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Abstract

Differential cohomology is a refinement of bare cohomology by differential geometry. It lifts the clas-
sical theory of principal connections, Yang-Mills fields and Chern-Weil theory to higher connections and
higher gauge fields with underlying classes in generalized cohomology theories. The latter are famously
characterized by the generalized Eilenberg-Steenrod axioms and represented by spectra. A few years
back Simons and Sullivan asked if there is also an axiomatic characterization of differential generalized
cohomology. We survey here [Schreiber 13, Bunke-Nikolaus-Völkl 13] a faithful such axiomatization by
sheaves of spectra/homotopy types which are “cohesive”. As an application we indicate the abstract
characterization of differential moduli stacks such as higher (intermediate) Jacobian stacks.
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1 Ordinary differential cohomology

For X a manifold and A ∈ Ab an abelian group, then the ordinary cohomology groups Hn(X,A) are
invariants of the underlying homotopy type of X, in particular they are homotopy invariant in that the
canonical maps

Hn(X,A)
'−→ Hn(X × R, A)

are equivalences. In order to bring the actual geometry of manifolds into the picture, consider

Definition 1.1. Let S denote the site (Grothendieck topology) of

S =



{smooth manifolds}
or {complex analytic manifolds}
or {super-manifolds}
or {formal manifolds }
or {formal super-manifolds}

or
any locally étale-contractible site with terminal object ∗
such that Hom(∗,−) preserves split hypercovers
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Then for A ∈ Ab(Sh(S)) a sheaf of abelian groups, there are the abelian sheaf cohomology groups
Hn(X,A) which need not be homotopy invariant. Only when A := LConst(A) is locally constant then its
sheaf cohomology reproduces ordinary cohomology:

Hn(X,LConstA) ' Hn(X,A) .

More generally for A• ∈ Ch•(Sh(S)) a chain complex of abelian sheaves, then there is the abelian sheaf
hypercohomology

Hn(X,A•) := H0(X,BnA•) ' RHom(Z[X], A•[−n]) .

Example. Write

Ga =

{
(R,+) for S = {smooth manifolds}
(C,+) for S = {complex analytic manifolds} .

for the sheaf of (smooth, or holomorphic, etc.) functions and write

[Ga := LConst(Ga(∗))

for the sheaf of locally constant functions. Write

Ω• ∈ Ch−•(Sh(S)) = Ch•(Sh(S))

for the (smooth, or holomorphic, etc.) de Rham complex. The Poincaré lemma says that

Hn(X,Ω•) ' Hn(X, [Ga)

In fact the local quasi-isomorphism

[Ga
'−→ Ω•

exhibits (just) a resolution, but this particular resolution serves to naturally induce the Hodge filtration:

// F p+1Ω• //

%%

F pΩ• //

��

F p−1Ω•

yy

//

Ω•

given by the degree-filtration of the de Rham complex:

F pΩ• := Ω•≥p .

Using this we find “genuinely geometric” cohomology groups of differential forms, such as

Hn(X,Ω•≥n) ' Ωncl(X) .

Specifically in the complex-analytic case the above filtration reproduces the traditional Hodge filtration

Hk(X,Ω•≥p) ' ⊕
k−q≥p

Hk−q,q(X)

and thus the group of Hodge cocycles is given by the following fiber product of sheaf hypercohomology
groups:

Hdgp(X) := Hp,p(X)integral ' H2p(X,Z) ×
H2p(X,[Ga)

H2p(X,Ω•≥p) .

(see e.g. [Esnault-Viehweg 88] for review of this and some of the following)
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Definition 1.2. Pulling back the above Hodge filtration along the exponential sequence

Z �
� chZ // Ga

exp
(
i
~ (−)

)
// Gm

we obtain a tower of homotopy pullbacks in Ch•(Sh(S)):

(BnGm)conn
//

��

Bn+1Ω•≥n+1

��
F 3(BnGm)conn

//

��

Bn+1Ω•≥3

��
F 2(BnGm)conn

//

��

Bn+1Ω•≥2

��
BnGm

θ //

��

Bn+1Ω•≥1

��
Bn+1Z ch // Bn+1Ω• ' Bn+1[Ga

Proposition 1.3. These homotopy fiber products are given by the Deligne complexes:

F p(BnGm)conn '
(

Z �
� // Ω0 ddR // Ω1 ddR // · · · ddR // Ωp−1 // 0 // · · ·

)
(with Z in degree n+ 1).

[Fiorenza-Schreiber-Stasheff 10]

Examples.

1. BGm modulates line bundles;

2. (BGm)conn modulates line bundles with connection;

3. (B2Gm)conn modulates bundle gerbes with connection and curving;

4. F 2(B2Gm)conn modulates bundle gerbes with connection but without curving,
the symmetries of these are given by Courant algebroids;

5. generally (BnGm)conn modulates line n-bundles with n-connection;
the symmetries of these are higher Kostant-Souriau quantomorphism group extensions;

6. H•(−, (B•Gm)conn) is called ordinary differential cohomology ;
the deformation theory of ordinary differential cohomology (before analytification, in positive charac-
teristic) is given by Artin-Mazur formal groups;

7. on a complex manifold X the fiber

Jp(X) −→ H0(X,F p(B2pGm)conn) −→ Hdgp(X)

is (the abelian group underlying) the pth higher Jacobian (“intermediate Jacobian”) of X.

[Fiorenza-Rogers-Schreiber 13]
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2 Chern-Weil secondary invariants

A central purpose of ordinary differential cohomology is to approximate non-abelian differential cohomology;
this is the content of Chern-Weil theory. To capture this write

sSet(S) := sSet(Sh(S))

for the homotopy theory of simplicial sheaves on S,
i.e. sheaves of homotopy types with weak equivalences the local weak homotopy equivalences.

Example. For a Lie group G with Lie algebra g, the system of simplicial nerves N(−) of quotient groupoids
(−)//(−) given by the gauge action of G-valued functions on g-valued 1-forms

X 7→ N
(
Ω1(X, g)//C∞(X,G)

)
defines a simplicial sheaf

(BG)conn ' Ω1(−, g)//G ∈ sSh(X) .

This modulates G-principal connections:

H(X,BGconn) ' {G-principal connections on X}∼ .

Proposition 2.1. For a an L∞-algebroid and µ : a −→ R[n+ 1] a cocycle which is “transgressive” and has
integral periods, then there is canonical Lie integration to a morphism in sSh(S)

τn exp(a)conn −→ (Bn+1Gm)conn .

Examples.

1. For µ = 〈−, [−,−]〉 : Bg→ R[−3] the canonical 3-cocycle on a semisimple Lie algebra, this yields

LCS : (BG)conn −→ (B3Gm)conn

that sends G-principal connections ∇ to differential cocycles represented by (c2, 〈F∇ ∧ F∇〉). The
homotopy fiber modulates String 2-connections:

BStringconn −→ BSpinconn
LCS−→ (B3Ga)conn .

Here LCS is a full de-transgression of the Chern-Simons secondary invariant:

• transgressed to the circle it yields the WZW gerbe:

G //

LWZW

11[S1,BGconn]
[S1,LCS]// [S1, (B3Gm)conn]

exp(
i
~
∫
S1 (−))

// (B2Gm)conn

• transgressed to 2d-manifold Σ it yields a multiple of the θ-bundle on the moduli of G-principal

connections: ConnG(Σ) // 11[Σ,BGconn]
[Σ,LCS]// [Σ, (B3Gm)conn]

exp(
i
~
∫
Σ

(−))
// (BGm)conn

• transgressed to a 3-manifold Σ it yields the Chern-Simons secondary invariant.

2. for µ = 〈−, [−,−], [−,−], [−,−]〉 on a = Bstring this yields the de-transgressed Lagrangian for 7d
String-Chern-Simons theory [Fiorenza-Sati-Schreiber 12]

LCS7 : BStringconn → (B7Gm)conn

3. For π : P→ R[−2] the canonical 2-cocycle on a Poisson Lie algebroid, then the induced

SymplGrpd(X) −→ F 2(B2Gm)conn

is the prequantized symplectic groupoid of X [Bongers 14].

[Fiorenza-Schreiber-Stasheff 10, Fiorenza-Sati-Schreiber 13]
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3 Simons-Sullivan conjecture

Theorem 3.1 ([Simons-Sullivan 07]). On smooth manifolds, the functor H(−, (BnGm)conn) is uniquely
characterized by sitting in a hexagon of presheaves of abelian groups

H(−,Ωn)/im(ddR)

))

ddR // H(−,Ωn+1
cl )

((
H(−,Bn[Ga)

66

))

H(−, (BnGm)conn)

))

θ

66

H(−,Bn+1[Ga)

H(−,Bn[Gm)
β

//

55

H(−,Bn+1Z)

ch

66

where the diagonals and the two boundaries are exact sequences.

The meaning of the hexagon is this:

connect.
on trivial
bundles

de Rham differential //

regard as
##

curvature
forms

de Rham theorem

!!
closed
differ.
forms

regard as

==

regard as
""

connections
on geometric
bundles

curvature

;;

topol. class
$$

ration.
bundles

flat
connect.

regard as

::

Bockstein homom./
comparison map

// shape of
bundles

Chern character

;;

The outer parts of the hexagon has a classical generalization from ordinary to generalized Eilenberg-
Steenrod-type cohomology (e.g. K-theory, elliptic cohomology, ... cobordism cohomology). By Brown’s
representability theorem, generalized ES-type cohomology is what is represented by spectra E ∈ Spectra
instead of just chain complexes: E•(−) = H•(−, E).

Question [Simons-Sullivan 07]: Does such a hexagon also characterize differential generalized cohomology?
or: What is differential generalized cohomology, axiomatically?

Actually, there is more “generalization” to cohomology than just ES-type generalization:

Generalizations of ordinary cohomology needed for

Eilenberg-Steenrod-type abelian generalized cohomology
type II superstring RR-fields in twisted KR-theory,
higher geometric quantization

non-abelian cohomology
Chern-Simons theory, Wess-Zumino-Witten theory,
modular functors, equivariant elliptic cohomology

geometry other than plain smooth
Kähler geometric quantization,
supersymmetric field theory,
Artin-Mazur deformation theory

twisted cohomology
quantum anomaly cancellation,
covariant quantization of higher gauge fields

For modern applications we need all of this. And here is how:
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4 Cohesive homotopy theory

So we need for a given sheaf of spectra Ê ∈ Spectra(Sh(S)) that there are natural spectra

[Ê,ΠÊ ∈ Spectra
� � LConst // Spectra(Sh(S))

equipped with natural maps

Ê

project

��
flat cocycles [Ê

include
??

// ΠÊ underlying cocycles

that induce homotopy exact hexagons which for Ê = (BnGm)conn reproduce theorem 3.1 above.

Theorem 4.1 ([Schreiber 13]). For S as in def. 1.1, the derived global section functor Γ : sSh(S)→ sSet is
“cohesive” in that it extends to a quadruple of derived adjoints

sSh(S)

× //
oo LConst ? _

Γ //
oo ? _

sSet

with the bottom right adjoint homotopy fully faithful and the top left adjoint preserving products.

Definition 4.2. Write (Π a [ a ]) : sSh(S)→ sSh(S) for induced adjoint triple of derived endofunctors

(e.g. [ = LConst ◦ Γ).

For G in Grp(sSet(S)), write G
θG // [dRG // [BG // BG for the homotopy fiber sequence of the

[-counit on the delooping.

Notice: It follows that [ ◦ [dRA ' ∗; hence [dRA is “purely differential”.

Proposition 4.3 ([Schreiber 13]).
for G a Lie group with Lie algebra g for G = BnGm
Π(BG) ' BG and [(BG) ' K(G, 1) Π(BnGm) ' K(Z, n+ 1)
[dRG = {sheaf of flat g-valued diff. forms} [dRBnGm ' Bn+1Ω•≥1

θG is the Maurer-Cartan form
θBnGm

is the
Chern character from def. 1.2

[X,BG] is the moduli stack of G-principal bundles [X,BnGm] is the higher Picard stack
]1[X, [BG] ×

]1[X,BG]
[X,BG]

is moduli stack of flat connections
(details below in 5)

Theorem 4.4 ([Bunke-Nikolaus-Völkl 13]). For Ê a spectrum object in any cohesive homotopy theory as in
theorem 4.1, then the canonical hexagon

ΠdRÊ
d //

!!

[dRÊ

##
[ΠdRÊ

$$

::

Ê

θÊ

==

!!

Π[dRÊ

[Ê //

==

ΠÊ

chE :=ΠθÊ

::

formed from homotopy-exact diagonals consists of homotopy fiber sequences.
Moreover, both squares are homotopy Cartesian and hence the outer hexagon uniquely determines Ê.

And by prop. 4.3: For Ê ' (BnGm)conn, this reproduces on cohomology groups the hexagon of theorem 3.1.
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5 Differential moduli stacks

Central to the applications in physics (Chern-Simons and self-dual higher gauge theory [Witten 96, Witten 99])
and mathematics (θ-characteristics [Hopkins-Singer 02]) is the construction of moduli stacks of differential
cocycles.
Problem. For Ê a cohesive (stable) homotopy type in general the mapping stack [X, Ê] is not quite the
moduli stack of Ê-cocycles on X. Induce from the cohesive axioms the existence of correct moduli stacks.

Definition 5.1. A Hodge filtration on Ê ∈ Spectra(Sh(S)) is is a filtration F •[dRÊ such that

1. each stage has the same image under Π;

2. each stage is in the kernel of [.

Proposition 5.2. The induced sequence of homotopy fiber products

F pÊ := ΠÊ ×
Π[dRÊ

F p[dRÊ

exhibits (Π a [)-fractures as in theorem 4.4

F p[dRÊ
''

F pÊ

88

&&
Π[dRÊ

ΠÊ

77 '

[dR(F pÊ)
))

F pÊ

88

&&
Π[dR(F pÊ)

ΠF p(Ê)

55

Definition 5.3.
Denote the Moore-Postnikov tower
of the ]-unit
by:

]3X

��

��

]2X

&&��
X //

88

AA

]1X
� � // ]X

Hence ]nX is the “n-image”
of the ]-unit on X.

Definition 5.4. Given a Ê-Hodge filtration, def. 5.1, and given any X ∈ sSet(S) with k the lowest number
such that H(X,F k+1[dRÊ) ' 0, then the differential moduli of Ê on X is the iterated homotopy fiber
product

Ê(X) := ]1[X,F kÊ] ×
]1[X,Fk−1Ê]

]2[X,F k−1Ê] ×
]2[X,Fk−2Ê]

]3[X,F k−2Ê] ×
]3[X,Fk−3Ê]

· · · .

Proposition 5.5. The underlying homotopy type of Ê(X) is that of Ê-cocyles on X in kth Hodge filtration
stage:

[(Ê(X)) ' [[X,F kÊ] ' H(X,F kÊ) .

Proof. Use that cohesion implies [ ◦ ]n ' [ for all n, and that [ preserves homotopy limits. �

Proposition 5.6. For Ê = (BnGm)conn this reproduces the Artin-Mazur moduli:

(BnGm)conn(X) : U 7→ {U -parameterized Deligne cocycles on X }

[Fiorenza-Rogers-Schreiber 13]
Example. The homotopy fiber of

Ê(X)
'−→ (ΠÊ)(X) ×

(Π[dRÊ)(X)

([dRÊ)(X) −→ τ0(ΠÊ)(X) ×
τ0(Π[dRÊ)(X)

τ0([dRÊ)(X) ,

is a stack whose 0-truncation is is the higher Jacobian Jk+1(X) with its Griffiths complex structure.
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6 Outlook

Proposition 6.1. Parameterized spectra in Sh(S) are a cohesive homotopy theory over bare parameterized
spectra. Now Ê(X) is the twisted differential E-cohomology spectra E•+τ (X) parameterized over the moduli
stack of twists τ on X ([Schreiber 13], section 4.2).

Such twisted differential cohomology is demanded by the fine structure of string theory [Distler-Freed-Moore 09]...

This document constitutes notes for a talk at
Higher Geometric Structures along the Lower Rhine, 19-20 June 2014

http://ncatlab.org/schreiber/show/Differential+cohomology+is+Cohesive+homotopy+theory
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