
2.3.2 Exotic brane configurations via May-Segal’s theorem

Cohomotopy charge in low
codimension. The Pontrja-
gin theorem (§2.3.1) suggests
that every solitonic brane seen
by n-Cohomotopy “wants to
be” a d−n-brane. Indeed, if
the available transverse space
is < n-dimensional as for ex-
otic branes (e.g. the M9), then
the May-Segal theorem [May72,
Thm. 2.7][Segal73, Thm. 3]
may be understood as saying
that n-Cohomotopy still sees
(d− n)− branes, but “delocal-
ized” to look like exotic branes.
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May-Segal’s theorem indeed
identifies the n-Cohomotopy
moduli of < n-dimensional
transverse spaces with the
configurations of (unordered)
points in Rn which are dis-
tinct as points in Rd−p (and
as such look like transverse po-
sitions of flat p-branes) while
their “core” may escape to in-
finity in the tangential direc-
tion, reflecting the fact that the
n-Cohomotopy flux is not con-
strained to vanish at infinity in
these directions.
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Notice the dichotomy: If branes can not escape to ∞ then
their fluxes vanish at ∞ and vice versa. This is why in pass-
ing from the Cohomotopy charge to the corresponding brane
configurations the subscripts swap as (-)⊔{∞} ↔ (-)∪{∞}.
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• un-ordered tuples of points in Rn ≃ Rd−p × Rn−d+p — as such they look like flat solitonic d−n-branes.
• which have pairwise distinct projections to Rd−p — as such they look like flat solitonic p-branes

• and may escape to or emerge from ∞ along Rn−d+p
∪{∞} — like partially de-localized d−n-brane solitons

(NB: These configuration spaces are connected: The moduli are all in higher homotopy, invisible to traditional treatment.)

Pontrjagin’s Cohomotopy charge map still exhibits the equivalence of the May-Segal theorem, now known
as the inverse “electric field map” [Segal73, §1][McD75, §1] or “scanning map” and evaluated on the configuration
space by [Segal73, §3], assigning to each point in the configuration the unit (d−p)-cohomotopy charge of a solitonic
p-brane, but regarded after inclusion into the cohomotopy charge space of solitonic (d− n)-branes:
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n-cohomotopy charge map for solitonic p > d− n-branes

pure solitonic
p-brane charge

regarded as solitonic
d−n-brane charge
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