
Differential-topological review of Dirac flux quantization of the electromagnetic (EM) field.

The EM flux density (Maxwell-Faraday tensor) F2 (6) F2 ∈ Ω2
dR(X)clsd

is not the full content of the EM-field.
First of all, there is also an integral class χ

[χ] ∈ H2(X;Z)

which coincides with the flux density in real cohomology.
This χ is the electromagnetic “instanton number”:
- On the complement of a magnetic monopole worldline
X ≡ R3,1\R1,1, this χ is the integer charge of the monopole.
- On the one-point compactification of a planar type II su-
perconductor X ≡ R1,1×R2

∪{∞}, this
χ is the integer num-

ber of Abrikosov vortices.

H2(X;Z) [χ]

7!
Ω2

dR(X)clsd H2
dR(X) ch[χ]

F2 7! [F2]

ch

equ
ali
ty

But the pair (F2, χ) is still not the full EM field content:
The remaining data is how F2 and χ are identified.
To understand this, notice that ordinary cohomology
groups have classifying spaces. In the case at hand, there
is the space whose weak homotopy class is variously known
as:
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and recall the notion of higher homotopy groups πk of a
simply connected space X, in degree k ∈ N≥2 these are
abelian groups.
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, X
)

∈ AbGrp

Now BU(1) is special in that its homotopy groups are con-
centrated in degree 2, there being the integers.

πk
(
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)
≃

{
Z if k = 2
0 otherwise

In general, there is a (weakly homotopy-)unique connected
space whose homotopy groups are concentrated in a single
degree and there form an abelian group A, these are called
the Eilenberg-MacLane spaces K(A,n):
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 A if k = n

0 otherwise

And these spaces happen to classify ordinary cohomology: Hn
(
X; A

)
≃ π0 Maps

(
X, K(A,n)

)
hence in particular also de Rham cohomology: Hn

dR(X) ≃ π0 Maps
(
X, K(R, n)

)
Using this, we can refine the integrality condition on coho-
mology classes to a gauge transformation of fields:
Instead of asking the class of F2 to equal the class of ch(χ),

we have a homotopy Â between them. This is equivalently
[FSSt12, Prop. 3.2.26][FSS23-Char, Prop. 9.5] the final

component of the EM-field, the gauge potential Â.
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The equivalence classes of such “full EM-field” triples
(F2, Â, χ) constitute the differential cohomology Ĥ2(X;Z).
Turns out to be equivalent to isomorphism classes of U(1)-

principal bundles with Chern class χ and connection Â.
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The reason that this is the correct incarnation of the
Maxwell field is that (F2, Â, χ) is exactly the required data
to “cancel the anomaly” (cf. p. 22) of the Lorentz force
coupling term (89) in the exponentiated action functional
of an electron propagating in an EM background field.

Ĥ2(X;Z)× C∞(S1, X) U(1)(
Â, γ

)
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∫
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Up to modernized language, this is the original observation of [Dirac1931] (cf. [Al85][Fr97, §16.4e] [Fr00, §2]).

The lesson is that:

The usual differential forms entering the Lagrangian densities
of (higher) gauge fields are not the full field content of the theory:
Non-perturbatively, fields subsume maps to a classifying space,
making the fields be cocycles in (generalized) differential cohomology
thus enforcing a flux-quantization law on the differential form data.

We next explain
how this works.
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