenerate case that n = 1, hence
for the case of vanishing effective electron-electron interaction, we have

Conf
{1, · · · ,1}

(X) = X (50)

and the statement of Conjecture 3.7 reduces to that of Fact 2.17.

Besides the clear physical motivation (48) for Conjecture 3.7, the key evidence, which we turn to next, comes from the
observation ([SS22-Any]) that (flat) TED-K-theory groups of the form (49) do reflect the presence of non-abelian anyons as
expected/demanded for a topological order (Figure 11), in that they naturally contain the expected anyon ground state wave
functions (namely conformal blocks) which do constitute braid group representations (“anyon statistics”) under movement of
the nodal points kI . This is the result of [SS22-Any], which we now review and further connect to condensed matter theory.

3.3 Anyonic topological order and Inner local system-TED-K
Notions of anyons – quanta & defects, in position- & momentum-space. The idea of anyon particles in 2+ 1 dimen-
sions (review in [Wil90][Le92][Rao16], following [LM77] [Wil82b], cf. Figure 11) is that their wave-functions pick up any
(whence the name) fixed unitary transformation (instead of just multiplication by -1, as for fermions) whenever one of them
completes a full rotation around another (as made precise in a moment). We may recognize two distinct conceptualizations of
anyons implicit in the literature, which we will refer to as shown in Table 5:

Anyonic quanta
(abelian)

like fermionic quanta (such as electrons) but subject to additional
abelian braiding phases, understood as Aharonov-Bohm phases
due to a flat abelian “fictitious” gauge field (56) which is sourced
by and coupled to each of the quanta.

([CWWH89] following
[ASWZ85], reviewed
in [Wil90, §I.3][Wil91],
see also [IL92])

Anyonic defects
(possibly non-abelian)

like solitonic defects (such as vortices) whose position is a classical
parameter (boundary condition) to the quantum system and whose
adiabatic movement (Rem. 1.1) acts on the quantum ground state
by (non-abelian) Berry phases.

(e.g. [ASW84, p. 1]
[FKLW03, pp. 6]
[NSSFS08, §II.A.2]
[CGDS11][CLBFN15]
[BP20][St20, p. 321])

Table 5 – Notions of anyons. – Even though the term anyon (or plekton) is traditionally used indiscriminately, we highlight
that anyonic quanta and anyonic defects are on distinct conceptual footing. Below we formalize both notions and find
them unified within the TED-K theory of configuration spaces of points (reflecting the anyonic quanta) inside surfaces with
punctures (reflecting the anyonic defects).

While the common terminology of “anyon statistics” evokes the notion of anyonic quanta (quasi-particles), the early
motivation of anyons as particles “bound” to practically infinite solenoids/magnetic flux tubes ([GMS81, §III][Wil82a][Wil90,
p. 5]) refers to their incarnation as defects. In fact, the braiding of defects of co-dimension=2 had been discussed in detail
([Mer79][LP93]) before and while the notion of “anyons” became established terminology. More recently, this is gaining
renewed attention:

Anyonic particles are best viewed as a kind of topological defects that reveal nontrivial properties of the ground
state. [Ki06, p. 4].
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Specifically, anyonic vortex defects are realized in Bose-Einstein condensates [MPSS19] and other superfluids [MMN21].
Vortices with bound Majorana zero modes are among the most studied anyon species for potential laboratory realization
[DSFN15] (cf. [MMB+19, Fig. 1]). This is expected to generalize to su(2)-anyons given by zero modes bound to solitonic
defects in parafermion models [Ts14, p. 2][Bor18, pp. 3]. Therefore, it is important to make explicit that, besides their
incarnation as quanta or quasi-particles, anyons have another incarnation as defects:

Anyons can arise in two ways: as localised excitations of an interacting quantum Hamiltonian or as defects in
an ordered system. [DSFN15, p. 1].

We will present in the following a theory (TED-K theory of configuration spaces) which brings out and unifies both these
distinct notions of anyons. But first we note that a notion of defects subject to adiabatic braiding (Rem. 1.1) is clearly not
constrained to defects in position space:

Remark 3.9 (Momentum-space anyons.). (i) Solitonic defects also exist in “momentum space” (“reciprocal space”), namely
in the guise of the familiar and ubiquitous band nodes in the Brillouin torus of a semi-metal (Figure 6) – an observation re-
cently highlighted in [APY19], whose authors refer to “band crossing points, henceforth called vortices”. This notion of semi-
metal band nodes as anyon-like defects in momentum space is recently finding attention [BW+20][TB20][JBL+21][PBSM22],
notably for the case of (twisted bilayer) graphene (see [KV20, Fig. 18]). In particular, the all-important adiabatic movement
(braiding) of anyons is quite tractable for band nodes in momentum space [CBSM22] [PBMS22][PGZO22]8, while it remains
elusive for defect anyons in position space (cf. [Ki06, p. 8][SRN15, p. 7-8] and [Kou+21][Kou+22]).
(ii) At the same time, a theoretical underpinning for understanding band nodes as anyons in momentum space had been
missing. We suggest that the results developed below §3.3 go towards providing this theory.
(iii) In the following we show that TED-K-theory of configuration spaces provides a theory which formalizes and unifies both
anyonic quanta and anyonic defects in a way that subsumes their existing mathematical models.

The resulting picture is most coherent for anyons in momentum/reciprocal-space:

Figure 12 – Anyon braiding. Shown is a configuration of three
points on a surface, evolving in time such that two of the points
rotate around each other with their worldlines forming a braid.
In the text we consider this general situation for the non-standard
case where the points are in momentum space (“reciprocal space”),
namely in the Brillouin torus of a topological semi-metal. Here, in
the terminology of Table 5:

– the anyonic quanta are interacting Bloch electron states
(46) whose interaction involves an effective “fictitious gauge
field” (in momentum space) inducing abelian Aharonov-
Bohm phases under braiding;

– the anyonic defects are nodal points, namely loci of band
nodes (Figure 6), which are singular defects in momentum
space, for instance in that they act as delta-sources for Berry
curvature.

Brillouin torus

wI/κ

anyon position

time
braiding

T̂2

kI

8[JBL+21]: “we consider an exotic type of topological phases beyond the above paradigms that, instead, depend on topological charge conversion
processes when band nodes are braided with respect to each other in momentum space or recombined over the Brillouin zone. The braiding of band
nodes is in some sense the reciprocal space analog of the non-Abelian braiding of particles in real space. [· · · ] we experimentally observe non-Abelian
topological semimetals and their evolutions using acoustic Bloch bands in kagome acoustic metamaterials. By tuning the geometry of the metamaterials,
we experimentally confirm the creation, annihilation, moving, merging and splitting of the topological band nodes in multiple bandgaps and the associated
non-Abelian topological phase transitions”

[CBSM22]: “Our work opens up routes to readily manipulate Weyl nodes using only slight external parameter changes, paving the way for the practical
realization of reciprocal space braiding.”.

[PBSM22]: “new opportunities for exploring non-Abelian braiding of band crossing points (nodes) in reciprocal space, providing an alternative to the real
space braiding exploited by other strategies. Real space braiding is practically constrained to boundary states, which has made experimental observation and
manipulation difficult; instead, reciprocal space braiding occurs in the bulk states of the band structures and we demonstrate in this work that this provides a
straightforward platform for non-Abelian braiding.”.

[PBMS22]: “it is possible to controllably braid Kagome band nodes in monolayer Si2O3 using strain and/or an external electric field.”.
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Remark 3.10 (Natural toroidal geometry for momentum-space topological order).
(i) Crystalline momentum/reciprocal space naturally provides the toroidal geometry – in form of the Brillouin torus (2) –
which is thought (starting with [Wen89]) to be so important for realizing non-trivial topological order.
(ii) In contrast, it was never clear (cf. [La19, p. 1]) how anyons inside toroidal position-space geometry (envisioned by so
many authors, e.g. [Ei90][HH92][GW92][PJ21]) would be realized in solid state physics. Even with the crystal lattice being
periodic in position space, the position of anyon defects would hardly be. But for Bloch features in momentum space (such
as band nodes), all this is natural and automatic.
(iii) Last but not least, topological order formulated in momentum space naturally connects (as shown in the following) to
the established understanding of topological gapped phases (Fact 2.5) which is all concerned with phenomena in momentum
space.

Therefore, we regard the following analysis (culminating in Facts 3.13 and 3.14) as a prediction from TED-K-theory of a
good momentum-space anyon phenomenology (see also Rem. 3.15 below).

Anyon quanta and Equivariant valence bundles. In mathematical detail, the nature of anyonic quanta (in the sense of Table
5) propagating on some (position- or momentum-) space X is (e.g. [BCMS93, (1.2)][DFT97, (1.3)]) that their n-particle wave-
functions Ψ (see (48)) are complex functions on the configuration space (47) which are “multi-valued” according to the anyon
braiding phases. That is, these are actual complex functions Ψ̂ on the universal covering space

Ĉonf
{1, · · · ,n}

(X) C

Conf
{1, · · · ,n}

(X)

BrX (n)

universal
cover

Ψ̂

anyonic n-quanta
wave-function

Zκ

(51)

that are equivariant with respect to the action of braids, namely of loops in configuration space:

braid

[γ ] ∈
braid group

BrX(n) :=

fundamental group of
configuration space

π1
(

Conf
{1, · · · ,n}

(X)
)
. (52)

The latter condition means that they satisfy the following constraint

ψ̂
(
[γ ] · (k1, · · · ,kn)

)
= φ(γ) · ψ̂

(
k1, · · · ,kn) (53)

for all braids [γ ] and n-tuples of positions k1, · · · ,kn ∈ X, and for a given choice of braiding phases, given by a group
homomorphism

φ : BrX(n)
braiding phases
−−−−−−! Zκ ↪−! U(1) . (54)

This (53) was essentially understood in [Wu84][IIS90], a clear account is in [MuSc95], see also [FGM90, p. 20][BCMS93,
§1][DFT97, §1]; and for references specifically in the context of solid state physics see also [DMV03][MuSh09]. Here we
highlight that (53) means that the vector bundle V̂n of which the wave-functions Ψ̃ are the sections – notably: the anyonic
generalization of the n-electron valence bundle Vn (48) – is equipped with equivariant bundle structure relative to φ (see
[SS21-Bun] for exposition and pointers):

V̂n
(
[γ1](k1, · · · ,kn)

)
Fiber of anyonic n-particle

valence bundle at some
n-tuple of momenta

V̂n
(
(k1, · · · ,kn)

)
V̂n
(
[γ2 · γ1] · (k1, · · · ,kn)

) Fiber of anyonic n-particle
valence bundle at braided

n-tuple of momenta

φ([γ2 ])·
∼φ([γ1])

·

∼
φ([γ2·γ1])·

multiplication by braiding phases

In the convenient language of stacks (as laid out in [SS20-Orb][SS21-Bun]), with VectC denoting the moduli stack of complex
vector bundles, we may sum this up as saying that the n-particle valence bundle of anyonic quanta is given by a system of
horizontal maps making the following diagram homotopy-commute:
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Universal
cover Ĉonf

{1, · · · ,n}
(X) VectC Moduli stack of

vector bundles

Configuration space
of n anyonic quanta Conf

{1, · · · ,n}
(X) VectC�Zκ

Homotopy quotient
by anyon phases

Classifying stack of
fundamental group B π1

(
Conf
{1, · · · ,n}

(X)
)

︸ ︷︷ ︸
=: BrX(n)

braid group

B Zκ︸︷︷︸
⊂U(1)

Moduli stack of
anyon phases

BrX (n)

anyonic braiding equivariance

⊢ V̂n

Zκ

“fictitious gauge field”

interacting n-particle
valence bundle

⊢Vn

Bφ

braiding phases

(55)

Anyon defects and Local system-twisted de Rham cohomology of configuration spaces. The presentation (55) makes it
clear how the theory of Chern classes of valence bundles – as familiar from the topological phases of Chern insulators (Exp.
2.16) – generalizes to the case of interacting and anyonic topological order (Figure 11):

The Chern classes of anyonic n-particle valence bundles are in the cohomology of the n-point
configuration space with local coefficients given by the braiding phases.

In detail, assume that X is a smooth manifold and let ω1 be a closed differential 1-form, whose holonomy gives the prescribed
braiding phases (54), hence let ω1 be a vector potential of the “fictitious gauge field” from Table 5:

Vector potential of
“fictitious gauge field”

ω1 ∈ Ω
1
(

Conf
{1, · · · ,n}

(X); C
)∣∣

d=0 (56)

such that

∀
[γ]∈π1

its Aharonov-Bohm phases

exp
(

2πi
∫

γ

ω1

)
=

braiding
phases

φ
(
[γ]
)

∈ Zκ ⊂ U(1) ⊂ C× . (57)

Then the Chern forms of the φ -anyonic valence bundles (55) are in the ω1-twisted complex-valued de Rham cohomology
([De70, §2, 6][ESV92], review in [Vo03I, §9.2.1][Di04, §2.5], cf. [GS18]):

Hn
(

Conf
{1, · · · ,n}

(X); φ

)
complex cohomology with
local system of coefficients

≃ Hq+ω1
dR

(
Conf
{1, · · · ,n}

(X); C
)

ω1 -twisted de Rham cohomology

:= Hq
(

Ω
•
dR

(
Conf
{1, · · · ,n}

(X); C
)
,d+ω1∧︸ ︷︷ ︸

ω1 -twisted de Rham complex

)
. (58)

Hence we may equivalently re-formulate the previous statement as:

The Chern classes of anyonic n-particle valence bundles are in the complex de Rham coho-
mology of the n-point configuration space twisted by the “fictitious” gauge potential.

Strikingly, this implies that defects (punctures) appear as defect anyons (according to Table 5), as we now explain.

Consider the case of interest where X is the Brillouin torus of a 2d semi-metal with nodal points k1, · · · ,kN removed
(Figure 6); or rather: consider for the moment the annulus resulting from cutting this punctured Brillouin torus along one of
its non-trivial 1-cycles S1

a ⊂ T̂2 (as in Figure 7, hence assumed to be disjoint from the nodal points):

Brillouin torus cut along a 1-cycle
with N nodal punctures(

T̂2 \S1
a

)
\
{

k1, · · · ,kN
}

≃
annulus with N punctures(

D2 \{k0}
)
\
{

k1, · · · ,kN
}

≃
complex plane with N +1 punctures

C\
{

k0,k1, · · · ,kN
}

≃
Riemann sphere with N +2 punctures

CP1 \
{

k0,k1, · · · ,kN ,kN+1
}
. (59)

(On the far right of (59), k0,kN+1 are any further pairwise distinct points which, without restriction of generality, we may
think of as fixed to k0 = 0 and kN+1 = ∞.) The corresponding configuration space inherits the evident complex structure,
whose canonical holomorphic coordinate functions we denote by

k1, · · · ,kn : Conf
{1, · · · ,n}

(
C\
{

k0,k1, · · · ,kN ,kN+1
})
−−−! C . (60)
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In terms of these holomorphic coordinates, the “fictitious” vector potential (56) may be chosen to be the following holomor-
phic differential form (cf. [SS22-Any, (41)] following [FSV94, (19)], and compare Figure 1):

ω1(⃗w,κ)
“fictitious”

gauge potential

:= ∑
1 ≤ i ̸= j ≤ n

2
κ

quanta-quanta (qq)
braiding phases

dki

(ki − k j)
− ∑

0 ≤ I ≤ N
1 ≤ i ≤ n

wI

κ
quanta-defect (qd)

braiding phases

dki

(ki − kI)
. (61)

Here the first sum in (61) gives the constant braiding phases among the anyon quanta as considered in [CWWH89, (1.1)];
concretely, our κ equals 4 times the “n” used in [CWWH89]. Then the second summand in (61) specifies the additional phases
obtained when braiding an anyonic quantum around an anyonic defect. Such a mixed quanta/defect-phase is parameterized
by an integer wI modulo κ , to be called the weight of/at the I-th defect:

wI ∈ Z, [wI ] ∈ Zκ , w⃗ :=
“incoming” weights

(w0,w1, · · · ,wN),

“outgoing” weight

wN+1 :=
(
∑

N
I=0wI

)
−n .

Concretely, a differential form Ψ on the configuration space which is ω1-twisted closed is equivalently an ordinary closed
form Ψ̂ (51) on the universal cover of the configuration space of the following form (cf. [SS22-Any, (42)] following [FSV94,
(20)][SV90, (2.1)], called the “master function” in [SlVa19, §2.1]):

Twisted-closed wavefunction on configuration space

dΨ+ω1(⃗w,κ)∧Ψ = 0  !

Equivariant closed wavefunction
on universal cover

Ψ̂
(

k̂1, · · · , k̂n)= ∏
1≤i< j≤n

quanta-quanta (qq)
braiding phases(
k̂i − k̂ j)2/κ

∏
0 ≤ I ≤ N
1 ≤ i ≤ n

quanta-defect (qd)
braiding phases(

k̂i − kI
)wI/κ · Ψ

(
k1, · · · ,ki) , (62)

where k̂i denote coordinates on the universal cover, while ki denote the pullbacks of the corresponding coordinates (60) on
the configuration space itself.

Remark 3.11 (Generalized Laughlin wavefunctions with mixed quanta-defect braiding phases). The form (62) is just
that of generalized Laughlin wavefunctions for anyons considered in [Hal84, (11)][NSSFS08, (89), (93)][La19, (3)], which
generalize the original Laughlin wavefunctions [Lau83][MR91, §2.2] (review in [Gi04, §2.1]) to a situation with mixed
quanta-defect braiding phases.

Hence for given κ ∈N+ – determining the phase picked up by braiding any two anyonic quanta around each other – equation
(61) parameterizes general quanta-defect braiding phases, subject only to the constraint that these come in integer multiples
of half the quanta-quanta braiding phases. This curious constraint has its secret origin in the root lattice geometry of the Lie
algebra su2 and guarantees that the following crucial fact holds ([FSV94, Cor. 3.4.2, Rem. 3.4.3][SS22-Any, Prop. 2.17]9):

The complex de Rham cohomology of configuration space, twisted (58) by the “fictious vector poten-
tial” (61), naturally contains the space of su2-conformal blocks, identified with the following Laughlin
state (Rem. 3.11) Slater determinants (46) weighted by the canonical holomorphic volume form:

su2 -affine
conformal blocks

at level κ −2

CnfBlckŝu2κ −2

(on the Riemann sphere
with N +1 punctures

(kI)
N+1
I=0 ,

of given weights{
(wI)

N
I=0,wN+1 =

( N
∑

I=0
wI

)
−n
}) de Rham cohomology twisted

by “fictitious” vector potential

Hn+ω1 (⃗w,κ)
dR

( configuration space of
n quanta among N defects

Conf
{1, · · · ,n}

((
T̂2 \S1

a
)
\{kI}N

I=1

)
; C
)

fI1 · · · fIn |v0
1 · · · ,v0

N⟩
conformal block for N punctures and n insertions

(cf. [FSV94, 2.3.3, 2.3.6] [SS22-Any, Ex. 2.14])

7−!

[
det
((wI j

κ

1
ki−kI j

)n

i, j=1

)
Slater determinant Laughlin state

dk1 ∧·· ·∧dkn

]
.

(63)

Remark 3.12 (Topologically ordered anyonic ground states in terms of modular tensor categories).
(i) Chiral conformal blocks as appearing in (63) are thought to be the Laughlin-type ground state wavefunctions of non-abelian
defect anyons (this is due to [MR91][RR99], reviewed in [NSSFS08, III.D.2], further developments in [GHL21][ZWXT21],
review in [Le92, §9][Wan10, §8.3][Su18]), specifically ([Ino98]) of “su2-anyons” (i.e. described by an ŝu2κ −2 CS/WZW
theory, as in [FLW02]) such as Majorana/Ising-anyons for κ − 2 = 2 and Fibonacci-anyons for κ − 2 = 3 (e.g. [TTWL08]
[GAT+13][SRN15, p. 11][JS21, §III]). In general this is the case for fractional shifted levels κ/r, see further below around
Table 12.

9The discussion in [FSV94][SS22-Any] is in terms of (ω1-twisted) holomorphic de Rham cohomology. This is still equivalent (58) to the complex
cohomology (with local system φ of coefficients) of the configuration space, since (e.g. [Di04, Thm. 2.5.11]) configuration spaces of points in punctured
Riemann surfaces are complex Stein domains [SS22-Any, Rem. 2.2].
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(ii) In fact, the unitary modular tensor categories (MTCs) which arise as representation categories of chiral 2d conformal
field theories (CFTs) such as of the su2-affine CFT above (the chiral su2 WZW model), specifically of their vertex operator
algebras (VOAs), are expected to be the mathematical structure accurately encoding topological order and anyon species. In
particular, modular tensor categories are braided fusion categories, and their category-theoretic braiding is widely thought
to reflect the corresponding anyonic braiding. The origin of this idea may be [Ki06, §8, §E], where it is argued in a con-
crete model. The general statement has become folklore, traditionally re-iterated without proof or even attribution (e.g. in
[NSSFS08, pp. 28][Wan10, §6.3][RW18, §2.4][Bo21]) and claimed to be “mature” in [Wan18, p. 1]. That a proof had
actually been missing was highlighted recently in [Val21] (which goes on to establish a list of sufficient conditions that need
to be established for the statement to hold.)

Here we find a derivation of MTC structure of anyon braiding from a first-principles definition of anyons as in Table 5:
(iii) We may observe that the braiding structure in an MTC arising as a representation category of 2d CFT is entirely deter-
mined by the CFT’s conformal blocks on the punctured Riemann sphere (this fact is highlighted in [EGNO15, p. 266][Run,
p. 36]; phrased in terms of modular functors this is a result due to [AU12]). In this sense, the conformal blocks appearing in
(63) may be regarded as the missing link between the physics of anyons according to Table 5 and the expected classification
of species of anyons (really: defect anyons) by MTCs:

Physical
defect anyons

(Table 5)

Topologically ordered ground states
as genus-zero conformal blocks

[MR91][RR99]

Anyon species encoded in
modular tensor categories

[Ki06, §8 & §E]

(63), Fact 3.13 [AU12]

Hence, in view of Rem. 3.12, the combination of the above boxed facts yields the following conclusion:

Fact 3.13 (Topologically ordered ground states via Chern forms of interacting valence bundles). The complex vector
space of complex Chern-de Rham classes of interacting valence bundles of any number n ≥ 1 of anyonic quanta among N
anyonic nodal defects in the cut Brillouin torus T̂2 \S1

a naturally contains the Hilbert space of topologically ordered ground
states of {0, · · · , I, · · · ,N +1} su2-anyons, whose:

– level (i.e. species: Majorana, Ising, Fibonacci, ...) is k = 2/φ qq −2, for φ qq ∈ Q↠Q/Z ≃ U(1) being the phase picked
up by braiding a pair of the anyonic quanta;

– weight (i.e. ŝu2k-spin) is wI = 1/φ
qd
I , for φ

qd
I ∈ Q ↠ Q/Z ≃ U(1) being the phase picked up by braiding an anyonic

quantum around the Ith anyonic defect.

It remains to discuss how exactly this encodes the non-abelian braiding statistics expected in topologically orderered
ground states:

Non-abelian topological order and hypergeometric KZ-solutions. It is familiar from the discussion 3d Chern semimetals
(e.g. [MT16, (2.3)]) that the topological charge of a nodal point is the integral of the valence bundle’s Chern form over a
cycle in the Brillouin torus which encloses the nodal point. In evident variation of this principle, we must regard cycles with
complex coefficients in the local system φ (55) – hence the homology-dual of the twisted cohomology (58) – as reflecting the
nodal configurations of the anyonic n-particle interacting system:

N-nodal points

{kI}N
I=1

n-cycle around nodal points

σ
(
{kI}N

I=1

)
∈

homology of configuration space with local system of coefficients

Hn

(
Conf
{1, · · · ,n}

((
T̂2 \S1

a
)
\
{

kI
}N

I=1

)
; φ

)
.

flat section of
GM connection

(64)

In degree 1 such twisted cycles are Pochhammer loops (see around [Va95, Fig. 1.1][EFK98, Fig. 4.1]); for a construction
in general degrees see [EFK98, §7.6]. Here one wants to assume that the choice of the twisted cycle σ in (64) is carried
along with the positions kI of the nodal defects. Technically, this makes sense since the twisted homology groups on the
right (64) canonically form a flat vector bundle over Conf

{1, · · · ,N}

(
T̂2 \ S1

a
)
, known as the Gauss-Manin connection (GM, see e.g.

[Ku98][Vo03I, Def. 9.13] for the general concept and see [EFK98, §7.5][SS22-TQC] for the case at hand); and we agree that
σ in (64) denotes a parallel section with respect to this flat GM connection.

Now Fact 3.13 says that the possible topological fluxes through such a cycle around the nodal points subsume those
indexed by ŝu2κ −2-conformal blocks and, as such, are given by evaluating their associated twisted cocycles (63) on the
twisted cycles (64):
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Possible topological charges (Chern numbers)
of anyonic nodal configuration σ

c[σ ] : Conf
{1, · · · ,N}

(
T̂2 \S1

a

) (
CnfBlckŝu2κ −2

(
(wI)

N+1
I=0

))∗
(k1, · · · ,kN)

positions of anyonic
nodal points

7−!

(
fI1 · · · fIn |v0

1 · · · ,v0
N⟩

︸ ︷︷ ︸
possible Chern forms (63) of

anyonic interacting n-particle valence bundle

7!
∫

σ

(
{kI}N

I=1

)det
((wI j

κ

1
ki − kI j

)n

i, j=1

)
dk1 ∧·· ·∧dkn

︸ ︷︷ ︸
anyonic nodal charges

)
.

section of dual conformal block bundle

(65)

Recognizing this expression (65) as a hypergeometric KZ-solution (due to [DJMM90][SV90, Thm. 1], here specifically
[FSV94, Cor. 3.4.2]; for exposition see [EFK98, §4.3, 4.4]) we find that these systems of charges of anyonic defects satisfy
– in their dependence on the anyon defect positions kI – the Knizhnik-Zamolodchikov equation (e.g. [EFK98, §3,4][Ko02,
§1.5]) and as such constitute a non-abelian monodromy braid representation (e.g. [EFK98, §8][Ko02, §2.1]).

In conclusion, this means that we have derived the following fact – a prediction of momentum space anyon statistics (Rem.
3.910 obtained from the above re-analysis of the established notion of multi-valued anyon wavefunctions (53)):

Fact 3.14 (Non-abelian anyon statistics of band nodes). The systems (65) of charges carried by anyonic nodal points
exhibit the braiding statistics and hence the topological order of ŝu2κ −2-anyons.

Remark 3.15 (Physical origin of non-abelian anyonic braiding). Observe that Facts 3.13 and 3.14 explain, via (63) and
(65), the origin (for κ ≥ 3) of non-abelian anyonic phases emerging from abelian braiding phases (54) and their abelian
Laughlin states (Rem. 3.11), an expected phenomenon whose explanation had previously remained at least unclear:

The non-abelian structure arises via (65) not (just) from the global n-particle Laughlin wavefunctions (62) which in
themselves just see abelian braiding phases, but from the topology (the Chern classes) of the twisted/equivariant n-particle
Bloch bundle (55) which they span.

Remark 3.16 (Towards full classification). While Facts 3.13 and 3.14 seem remarkable (Rem. 3.15), it is not yet the full
answer to the classification of anyonic topological order (to which we turn next):

• It pertains to complex-linear combinations of twisted Chern forms, while the bare interacting valence bundles will con-
tribute only a lattice of integral twisted Chern forms. Instead, the complex-linear combinations of Chern forms appear as
secondary Chern forms of flat Berry connections on these interacting valence bundles, hence by passage to flat differential
K-theory, according to Conjecture 3.1.

• It pertains to unitary interacting valence bundles and hence to the special case of completely broken symmetry protection
(reducing, in the degenerate case of trivial topological order, to the case of Chern insulators, Ex. 2.16). After under-
standing the statement of Fact 3.13 in terms of flat differential K-theory, this will be generalized by passing to the full
TED-K-theory of the orbi-orientifolded configuration space of points in the Brillouin torus, in generalization of Fact 2.17.

This is what we turn to next.

Logarithmic topological order and Inner local systems of K-theory. In more detail, the chiral conformal blocks appearing
as topologically ordered ground states (Rem. 3.12) are in general not just those of a rational 2dCFT like the ŝu2κ −2-WZW
model at integral level κ − 2 ∈ N, but those of a logarithmic conformal field theory [GFN97][Fl03, §5.4] (whose repre-
sentation categories are still braided tensor categories [CLR21] encoding anyonic braiding). But in recent years it became
understood (see the references in Figure 13) that prime examples of (chiral 2d) logarithmic CFTs are again ŝu2κ/r−2-CFTs,
but now at fractional (meaning: rational) shifted level κ/r (for which k := κ/r− 2 is called an admissible fractional level,
see [SS22-Any, Rem. 2.22]). But the hypergeometric integral construction of braid statistics (65) works verbatim at any
fractional level (this was the original generality in which the construction was conceived); and it is expected (though a proof
is not yet in the literature) that its relation to conformal blocks (63) remains valid for admissible fractional levels.

10The mathematics expressed in (63) and (63) is indifferent to whether the variables ki, kI are thought of as momenta or positions, and an analogous
conclusion would hold for defect anyons in position space, to the extend that this concept makes good sense in itself (cf. Rem. 3.10).
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Figure 13 – Expected relations be-
tween the chiral WZW model CFTs
at admissible fractional level (as ob-
tained from TED-K) to logarithmic
CFTs.
In particular, the level κ − 2 = 0 (cf.
[PP94][Sm93]) is admissible and es-
sentially identified ([Ni02a][Ni02b])
with the logarithmic triplet algebra of
the “c = −2” model ([GK96][Ga03,
§3]) that is related to Laughlin wave-
functions in [GFN97][Fl03, §5.4].

TED-K cohomology
of configuration spaces

Fractional-level
ŝu2κ/r−2-CFT

Topologically ordered
ground states

Chiral 2d
logarithmic CFT

reflects
(66)

[SS22-Any, Thm. 2.18]

is

[Ga01][CR13, (3.1)][KR19, (5.1)][KR22, (1.2)],
review in [Ga03, §5][Ri10][Ri20]

yields

(63) (65)
[SS22-Any, Conj. 2.21]

are generally given by

[GFN97][Fl03, §5.4]

Hence assuming the situation in Figure 13, we conclude that in general the shifted level κ appearing in Facts 3.13 and
3.14 must be understood as a rational number. Equivalently, for fixed κ ∈ N≥2 and fixed form ω1(⃗w,−) of the “fictitious”
gauge potential (61) we find the full space of topologically ordered ground states (63) with braiding phases being κ-th roots
of unity inside the direct sum of ω1(⃗w,κ/r)-twisted cohomology groups as the denominator r ranges between 1 and κ:

{
Topologically ordered ground states of

n anyonic quanta among N anyon defects
with braiding phases in Zκ ⊂ U(1)

} weights determining
form of “fictitious”

gauge potentials⊕⃗
w ∈

{0, · · · ,κ −1}N+1

de Rham cohomology twisted
by “fictitious” vector potential
at some shifted fractional level⊕

1≤r≤κ

Hn+ω1 (⃗w,κ/r)
dR

︸ ︷︷ ︸
KUn+ω1 (⃗w,κ)

((
(−)×∗�Zκ

)
; C
)

Zκ -equivariant complex K-theory with complex coefficients
twisted by the inner local system given by ω1(⃗w,κ)

( ‘
configuration space of

n quanta among N defects

Conf
{1, · · · ,n}

((
T̂2 \S1

a
)
\{kI}N

I=1

))
. (66)

Remarkably, as shown under the brace, just this kind of direct sum of twisted de Rham cohomology groups is equal
([SS22-Any, Prop. 2.1, Thm. 2.19]) to a certain TED-K-theory group, namely to the equivariant K-theory “with com-
plex coefficients” (in the terminology of [FHT07]) of the trivial Zκ -action twisted by the “fictious” vector potential regarded
as an “inner local system”.

That this is the case may be extracted from [TX06, Def. 3.10, Thm. 1.1][FHT07, Def. 3.6, Thm. 3.9]. We briefly recall
the detailed argument provided in [SS22-Any, §3], also to highlight that this phenomenon is neatly brought out by the stacky
Fredholm formulation of K-theory (19):

Remark 3.17 (Understanding the inner local system twist of equivariant K-theory [SS22-Any, §3]).
(i) There is an essentially unique “stable” group homomorphism (see [SS21-Bun, Lem. 4.1.44]) from a finite cyclic group

to the projective unitary group

Zκ
U(H )
U(1) ,

stable (67)

hence a unique “stable” κ-cyclic group of quantum symmetries (17).
(ii) The space

(
Fred0

C
)Zκ of Fredholm operators which are fixed ([SS22-Any, (56)]) by the induced Zκ -action (16) is weakly

equivalent to the disjoint union of Fredholm operators indexed by Zκ irreps ([SS22-Any, (58)]):(
Fred0

C
)Zκ ≃

whe

∏

ρ∈Z∗
κ

Fred0
C . (68)

(iii) The group of automorphisms of the delooping BZκ −! B UH
U(1) of the stable homomorphism (67) is ([SS21-Bun, (4.101)]

[SS22-Any, (54)]) equivalently the Pontrjagin dual group of characters

Z∗
κ := Hom

(
Zκ , U(1)

)
≃ Zκ ,

and its induced action on the fixed locus (68) is by multiplication of the irrep labels.
(iv) By the mapping stack adjunction for internal symmetries (Figure 5), this means that inside a Zκ -singularity the twists of

equivariant K-theory subsume flat-connections ω1 on a Z∗
κ ⊂ U(1)-principal bundle:
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Fred0
C� U(H )

U(1)

(
T̂2 \ {⃗k}

)
×∗�Zκ B U(H )

U(1)

twisted equivariant

K-cocycle

τ

twist by
inner local system

 !
mapping

adjunction

(
Fred0

C
)Zκ �Z∗

κ Map
(

BZκ , Fred0
C� U(H )

U(1)

)
.

T̂2 \ {⃗k} BZ∗
κ Map

(
BZκ , B U(H )

U(1)

)(pb)

adjoint twist

ω1
local

system
full subgroupoid on the
stable homomorphism

which twists the K-cocycles by twisting the corresponding virtual vector bundles through the regular representation of
Zκ .

(v) Since the regular representation is equivalently the direct sum of all irreps, and since the irreps of Zκ are the 1-dimensional
complex reps generated by multiplication with exp(2πir/κ), the identification under the brace in (66) follows [SS22-Any,
(70)].

Remark 3.18 (Exotic topological order). At this point it is natural to conjecture that the inclusion in (66) is in fact a bi-
jection, hence a linear isomorphism. Settling this in any detail may require a deeper understanding of conformal blocks of
logarithmic/rational-level CFTs than is currently available. Here we shall not further dwell on this point, but some observa-
tions in this direction may be found in [SS22-Any, Rem. 2.21].

Comparison with (44) in Exp. 3.6 now gives the following TED K-cohomology groups classifying anyonic topological
order in the case of “Chern phases” without any symmetry protection:

Topologically ordered ground states of interacting Chern semi-metal phase

KUn+ω1 (⃗w,κ)

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
×∗�Zκ ; C

)

KUn+ω1 (⃗w,κ)

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
×∗�Zκ

)
Compatible mass terms opening the gap

KUn−1+ω1 (⃗w,κ)
♭

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
×∗�Zκ

)
Deformation classes of topologically ordered Chern semi-metal phases

quotientchn+ω1

(69)
It is this situation which, seen under the CMT/ST-dictionary (Figure 4) we showed in [SS22-Any, §4] to accurately match

the expectations for defect branes in string theory.

Therefore, and in view of Fact 2.17, the final conclusion is, in refinement of Conjecture 3.7:

Conjecture 3.19 (Classification of SPT/SET order in TED-K). The Gext-SPT/SET phases of ŝu2k−2-anyonic topological
order are classified by the following flat twisted equivariant K-theory of configuration spaces of points in the complement of
nodal points in the Brillouin torus:

Topological order of N κ-anyonic band nodes
in n-particle interacting semi-metal phase

Gext-protected/enhanced
topologically ordered ground states of interacting semi-metal phase

KRn+[T̂ 2,P̂2=±1]+ω1 (⃗w,κ)

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
�Gext × ∗�Zκ ; C

)

KUn+[T̂ 2,P̂2=±1]+ω1 (⃗w,κ)

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
�Gext × ∗�Zκ

)
Compatible mass terms opening the gap

KRn−1+[T̂ 2,P̂2=±1]+ω1 (⃗w,κ)
♭

(
Conf
{1, · · · ,n}

(
T̂2 \{kI}N

I=1

)
�Gext × ∗�Zκ

)
Deformation classes of G-symmetry protected/enhanced

topologically ordered interacting semi-metal phases

quotient

chn+[T̂2 ,P̂2=±1]+ω1

(70)

Remark 3.20. In the case n = 1, hence for vanishing interaction (as in Rem. 3.8), Conjecture 3.19 reduces to Conjecture 3.1.
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Conclusion. It remains to produce further checks and examples of Conjecture 3.19; but the point here is that this is now, to a
large extent, a problem purely in (twisted equivariant differential) topological K-theory, for which a good supply of powerful
tools exist. In particular, TED K-theory is (by [SS21-Bun][SS22-TED]) a natural construction in the foundational context of
cohesive ∞-topos theory. For such constructions there exists a novel programming language known as cohesive homotopy
type theory (cohesive HoTT, see [SS20-Orb, p. 5-6] for pointers). We see here through Conjecture 3.19, and in view of
its tight relation to the hardware model of topological quantum computation (Figure 1), that cohesive HoTT may naturally
implement topological quantum computation in a way which is fully “hardware aware” of the fine detail of topological q-bits
and their braid quantum gates. This point is further discussed in [SS22-TQC].

Programming platform: Library/Module: Hardware platform: Architecture:

Cohesive Homotopy
Type Theory with

dependent linear types

TED-K-cohomology of
defect configurations in

crystallographic orbifolds

Anyonic orders in
topological phases

of quantum materials

Topological
quantum
circuits

implements
[SS22-TQC]

emulates
§3

runs
[FKLW03]
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