Double dimensional reduction of Hypothesis H. [FSS18-T, §3][BMSS19, §2.2][SS23-Cyc, p. 6][SV23].

Cyclicfication of classifying spaces. The free loop space of a (classifying space) carries a canonical S^1 -action by rotation of loops, its homotopy quotient is the *cyclification*.

Topological KK-Reduction. For a principal circle bundle $X_{\rm M}^{10} \to X_{\rm IIA}^{9}$, the moduli of topological \mathcal{A} -fields on $X_{\rm M}^{10}$ are equivalent to those of topological Cyc(\mathcal{A})-fields on $X_{\rm IIA}^{9}$ sliced over BS^{1}

This is **double dimensional** reduction in that with the domain space dimension also the degree of the fluxes is reduced, if they "wrap" the KK-fiber.

Hence for flat $X_{\rm M}^{10}$ (eg. a torus bundle over a Euclidean space with a point at infinity), **Hypothesis H** implies that fluxes in type IIA string theory are quantized in Cyc(S^4)-cohomologly.

Rationally this cyclification is indeed like twisted K-theory, but without the "Romans mass" term F_0 sourced by singular D₈-branes (we find *solitonic* D₈-branes in hupf).

Hence in IIA, Hypothesis H predicts a non-abelian modification of the traditional Hypothesis K.

U-Duality. This process of double dimensional reduction by cyclification of the 4-sphere coefficients continues to yield, rationally, the expected U-duality symmetries of M-theory [SV23, p. 5]:

 $\begin{array}{l} \text{cyclified free loop space} \\ \text{Cyc}(\mathcal{A}) := \text{Maps}(S^{1}, \mathcal{A}) /\!\!/ S^{1} \\ \\ \\ \text{Maps}(X^{11}, \mathcal{A}) \underbrace{\swarrow}_{X}^{\text{KK-reduction}} \\ \text{Maps}(X^{11}, \mathcal{A}) \underbrace{\swarrow}_{X}^{\text{KK-reduction}} \\ \text{Maps}(X^{11}, \mathcal{A}) \underbrace{\swarrow}_{X}^{\text{KK-reduction}} \\ \text{e.g. } \text{Cyc}(B^{n+1}\mathbb{Z}) \simeq (B^{n}\mathbb{Z} \times B^{n+1}\mathbb{Z}) /\!\!/ S^{1} \\ \\ \text{wrapped fluxes} \\ \text{wrapped fluxes} \\ \text{mon-wrapped fluxes} \\ \text{po-w}\mathbb{Z} \text{ term} \\ \\ \text{fib}(f_{2}) \qquad \uparrow \\ \\ X^{9}_{\text{IIA}} \xrightarrow{\text{and its KK-reduction}}_{G_{3}} \text{Cyc}(S^{4}) \\ \\ \underbrace{\swarrow}_{f_{2}} & \underbrace{\searrow}_{BS^{1}} \\ \\ \Omega_{\text{dR}}(X^{9}_{\text{IIA}}, \text{ICyc}(S^{4})) \underset{\text{clsd}}{\overset{[\text{FSS17-Sph, Ex. 3.3]}}{=} \\ \left\{ \begin{array}{c} \mathrm{d}F_{2} = 0 \\ \mathrm{d}F_{4} = H_{3} \wedge F_{2} \\ \mathrm{d}F_{6} = H_{3} \wedge F_{4} \end{array} \right. \\ \end{array} \right\} \\ \end{array}$

D	k	Type of E	f_k Lie algebra \mathfrak{g}	del Pezzo	Model	Maximal Split Torus
11	0	A_{-1}	$\mathfrak{sl}_0 = \emptyset$	\mathbb{CP}^2	S^4	\mathbb{G}_m
10	1	A_0	$\mathfrak{sl}_1=0$	\mathbb{B}_1	$\mathscr{L}_{c}S^{4}$	$\mathbb{G}_m imes \mathbb{G}_m$
10	1	A_1	\mathfrak{sl}_2	$\mathbb{CP}^1 \times \mathbb{CP}^1$	IIB	$\mathbb{G}_m imes \mathbb{G}_m$
9	2	A_1	\mathfrak{sl}_2	\mathbb{B}_2	$\mathscr{L}^2_c S^4$	$\mathbb{G}_m^2 \times \mathbb{G}_m$
8	3	$A_2 \times A_1$	$\mathfrak{sl}_3 \oplus \mathfrak{sl}_2$	\mathbb{B}_3	$\mathscr{L}^3_c S^4$	$\mathbb{G}_m^3 \times \mathbb{G}_m$
7	4	A_4	sl5	\mathbb{B}_4	$\mathscr{L}^{4}_{c}S^{4}$	$\mathbb{G}_m^4 imes \mathbb{G}_m$
6	5	D_5	\mathfrak{so}_{10}	\mathbb{B}_5	$\mathscr{L}_{c}^{5}S^{4}$	$\mathbb{G}_m^5 imes \mathbb{G}_m$
5	6	E_6	e ₆	\mathbb{B}_6	$\mathscr{L}_{c}^{6}S^{4}$	$\mathbb{G}_m^6 imes \mathbb{G}_m$
4	7	E_7	e7	\mathbb{B}_7	$\mathscr{L}_{c}^{7}S^{4}$	$\mathbb{G}_m^7 \times \mathbb{G}_m$
3	8	E_8	e ₈	\mathbb{B}_8	$\mathscr{L}^8_c S^4$	$\mathbb{G}_m^8 imes \mathbb{G}_m$
	1-	Type of E	Vaa Maady alaahna a	Non Fono Su	unfago Mo	del Marimal Culit Toma
D	κ	Type of E_k	Kac-moody algebra g	Non-Fano St	Inface Mo	Maximal Split Torus
2	9	$E_9=\widehat{E}_8$	affine $\mathfrak{e}_9 = \widehat{\mathfrak{e}}_8$	\mathbb{B}_9	\mathscr{L}_{c}	${}^{9}S^{4} \qquad \mathbb{G}_{m}^{9} \times \mathbb{G}_{m}$
1	10	E_{10}	hyperbolic e_{10}	\mathbb{B}_{10}	\mathscr{L}^{1}_{c}	$^{0}S^{4}$ $\mathbb{G}_{m}^{10} \times \mathbb{G}_{m}$
0	11	E_{11}	Lorentzian e ₁₁	\mathbb{B}_{11}	\mathscr{L}^{1}_{c}	$^{1}S^{4}$ $\mathbb{G}_{m}^{11} \times \mathbb{G}_{m}$