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Abstract

We introduce a differential refinement of Cohomotopy cohomology theory, defined on Penrose diagram
spacetimes, whose cocycle spaces are unordered configuration spaces of points. First we prove that brane charge
quantization in this differential 4-Cohomotopy theory implies intersecting p ⊥ (p+ 2)-brane moduli given by
ordered configurations of points in the transversal 3-space. Then we show that the higher (co-)observables on
these brane moduli, conceived as the (co-)homology of the Cohomotopy cocycle space, are given by weight
systems on horizontal chord diagrams and reflect a multitude of effects expected in the microscopic quantum
theory of Dp⊥D(p+2)-brane intersections: condensation to stacks of coincident branes and their Chan-Paton
factors, fuzzy funnel states and M2-brane 3-algebras, AdS3-gravity observables and supersymmetric indices of
Coulomb branches, M2/M5-brane bound states in the BMN matrix model and the Hanany-Witten rules, as well
as gauge/gravity duality between all these. We discuss this in the context of the hypothesis that the M-theory
C-field is charge-quantized in Cohomotopy theory.
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1 Introduction and overview

The general open problem. The rich physics expected on coincident and intersecting branes (reviewed in [IU12]),
which geometrically engineer non-perturbative quantum gauge field theories [KV97][HW97][GW08] (reviewed in
[Kar98][GK99][Faz17]) close to quantum chromodynamics [Wi98][SSu04][SSu05] (reviewed in [Re14][Su16])
and model quantum microstates accounting for black hole entropy [SV96][CM96] (reviewed in [Kr06][Sen07]),
has come to be center stage in string theory – or rather in the “theory formerly known as strings” [Du96]. Despite
all that is known about D-branes from the two limiting cases of (a) string perturbation theory and (b) worldvolume
gauge theory, an actual comprehensive theory of non-perturbative brane physics, namely an actual formulation
of M-theory [Du99], still remains an open problem [Du96, 6][HLW98, p. 2][Du98, p. 6][NH98, p. 2][Du99, p.
330][Mo14, 12][CP18, p. 2][Wi19]1[Du19]2. The lack of such a genuine theory of brane physics has recently
surfaced in a debate about the validity of D3-brane constructions that had dominated the discussion in a large part
of the community for the last 15 years; see [DvR18][Ba19, p. 14-22].

Hypothesis H. Based on a re-analysis of the super p-brane WZW terms from the point of view of homotopy the-
ory [FSS13][FSS15][FSS16a][FSS16b][BSS18] (reviewed in [FSS19a]), we have recently formulated a concrete
hypothesis about (at least part of) the mathematical nature of M-theory: This Hypothesis H [Sa13, 2.5][FSS19b]
asserts that in M-theory the C-field of 11d supergravity [CJS78] is charge-quantized [Fr00][Sa10] in the non-
abelian generalized cohomology theory called J-twisted Cohomotopy theory. This hypothesis turns out to imply
[FSS19b][FSS19c][SS19a][SS19b] a wealth of subtle topological effects expected in string/M-theory. This sug-
gests that it is a correct proposal about the mathematics underpinning M-theory, at least in the topological sector.

Differential refinement. In this article we take a step beyond the topological sector and investigate to which extent
a geometrically (“differentially”) refined form (cf. [FSS15]) of Hypothesis H leads to the emergence/derivation of
expected phenomena on coincident and intersecting branes.

First, our main mathematical observations here are the following (§2):
(1) A differential refinement of Cohomotopy cohomology theory is given by un-ordered configuration spaces of

points.
(2) The fiber product of such differentially refined Cohomotopy cocycle spaces describing D6 ⊥ D8-brane inter-

sections is homotopy-equivalent to the ordered configuration space of points in the transversal space.
(3) The higher observables on this moduli space are equivalently weight systems on horizontal chord diagrams.

Cohomotopy cohomology
theory §2

Differential
refinement
Prop. 2.9

//

Hypothesis H,
& Prop. 2.11

��

Configuration spaces
of points §2.2

Cohomology
Prop. 2.18

��

Fiber product
Prop. 2.4

tt

Intersecting branes oo
Observables §4

Weight systems on
Chord diagrams §3

Second, we make the string-theoretic observation (§4) that these weight systems on horizontal chord diagrams,
when regarded as higher observables reflect a multitude of effects expected on brane intersections in string theory.

This leads to an understanding and clarification of relations among various physical concepts and points to a
unifying theme, relying on constructions from seemingly distinct mathematical areas which are brought together –
see Figure 1.

1[Wi19] at 21:15: “I actually believe that string/M-theory is on the right track toward a deeper explanation. But at a very fundamental
level it’s not well understood. And I’m not even confident that we have a good concept of what sort of thing is missing or where to find it.”

2[Du19] at 17:04: “The problem we face is that we have a patchwork understanding of M-theory, like a quilt. We understand this corner
and that corner, but what’s lacking is the overarching big picture. Directly or indirectly, my research hopes to explain what M-theory really
is. We don’t know what it is.”
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M-theoretic observables
on D6⊥ D8-configurations

implications of
Hypothesis H

��

Obs•D6⊥D8 Def. 2.15

:=

(22)

//Hypothesis H

Cohomology

H•
(
t
[c]

Ωc︸ ︷︷ ︸
Loop spaces of

connected components (20)

Differential 4-Cohomotopy
cocycle space (Prop. 2.9)︷︸︸︷

ππ
4
diff
(
(R3)cpt∧ (R1)+︸ ︷︷ ︸

Transversal space
to codim=3 branes

∪

(4)

(R3)+∧ (R1)cpt︸ ︷︷ ︸
Transversal space
to codim=1 branes

))

'
 −! Prop. 2.11

Ordinary
cohomology

H•
(
t

Nf∈N
Ω

Configuration space
of Nf ordered points

(Def. 2.1)︷ ︸︸ ︷
Conf(R3)
{1,··· ,Nf}

)

'
 −!

Prop. 2.18

(−)∗
 −−!

duality
eq. (1)

H•


t
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Ω


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Nc,2 Dps

Nc,1 Dps

Nf D(p+2)s

R1

R3

. . .





︷ ︸︸ ︷
Chan-Paton observables oo §3.4

Weight systems on
horizontal

chord diagrams
(Def. 3.1)(

W
pb)•

↪−
! (47)

(−)∗
 −−!

duality
eq. (1)

(
A

pb)
•

Horizontal
chord diagrams (30)
modulo 2T/4T (36)

§4.7
§4.8
§4.10

//

︷ ︸︸ ︷
String topology operations
Multi-trace observables

of BMN matrix model
Hanany-Witten states

BLG 3-Algebra observables oo §4.3

Weight systems on
Round

chord diagrams
(Def. 3.2)(

W
c)•

'
 −! (47)

(−)∗
 −−!

duality
eq. (1)

(
A

c)
•

Round
chord diagrams (39)

modulo 4T (42)

§4.1

§4.2
//

Single-trace observables
of SYK & BMN model

Fuzzy funnel observables

Bulk Wilson loop observables
Supersymmetric indices
’t Hooft string amplitudes
M2/M5 brane bound states

oo
§4.4
§4.5
§4.6
§4.9

Weight systems on
Jacobi

chord diagrams
(Def. 3.2)(

W
t)• (−)∗

 −−!
duality
eq. (1)

(
A

t)
•

Jacobi diagrams (40)
modulo STU (44)

Figure 1 – Emergence of intersecting brane observables from a differentially refined version (§2) of Hypothesis H.

Top-down M-theory. We highlight that, assuming Hypothesis H, the analysis shown in Figure 1 is completely
top-down: knowledge about gauge field theory and perturbative string theory is not used in deriving the algebras
of observables of M-theory, but only to interpret them. See also Observation 4.2 on dualities.

While we suggest that the rich system of expected effects emerging in Figure 1, further supports the proposal
that Hypothesis H is a correct proposal about the mathematical nature of M-theory, there must of course be more
to M-theory than seen in Figure 1. But it is also clear that the differential refinement of Cohomotopy cohomology
theory discussed here (in §2 below) is to be further refined, notably by enhancing it with super-differential flux form
structure as in [FSS15][FSS16a], with ADE-equivariant structure as in [HSS19], and with fiberwise stabilization
as in [BSS18]. This is to be discussed elsewhere.
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Gauge/Gravity duality. Collecting the observables and states emerging in Figure 1, we observe that the mathe-
matical duality (as an instance of the concept described in [PT91][Co17]) between higher (co-)observables (21) on
D6⊥ D8-branes by Hypothesis H

Higher observables

Cohomology

H•
(
t

Nf∈N
Ω Conf
{1,··· ,Nf}

(R3)︸ ︷︷ ︸
)

'
weight systems

W cc

##

=
(
A
)∗

Higher co-states
;;

dualization §3.5

{{

Prop. 2.16

Higher co-observables H•
Homology

( phase space︷ ︸︸ ︷
t

Nf∈N
Ω Conf
{1,··· ,Nf}

(R3)
) Prop. 2.18

' A
chord diagrams

=
(
W
)∗

Higher states

(1)

reflects the gauge/gravity duality (e.g. [DHMB15]) between observables/states of gauge theories and gravity the-
ories on branes found in §4 – see Figure 2:

Gauge theory
Observables: chord diagrams ∈A

non-commutative/quantum (Rem. 2.19)
States: weight systems ∈W

Gravity theory
Observables: weight systems ∈W

commutative/classical
States: chord diagrams ∈A

BMN matrix model §4.1, §4.8, §4.9
Observables: multi-trace observables

encoded by Sullivan chord diagrams
identified as horizontal chord diagrams

States: fuzzy 2-sphere geometries
encoded by su(2)C-representations V
identified as Lie algebra weight systems

AdS3-gravity §4.4
Observables: Wilson loop observables

encoded by sl(2,C)-representations V
identified as Lie algebra weight systems

States: Hyperbolic 3-manifolds
encoded by knots
encoded by round chord diagrams

Black Dp⊥ D(p+2)-branes §4.10
Observables: ...
States: Hanany-Witten brane intersections

encoded by horizontal chord diagrams

RW-twisted D = 3, N = 4 SYM theory §4.5
Observables: e.g. supersymmetric index

encoded by wheel chord diagrams
States: Coulomb branches

identified as RW weight systems

DBI theory on Dp⊥ D(p+2)-branes §4.2
Observables: fuzzy funnel shape observables

encoded by round chord diagrams
States: fuzzy funnel geometries

encoded by su(2)C-representations
identified as Lie algebra weight systems

Figure 2 – Emergence of gauge/gravity duality from a differentially refined version (§2) of Hypothesis H.
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Configuration spaces of intersecting branes seen in Cohomotopy. The brane intersections arising this way from
Hypothesis H & Prop. 2.11 are transversal p ⊥ (p+ 2)-brane intersections, specifically for p = 6 (Remark 2.14
below), where Nf (p+2)-branes are arranged along an axis and Nc = ∑

Nf
i=1Nc,i semi-infinite p-branes transversally

intersecting them, with Nc,i of them coincident and ending on the ith (p+2)-brane. The p-branes move along the
R3 inside the (p+2)-branes which is normal to their intersection locus.

Nc,4 Dps

Nc,3 Dps

Nc,2 Dps

Nc,1 Dps

Nf D(p+2)s

R1

R3

. . .



'
homotopy

equivalence

Conf
{1,··· ,Nf}

(R3)

Ordered configuration space
of Nf points in R3

(2)

Dp ⊥ D(p+ 2)-brane intersections as seen from nonabelian DBI theory. Transversal Dp ⊥ D(p+ 2)-brane
intersections have been discussed in the literature using the nonabelian DBI field theory [Ts97][My99] which is
expected on the worldvolume of coincident D-branes; see [Kar98][GK99][Faz17] for review. The following table
summarizes the main results of the traditional analysis (on the left) and indication of emergence from Cohomotopy
(on the right):

Expected physics of
Dp⊥ D(p+2)-brane

intersections
Statement Derivation from

non-abelian DBI
Emergence from

Hypothesis H

Fuzzy funnel geometry

A single Nc,i Dp⊥D(p+ 2)-intersection
is described by non-commutative fuzzy
funnel geometry (Figure 3), identified,
via Nahm’s equations, with Yang-Mills
monopoles in the D(p + 2)-brane world-
volume.

[Di97][CMT99]
[HZ99][My01]
[CL02][BB04]
[RST04][MN06]
[MPRS06]

§4.2

Hanany-Witten rules

The collection of all Nf Dp⊥D(p + 2)-
brane intersections is subject to combina-
torial rules, such as the s-rule and the or-
dering constraint.

[HW97][BGS97]
[BG98][HOO98]
[GK99][GW08]

§4.10

The open problem of the Non-abelian DBI action. While these traditional discussions undoubtedly yield a
compelling picture, it is worth recalling that (in contrast to the abelian case of non-coincident branes) there is
to date no derivation from perturbative string theory of the nonabelian DBI-action for coincident D-branes, as
highlighted in [TvR99, p. 1][Sc01, p. 2][Ch04, p. 5]. The commonly used symmetrized trace prescription of
[Ts97][My99], is somewhat ad-hoc; and it is known not to be correct at higher orders [HT97][BBdRS01]. Some
correction terms have been proposed in [TvR99], and different proposal for going about the non-abelian DBI-
action has recently been made in [BFS19]. In contrast, here we find key expected consequences of non-abelian
DBI-Lagrangians for intersecting brane physics emerge from Hypothesis H in a non-Lagrangian way altogether.

Outline: The paper is outlined as follows:
In §2 we introduce the differential Hypothesis H and show that it implies weight systems as higher observables.
In §3 we recall weight systems on chord diagrams, streamlined towards our applications.
In §4 we observe that weight system observables reflect a variety of effects in intersecting brane physics.
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2 Intersecting brane charges in differential Cohomotopy
The open problem of formulating a genuine theory of brane physics. As indicated in the Introduction, despite
all the discussion of (well-supported but conjectural) aspects of intersecting brane physics, an actual formulation of
a non-perturbative quantum theory of branes, namely of M-theory [Du99], has remained an open problem [Du96,
6][HLW98, p. 2][Du98, p. 6][NH98, p. 2][Du99, p. 330 ][Mo14, 12][CP18, p. 2][Wi19][Du19]. The need for
an identification of the non-perturbative theory has recently become manifest with the community no longer able
to agree on the validity of brane constructions that have been discussed for many years [DvR18][Ba19, p. 14-22].
Even the very ingredients of such a theory have remained open.

Charge quantization in generalized cohomology theory. On the other hand, the low energy limit of M-theory is
supposed to be D = 11 supergravity [CJS78], whose only ingredient, besides the field of gravity, is the C-field, the
higher analog of the B-field in string theory, which in turn is the higher analog of the “A-field” in particle physics,
namely of the Maxwell field, i.e., of the abelian Yang-Mills field. But a famous insight going back to Dirac
(see [He18]) says that in its non-perturbative quantum theory, the Maxwell field becomes subject to a refinement
known as Dirac charge quantization (see [Fr00] for a general treatment). In modern formulation this means that
the flux density of the field (the Faraday tensor), which a priori seems to be just a differential 2-form, is promoted
to a cocycle in differential ordinary 2-cohomology theory. Later, a directly analogous topological constraint has
been argued to apply to the B-field in string theory, where up to some fine print, what naively looks like the flux
density 3-form of the B-field is argued to really be regarded as being charge-quantized in differential ordinary
3-cohomology theory (see [Br93]). One might suspect an evident pattern here, which would seem to continue
with the suggestion that the M-theory C-field needs to be regarded as charge-quantized in differential ordinary
3-cohomology theory, up to some fine print ([DFM03][HS05][Sa10][FSS14a]). On the other hand, and in contrast
to the C-field in M-theory, the B-field in string theory does not exist in isolation; instead, it couples to the RR-field.
The combination of the B-field and the RR-field has famously and widely been argued to be charge quantized in
a differential generalized cohomology theory, namely in some version of twisted K-theory (see [GS19] and also
[BSS18, 2] for pointers and discussion in our context).

Generalized cohomology theory for C-field charge quantization in M-theory. All this rich structure in string
theory is – somehow – supposed to lift to just the metric field and the C-field in M-theory. This suggests that the
M-theory C-field itself must be regarded as being charge-quantized in some rich generalized cohomology theory
[Sa05a][Sa05b][Sa06][Sa10] such as Cohomotopy cohomology theory [Sa13, 2.5]. Based on a systematic analysis
in super rational homotopy theory of the κ-symmetry super p-brane WZW terms [FSS13][FSS15][FSS16a][FSS16b]
[BSS18] (see [FSS19a] for review), a concrete hypothesis for this generalized cohomological charge quantization
of the C-field was formulated in [FSS19b]:

Hypothesis H. The M-theory C-field is charge-quantized in J-twisted Cohomotopy theory.

In a series of articles [FSS19b][FSS19c][SS19a][SS19b] various implications of this Hypothesis H have been
checked to agree with various expected aspects of M-theory in the topological sector, i.e., in the approximation
where only the homotopy type of spacetime is taken into account.

Differential Cohomotopy and intersecting branes. Here we consider a partial refinement of Cohomotopy co-
homology theory to a differential cohomology theory, which is sensitive at least to the homeomorphism type of
spacetime (Prop. 2.9 below). Then we prove (Prop. 2.11 below) that this charge quantization of the C-field in
differential Cohomotopy theory implies that the cocycle space of intersecting D6-D8-brane charges is the ordered
configuration space of points as in (2). This means that:

(1) The higher observables (22) in §3 and hence, by (27), the weight systems on chord diagrams in §3 are the
quantum observables on intersecting brane moduli that are implied by Hypothesis H.

(2) Therefore, also the aspects of intersecting brane physics that are reflected in weight systems on chord diagrams
according to the discussion in §4 are implications of Hypothesis H.
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2.1 Charges vanishing at infinity

Points at infinity. For the following definitions applied to physics, we are to think of all boundaries and base
points as representing “points at infinity”. We write Dn for the closed n-disk with boundary ∂Dn ' Sn−1 and
interior Int(Dn)' Rn. We write (−)cpt for the one-point compactification of a topological space, so that

(Rn)cpt ' Dn/∂Dn ' Sn (3)

and we write
∞ ∈ (Rn)cpt

for the extra point. This is literally the point at infinity, and under the above equivalences, all points on the boundary
of Dn get identified with it:

Euclidean
n-space

Rn
� _

��

� �
interior

//

Closed
n-disk

Dn oo
boundary

? _

����

(n−1)-sphere

Sn−1

����
Sn

n-sphere

'
(
Rn
)cpt

One-point
compactification

'
// Dn/∂Dn

Boundary collapsed
to one point

oo ? _{∞}
Point at
infinity

We will thus regard one-point compactifications (−)cpt as pointed topological spaces with the base point denoted
“∞”.

If for classifying spaces we instead denote the base point by “0”, then pointed maps express exactly the idea of
cocycles vanishing at infinity:

Pointed spaces

Space-time

X
cocycle /

field configuration //

Classifying space

A

Base points {∞}
point at infinity

vanishing at infinity
//

?�

OO

{0}
vanishing field value

?�

OO

If we wish to consider Rd explicitly without the requirement that cocycles on it vanish at infinity, we instead
add the “point at infinity” as a disjoint point

(Rd)+ := Rd t{∞} .

In summary:

Un-pointed space

Euclidean space...

Rd
N n

~~

� p

  
Pointed spaces (Rd)cpt

... such that cocycles
vanish at infinity.

(Rd)+

...such that cocycles
are unconstrained.

Forming the smash product of these pointed spaces then yields Euclidean spaces on which cocycles have to
vanish at infinity in some directions, but not necessarily in others:
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Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram

(

cocycles vanish at infinity
along these direction︷︸︸︷

Rd )cpt ∧ (Rp−d︸ ︷︷ ︸
...but not necessarily

along these

)+
Rp−d

∞

∞

Rd
∞

∞

Rp Rp−d

( Rd︸︷︷︸
...but not necessarily

along these

)+ ∧ (

cocycles vanish at infinity
along these direction︷ ︸︸ ︷

Rp−d)cpt

Rd

∞

∞

∞ ∞

Rp−d

∞

∞

Rp Rp−d

(4)

2.2 Configuration spaces of points

We now first recall, in Def. 2.1, the relevant definitions of configuration spaces of points (see e.g. [Bö87, 1]). Then
we observe, in Prop. 2.4, a certain relation between un-ordered and ordered configuration spaces of points. This is
the key to relating differential Cohomotopy to intersecting branes in §2.4.

Definition 2.1 (Configuration spaces of points). Let ΣD be a smooth manifold with (a possibly empty) boundary
∂ΣD ↪! ΣD. For k ∈N, with Dk denoting the closed k-disk, ∆ the diagonal, and Symn the symmetric group of order
n, we consider the following topological configuration spaces of points in ΣD, possibly with labels in Dk:

Symbol Definition Configuration space of...

Conf
{1,··· ,n}

(ΣD) := (ΣD)×n \ ∆
n
ΣD︸︷︷︸

subspace of any
coincident points

n distinct and ordered points in ΣD

Conf
{1,··· ,n}

(
ΣD, Dk

)
:=

(
Conf
{1,··· ,n}

(
ΣD
))
×
(
Dk)×n︸ ︷︷ ︸
product of

spaces of labels

n distinct and ordered points in ΣD

each carrying a label in Dk

Confn
(
ΣD, Dk

)
:=

(
Conf
{1,··· ,n}

(
ΣD, Dk

))
/Sym(n)︸ ︷︷ ︸
symmetric group
acting diagonally

n distinct un-ordered points in ΣD

each carrying a label in Dk

Conf
(
ΣD,Dk

)
:=

(
∪

n∈N︸︷︷︸
union over

number of points

Confn(Σ
D,Dk)

)/
∼︸︷︷︸

points vanish
at infinity

Any number of distinct un-ordered points in ΣD

each carrying a label in Dk

disregarded if at ∞ ∈
(
ΣD×Dk

)
/∂
(
ΣD×Dk

)
Conf

(
ΣD
)

:= Conf
(
ΣD, D0︸︷︷︸

trivial
labels

) Any number of distinct un-ordered points in ΣD

disregarded if at ∞ ∈ ΣD/∂ΣD

9



Here is an illustration of a labelled and un-ordered configuration of points:

R3×{0} R3×{∞}R3×{∞}

projection to R3

point
in R3×R1 point

disappeared
to infinity
along R1

An element of the unordered D1-labeled configuration space Conf
(
R3,D1) according to Def. 2.1, is a set of points in R3×R1 with

distinct projections to R3×{0}. The topology is such that points moving to infinity along R1 (i.e., to the boundary of D1) disappear.

In order to study all possible configurations, we introduce the following useful notion.

Definition 2.2 (Category of Penrose diagrams). For p ∈ N we write

PenroseDiagp :=


Penrose-diagram spaces of dimension p
with continuous functions between them
which are injections away from infinity

 (5)

for the category whose objects are the pointed topological spaces (Rp)cpt∧ (Rp−d)+ from (4), for 0≤ d ≤ p, and
whose morphisms are the continuous functions between these that (co-)restrict to embeddings after removal of
basepoints, as shown on the left of the following diagrams:

any
Penrose diagram

(Rd)cpt∧ (Rp−d)+

continuous injections

oo ? _

its subspace
away from infinity

Rp 7! Rd×Dp−d/bdry

i∗
i(x) y /∈ Im(i)7! 7!

x ∞

��

7!

configuration space of points
in the Penrose diagram space

which may vanish towards infinity
along directions not compactified

Conf
(
Rd ,Dp−d

)
(i∗)∗

��

for d ≥ 1

(Rd′)cpt∧ (Rp−d′)+ oo ? _
?�

OO

Rp?
�

i

OO

7! Rd′×Dp−d′/bdry 7! Conf
(
Rd′ ,Dp−d′

)
for d′ ≥ 1

(6)

In the special case that the domain of the map is the Penrose diagram with no compactified dimensions, we set:

(Rd)cpt∧ (Rp−d)+ oo ? _ Rp 7! Rd×Dp−d/bdry

i∗
i(x) y /∈ Im(i)7! 7!

x ∞

��

7! Conf
(
Rd ,Dp−d

)
(i∗)∗

��

for d ≥ 1

(R0)cpt∧ (Rp)+︸ ︷︷ ︸
=(Rp)+

in the special case that
no infinite directions are compactified...

oo ? _
?�

OO

Rp?
�

i

OO

7! Dp/bdry 7! Conf
(
Dp
)

...we assign this configuration space of any number of
points that may vanish towards infinity in any direction

(instead of Conf(R0,Dp), whose configurations have at most one point)

(for d′ = 0)

(7)
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To this category (5) we extend the construction of configuration spaces from Def. 2.1 as a contravariant functor
with values in pointed topological spaces,

Conf : PenroseDiagop
p

// Top∗/

1-category of actual
pointed topological spaces

(not up to homotopy)

(8)

by defining its action on morphisms as shown on the right of the above diagrams (6) and (7).

Example 2.3 (Maps of configuration spaces for ordered fiber product). We are going to be interested in the fol-
lowing pairs of maps of Penrose diagram spaces (4) and their induced maps of configuration spaces, according to
Def. 2.2:
(RD)cpt∧ (R1)+ (R1)cpt∧ (RD)+

(RD+1)+
O/

iL

__

� /
iR

??

 7!


RD×D1/bdry R1×DD/bdry

DD×D1/bdry
!!(iL)∗

p�

}} (iR)∗

nN

 7!


Conf

(
RD,D1

)
Conf

(
R1,DD

)

Conf
(
DD+1

)��((iL)∗)∗

n�

�� ((iR)∗)∗

p P



∞

∞

RD R1

∞

∞

RD R1

RD R1

M-iL
[[

� 1 iR
CC

bdry

bdry

RD D1

bdry

bdry

DD R1

DD D1

bdry

bdry

bdry

bdry

��(iL)∗

 m

�� (iR)∗
Qq

bdry

bdry

RD D1

bdry

bdry

DD R1

DD D1

bdry

bdry

bdry

bdry

��
_

DD D1

bdry

bdry

bdry

bdry

��
_

Proposition 2.4 (Ordered unlabeled configurations as fiber product of unordered labeled configurations). For
D ∈ N, there is a homotopy equivalence between the disjoint union of ordered unlabelled configuration spaces
in RD and the fiber product of unordered but labelled configuration spaces (Def. 2.1) as follows:

t
n∈N

Conf
{1,··· ,n}

(
RD)

Ordered configurations
of points in RD

'
hmtpy

Un-ordered configurations
of points in RD

with labels in D1

Conf
(
RD,D1) ×

Conf(DD+1)

Un-ordered configurations
of points in DD+1

Un-ordered configurations
of points in R1

with labels in RD

Conf
(
R1,DD) , (9)

where the fiber product on the right is that induced from the maps in Example 2.3.

Proof. We compute as follows (where all topologies are the evident ones) – see Figure O for illustration of the
logic behind the argument:

Conf
(
RD,D1) ×

Conf(DD+1)
Conf

(
R1,DD)

'
homeo

t
n∈N

{{
(~xi,yi) ∈ RD×R1}n

i=1

∣∣ ∀
i 6= j

(
~xi 6=~x j and yi 6= y j

)}/
Sym(n)

'
homeo

t
n∈N

{({
~xi ∈ RD}n

i=1,σ ∈ Sym(n),(d0,d1, · · · ,dn−1) ∈ R1× (R1
+)

n−1)∣∣ ∀
i6= j

(
~xi 6=~x j

)}/
Sym(n)

'
hmtpy

t
n∈N

{({
~xiRD}n

i=1,σ ∈ Sym(n)
)∣∣ ∀

i 6= j

(
~xi 6=~x j

)}/
Sym(n)

'
homeo

t
n∈N

{{
~xi ∈ RD}n

i=1

∣∣ ∀
i6= j

(
~xi 6=~x j

)}
= t

n∈N
Conf
{1,··· ,n}

(RD) .
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Here the first step just unwinds the definition of the fiber product. In the second step we encode an n-tuple of
pairwise distinct real numbers (y1,y2, · · · ,yn) equivalently as a pair consisting of the permutation σ that puts them
into linear order and the tuple (d0,d1, · · · ,dn−1) of their relative positive distances:

yσ1
< yσ2

< yσ3
< · · · < yσn

d0 < d0 +d1 < d0 +d1 +d2 < · · · <
n−1
∑

i=0
di

In the third step we use that the space of these relative distances is, clearly, homotopy equivalent to the point:
R1 × (R1)n−1 '

hmtpy
∗. In the fourth step we use that (X ×G)/diagG '

homeo
X for any G-space X . The last step

recognizes the ordered configuration space according to Def. 2.1. �

The content of Prop. 2.4 is illustrated by the following graphics:

"
configuration

in R3

#

R3×{0}

induced ordering //{0}×R1

projection
to R1

projection to R3
Point

in R3×R1

Figure O – The ordered unlabeled configuration space is a fiber product of unordered labeled configuration spaces according to

Prop. 2.4: A linearly ordered configuration of points in R3 is the same as (a) an unordered configuration in R3×R1 which projects to

(b) an unordered D1-labelled configuration in R3 as well as to (c) an unordered D3-labelled configuration in R1. Condition (c) equips

the configuration from condition (b) with a linear ordering.

2.3 Differential Cohomotopy cocycle spaces

For the following, we take X to be a locally compact pointed topological space of the homotopy type of a CW-
complex, for example one of the Penrose diagram spaces (4) discussed in §2.1.

Plain Cohomotopy cohomology theory. For p ∈ N a degree, the cocycle space of p-Cohomotopy theory on X is
the pointed mapping space from X to the p-sphere:

ππ
p(X) := Maps∗/

(
X ,Sp) . (10)

The set of connected component of this space is the actual p-Cohomotopy set of X :

π
p(X) := π0

(
Maps∗/

(
X ,Sp)) . (11)

This implies that the homotopy type of ππn(X), and so in particular the isomorphism class of πn(X), depend only
on the homotopy type of X . The resulting (contravariant) functorial assignment

Space(-time)︷︸︸︷
X //

Cocycle space of
p-Cohomotopy cohomology theory

evaluated on X︷ ︸︸ ︷
ππ

p(X) (12)

embodies p-Cohomotopy theory as non-abelian (unstable) generalized cohomology theory.
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Differential cohomology. A refinement of Cohomotopy cohomology theory to a differential (or geometric) non-
abelian generalized cohomology theory is an assignment

Space(-time)︷︸︸︷
X //

Geometric cocycle space
of differential p-Cohomotopy theory

evaluated on X︷ ︸︸ ︷
ππ

p
diff(X) (13)

of a geometric cocycle space ππ
p
diff(X), of sorts, which may depend on geometric data carried by X , but which is

such that the underlying homotopy type Sππ p(X) of the geometric cocycle space is homotopy equivalent to that of
the bare cocycle space (10):

S
( Geometric

cocycle space︷ ︸︸ ︷
ππ

p
diff(X)

)︸ ︷︷ ︸
Underlyng plain homotopy type

of geometric cocycle space

'
hmtpy

π
p(X)︸ ︷︷ ︸

Plain Cohomotopy
cocycle space

. (14)

In full generality, ππ p(X) may be a cohesive ∞-stack, but for our purpose here it is sufficient to allow ππ p(X) to
be a manifold, or even just a topological space (understood up to homeomorphism, instead of up to homotopy
equivalence), which is a special simple example of cohesive ∞-stacks. In this simple case the operation S(−) of
computing underlying homotopy types is just the usual way of regarding a topological space as a representative of
its homotopy type, and hence we will not further display it.

Configuration spaces as differential Cohomotopy cocycle spaces. The following statement provides a solution
to the constraint (14) on a differential refinement of Cohomotopy cohomology theory, in the case when X is
a Penrose diagram space (4). Applying the results from [May72, 2.7][Seg73, 3] in our setting leads us to the
following.

Proposition 2.5 (Labelled configuration spaces via Cohomotopy cocycles). For any natural numbers d < p ∈ N,
the un-ordered configuration space Conf

(
Rd ,Dp−d

)
of points in Rd with labels in Dp−d (Def. 2.1) has the homo-

topy type of the plain p-Cohomotopy cocycle space (10) of the one-point compactified d-dimensional Euclidean
space (Rd)cpt (3):

Conf
(
Rd ,Dp−d

)
Un-ordered configuration space

of points in Rd

with labels in Dp−d

send configuration of points
to their Cohomotopy charge

'
hmtpy

// ππ p
(
(Rd)cpt

)
Cocycle space of

p-Cohomotopy cohomology theory
on the one-point compactification

of d-dim Euclidean space

for d < p. (15)

Remark 2.6 (Cohomotopy charge map). The Cohomotopy charge map (15) is described in detail in [SS19a],
with many illustrations, and generalized to equivariant Cohomotopy of flat orbifolds. Notice that this map has
originally been called the electric field map [Seg73], in an attempt to think of it as assigning a physical field
sourced by a configuration of charged points. While this physics interpretation seems to superficially make sense
for representative maps, it is incompatible with the passage to homotopy classes on the right side of (15) (which
does not reflect the passage to gauge equivalence classes of electric fields). Instead, the claim of Hypothesis H is
that the actual physics interpretation of the Cohomotopy charge map (15) is as assigning brane charge in M-theory.

Example 2.7 (Unlabeled from labeled). The special case of Prop. 2.5 with d = 0 is evident:

ππ p
(
(R0)cpt︸ ︷︷ ︸

=S0

)
'

hmtpy

// Conf
(
R0,Dp

)
since now the left hand side is the space of maps from a single point to Sp, while right hand side is the space of
labels in Sp carried by a single point. Both of these spaces are canonically homeomorphic to Sp itself.

But there is an alternative equivalence pertaining to this degenerate case, which is again non-trivial. Applying
[Mc75, p. 95][Bö87, Example 11] to our setting we get the following.
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Proposition 2.8 (Configurations vanishing at the boundary). There is a homotopy equivalence

ππ p
(
(R0)cpt

) hmtpy
'

// Conf
(
Dp,D0

)
.

Hence in the degenerate case of d = 0, the combination of Prop. 2.5 and Prop. 2.8 is the statement that we
have a diagram of homotopy equivalences as follows:

Cohomotopy cocycle space
of the point

ππ p
(
(R0)cpt

)
'

hmtpy

uu

'
hmtpy

))
Conf(D0,Dp)

Configuration space of
un-ordered points in R0

(which can be at most one point)
carrying a label in Sp

'
hmtpy

// Conf(Dp,D0) =: Conf(Dp) .

Configuration space of
unordered points in Dp

carrying no label
but vanishing when at ∞ ∈ Dp/∂D0

(16)

With this we may finally state the main concept of this section, and prove its consistency:

Proposition 2.9 (Differential Cohomotopy on Penrose diagrams via configuration spaces). For any p ∈ N, and
for spacetimes in the category (5) of Penrose diagrams (4), a consistent enhancement of plain p-Cohomotopy
cohomology theory (12) to a geometric/differential cohomology theory (13), hence satisfying the condition (14), is
given by the configuration space functor (8):

ππ
p
diff

Geometric cocycle spaces
of differential Cohomotopy

:= PenroseDiagop
p

on Penrose diagram
space(-times)

Conf // Top∗/

are configuration spaces of points
regarded as actual topological spaces

.

Proof. The assignment X 7! ππ p(X) of homotopy types of plain Cohomotopy cocycle spaces (10) is homotopy in-
variant in X . Hence the uncompactified factors (Rp−d)+ in the Penrose diagrams (4), being homotopy-contractible,
do not contribute to the homotopy type of the plain Cohomotopy cocycle spaces:

ππ
p((Rd)cpt∧ (Rp−d)+

)
'

hmtpy
ππ

p((Rd)cpt) .
With this, it follows that Prop. 2.5 implies that condition (14) is satisfied for d ≥ 1

Cohomotopy charge... ππ p
(
(

...vanishing at infinity
along these directions...︷︸︸︷

Rd )cpt∧ (Rp−d︸ ︷︷ ︸
...but not necessarily

along these directions...

)+
) ...is equivalent to...

'
hmtpy

//

...configurations of charged points in Rp ,
which may disappear to infinity...

Conf
(
Rd ,Dp−d︸ ︷︷ ︸

... only along
the latter directions.

)
for d ≥ 1

and Prop. 2.8 implies that condition (14) holds for d = 0:

Cohomotopy charge... ππ p
(.. not necessarily vanishing at infinity

in any direction...

(R0)cpt∧ (Rp)+︸ ︷︷ ︸
=(Rp)+

) ...is equivalent to...

'
hmtpy

//

...configurations of charged points in Rp ,
which may disappear to infinity...

Conf
(
Dp︸︷︷︸

...in any direction.

)
.

In summary:

ππ
p
diff :


(Rd)cpt∧ (Rp−d)+

� // Conf
(
Rd ,Dp−d

) '
hmtpy ππ p

(
(Rd)cpt∧ (Rp−d)+

)
for d ≥ 1

(R0)cpt∧ (Rp)+︸ ︷︷ ︸
=(Rp)+

� // Conf
(
Dp
) '

hmtpy ππ p
(
(R0)cpt∧ (Rp)+

)
for d = 0

and hence condition (14) is verified. �
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2.4 Intersecting brane charges in differential Cohomotopy

With Hypothesis H, we now assume that the differential 4-Cohomotopy theory of Prop. 2.9 reflects brane charges
in string/M-theory on Penrose diagram spaces (4), and explore the consequences. By the discussion of charges
vanishing at infinity in §2.1, we expect that the differential 4-Cohomotopy on the Penrose diagram space (Rd)cpt∧
(R4−d)+ reflects charges of branes of codimension d. Indeed, for d = 4 we found an accurate picture of MK6-
charges from Cohomotopy in [SS19a]. Now to speak about intersecting branes means to consider the Cohomotopy
charge of unions of Penrose diagram spaces, which makes sense in the topological presheaf topos over the site of
Penrose diagram 4-spaces from Def. 2.2.

Definition 2.10 (Union of Penrose diagram spaces). For 0≤ d ≤ 4 write

(Rd)cpt∧ (R4−d)+ ∪ (Rd)+∧ (R4−d)cpt ∈ Sh
(
PenroseDiag4,Top∗/

)
(17)

(see the left half of (18) below) for the union, with respect to the canonical inclusion maps of Example 2.3, of
Penrose diagram spaces (4), regarded as representables in the topological presheaf topos over the site (5).

By the discussion in §2.1, the generalized space (17) may be regarded as the transversal space to the intersection
of charged objects of codimension-d with those of codimension-(4−d). Indeed, we establish the following.

Proposition 2.11 (Differential Cohomotopy and configuration spaces). The geometric cocycle space (13) that the
differential 4-Cohomotopy theory from Prop. 2.9 assigns to the transversal space (17) for d = 3 has the homotopy
type of the ordered configuration space of points in R3 (Def. 2.1):

Transversal space
to 3-codim branes

hence to D6-branes

(R3)cpt∧ (R1)+ ∪

Transversal space
to 1-codim branes

hence to D8-branes

(R3)+∧ (R1)cpt �

Differential
Cohomotopy

ππ4
diff // t

n∈N

Ordered
configuration space

Conf
{1,··· ,n}

(
R3
)

R1

∞

∞

R3

∪

R3

∞ ∞

R1

7−!



D8s

D6s
NS5

i =
Chan-Paton labels

= ordering

1 2 3 4 5 6

monopole



(18)

Proof. Being given by a contravariant functor (8), the assignment ππ4
diff takes the union (cofiber coproduct) of

representable presheaves on the left to the intersection (fiber product) of its values on the cofactors. This fiber
product is just the one appearing on the right of (9). Hence the statement follows by Prop. 2.4. �

In conclusion, the following Remarks 2.12, 2.13, 2.14 highlight how, in the above discussion, the dimensions
conspire, starting with the degree 4 of 4-Cohomotopy due to Hypothesis H:

Remark 2.12 (Distinguished system). The case d = 3 (equivalently d = 1) in Def. 17, hence p = 6, is singled out
as being the mathematically exceptional one: For d ∈ {0,2,4} the corresponding analog of Prop. 2.11 produces
a fiber product of unordered configuration spaces with fairly uninteresting cohomology. It is only in the case of
codimensions 1 = 4−3 that, via Prop. 2.4, a linear ordering on the points is induced, thus of Chan-Paton labels on
the corresponding branes, leading to the rich observables found in §4.
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Remark 2.13 (Massive Type I’). Following the discussion of Hypothesis H in [FSS19d][SS19a], we are to think
of Prop. 2.11 as applying to non-perturbative massive type I’ string theory, hence to heterotic M-theory. With no
equivariance considered here, the Hořava-Witten interval becomes invisible in homotopy theory and the codimen-
sions 3 & 1 in Prop. 2.11 are those of D6⊥ D8 brane intersections in massive type I’, as shown.

Remark 2.14 (Geometric engineering of monopoles). For any p ∈ {0,1, · · · ,6} (at least) transversal Dp⊥ D(p+
2)-brane intersections geometrically engineer Yang-Mills monopoles (i.e. Donaldson-Atiyah-Hitchin-style monopoles
[AH16][Do84] characterized by Nahm’s equation) in the worldvolume theory of the D(p+2)-brane.

• For p = 1 this is due to [Di97], see also
[HZ99, 2] [BB04][BB05].

• For p = 2 this is discussed in [GZZ09].

• For p = 6, which is the case of interest via
Prop. 2.11 and by Remark 2.13, this is dis-
cussed in [HZ99] and [HLPY08, Sec. V].

D8s

D6s
NS5

i =
Chan-Paton labels

= ordering

1 2 3 4 5 6

monopole D6

D8s

In this case of p = 6, [HLPY08] observe that monopoles engineered as D6⊥ D8-intersections yield the actual 4d
monopoles of nuclear physics, through the Sakai-Sugimoto model for QCD [Wi98][SSu04][SSu05] (for review
see [Re14][Su16]):

D-brane configuration
geometrically engineering
quantum chromodynamics

(Witten-Sakai-Sugimoto model)

Small
extra

dimension

S1 ×

space

Σ3 ×

time

R0,1 ×

radial

R1
≥1

Large extra dimensions

×

angular

S4

Nc color branes D4col ——————————
N f flavor branes D8fla ————————————————–

meson fields
CS5fla ————————————

WZ4fla ——————–
Nb baryon branes D4bar —— —
Nm monopole branes D6mon — ————————————-

NS5 ————————————-

Under this identification and via Prop. 2.11, the statements about fuzzy funnel observables in §4.2 translate to
statements about QCD monopoles.

2.5 Higher observables on intersecting brane configurations

Topological covariant phase spaces. We consider the following setting:

(i) Any assignment Fields of spaces of field configurations, such as the cohomotopically charge-quantized C-
field Fields := ππ4

diff of Prop. 2.9.

(ii) X a spatial slice of spacetime, hence with Fields(X) its field configuration space.

(iii) cin,cout ∈ Fields(X) two field configurations in the same connected component.

Then we may think of the the based path space

Based path space in
field configurations

Pcout
cin

Fields(X) :=
{

c ∈Maps
(
[0,1], Fields(X)

)∣∣c(0) = cin,c(1) = cout

}
'

hmtpy
Pcin

cin
Fields(X) =:

Based loop space in
field configurations

ΩcinFields(X)

(19)
as an element of the covariant phase space, each of which represents a field history evolving from cin to cout. Any
fixed choice of such field history induces (by evolving back along it) a homotopy equivalence to the based loop
space of the cocycle space, as shown on the right in (20). This, in turn is independent, up to homotopy, from
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the choice of basepoint. Therefore we may regard the disjoint union of the construction (19) over the connected
components [c] ∈ π0

(
Fields(X)

)
of field configurations as the topological covariant phase space

Topological
covariant phase space

Phase(X) := t
[c]

Disjoint union over
connected components

Based loop space of
field configuration space︷ ︸︸ ︷
ΩcFields(X) . (20)

Without further equations of motion imposed on the field histories this would be the off-shell phase space; but
for our purposes here all topological constraints on the fields, such as the “integral equation of motion” on the C-
field [DMW00a][DMW00b], are enforced [FSS19b] by the cohomological charge quantization in the cohomology
theory Fields = ππ4

diff, and therefore we do regard (20) as the topological sector of the full covariant phase space.

Higher order observables. The observables of a physical theory are traditionally taken to be F-valued functions
on the covariant phase space, hence functions with values in the given ground field. But to do justice to the
homotopy-theoretic nature of fields charge-quantized in generalized cohomology theories, following [SS17], we
here take higher observables to be HF-valued functions on the topological covariant phase space (20), i.e., taking
values in the Eilenberg-MacLane spectrum HF and its suspensions. After passage to gauge equivalence classes,
these higher observables hence form the cohomology ring of the topological phase space (20):

Higher observables Obs•(X) := H•
(
Phase(X)

)
:= H•

(
t
[c]

ΩcFields(X)
)

Higher co-observables Obs•(X) := H•
(
Phase(X)

)
:= H•

(
t
[c]

ΩcFields(X)
) . (21)

Higher observables on D6⊥D8-brane configurations. Specifying the higher observables (21) to the case where
we consider, with Hypothesis H:

(i) Fields := ππ4
diff to be the C-field moduli of Prop. 2.9;

(ii) X :=(R3)cpt∧(R1)+ ∪ (R3)+∧(R1)cpt to be the transversal space of D6⊥D8-brane intersections according
to Def. 17;

we are led to the following notion:

Definition 2.15. We take the algebra of higher observables on configurations of D6⊥D8-brane intersections (Re-
mark 2.14) to be the ordinary cohomology ring (21) of the componentwise based loop space (20) of the differential
4-Cohomotopy cocycle space (Prop. 2.9) that is assigned to the transversal space for codim=3/codim=1 brane
intersections (Def. 17):

Higher observables on
D6⊥ D8-configurations

by Hypothesis H

Obs•D6⊥D8 := H•
(

ππ
4
diff
(
(R3)cpt∧ (R1)+ ∪ (R3)+∧ (R1)cpt)). (22)

With the results from §2 we may characterize these higher observables more concretely:

Proposition 2.16 (Higher observables as cohomology of looped configuration space). The algebra of higher ob-
servables on D6 ⊥ D8-configurations (22) is isomorphic to the direct sum, over the number Nf of points, of the
cohomology rings of the based loop spaces of configuration spaces (Def. 2.1) of Nf points in Euclidean 3-space:

Obs•D6⊥D8 ' ⊕
Nf∈N

H•
(

Ω Conf
{1,··· ,Nf}

(R3)
)
. (23)

Proof. Using the fact that ordinary cohomology is invariant under homotopy equivalences, this follows with Prop.
2.11. �

Remark 2.17. Via Prop. 2.16 the higher co-observables (21) are identified with the higher order OPEs of extended
field theories as considered in [BBBDN18].
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Higher observables on D6⊥ D8 are weight systems on chord diagrams. Remarkably, there is a combinatorial
model for the cohomology ring (22) of higher observables, namely in terms of weight systems on chord diagrams.
The definitions of these are reviewed in detail in §3 below. The reader may wish to come back to the following
Prop. 2.18 after looking through §3.

Proposition 2.18 (Cohomology of looped configuration space is horizontal weight systems). For any natural
number Nf ∈ N we have3 for the based loop space of the ordered configuration space Conf

{1,··· ,Nf}
(R3) of Nf points in R3

(Def. 2.1) that:
(i) Its homology Pontrjagin ring is isomorphic, as a graded Hopf algebra (see [Ha92]), to the algebra A

pb

Nf
(36) of

horizontal chord diagrams (30) with Nf strands modulo the 2T-relations (33) and 4T relations (34):
Homology ring of

based loop space of
configuration space of

Nf ordered points in R3

H•
(

Ω Conf
{1,··· ,Nf}

(R3)
)
'

(
A

pb

Nf

)
•

Concatenation algebra of
horizontal chord diagrams

with Nf strands
modulo 2T- & 4T-relations

(24)

(ii) Its cohomology is isomorphic, as a graded vector space, to the space
(
W

pb

Nf

)• (37) of weight systems (Def. 3.1)
on horizontal chord diagrams with Nf strands:

Cohomology group of
based loop space of

configuration space of
Nf ordered points in R3

H•
(

Ω Conf
{1,··· ,Nf}

(R3)
)
'

(
W

pb

Nf

)• Weight systems on
horizontal chord diagrams

with Nf strands
(25)

(iii) Hence the higher co-observables (22) are identified with horizontal chord diagrams of any number of strands

ObsD6⊥D8
•

Higher order co-observables on
D6⊥ D8-brane configurations

'
(
A

pb)
•

Horizontal chord diagrams
with any number of strands

:= ⊕
Nf∈N

(
A

pb

Nf

)
• (26)

and the higher observables (22) with the weight systems on these:
Obs•D6⊥D8

Higher order observables on
D6⊥ D8-brane configurations

'
(
W

pb)•
Weight systems on

horizontal chord diagrams
with any number of strands

:= ⊕
Nf∈N

(
W

pb

Nf

)• (27)

Proof. By [FH01, Thm. 2.2] (also [CG01, Thm. 4.1][CG02, Thm. 2.3]) we have an isomorphism
Homology ring of

based loop space of
configuration space of points

H•
(

Ω Conf
{1,··· ,Nf}

(R3)
)
' U

(
LNf(1)

) Universal enveloping algebra of
infinitesimal braid Lie algebra

generated in degree 1
(28)

identifying the homology ring of the looped configuration space with the universal enveloping algebra of the
infinitesimal braid Lie algebra on Nf strands with generators in degree 1, hence of the Lie algebra freely defined
by the infinitesimal braid relations (35). Using that these relations are equivalently the 2T-relations (33) and 4T-
relations (34) on horizontal chord diagrams, direct inspection reveals that this universal enveloping algebra is
canonically isomorphic, as a graded associative algebra, to the concatenation algebra of horizontal chord diagrams
(36):

Universal enveloping algebra of
infinitesimal braid Lie algebra U

(
LNf(1)

)
' A

pb

Nf
Concatenation algebra of
horizontal chord diagrams (29)

The combination of (28) with (29) yields the first statement. The second statement then follows by direct dualiza-
tion, using the universal coefficient theorem – see also the statement of [Koh02, Thm. 4.1]. With this, the third
statement follows by Prop. 2.16. �

Remark 2.19 (Quantum algebra structure on higher co-observables). (i) The product operation on the homological
Hopf algebras H•

(
Ω Conf
{1,··· ,Nf}

(R3)
)
'A

pb

Nf
in Prop. 2.18 is non-commutative (manifestly so from (36)) while its co-

product is graded co-commutative (as it comes from the diagonal map on the space Ω Conf
{1,··· ,Nf}

(R3).

(ii) Accordingly, for the cohomological Hopf algebras H•
(
Ω Conf
{1,··· ,Nf}

(R3)
)
' W

pb

Nf
in Prop. 2.18 it is the other way

around: Here the product operation is graded-commutative (being the cup product on cohomology).
(iii) In this sense, when regarded as graded algebras of (co-)observables, weight systems W form an algebra of
classical observables, while chord diagrams A form an algebra of quantum observables.

3 This holds over any ground field F (such as the complex numbers), and in fact more generally over any commutative ring (such as the
integers).
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3 Weight systems on chord diagrams

Here we lay out the key definitions and facts regarding weight systems on chord diagrams, streamlined towards
our applications in §4. For round chord diagrams we follow [Bar95b], which has made it into textbook literature
[CDM11, 4-6][JM19, 11,13-14]. For weight systems on horizontal chord diagrams, which we find to be of deeper
relevance (see Prop. 3.4 and its interpretations in §4.7, §4.8, and §4.10) we follow [BN96], which seems not to
have found as much attention yet.

3.1 Horizontal chord diagrams

A horizontal chord diagram on Nf strands
is a trivalent finite undirected graph with
Nf disjoint, oriented lines embedded, the
strands; all vertices lying on these strands,
and the edges between the lines, the
chords, ordered along the strands.

One traditionally writes D
pb

Nf
for the set of

horizontal chord diagrams, or just D
pb

if
the number of strands is understood (the
superscript “pb” alludes to pure braids,
which are an equivalent way of presenting
horizontal chord diagrams).

We let Span
(
Dpb

)
denote the linear span

of this set, hence the vector space of for-
mal finite linear combinations of horizon-
tal chord diagrams. We regard this as
a graded vector space, as such denoted
Span

(
D

pb

Nf

)
•, where the degree of a hor-

izontal chord diagram is its number of
chords.

D
pb

Nf

Set of
horizontal

chord diagrams
with Nf strands

=

A typical horizontal chord diagram,
here with Nf = 5 strands
and degree = 6 chords

strand

chord

orientation

a = 1 2 3 4 5

, · · ·



(30)

The linear span of the set (30) of horizontal chord diagrams is canonically a graded associative algebra under
concatenation ◦ of strands:

(
Span(D

pb

Nf
)•,◦

)
Graded associative algebra

spanned by
horizontal chord diagrams

under concatenation of strands

e.g.:


i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


◦ i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


:=



i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


(31)

Hence if, for any i < j ∈ {1, · · · ,Nf}, we write

ti j =−t ji

Generator

:=


1 i j Nf

 ∈ Span
(
D

pb

Nf

)
1 (32)

for the horizontal chord diagram with exactly one chord, which goes between the ith and the jth strand, then the
algebra of horizontal chord diagrams is just the free associative algebra on these generators ti j of degree 1.
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On this free algebra consider the following relations:
(i) the 2T relations:

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


∼



· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


(33)

(ii) the 4T relations (42):

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


+



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


∼



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


+



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


(34)

Expressed in terms of the algebra generators (32), these are equivalently the infinitesimal braid relations [Koh87,
(1.1.4)]:

(2T)
[
ti j, t jk

]
= 0

(4T)
[
tik + t jk, ti j

]
= 0

}
for all pairwise distinct i, j,k, l ∈ {1, · · · ,Nf} . (35)

Now, the quotient of the graded algebra (31) of linear combinations of horizontal chord diagrams by these relations
(35) is a graded associative algebra denoted

A
pb

Nf
:= Span

(
D

pb

Nf

)/
(2T,4T)

= GradedAssoc
({

ti j =−t ji
deg = 1

|i < j ∈ {1, · · ·Nf}
})/

(2T,4T) .
(36)

Hence:

A
pb

Nf
:=Span



Horizontal chord diagrams
1 2 · · · Nf

, · · ·





modulo

/



 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


2T relations

∼

 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l

 ,

 · · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+
 · · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

∼
and 4T relations

 · · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+
 · · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k




Definition 3.1. A weight system on horizontal chord diagrams is a linear function on the span of horizontal chord
diagrams (31) modulo 2T- and 4T-relations (36). Hence the space of all weight systems is the graded linear dual
space to the quotient space (36), to be denoted

Space of weight systems
on horizontal chord diagrams

with Nf strands(
W

pb

Nf

)• :=

Graded linear dual to span of
horizontal chord diagrams

modulo 2T- and 4T relations((
A

pb

Nf

)
•
)∗
. (37)
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3.2 Round chord diagrams

Closing up horizontal chord diagrams. Given any permutation σ ∈ Sym(Nf) of Nf elements, there is an evident
way to close a horizontal chord diagram (30) to a round chord diagram. For example, for σ = (312) a cyclic
permutation of three elements, we have:

Horizontal
chord diagram

permutation
of strands

close

1 2 3

=

1

2

3

(38)

A round chord diagram, usually just called a chord
diagram, is a trivalent and connected finite undi-
rected graph with an embedded oriented circle and
with all vertices being on that circle, regarded mod-
ulo cyclic permutation along the circle. The set of
all round chord diagrams is traditionally denoted D

c

(the superscript is for chords). We write Span
(
D

c)
•

for the linear span of this set, hence for the graded
vector space of formal finite linear combinations of
round chord diagrams, with degree half their number
of vertices.

Dc

Set of
round

chord diagrams

:=

A typical round chord diagram,
here with degree = 5 chords

vertexchord

O
rientation

/

cyclic
ordering

, · · ·


(39)

An evident generalization of round chord diagrams, needed below, is obtained by allowing internal vertices:

A Jacobi diagram is a trivalent connected finite
undirected graph with an oriented embedded circle
and with an orientation on each internal vertex (i.e.
one not on the circle), regarded up to cyclic permu-
tation of vertices. (These have also been called Chi-
nese character diagrams and, for reasons discussed
in §4.4, Chern-Simons diagrams.) The set of all Ja-
cobi diagrams is traditionally denoted D

t
(the super-

script is for trivalent). We write Span
(
D

t)
• for the

linear span of this set, hence for the graded vector
space of formal finite linear combinations of Jacobi
diagrams, with degree half their number of vertices.

D
t

Set of
Jacobi Diagrams

:=

A typical Jacobi diagram,
here with 14 vertices, hence degree = 14/2 = 7

external
vertex

internal
vertex

chord

edges

O
rientation

/

cyclic
ordering

, · · ·


(40)

The closing operation as in (38) on the set of horizontal chord diagrams (30), together with the understanding
of round chord diagrams (39) as special cases of Jacobi diagrams (40) gives functions of sets of our three types of
diagrams, as follows:

D
pb

Nf

Set of
horizontal chord diagrams

close
(Nf12···) // // D

c

Set of
round chord diagrams

� � i // D
t

Set of
Jacobi diagrams

. (41)
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Round closure of the 4T relations. Under the closing map (41), the four types of horizontal chord diagrams (30)
that appear in the horizontal 4T relation (34) give the following four types of round chord diagrams (39):

H
or

iz
on

ta
l

ch
or

d
di

ag
ra

m
s · · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

C
lo

se
to

ro
un

d
ch

or
d

di
ag

ra
m

s

k

i j

k

i j

k

i j

k

i j

This means that in order to make the closing operation on the left of (41) pass to the quotient space A
pb

(see (36)),
we have to quotient the span of round chord diagrams by the following round 4T relations on Span

(
Dc
)
:




−




∼




−




(42)

Hence, in direct analogy to Def. 36, we have:

Definition 3.2. Write A
c

:= Span
(
D

c)
/(4T)

for the graded quotient vector space of the span of round chord diagrams (39) by the round 4T relations (42) (see
first line of (46) below). A weight system on round chord diagrams 4 is a linear function on this space:(

W
c)•

Space of weight systems
on round chord diagrams

:=
((

A
c)
•
)∗

Graded linear dual to span of
round chord diagrams

modulo round 4T relations

(43)

Resolution of round 4T- to STU-relations. We would like that also the injection i of round chord diagrams into
Jacobi diagrams, on the right of (41), to pass to these quotients. For that we consider, moreover, the following
relations on the linear span of Jacobi diagrams, called the STU relations on Span

(
D

t)
:

 ∼


 −


 (44)

The reason behind these STU-relations is that on Jacobi diagrams they resolve the round 4T relations (42):

4Beware that some authors call these framed weight systems, since we do not impose the 1T relation.
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4-term relations
Horizontal

chord diagrams
close // Round

chord diagrams



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


−



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k





k

i j


−



k

i j


= STU-relation

=

infinitesimal braid relation



k

i j



Jacobidiagram
s

= STU-relation



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


−



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k





k

i j


−



k

i j



(45)

Equivalence of chord diagrams and Jacobi diagrams. Using this factorization of the round 4T relation by the
STU-relations, one proves that the linear span of round chord diagrams modulo the round 4T-relations is equivalent
to that of Jacobi diagrams modulo the STU-relations (due to [Bar95b, Thm. 6]; see [CDM11, 5.3]):

A
c
:= Span



Chord diagrams , · · ·





modulo

/




−





4T rel’ns

∼




−




, · · ·



' linear isomorphism

A
t
:= Span



 , · · ·


Jacobi diagrams


/

modulo




 ∼

STU relations


−


 , · · ·


(46)Hence:

Proposition 3.3 (Relating weight systems). The maps (41) of sets of chord diagrams dualize to a linear bijection
of weight systems on Jacobi diagrams (i.e., the graded linear dual of A

t
) with weight systems on round chord

diagrams (43), followed by a linear injection of the latter into the space of weight systems on horizontal chord
diagrams (37):

W
pb

Nf

Weight systems on
horizontal chord diagrams

oo
(close(Nf12···))

∗

injection
? _ W

c

Weight systems on
round chord diagrams

oo i∗

' bijection
W

t

Weight systems on
Jacobi diagrams

. (47)
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3.3 Lie algebra weight systems

Metric Lie algebras appear. The equivalence (46) reveals that weight systems secretly encode Lie theoretic data.
Indeed, the STU-relation (44) is manifestly the Jacobi identity, or more generally the Lie action property. This
is expressed in Penrose diagram notation (reviewed in [PR84, appendix, p. 424-434]) also called string diagram
calculus (reviewed in [Sel09]); see the big table on page 25 for the translation. Diagrammatically:

f

ρ

=

ρ ρ

−

ρ ρ

ρ( f (x,y),z) = ρ(y,ρ(x,z)) − ρ(x,ρ(y,z)) (48)

With f (x,y) = [x,y] a Lie bracket, this is the Lie action property on ρ . Moreover, with ρ(x,z) = [x,z] the adjoint
action, this is the Jacobi identity.

This means that metric Lie representations of metric Lie algebras internal to tensor categories induce weight
systems (Def. 3.1) on chord diagrams. For ordinary Lie algebras this is due to [Bar95b, Sec. 2.4], while the general
statement is made explicit in [RW06, Sec. 3], following observations in [Va94][Vo11]. We capture this as:

Lie algebra weight system w(V,ρ) induced by



Lie reprensentation V ∈ C
in tensor category C ∈ TensorCat
with Lie action ρ : g⊗V !V
by Lie algebra g ∈ C
with Lie bracket f : g⊗g! g
and compatible
metrics

g : g⊗g! 1
k : V ⊗V ! 1

whose effect on the corresponding chord diagrams is the following:

Horizontal chord diagram evaluates to endomorphism ∈ End
(
C⊗n):

· · · · · · · · · · · ·

· · · · · · · · · · · ·

a = i j k

� w(V,ρ) //

· · · · · · · · · · · ·

· · · · · · · · · · · ·

V V V

V V V

ρ ρ

ρ ρ

Chord/Jacobi diagram evaluates to element of ground field k = End(1):

� w(V,ρ) //

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

f

f

f

f

(49)
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Data of
metric Lie

representation
Category notation Penrose notation Index notation

Lie bracket

g⊗g

f

��
g

gg g

g

f fab
c

Jacobi
identity

g⊗g⊗g
σ213
◦

(id⊗ f ) ��

id⊗ f− f⊗id // g⊗g

f
��

g⊗g
f

// g

g

f

f −

g

f

f
=

g
f

f

fae
d fbc

e− fbe
d fac

e

= fec
d fab

e

Lie action

g⊗V

ρ

��
V

gg V

V

ρ ρa
i
j

Lie action
property

g⊗g⊗V
σ213
◦

(id⊗ρ) ��

id⊗ρ− f⊗id // g⊗V

ρ

��
g⊗V

ρ
// V

g

ρ

ρ

−

g

ρ

ρ

=

g
f

ρ

ρa
j
l ρb

l
i−ρb

j
l ρa

l
i

= fab
c
ρc

j
i

Metric

g⊗g

g

��
1

,

1

g−1

��
g⊗g

g g

,

gg

gab , gab

V ⊗V

k

��
1

,

1

k−1

��
V ⊗V

V V

,

VV

ki j , ki j

Metric
property

g

id

''

' // g⊗1
id⊗g−1

// g⊗g⊗g
g⊗id��

1⊗g
'��

g

g

=

g

gac gcb = δ b
a

V

id

((

' // V ⊗1 id⊗k−1
// V ⊗V ⊗V

k⊗id��
1⊗V
'��

V

V

=

V

kil kl j = δ
j

i

Metricity of
Lie bracket

g⊗g⊗g

f⊗id
��

id⊗ f // g⊗g

g
��

g⊗g g
// g

f = f fab
d gdc = fbc

d gad

Metricity of
Lie action

V ⊗g⊗V

ρ⊗id
��

id⊗ρ // V ⊗V

k
��

V ⊗V
k

// V

ρ = ρ ρa
l
i kl j = ρa

l
j kli
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Metric super Lie algebras appear. The relevance of tensor categories in (49) more general than that of plain
vector spaces, is that by considering the tensor category of super vector spaces (e.g., [Va04, 3.1]), it immediately
follows that metric representations of super Lie algebras [Kac77] or rather of metric super Lie algebras (as in
[dMFMR09, 3.3]) are a source of weight systems on chord diagrams [Va94][FKV97][Vo11]; see [CDM11, 6.4].
Moreover, we observe that Deligne’s theorem [De02] (see [Os04]) says that all reasonable tensor categories (sat-
isfying just a mild set-theoretic size bound) are representation categories of algebraic super-groups, whence all
reasonable Lie algebra weight systems on chord diagrams are induced by metric super Lie algebras, in general
equivariant with respect to some super symmetry group. This means that the theory of weight systems on chord
diagrams largely overlaps with that of metric representations of metric super Lie algebras. However, interestingly,
weight systems see even one further datum, as we describe next.

3.4 On stacks of coincident strands

Stacks of coincident strands. We now consider horizontal chord diagrams D ∈ D
pb

that superficially have Nf
strands as in (30), but where, on closer inspection, the ith strand is seen/resolved to consist of a stack of Nc,i
“coincident strands”, for some tuple of natural numbers:

~Nc = (Nc,1, · · · ,Nc,Nf) ∈ NNf with Nc :=
Nf

∑
i=1

Nc,i . (50)

The following operation ∆ (see [BN96, 2.2]) may be seen to make this idea precise:

D
pb×

(
⊕
N
N
)

∆ // A
pb

(
D, ~Nc

)
7−! ∆

~Nc(D)

Chord diagram like D
but with stacks of

~Nc coincident strands

:=


Sum of horizontal chord diagrams
with Nc = Nc1 + · · ·+Nc,Nf strands
whose chords are the chords ti j of D
but re-attached in all Nc,i ·Nc, j ways
to the ith and the jth stack of chords


(51)

where now A
pb

:= ⊕
Nf∈N

A
pb

Nf
, A

pb
pNf // // A

pb

Nf

� �
iNf // A

pb
(52)

denotes the direct sum of all spaces of horizontal chord diagrams (36) over the number Nf of strands.

For example: ∆(2,2)

( )
=

[ ]
+

[ ]

+

[ ]
+

[ ]

More generic examples
have many summands; for
the one on the right we are
showing just a few, for il-
lustration:

∆
(1,3,2)




=




+

+




+




+ · · ·
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Lie algebra weight systems on horizontal chord diagrams with stacks of coincident strands. The construction
∆ (51) of horizontal chord diagram with stacks of coincident strands passes from the plain set D

pb
of horizontal

chord diagrams to a linear map on the vector space A
pb

in (52). This means that we obtain further weight systems
(37) on horizontal chord diagrams by applying Lie algebra weight systems w(V,ρ) from (49) to a horizontal chord

diagram D after “zooming in” to ∆
~Nc(∆), resolving their stacks of coincident strands:

Span
((

MetLieMod/∼
)
×
(
⊕
N
N
)
×
N

(
t

Nf∈N
Sym(Nf)

))
Lie algebra weight systems

on horizontal chord diagrams
with stacks of coincident strands

tr(−) ◦ w(−,−) ◦ ∆(−)(−)
// W

pb

(
Metric Lie

representation

g⊗V
ρ
!V ,

Stacks of
coincident strands

~Nc ,

Winding
monodromy

σ
)

7−!

( Horizontal
chord diagram

D 7−!

σ -trace of value
of ρ Lie algebra weight system

on D-shaped cord diagram
with stacks of ~Nc coincident strands

trσ ◦w(V,ρ) ◦∆
~Nc(D)

)
(53)

For example (see also (84)):

tr
(215634) ◦w

(g⊗C
ρ
!C)
◦∆(1,3,2)








=

ρ ρ

ρ ρ

ρ ρ

+

+

ρ ρ

ρ ρ

ρ ρ

+

ρ ρ

ρ ρ

ρ ρ

+ · · ·

Fundamental theorem on horizontal weight systems. With [BN96, Cor. 2.6] we now obtain:

Proposition 3.4. All weight systems on horizontal chord diagrams (Def. 3.1) are linear combinations of Lie
algebra weight systems with stacks of coincident strands (53) for (at least) the general linear Lie algebras g ∈{
gl(N) | N ∈ N≥2

}
over the given ground field: For these Lie algebras the construction (53) is surjective, so that

on the quotient (−)/∼ by its kernel it is a linear bijection. In particular, with gl(2,C)' su(2)C⊕C we have:

Span
( finite-dimensional

(su(2)C⊕C)-representations

(su(2)C⊕C)MetMod/∼×

Stacks of
coincident strands(
⊕
N
N
)
×
N

Winding
monodromies(
t

Nf∈N
Sym(Nf)

))
/∼

relations

'

assign Lie algebra weights

tr◦w◦∆ //

Weight systems on
horizontal chord diagrams

W
pb
. (54)

Conclusion: Weight systems on horizontal chord diagrams is a theory of 1) metric super Lie representations, 2)
stacks of coincident strands, 3) winding monodromies, subject to 4) dualities. In §4 we match this to physics.
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Example 3.5 (Fundamental gl(2,C)-weight system). Considesr the Lie algebra su(2)C⊕C ' gl(2,C) equipped
with the metric g(−,−) := tr2(−·−) (55)

given by the trace in its defining fundamental representation 2; and consider the corresponding Lie algebra weight
system (53) with trivial winding monodromy and no stacks of coincident strands:

w2 := trid ◦w(gl(2,C),2) ◦∆
(1,1··· ,1) . (56)

An elementary computation reveals that the value of the Lie algebra weight system (56) on a single chord is the
braiding operation [BN96, Fact 6] (see also §4.3 and §4.6 below):

Metric
Lie algebra

(g,g)

Metric contraction of fundamental action tensors

fu
nd

am
en

ta
l

re
pr

es
en

ta
tio

n

V V

V V

ρ ρ = ρa⊗ρa ∈ End(V ⊗V )

(
gl(2), tr2(−·−)

) V V

V V

(57)

This directly implies that the value (according to §3.3) of the weight system (55) on a horizontal chord diagram
D ∈Dpb equals 2 taken to the power of the number of cycles in the corresponding permutation:

w2([D]) = 2#cycles(perm(D)) , where

set of
horizontal chord diagrams

with Nf strands

D
pb

Nf

perm

take chord ti j to transposition i ↔ j
and consecutive chords to

composition of transpositions

//

set of
permutations of

Nf elements

Sym(Nf)
#cycles

number of
cycles (orbits)

of a permutation

// {1, · · · ,Nf} ⊂ N (58)

E.g.:

1 2 3

w27!
fundamental
gl(2)-weight

system

2 2 2

ρ ρ

ρ ρ

ρ ρ

close

=
2 2 2

close

=

2 2

= 22

(59)



3.5 Quantum states on chord diagrams

We observe here that the algebra of horizontal chord diagrams is canonically a star-algebra (Prop. 3.7 below), and
as such qualifies as an algebra of observables according to quantum probability theory (review in [Sw17][La17]).
This exhibits weight systems as linear maps assigning probability amplitues to observables. We may therefore
consider those weight systems which are quantum states (density matrices) in that they assign consistent expecta-
tion values to real (i.e. self-adjoint) observables (Def. 3.9 below). An example is the fundamental gl(2,C)-weight
system (Example 3.11 below) which further below in §4.9 we identify with the state of two coincident transversal
M5-branes in the BMN matrix model.

The following Definition 3.6 is traditionally considered for Banach algebras, where it yields the concept of C∗-
algebras, see for instance [La17, Def. C.1]. We need the simple specialization to finite-dimensional star-algebras
(e.g. [Sw17, 2.1]), or rather the evident mild generalization of that to degreewise finite-dimensional graded star-
algebras:

Definition 3.6 (star-algebra). A star-algebra for the present purpose is a degreewise finite-dimensional graded
associative algebra A over the complex numbers, equipped with an involutive anti-linear anti-homomorphism
(−)∗ (the star-operation), hence with a function

A
(−)∗ // A

which satisfies:

0) (degree): deg(A) = deg(A∗) for all homogeneous A ∈A
1) (anti-linearity):

(
a1A1 +a2A2

)∗
= ā1A∗1 + ā2A∗2

for all ai ∈ C, Ai ∈A2) (anti-homomorphism):
(
A1A2

)∗
= A∗2A∗1

3) (involution): ((A)∗)∗ = A

where āi denotes the complex conjugate of ai.

Proposition 3.7 (star-structure on horizontal chord diagrams). The algebra of horizontal chord diagrams (??)
becomes a complex star-algebra (Def. 3.6) via the star-operation

A
pb (−)∗ // A

pb

a1 ·D1 +a2 ·D2 7! ā1 ·D∗1 + ā2 ·D∗2

where

D
pb (−)∗ // D

pb

is the operation on horizontal chord diagrams (30) that reverses the orientation of strands in a chord diagram.

For example: 

a ·


1 2 3 4 5





∗

= ā ·


1 2 3 4 5


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Remark 3.8. By Prop. 2.16 the algebra of horizontal chord diagrams is equivalently the homology Pontrjagin
algebra of a based loop space (namely of an ordered configuration space of points). As such it is a Hopf algebra
with involutive antipode, and this is the star-structure of Prop. 3.7.

The following Definition 3.9 is standard in quantum probability theory and in algebraic quantum (field) theory
(see for instance [La17, Def. 2.4][Sw17, 2.3]).

Definition 3.9 (quantum state on a star-algebra). Given a complex star-algebra (A ,(−)∗) (Def. 3.6), a (possibly
mixed-, quantum-)state (or density matrix) is a complex-linear function

ρ : A −! C

which satisfies:

1) (positivity): ρ
(
AA∗

)
≥ 0 ∈ R⊂ C for all A ∈A

2) (normalization): ρ(1) = 1 for 1 ∈A the algebra unit.

Remark 3.10. The point of Def. 3.9 is the positivity condition (which might rather deserve to be called semi-
positivity, but positivity is the established terminology here) while the normalization condition is just that: If ρ is a
(semi-)positive linear map with ρ(1) 6= 0 then 1

ρ(1)ρ is a state.

Example 3.11. The normalization (Remark 3.10) of the fundamental gl(2)-weight system w2 (Example 3.5) is a
quantum state (Def. 3.9) with respect to the star-algebra structure on horizontal chord diagrams from Prop. 3.7.

The full proof establishing Example 3.11 is relegated to [CSS20], here we just indicate the idea by proving the
first non-trivial case:

Remark 3.12. On the complex-linear span of the set of permutations on Nf elements, consider the sesqui-linear
form

C[Sym(Nf)]×C[Sym(Nf)] // C

(a1σ1, a2σ2) 7! a1ā2 2#cycles(σ1◦σ−1
2 )

(60)

The statement of example 3.11 is equivalent, by (58) in Example 3.5, to the statement that the sesqui-linear form
(60) is positive semi-definite, in that for any formal linear combination of permutations Σ ∈ C[Sym(Nf)] we have

|Σ|2 := 〈Σ,Σ〉 ≥ 0 ∈ R⊂ C .

Lemma 3.13. The fundamental gl(2,C)-weight system w2 (Example 3.5) is (semi-)positive on the subspace of A
pb

Nf

consisting of formal linear combinations of length two:

w2
(
a1[D1]+a2[D2]

)
≥ 0 for all ai ∈ C, Di ∈D

pb

Nf
.

Proof. By Remark 3.12 we equivalently have to show that∣∣a1[σ1]+a2[σ2]
∣∣2 ≥ 0 for all ai ∈ C, σi ∈ Sym(Nf) . (61)

Observing that ∣∣a1[σ1]+a2[σ2]
∣∣2 = (|a1|2 + |a2|2

)
2Nf +(a1ā2 +a2ā1)2#cycles(σ1◦σ−1

2 )

= Nf︸︷︷︸
>0∈R

(
|a1|2 + |a2|2 +(a1ā2 +a2ā1)

2#cycles(σ1◦σ−1
2 )

2Nf︸ ︷︷ ︸
∈(0,1]

)
,

the statement (61) follows from the “cosine rule” |a1ā2 +a2ā1| ≤ |a1|2 + |a2|2. �
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4 Chord diagrams and intersecting branes

By the isomorphism (27), the higher observables (22) on the moduli space of Dp⊥D(p+2)-brane intersections,
as described in diagram (2), are given by weight systems on horizontal chord diagrams, discussed in §3. Here we
discuss how, under this interpretation, these weight systems from §3 turn out to capture various structures known,
or rather: expected, in intersecting brane physics.

4.1 Lie algebra weight systems give matrix model single trace observables

Observation 4.1. By Prop. 3.3 and Prop 3.4 all weight systems (Def. 3.1, 3.2), on any of (a) horizontal chord
diagrams (30), (b) round chord diagrams (39), and (c) Jacobi diagrams (40) evaluate, in the end, to a sum of circular
string diagrams. The latter, in turn, by the rules of Penrose notation/string diagram calculus from §3.3, evaluate
to a trace of a long product of matrices and summed over sets of pairs of matrices. For example the diagram on
the left below evaluates to the trace expression shown on the right (with (ρa ·ρb)

i
j = ρa

i
l ρb

l
j denoting the matrix

product):

Typical value
of a weight system
in Penrose notation

c

b a

d

e

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

= TrV

(
ρa ·ρb ·ρc ·ρb ·ρd ·ρc ·ρa ·ρe ·ρd ) (62)

Notice that the string diagram on the left may be, but need not be, the exact image of a round chord diagram of the
same shape. In general it is the result a process of duplication and of reconnecting of strands, according to (53).
However, the end result is always a sum over terms of this circular shape, hence is a sum of traces as on the right
of (62). (This if the monodromy permutation in (53) has a single cycle, otherwise one gets traces along several
connected circles, discussed in §4.7.)

Single trace observables subject to Wick’s theorem are weight systems. Given a metric Lie representation
g⊗V

ρ
! V as in §3.3, consider a quantum field or a random variable Z with values in g, hence with component

expansion Z = Za ρa. A single trace observable in Z is an operator/random variable of the form

O = Tr
(
Z ·Z · · · · ·Z

)
. (63)

Assume then that the component fields Za are free quantum fields, or random variables of multivariate Gaussian
distribution with covariance given by the metric k on V :

〈
ZaZb

〉
= kab. Then Wick’s theorem says that the higher

moments of Z are sums of contractions labelled by linear chord diagrams, as shown, by example, in the first two
lines here:

(64)

31



But then, as shown by example in the last line, the trace that defines the single trace observables closes up
the resulting matrix product such that the terms that were previously controlled by linear chord diagrams are now
labelled by round chord diagrams (39). Moreover, comparison with Observation 4.1 shows that the summands
contributing to the expectation value of the single trace observables are exactly the values of Lie algebra weight
systems on these round chord diagrams.

The SYK-model compactification of M5-branes. An observation along the lines of (64) (with emphasis on the
appearance of chord diagrams, but without the identification of weight systems) was recently found to be crucial for
the analysis of single trace observables in the SYK-model (review in [Ro18]) and analogous systems; see [GGJV18,
Sec. 2.2][JV18, Sec. 4][BNS18, Sec. 2.1][BINT18, Sec. 2][Na19, 5-21]. Notice that from the point of view of
string/M-theory, the SYK-model is the (near-)CFT which is the holographic dual to the full compactification of the
M5-brane; see [LLL18, 4.1][BHT18].

The BMN matrix model and fuzzy sphere states. The BFSS matrix model famously is a (0+1)-dimensional
super Yang-Mills theory which is thought to describe at least a sector of M-theory (but see [Mo14, [p. 43-44]) with
un-wrapped M2-branes [NH98][DNP02], or equivalently strongly coupled type IIA string theory with stacks of un-
bound D0-branes [BFSS96], both on asymptotically Minkowski spacetime backgrounds (review in [Ba97][Ta01]).
The BMN matrix model [BMN02, 5][DSJVR02], which is the KK-compactification over S3 of D = 4N = 4 super
Yang-Mills theory [KKP03], generalizes this to asymptotically gravitational pp-wave backgrounds, which arise as
Penrose limits of both the Ads4,7×S7,4 near horizon geometries of black M2-branes and M5-branes ([Bl04, 4.7]),
and which deform the action functional of the BFSS model by a mass and a Chern-Simons term. These extra terms
in the BMN model lift the notoriously problematic “flat directions” of the BFSS model ([dWLN89], see [BGR18])
thus leading to a well-defined quantum mechanics, which describes wrapped M2-branes (giant gravitons) or equiv-
alently of Dp⊥ D(p+2)-brane bound states for p = 0 [Li04]:

The supersymmetric solutions are precisely [BMN02, (5.4)][DSJVR02, 4.2] those matrix configurations that
constitute complex su(2)-representations su(2)C⊗V

ρ
! V , interpreted as systems of fuzzy 2-sphere geometries

(discussed as such below in §4.2). This means by Observation 4.1 with (54) that:

The S2-rotation invariant single-trace observables of the BMN matrix model are equivalently round chord diagrams
D, evaluated on supersymmetric ground states (su(2)C⊗V

ρ
! V ) by pairing them with the corresponding Lie

algebra weight system (62). This generalizes to multi-trace observables, discussed in §4.7 below.

In view of this it may be worthwhile to briefly recall:

The general relevance of single trace observables in AdS/CFT. Single trace observables O = Tr
(
Z ·Z · · · · ·Z

)
on the gauge theory side play a special role in the AdS/CFT correspondence. They map to single string excitations
on the AdS side, in a way that identifies the string quite literally with the string of characters Z ·Z ·Z · · · in the
expression of the single trace observables. An early account of the general mechanism is in [Po02], whose author
already outlines the grand picture, indicating that space-time is gradually disappearing in the regions of large
curvature, and the natural description is provided by a gauge theory in which the basic objects are the texts formed
from the gauge-invariant words, and the theory provides us with the expectation values assigned to the various
texts, words and sentences. The first concrete realization in D = 4, N = 4 SYM is due to [BMN02], whose
authors find that the “string of Zs” becomes the physical string and that each Z carries one unit of J which is one
unit of momentum, and that locality along the worldsheet of the string comes from the fact that planar diagrams
allow only contractions of neighboring operators. This led the authors to conclude that the Yang-Mills theory gives
a string bit model where each bit is a Z operator. See also [GKP02] for similar arguments.

The correspondence between single trace operators in CFT and string excitations on AdS came to full fruition
when it was realized that the single trace operators of a given length behave as integrable spin chains when the
dilatation operator is regarded as their Hamiltonian. This led to the celebrated precision checks of AdS5/CFT4
starting with [BFST03], reviewed in [Bea10].
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4.2 Lie algebra weight systems give fuzzy funnel observables
Fuzzy funnels of Dp⊥D(p+2) intersections. The
configuration of Nc coincident Dp-branes ending on
a D(p + 2)-brane is famously a noncommutative
“fuzzy funnel” geometry [Di97][CMT99][My01,
4][GW08, 3.4.3] (see Figure 3), where the three
u(Nc)-valued scalar fields {X1,X2,X3} on the Dp-
branes solve Nahm’s equation with a pole as

Xa(y) =
1
y

2√
N2−1

ρ
a , (65)

for y the transversal distance from the D(p + 2)-
brane and {ρa} the matrices of the Nc-dimensional
irreducible representation of su(2)C. Due to the
Casimir relation

Xa ·Xa = 1
y2 1Nc×Nc

this means that at fixed distance y the algebra of
functions generated by the scalar fields is that on
the fuzzy 2-sphere S2

Nc
[Mad92] of radius R = 1/y.

Shape observables on fuzzy 2-spheres. The fuzzi-
ness of the fuzzy 2-sphere S2

Nc
is reflected in the fact

that functions of its radius R are not all constant,
due to ordering ambiguity in the observables of the
schematic form “R2k”. After averaging/integration
over the fuzzy 2-sphere, hence under the trace oper-
ation, the remaining ordering ambiguities are fully
reflected by round chord diagrams, as shown on the
right by the first few examples. Hence these radius
fluctuation amplitude observables on the fuzzy 2-
sphere are equivalently the values of su(2)C-weight
systems on round chord diagrams, as in §3.3, see
Prop. 3.4. In fact, these fuzzy shape observables
are instances of single trace observables as in §4.1.

1/NNc-Corrections to the Dp⊥D(p+2)-systems.
In the large Nc limit the fuzzy 2-sphere S2

Nc
ap-

proaches the ordinary 2-sphere, and its fuzzy shape
observables all converge to unity. This large Nc
limit of the Dp ⊥ D(p+ 2)-intersections had been
studied in [CMT99]. But discussion of small Nc
corrections, or even of the full matrix model me-
chanics of Dp ⊥ D(p + 2)-intersections requires
handling the multitude of fuzzy shape observables
as shown on the right. That and how these compu-
tations are crucially organized by round chord dia-
grams was noticed in [RST04, Sec. 3.2] for review
see [MPRS06, A][MN06, 4][Pa06, p. 161-162].

∫
S2
N

(R2)

= 4π√
N2−1

Tr
(
Xa ·Xa)

a

Xa

Xa

∫
S2
N

(R2)2

= 4π√
N2−1

Tr
(
Xa ·Xa ·Xb ·Xb)

a

b

Xa Xa

XbXb

∫
S2
N

(R2)2

= 4π√
N2−1

Tr
(
Xa ·Xb ·Xa ·Xb)

a

b

Xa Xb

XaXb

∫
S2
N

(R2)3

= 4π√
N2−1

Tr
(
Xa ·Xa ·Xb ·Xc ·Xb ·Xc) a

b

c

Xa

Xa

XcXb

Xc

Xb

∫
S2
N

(R2)3

= 4π√
N2−1

Tr
(
Xa ·Xa ·Xb ·Xb ·Xc ·Xc) a

b

c

Xa

Xa

XbXb

Xc

Xc

...
...
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Gauge field configuration at fuzzy funnels. In
addition to the boundary values of the three scalar
fields X1,X2,X3 (65), a Dp ⊥ D(p + 2)-brane in-
tersection in a fuzzy funnel involves the boundary
value of the transversal component Ay of the gauge
field on the Dp-worldvolume [GW08, 3.1].

For Nahm pole fuzzy funnel configurations (65) the
condition is that the boundary value of Ay in u(Nc)
commutes with that of the three scalar fields [GW08,
3.1]:

[X i,Ay] = 0 i ∈ {1,2,3} . (66)

It is often assumed that Ay may be gauged away;
but there are, for instance, fuzzy funnel D1⊥D3-
configurations where the gauge field is gauge non-
trivial, reflecting further F-strings bound to the D1-
strings [CMT99, 3.3][TW06, p. 16].

In any case, we may include a central field Ay as
in (66) in the single-trace observables on fuzzy-
funnel configurations while retaining their su(2)C-
invariance.

ρ

N

D(p+2)-brane

N coincident
Dp-branes

fuzzy funnel

su(2)C -rep

Figure 3 – Fuzzy funnel geometry of Dp⊥D(p+2)-brane in-
tersections with fuzzy 2-sphere cross-sections S2

N , encoded by

su(2)C-representations su(2)C⊗N
ρ
! N.

Enhancement to gl(2,C)-weight systems. Adjoining a commuting element (66) to the su(2)C-representation ρ

(65) equivalently means to extend the representation to a gl(2,C)-representation along the canonical inclusion ι .

sl(2,C) ' su(2)C
� � ι=(id,0) // su(2)C⊕C ' gl(2,C)

scalar fields
on Dp

〈X1,X2,X3〉︷ ︸︸ ︷
su(2)CMetMod︸ ︷︷ ︸

values of scalar fields
at Dp⊥D(p+2)

oo 0 [ Ay

ι∗

Ay:=1
//

(
su(2)C⊕

gauge field
on Dp
〈Ay〉︷︸︸︷
C
)
MetMod︸ ︷︷ ︸

values of scalars & gauge field
at Dp⊥D(p+2)

(67)

Such extensions always exist, the canonical one being given by choosing for Ay the identity element. With this
choice, the fundamental (defining) representation 2 of sl(2,C) is extended to the fundamental (defining) represen-
tation of gl(2,C).
Fuzzy funnel states as weight systems. In summary, the invariant radius fluctuation observables on fuzzy fun-
nel Dp⊥D(p + 2)-configurations are encoded by chord diagrams and given by evaluating chord diagrams in
gl(2,C)-weight systems. (While above we discussed only round chord diagrams and single-trace observables, this
generalizes to horizontal chord diagrams and multi-trace observables, see §4.8 below).

Conversely, gl(2,C)-weight systems thus reflect exactly the invariantly observable content of fuzzy funnel
Dp⊥D(p+2)-brane intersections, hence their states. But, by Prop. 3.4, all weight systems may be identified with
gl(2,C)-weight systems, and hence with states of fuzzy funnel Dp⊥D(p+2)-brane intersections.

Below in §4.3, §4.8 and §4.9 we find the analogous statement from the point of view of the M-theory lift of
such intersections to M2/M5-brane bound states.
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4.3 Lie algebra weight systems encode M2-brane 3-algebras

The M-theory lift of fuzzy funnel Dp⊥D(p+2)-brane intersections (§4.2) to M2⊥M5-brane intersections has fa-
mously been argued [BH05][BL06] (review in [BLMP12, 2.2]) to involve generalization of the su(2)C Lie bracket,
a binary operation, to a trinary “BLG 3-algebra” structure. At the same time M/TypeII-duality requires that ob-
servables on M-brane intersections are equivalent to those on the corresponding D-brane intersections.

We now observe that when identifying D-brane intersections with Lie algebra weight systems on chord dia-
grams (as in §4.2) then the BLG 3-algebras indeed emerge as the fundamental building blocks of the corresponding
observables, namely as their value on single chords. (The full M2/M5-brane states emerge below in §4.9.)

The value of a weight system on a single chord. The value of a Lie algebra weight system (49) on a chord
diagram is a contraction of many copies of the one tensor assigned to a single chord, according to §3.3:

M2-brane 3-algebra induced by



Lie representation V ∈ C
in tensor category C ∈ TensorCat
with Lie action ρ : g⊗V !V
by Lie algebra g ∈ C
with Lie bracket f : g⊗g! g
and compatible
metrics

g : g⊗g! 1
k : V ⊗V ! 1

Data of
M2-brane 3-algebra Category notation Penrose notation Index notation

Lie action

g⊗V

ρ

��
V

gg V

V

ρ ρa
i
j

3-bracket

V ⊗V ⊗V

[−,−,−]

��
V

g

V

V
ρ

V

V

ρ
ρa

m
l ρa

ji

Faulkner
construction

V ⊗V

Ω

��
V ⊗V

g

V V

V V

ρ ρ ρa
m

l ρa j
i

(68)

M2-brane 3-algebras. As shown on the right, this tensor assigned to a single chord is exactly the tensor considered
in [dMFMR09, above Prop. 10 & (22)] (for the first case in the above table) or in [dMFMR09, (34)] (for the
second case). By [dMFMR09, Prop. 10] these tensors are the 3-brackets constituting generalized BLG 3-algebras
[BL06][CS08, 4][BLMP12, 3] and the Faulkner construction [Fau73], respectively, as shown above. In fact, by
[dMFMR09, Theorem 11] this construction constitutes a bijective equivalence between (generalized real) BLG
3-algebras and metric Lie representations. Hence all 3-algebras come from weight systems on chord diagrams.
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4.4 Round weight systems are 3d gravity observables

We have seen in §4.1 and §4.2 that weight systems on round chord diagrams have the form of observables on
(fully compactified) worldvolume theories of branes, where the circle in the chord diagram is what represents
the worldvolume. Here we observe that generating functions of weight systems dually encode Chern-Simons
amplitudes that may be thought of as propagating in a bulk spacetime away from these brane worldvolumes.

Write (G •,dG ) for Kontsevich’s graph complex in its version
with framed Wilson loops [Kon93, 5][AF96, 2][CCRL02, 7].
This is spanned by the graded set of Jacobi diagrams (40) to-
gether with analogous sets of graphs of valence higher than 3;
the differential acts by sending any graph to the signed formal
linear combination of the results of contracting any edge that
is not a chord. We may then regard any Jacobi diagram (40)
both as an element of A := A

t 'A c (46) as before, or as an
element of the graph complex, as shown on the right.

Graded set of
Feynman diagrams for
Chern-Simons theory
with a Wilson loop

D
t

[−]
A

��

[−]
G

��

send graph to
the respective vector

that it represents

A•
Graded linear span of

Jacobi diagrams
modulo STU-relations

G •

Kontsevich graph complex
for framed knots

Using [AF96, Thm. 1] we find that the sum over Jacobi diagrams of the tensor product of these two of their vector
incarnations is a graph cocycle with coefficients in Jacobi diagrams in the linear dual of round weight systems (43)

Universal Wilson loop observable[
(w,K ) 7!

〈
TrwPexp

(∫
K

A
)〉]

:= ∑
n∈N

h̄n
∑

Γ∈(D t
)n

(
1

|Aut(Γ)| [Γ]A ⊗ [Γ]G

)
∈

0-cohomology of
graph complex with

values in Jacobi diagrams

H0(A•⊗ G •
)

' Hom
(
W •,H•(G )

)
Graded linear maps from

weight systems on chord diagrams
to graph cohomology

(69)

which, dually, is a graded linear map, as shown on the right. Since (69) is a universal Vassiliev invariant [AF96,
Thm. 1] (following [Kon93, Thm. 2.3][Bar95b, 4.4.2], reviewed in [CDM11, 8.8][JM19, 18] ) this map in fact
identifies weight systems on round chord diagrams (47) with the space of Vassiliev knot invariants [Va92] via
identification (see [CCRL02, Prop. 7.6 using Thm. 7.3]) with the graph cohomology spanned by trivalent graphs

W • '
−! H•(G ) ⊂ H•(G ) .

Dual Chern-Simons theory appears. But the graph complex is what organizes Feynman diagrams for perturbative
Chern-Simons theory in the presence of a framed Wilson loop [Bar91][Bar95a]. The construction [Kon92, p. 11-
12][AS93][AF96, 3] of Feynman amplitudes as configuration space fiber integrals of wedge products of Chern-
Simons propagators, regarded as differential forms on the configuration space of points, (see Def. 2.1) sends graph
cocycles to the higher observables of Chern-Simons theory with a Wilson loop (reviewed in [Vo13, 3-4]). This is
given by evaluating the corresponding Lie algebra weight system (53) (restricted to round chord diagrams via (47))

Metric Lie representations

L := Span
(
MetLieMod/∼

) Lie algebra weight systems //

Chordal
Vassiliev invariants

∏
n∈N

(
W n

Round
degree n

weight systems

〈h̄n〉
)

(70)

on the universal Wilson loop observable (69), thus multiplying the bare Chern-Simons amplitude with the Lie
algebraic contraction and tracing of the gauge indices. Here on the right of (70) we recognize the space of gener-
ating functions of round weight systems (43) as that of Vassiliev knot invariants, via the fundamental theorem of
Vassiliev invariants [Kon93, Thm. 2.3][Bar95b, Thm. 1 (3)] (reviewed in [CDM11, 8.8][JM19, 18]).

In summary, we thus find that, via the Chern-Simons Wilson loop observable, the generating functions of
weight systems on round chord diagrams are equivalently the perturbative quantum observables of Chern-Simons
theory with a Wilson loop knot K :
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Metric Lie
representations

L

Lie algebra weight systems

//

Chordal
Vassiliev invariants

∏
n

(
W n〈h̄n〉

Weight
systems

) [
(w,K ) 7!

〈
TrwPexp

(∫
K

A
)〉]

Universal Wilson loop observable

' //

Graphical
Vassiliev invariants

∏
n

(
Hn(G ) 〈h̄n〉

Graph
cohomology

)
� �

Vassiliev
knot invariants

Feynman rules for
Chern-Simons theory

//

Knot invariants

H0
(
Emb

(
S1,R3

))
[[h̄]]

(
g⊗V

ρ
!V

) � // wV
� //

(
K 7!

V -Wilson loop observable
in g-Chern-Simons theory

evaluated on knot K〈
TrV Pexp

(∫
K

A
)〉

CS

)
(71)

BTZ black holes appear. In the case when K = © in (71) is the un-
knot, its knot complement – regarded as as a hyperbolic space of infinite vol-
ume – is (see [Gu05, Appendix A]) the Euclidean BTZ black hole in AdS3
[Kr00][Kr01]. We thus find the Chern-Simons sector inside AdS3/CFT2
duality [GMMS04][Je10][Ke14][KL06][Kr06][GKL14a] where the Wilson
loop observables (69) measure black hole entropy [ACI13][BBGR14][BR15]
[HMS19][DHK19][MR19]. For the SYK-model, such chord diagram holog-
raphy had been tentatively envisioned in [BINT18, p.5][Na19, p.23]. We high-
light that the assignment (69) thus leads to the emergence of holography by
Hypothesis H. It is then natural to propose our setting for studying holography.

A
sym

ptotic

boundary

hyperbolic
bulk

Holographic wrapped 5-branes appear. Now consider instead the case that the knot K in (71) is a hyperbolic
knot [FKO17], hence such that its complement S3 \K carries the structure of a hyperbolic space with finite vol-
ume, then necessarily unique, by Mostow rigidity [Mo68] (reviewed in [Bo18]). In this case the volume conjecture
asserts [Ka96][MM01] (reviewed in [Mu10]) that the Wilson loop observables (71) for the N-dimensional irre-
ducible representation of su(2)C tends in the large N limit, N ! ∞, to that finite volume. Moreover, the 3d-3d
correspondence (see the review [Di14]) asserts that the Wilson loop observables (71) are dually observables on the
worldvolume theory of M5-branes wrapped on Σ3 := S3 \K . Furthermore, with this identification the statement of
the volume conjecture is part of the statement of holographic AdS/CFT duality for such configurations [GKL14b,
3.2] (see also [BGL16]). We thus have the following web of relations connecting to Hypothesis H:

M5N/

Hyperbolic 3-fold︷︸︸︷
Σ

3

N black M5-branes
wrapped on

hyperbolic 3-fold
([GKW00, 3.1],

[DGKV10])
near-horizon

geometry
([GKL14b, 2.2])

||

far-horizon
geometry

([AFCS99, 3.1])

''
S4�ZN︸ ︷︷ ︸

Normal orbi-sphere
around M5-brane
([dMFO10, 8.3])

×AdS4×Σ
3︸ ︷︷ ︸

Throat over
M5-branes

wrapped on Σ3

D = 7
supergravity

dd

Volume conjecture

([GKL14b, 3.2], [GK19, (21)])
--

qq
AdS/CFT-duality

compactified on Σ3

([DGKV10]) -- R
2,1×Σ

3︸ ︷︷ ︸
Worldvolume of

M5-branes
wrapped on Σ3

D = 6
SCFT

× R4H+1triv �ZN︸ ︷︷ ︸
Type AN−1
singularity

([HSS19, 2.2.6],
[SS19a, 4])

KK-reduction
on R2,1

~~

KK-reduction
on Σ3

  
CS/Σ3

D = 3 Chern-Simons
on Σ3 jj

3d/3d correspondence
(see [Di14])

44

SCFT3[Σ
3]

D = 3 SCFT on R2,1

modulated by Σ3

Hypothesis H

(71)
OO
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4.5 Round weight systems contain supersymetric indices

We observe here that round weight systems encode the Witten indices of D = 3,N = 4 super Yang-Mills theories,
computing the Â-genus of Coulomb branches of intersecing branes given by Atiyah-Hitchin moduli space of Yang-
Mills monopoles.

Coulomb branches of D = 3,N = 3 SYM and monopole moduli. The worldvolume gauge theory of Dp ⊥
D(p+2)-brane intersections is thought to be D = 3,N = 4 super Yang-Mills theory, at least for p = 3 [HW97].
The moduli spaces of vacua of D = 3 N = 4 super Yang-Mills theory, both the Coulomb branches and the Higgs
branches, are hyperkähler manifolds M 4n [SW96] (see, e.g., [dBHOO97]), which are either
(1) asymptotically flat (ALE-spaces) and dual to branes transversal to ADE-singularities;
(2) or compact and dual to branes transversal to a K3 surfaces or to a 4-torus T4.
Specifically, the (classical) Coulomb branches of these theories are the Atiyah-Hitchin moduli spaces of Yang-
Mills monopoles [AH16] on the transversal space [DKMTV97][To99][BDG15], which are often identified with
Hilbert schemes of points [dBHOO97][dBHOO97][CHZ14, (4.4)].

In particular, if the transversal space is a K3 surface Σ4
K3, then the corresponding moduli space is the Hilbert

scheme of points M 4n = (Σ4
K3)

[n] [VW94][Va96], which is an example of a compact hyperkähler manifold. In
fact, all known examples of compact hyperkähler manifolds are Hilbert schemes either of K3 surfaces or of the 4-
torus [Be83], with two exceptional variants found in [O’G98][O’G00] (reviewed in [Saw04, 5.3]). These compact
Coulomb branches come from D = 3,N = 4 SYM theories that are obtained by KK-compactification of little
string theories [In99].

Rozansky-Witten theory. The topological C-twist of D = 3 N = 4 SYM is Rozansky-Witten theory [RzW97],
which, after gauge fixing and suitable field identifications, turns out to have same Feynman rules as 3d Chern-
Simons theory. This is in the sense that the only relevant propagator is the Chern-Simons propagator, and the only
relevant Feynman diagrams are trivalent, the only difference being that the Lie algebra weights of Chern-Simons
theory are replaced by Rozansky-Witten weights [RzW97, 3][RW06] which depend (only) on the hyperkähler
moduli space M 4n, and in fact only on its underlying holomorphic symplectic manifold [Ka99].

Hence the assignment of Rozansky-Witten weights is a linear map from the linear span of the set of isomor-
phism classes of such gauge theories

D = 3, N = 4 gauge theories

G := Span
(
SYMD=3,N =4

/∼
) Rozansky-Witten weight systems //

Chordal
Vassiliev invariants

∏
n∈N

(
W n

Round
degree n

weight systems

〈h̄n〉
)

(72)

directly analogous to the assignment of Lie algebra weight systems (70). Furthermore, the Wilson loop observables
of Rozansky-Witten C-twisted D = 3,N = 4 super Yang-Mills theory are obtained by evaluating these weights
on the universal Vassiliev Wilson loop observable, in direct analogy to the Wilson loop observables (71) of Chern-
Simons theory:

D = 3, N = 4
gauge theories

G

Rozansky-Witten weight systems

//

Chordal
Vassiliev invariants

∏
n

(
W n〈h̄n〉

Weight
systems

) [
(w,K ) 7!

〈
TrwPexp

(∫
K

A
)〉]

Universal Wilson loop observable

' //

Graphical
Vassiliev invariants

∏
n

(
Hn(G ) 〈h̄n〉

Graph
cohomology

)
� �

Vassiliev
knot invariants

Feynman rules for
RW-twisted SYM theory

//

Knot invariants

H0
(
Emb

(
S1,R3

))
[[h̄]]

T
� // wT

� //
(
K 7!

〈
TrPexp

(∫
K
(Γ+Ω)

)〉
T

Wilson loop observable
in RW-twisted SYM theory T

evaluated on knot K

)
.

(73)
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The index of D = 3, N = 4 SYM. In the case that the knot K =© in (73) is the unknot, the Rozansky-Witten
Wilson loop observable (73) computes the square root of the Â-genus of the moduli space M 4nT of the given
C-twisted D = 3,N = 4 SYM theory T ([RW06, Lem. 8.6], using the wheeling theorem [BNTT03] and Hitchin-
Sawon theorem [HS99]): 〈

Tr
(

Pexp
(∫
©
(Γ+Ω)

))〉
T
=

√
Â(M 4n

T ) .

This genus is part of the expression of the Witten index of the theory T [BFK18].

Observation 4.2 (Dualities). From the point of view of Hypothesis H, the genuine observables on the brane
configurations are the abstract weight systems in ∏

n∈N

(
W n〈h̄n〉

)
, by Prop. 2.16. One may then ask which physics

is compatible with these observables, much like one asks which target space geometry emerges from a given
worldsheet CFT. We saw in §4.4 and §4.5 that a range of quantum field theories has these weight systems as
their observables, including Chern-Simons theories and Rozansky-Witten C-twisted 3d super Yang-Mills theories.
These are reflected by canonical maps (70) and (72) from the spaces of these theories into the space of observables:

Chern-Simons & Rozansky-Witten
field theories

L ⊕G
Extract observables

Lie algebra
weight systems

(70)

⊕ Rozansky-Witten
weight systems

(72)

//

Chordal
Vassiliev invariants

∏
n∈N

(
W n〈h̄n〉

) � �
comp∗

(47)

//

Higher observables
on D6-D8-brane intersections

by Hypothesis H

∏
n∈N

(
(W

pb
)n〈h̄n〉

)
.

But this operation of extracting observables from field theories has a large kernel, equivalently a non-trivial fiber
product

Dual pairs

xx &&

(pb)
Field theories L ⊕G

extract
observables

##

L ⊕G Field theories

extract
observables

||
∏

n∈N

(
W n〈h̄n〉

)
Space of

higher observables
by Hypothesis H

(74)

corresponding to different gauge theories which have indistinguishable observables, hence which are physical
duals. We thus see that Hypothesis H, not only sees the genuine observables on the brane configurations as the
abstract weight systems but also encodes duality in the corresponding field theories in a compatible manner.

4.6 Round weight systems encode ’t Hooft string amplitudes

We have seen in (46) that round chord diagrams modulo 4T relations are equivalently Jacobi diagrams (40) modulo
STU-relations, and that weight systems (47) exhibit the latter as the Feynman diagrams of Chern-Simons theory
(§4.4) and of Rozansky-Witten theory (§4.5). We now observe that Lie algebra weight systems (§3.3) also know
about the ’t Hooft double line reformulation [’tH74] of these Feynman diagrams as well as about the resulting
identification of Chern-Simons amplitudes with topological open string amplitudes [Wi92] (reviewed in [Mar04]).

’t Hooft double line notation. One observes that Lie algebra weight systems (70) for g a semisimple Lie algebra
and V its fundamental representation, evaluate a single chord (68) to a linear combination of a double line of
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strands, in terms of the Penrose notation from §3.3, as shown in the following table:

Metric
Lie algebra

g

Metric contraction of fundamental action tensors

fu
nd

am
en

ta
l

re
pr

es
en

ta
tio

n

V V

V V

virtual gluon line
quark line

ρ ρ =

su(N)

quark lineV V

V V

− 1
N

V V

V V

so(N)

V V

V V

−

V V

V V

sp(N)

V V

V V

+

V V

V V

(75)

Applying this iteratively on the right hand side of the Jacobi identity/Lie action property (3.3)

gluon lines

f

quark line ρ

=

ρ ρ

−

ρ ρ

identifies the corresponding Lie algebra weight of any Jacobi/Feynman diagram with that of a linear combiantion of
purely double line diagrams where, in Feynman diagram language, all virtual gluon lines have turned into double
quark lines. For example:

ρ ρ

ρ

= − 3·

+ 3· -

(76)

In the context of gauge theory this was famously observed in [’tH74] for g= u(N) (see also [Bar95b, (34)]), in
which case only the first summands in (75) and (76) appear; the generalization to arbitrary semisimple Lie algebras
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was observed in [Cv76, Figure 14] and partially again in [Ci82]. Later [Bar95b, 6.3] reconsidered this, apparently
independently, in the general context of Lie algebra weight systems, which is reviewed in [CDM11, 6.2.6]. The
case g= sl(N) is also discussed in [CDM11, 6.1.8][JM19, 14.4].

We focus on the case g= so(N).

Emerging string worldsheets. The ’t Hooft double line construction (76) exhibits each Jacobi/Feynman diagram
as a linear combination of ribbon graphs (“fatgraphs”), underlying which are isomorphism classes of surfaces with
marked boundaries (see [Bar95b, Def. 1.12]). This defines a linear function

Linear combinations of
CS/RZ Feynman diagrams

(Jacobi diagrams)

Span
(
D

t) ’t Hooft construction

tHg //

Linear combinations of
topological open string worldsheets

(marked surfaces)

Span
(
MarkedSurfaces/∼

)
(77)

from the linear span of the set (40) of Jacobi diagrams to the linear span of the set of isomorphism classes of
marked surfaces. Specifically for g= so(N) this function is given on single chords (68) by

V V

V V

ρ ρ =

V V

V V

-

V V

V V

� tHso //

[ ]
-

[ ]
and on single internal vertices by

� tHso //





-



 −


 −




+



 +



 +





−




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For example:

� tHso //




−




+ · · · (78)

This is the generalization to unoriented open string worldsheets of the ’t Hooft construction for Chern-Simons
theory as an open topological string theory [Wi92, Figures 1 & 2].5

Chern-Simons observables as topological string amplitudes. We now observe that the open topological string
worldsheets as in (78), given by the ’t Hooft construction (77), are reflected by the higher observables (Prop. 2.18)
in that the image of stringy weight systems, assigning weight amplitudes to open string worldsheets, embed into
the space of weight systems on chord diagrams.

To fully account for the quark/Wilson loop, consider the function

Span
(
D

t) perm // Span
(
D

t)
(79)

which sends a Jacobi diagram with n external vertices to the linear combination of the n! ways of permuting
them along the Wilson loop circle. Then the composition of perm (79) with the ’t Hooft double line construction
tHso (77) respects the STU-relations (44) ([Bar95b, Thm. 10 with Thm. 8]) and thus descends to linear map on
A• := A

t
(46)

CS/RW Feynman diagrams
(Jacobi diagrams) modulo STU

⊕
n∈N

An

’t Hooft construction

tH ◦ perm //

String worldsheets

Span
(
MarkedSurfaces/∼

)
.

� // 2




−




+ · · ·

(80)

Given that weight systems (47) on Jacobi diagrams reflect assignments of Feynman amplitudes to Feynman
diagrams (for Chern-Simons theory §4.4 or Rozansky-Witten theory §4.5) we are to regard stringy weight systems

Stringy weight systems

S :=
(

Span
(
MarkedSurfaces/∼

))∗ point-particle limit

(tH◦perm)∗ //

Ordinary
weight systems

∏
n∈N

W n〈h̄n〉 (81)

as encoding open string scattering amplitudes.

5Beware that (only) for closed string gravity duals of Chern-Simons theory [GB99] are these open worldsheets turned into closed string
worldsheets by gluing disks onto all their free boundaries, see [GR03, 1.1][Mar04, III, p. 14].
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One finds ([Bar95b, Thm. 11]) that stringy weight systems span those Lie algebra weight systems (70) that
come from metric Lie representations of gl(N) and so(N), and contains those coming from sp(N), with N ranging
over the natural numbers :

Stringy weight systems

Im
(
S
)
� s

(81)

%%

'

Classical
Lie algebra weight systems

Im
(
Lgl⊕Lso

)
� _

(70)

��

⊃ Im
(
Lsp

)
.

kK

(70)

yy
∏

n∈N

(
W n

All weight systems

〈h̄n〉
)

It follows from this weight-theoretic result that the perturbative Wilson loop observables of Chern-Simons theory
(71), for g= so(N) and with the Wilson loop in the fundamental representation, are equivalent, under the ’t Hooft
construction (80), to observables of a unoriented open topological string theory, as in the identification of Chern-
Simons theory as a topological string theory in [Wi92] (reviewed in [Mar04]).

4.7 Horizontal weight systems observe string topology operations
A Sullivan chord diagram ([CG04, Def.
1], following [CS02]) is a finite undirected
graph equipped with cyclic orderings of the
edges around each of its vertices, which
arises from attaching the external vertices
of trees to a number of oriented and dis-
jointly embedded circles, which give bound-
ary components of the corresponding ribbon
graph. We write D

s
for the set of Sullian

chord diagrams.
Applying the ’t Hooft surface construction
as in §4.6 for g = u, now including the
boundary circles (shown in grey in the ex-
ample on the right), turns a Sullivan diagran
into a cobordism to these boundary circles
from the remaining boundary components
(shown in blue).

Set of
Sullivan

chord diagrams

D
s

=

tHu
’t Hooft

construction

��

A typical Sullivan chord diagram...



Bord2

set of
2-dimensional

cobordisms

=

... and its induced cobordism.



(82)

For example, every round chord diagram (39) is a Sullivan chord diagram, but a Jacobi diagram (40) is only a
Sullivan chord diagram if its internal edges form a tree (so the Jacobi diagram shown in (80) is not a Sullivan chord
diagram).

String topology TQFT. The tree-condition ensures [CG04, 2] that for D ∈ D
s

a Sullivan chord diagram with
nin,nout in/out-going boundary components, the pull-push operation in homology through the mapping space out
of tHu(D) exists [CG04, Theorem 4], for X an oriented target manifold, with free loop space L X := Maps(S1,X):

Space of maps
from worldsheet tHu(D)

to spacetime X

Maps
(
tHu(D),X

)
pin

rr
pout

++
Space of incoming

string configurations

(L X)×nin 'Maps
(
∂intHu(D), X

) Space of outgoing
string configurations

Maps
(
∂outtHu(D), X

)
' (L X)×nout

Space of incoming
string states

(
H•(L X)

)⊗nin
(pout)∗◦(pin)

∗

homological path integral
//
(
H•(L X)

)⊗nout Space of outgoing
string states

(83)
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There is a precise sense [Sc14, Ex. 7.1] in which this pull-push operation (83) is the cohomological path-integral
of a topological closed string theory with target space X and worldsheet geometry tHu(D). Indeed, as the Sul-
livan chord diagram D and hence the worldsheet topology tHu(D) varies, the operations (83) organize into the
propagators of a 2d topological field theory (see [CV05, 3]).

String topology operations from horizontal chord diagrams. We observe that Sullivan chord diagrams (82)
without any internal vertices, and hence the corresponding string topology operations (83), arise precisely as the
closures of horizontal chord diagrams (30) with respect to general monodromy permutations σ as in (53). If
σ = (Nf12 · · ·) has only a single cycle (single orbit) the result is a round chord diagram as in (38):

Horizontal
chord diagrams

D
pb

Nf

close(Nf12···) //

Round
chord diagrams

D
c � � //

Sullivan
chord diagrams

D
s
.

But for general permutations σ with n cycles (n orbits) as in (53) the result is a Sullivan chord diagram whose
corresponding cobordism has n outgoing boundary components. For example:

Horizontal chord diagrams

D
pb

Nf=6

close up strands
after permutation

close(21)(5643) //

Sullivan chord diagrams

D
s

_

Lie algebra
weight system Tr(21)(5643) ◦ w(V,ρ)

��

7−!

_

tHg ’t Hooft construction

��

ρ

ρ

a

b

c

ρ ρ

ρ

ρ

ρ

ρ

d

= TrV

(
ρa ·ρd ·ρa

)
TrV

(
ρb ·ρc ·ρd ·ρb ·ρc

)
multi-trace observable




string worldsheet

2d cobordism

+ · · ·

(84)

On the bottom left of (84) we are showing the form of the associated Lie algebra weights (53), which now are
BMN multi-trace observables, see §4.8.
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4.8 Horizontal chord diagrams are BMN model multi-trace observables

While the single-trace gauge theory observables from §4.1 correspond to single-string states under the AdS/CFT
correspondence, general multi-string states correspond [CS99] to multi-trace observables [BDHM98], hence to
polynomials in single-trace observables [Wi01, p. 1].

Invariant multi-trace observables in the BMN matrix model. Thus, in generalization of the discussion in §4.1, a
supersymmetric and S2-rotation invariant multi-trace observable in the BMN matrix model sends a supersymmetric
state given by a complex Lie algebra representation su(2)C⊗V

ρ
!V to expressions like the following:

ρ

ρ

a

b

c

ρ ρ

ρ

ρ

ρ

ρ

d

e

f

ρ

ρ

ρ

ρSupersymmetric state
of BMN matrix model

(fuzzy 2-sphere geometry)

(
su(2)C⊗V

ρ
!V

)
_

monomial S2-rotation invariant
multi-trace observable

��
TrV

(
ρa ·ρd ·ρa

)
TrV

(
ρb ·ρd ·ρc ·ρe ·ρb ·ρ f ·ρc

)
TrV

(
ρe ·ρ f

)
Value of multi-trace observable

(85)

Horizontal chord diagrams are BMN matrix model multi-trace observables. The multi-trace expressions (85)
are manifestly the values (53) of the Lie algebra weight system wV corresponding to the given BMN model state
on horizontal chord diagrams encoding the multi-trace observable, as in (84). But the fundamental theorem of
horizontal weight systems, Prop. 3.4, says that every horizontal weight system arises this way (54)(67), hence that:

Weight systems on horizontal chord diagrams are equivalently the supersymmetric BMN model states as seen by
the colleciton of S2-invariant multi-trace observables, which in turn are encoded by chord diagrams.

In summary, this means we have found the following identifications (see Figure 2):
Higher observables on

Dp⊥ D(p+2) intersections
by Hypothesis H


OO

'

��


Higher co-observables on

Dp⊥ D(p+2) intersections
by Hypothesis H


OO

'

��

Prop. 2.16,
Prop. 2.18

{
Horizontal weight systems

}
OO

'

��

{
Horizontal chord diagrams

}
OO

'

��

Prop. 3.4


Supersymmetric states

of the BMN matrix model
and Dp⊥ D(p+2) fuzzy funnels




Invariant multi-trace observables
of the BMN matrix model

and Dp⊥ D(p+2) fuzzy funnels


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4.9 Horizontal weight systems contain M2/M5-brane states

We discuss here that transversal microscopic M2/M5 brane bound states and their large N macroscopic limits are
identified in weight systems on chord diagrams. While we had observed that the supersymmetric states of the
BMN matrix model (§4.1), given by fuzzy 2-sphere geometries (§4.2), are seen by multi-trace observables as their
image in weight systems on Sullivan chord diagrams (§4.8) hence on horizontal chord diagrams closed by some
winding monodromy permutation (§3.4), the BMN matrix model has, of course, a tower of excited states beyond
the fully supersymmetric ground states. One might therefore suspect that the theory of weight systems, and hence
cohomotopy, reflects only a negligible corner of the M-theory captured by the BMN matrix model. Remarkably,
the opposite is the case:

M2/M5 brane bound states in the BMN matrix model. It was suggested in [MSJVR03] and checked in
[AIST17a] (surveyed in [AIST17b]) that finite numbers of stacks of coincident light-cone transversal M2- and
M5-brane states are given by isomorphism classes of some kind of limit sequences in the set of supersymmetric
states of the BMN matrix model. Concretely, let

V := ⊕
i︸︷︷︸

stacks of coincident branes
(direct sum over irreps)

(M2/M5-brane charge in ith stack
(ith irrep with multiplicity)︷ ︸︸ ︷

N
(M2)

i ·N(M5)

i
)
∈ su(2)CMetMod/∼ (86)

denote the isomorphism class of the su(2)C representation with N
(M2)

i ∈N direct summands of the N
(M5)

i -dimensional
irreducible representation, for i in some finite index set, hence with total dimension

N := ∑
i

N
(M2)

i N
(M5)

i ∈ N. (87)

Then a sequence of such states/representations corresponds to a finite number of stacks of macroscopic M2 branes
or macroscopic M5-branes depending on how the sequence behaves in the large N limit:

Stacks of macroscopic
M2-branes M5-branes

If for all i: N
(M5)

i ! ∞ N
(M2)

i ! ∞ (the relevant large N limit)
with fixed N

(M2)

i N
(M5)

i (the number of coincident branes in the ith stack)

and fixed N
(M2)
i /N N

(M5)
i /N (the charge/light-cone momentum carried by the ith stack)

(88)

cf. ([MSJVR03, Figure 2][AIST17b, (1.2)-(1.4)]).

Open problem. In order to make precise sense of the suggestion (88) one needs to say where these limits are
to be taken. They cannot actually be taken in the set (86) as this set is discrete: no sequence with N ! ∞ has a
limit in this set. Instead, the proper operational definition of limits of states is that seen by limits of the values
of observables evaluated on these states. For a holographic gauge theory like the BMN matrix model the relevant
observables OD are multi-trace observables §4.8; their structure is encoded by Sullivan chord diagrams D∈ ⊕

n∈N
A n

and their value on a state Ψ({
N
(M2)
i ,N

(M5)
i

}) given by (86) is the value of the corresponding Lie weight system (§3.3)

∑
i∈N

N
(M2)

i ·w
N(M5)

i
∈ ∏

n∈N
W n on D: Invariant

multi-trace
observable

OD :

Supersymmetric
state of

BMN matrix model

Ψ({
N
(M2)
i ,N

(M5)
i

}) 7−! ∑
i∈N

N
(M2)

i

Value of weight system
on chord diagrams

wN(M5)
i

(D). (89)

This means that the large N limits (88) are to be considered in the space of weight systems on Sullivan/horizontal
chord diagrams. It just remains to determine the proper normalizations:
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Coincident M5-Brane quantum states. Notice that, with the identification (89), the state of 2 coincident M5-
branes, according to (88) is given, via (67), by the normalization of the fundamental gl(2,C)-weight system (Ex-
ample 3.5) regarded as a quantum state (Example 3.11).

Single M2-brane states and normalization. By the discussion in §4.2, we have that the fuzzy 2-sphere state of a
single M2-brane at any N

(M5)
is given, under the identification (89), by the following weight system:

4π 22n((
N(M5)

)2
−1
)1/2+n wN(M5)

︸ ︷︷ ︸
Single M2-brane state in BMN model

(multiple of suC-weight system)

∈

States as seen by multi-trace observables...
(weight systems on horizontal chord diagrams)︷ ︸︸ ︷

∏
n∈N︸︷︷︸

...of any length 2n
(with any number n of chords)

W n (90)

Here the power of 1/2 in the normalization factor accounts for the normalization of the fuzzy integration in §4.2,
while the power of the degree n (which is the number of edges in a chord diagram (30), hence half the number of
insertions in any multi-trace observable evaluated on this state) accounts for the normalization (65) of the functions
on the fuzzy 2-sphere. Thus, with this normalization the evaluation on any round chord diagram produces the
correct fuzzy sphere observable. For example:

M2-brane state in BMN model
(multiple of su(2)C-weight system)︷ ︸︸ ︷

4π 4n((
N(M5)

)2
−1
)1/2+n wN(M5)

Single-trace observable
(round chord diagram)︷ ︸︸ ︷

= 4π 26((
N(M5)

)2
−1
)1/2+3 TrN(M5)

(
ρa ·ρa ·ρb ·ρc ·ρb ·ρc)

= 4π√(
N(M5)

)2
−1

TrN(M5)

(
Xa ·Xa ·Xb ·Xc ·Xb ·Xc)

=
∫

S2
N(M5)

(R2)3 M2-brane quantum fluctuation amplitude
(fuzzy 2-sphere shape coefficient)

(91)

Normalization and DLCQ. This prescription gives observables of the relative radius/shape of the fuzzy spheres
incolved in an M2/M5-brane bound state. The absolute radius is not observed. For example, for a single M2-brane
we reduce to states whose single-trace observables (92) measure fluctuations of the fuzzy 2-sphere (of any bit
number N

(M5)
but) of unit radius:

M2-brane state in BMN model
(multiple of su(2)C-weight system)︷ ︸︸ ︷

4π 4n((
N(M5)

)2
−1
)1/2+n wN(M5)

Single-trace observable
(round chord diagram)︷ ︸︸ ︷

a

Xa

Xa

= 4π 26((
N(M5)

)2
−1
)1/2+1 TrN(M5)

(
ρa ·ρa)

= 4π√(
N(M5)

)2
−1

TrN(M5)

(
Xa ·Xa)

=
∫

S2
N(M5)

(R2) = 1 .

(92)

This is just as it must be for there to be a large N-limit: In this limit the bare brane scale necessarily diverges, and
needs to be normalized against the radius R11 of the longitudinal spacetime circle in the DLCQ prescription, to
yield finite p+ = N/R11.
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M2-M5 brane bound states as weight systems. It follows that the weight systems corresponding to M2/M5
branes states as in (88) are to be mixtures of the single M2-brane states (90):

Fuzzy 2-sphere geometries
(metric representations of su(2)C)

su(2)CMetMod/∼

'

��

M2-M5-brane bound states
(normalized Lie algebra weights)

Ψ(−) //

Supersymmetric states of BMN matrix model
(weight systems on Sullivan chord diagrams)

∏
n∈N

W n

OO

� ?
⊕
i∈N

( Charges carried by
ith stack of branes︷ ︸︸ ︷

N
(M2)

i︸︷︷︸
multiplicity

·N(M5)

i︸︷︷︸
irrep of

dimC = N
(M5)

i

) ∣∣∣∣∣
{(

N
(M2)

i ,N
(M5)

i
)}

i∈N

∈ ⊕
i∈N

(N×N)


//


Mixture︷ ︸︸ ︷
1

∑
i∈N
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(93)

Large N limit and macroscopic brane states. As graphically indicated on the bottom of (93), for M2/M5-brane
bound states in the BMN matrix model formulated, via (89), as weight systems (93), the large N limits suggested
by (86) do exist, in the vector space of weight systems:

Sequence of
microscopic M2/M5-brane

bound states

Ψ({
N
(M2)
i ,N

(M5)
i

}
i∈I

)

7−
!

7−!
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i ,N
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i
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))

∈

Large N limit
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lim
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(
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i ,N
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︸ ︷︷ ︸

State of stacks of
macroscopic M2-branes

∈ ∏
n∈N

W n
all states

and their limits
regarded in weight systems

This follows via (92) by the standard convergence of the fuzzy sphere S2
N to the round 2-sphere for N! ∞.
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4.10 Horizontal chord diagrams encode Hanany-Witten states

The graded-commutative algebra of horizontal chord diagrams. Recall from (36) that A
pb

Nf
is the free graded

associative algebra on generators
{

ti j = t ji|i 6= j ∈ {1, · · ·Nf}
}

in degree 1, modulo the 2T and 4T relations. By
skew-symmetrizing this induces the graded commutative algebra obtained from the same generators and relations:

A
hw

Nf
:= GradedComm

({
ti j=t ji
deg = 1

|i 6= j ∈ {1, · · ·Nf}
})/

(2T,4T) . (94)

Horizontal chord diagrams (30) still represent generators in this graded-commutative algebra. To indicate that we
think of a horizontal chord diagram as a generator in A

hw

Nf
, we complete each chord by a gray line to the left or to

the right, as in the following example:
1 2 3 4 5



= t45∧ t35∧ t25∧ t15∧ t14∧ t24 ∈ A
hw

Nf=5 . (95)

In fact, this element vanishes, because the 2T-relations (33) now say that the product of two chords vanishes if they
do not connect to one common strand. In the example (95) the 2T relation gives

t15∧ t24 = 0 .

Therefore, a non-vanishing homogeneous element in (94) has to look either like this:
1 2 3 4 5


=


1 2 3 4 5


= t12∧ t13∧ t14∧ t15

∈ A
hw

Nf=5
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or like this:
54321


=


54321


= t45∧ t35∧ t25∧ t15

∈ A
hw

Nf=5

up to permutation of strands.

Hanany-Witten theory. We observe that the elements of the skew-symmetrized graded-commutative algebra of
A

hw

Nf
(94) of horizontal chord diagrams reflect the diagrammatics of Hanany-Witten Dp−D(p+2) brane configu-

rations according to [HW97, 6][GW08, 3] (see also [HOO98, 23][GK99, p. 83-][GKSTY01, (6.12)][Faz17, Fig.
3.13]) if we identify:

(i) strands as D(p+2)-branes;

(ii) chords as Dp-branes,
stretching between D(p+2)s;

(iii) green dots as NS5-branes;

(iv) gray lines as Dp-branes,
stretching from NS5 to D(p+2).

54321

D(p+2)

Dp

NS5

Dp

(96)

With this identification we find that the algebra of horizontal chord diagrams reflects the following rules of Hanany-
Witten theory:

(1) The s-rule.
(2) The breaking of Dp-branes on D(p+2)−branes.
(3) The ordering constraint.

(1) The s-rule. A direct consequence of the graded-commutativity in (94) and the fact that the chord generators
are in degree 1 is that diagrams of the following form vanish:

i j

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·


= 0

Under the identification (96), these are the configurations where two Dp-branes end on the same D(p+2)-brane.
That these configurations are excluded (if supersymmetry is required) is known as the s-rule of Hanany-Witten
theory, going back to the discussion of s-configurations in [HW97] and made explicit in [GK99, p. 83-].
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We notice that in [BGS97, 2.3][BG98] the s-rule has been argued to be nothing but the implication of the Pauli
exclusion principle for the fermions on the intersecting branes. But of course the mathematical reflection of the
Pauli exclusion principle is, at its core, precisely the graded-commutativity as in (94).

(2) Breaking of Dp-branes on D(p+2)-branes. A non-vanishing element of A
hw

Nf
(94) may also be of the form 1 2 3


= t12∧ t23 ∈ A

hw

Nf=5

Under the identification (96) this corresponds to a Dp-brane which crosses a D(p+2)-brane without having bro-
ken up into segments. But the 4T-relation (42) in the graded commutative algebra (94) now implies that this
configuration equivalently transmutes to the one on the right of the following:

i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·


= −


i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·


Under the identification (96), this process is the breaking up of a Dp-brane where it crosses a D(p+2)-brane, as
expected in Hanany-Witten theory.

(3) The ordering constraint. Under the identification (96) and by the discussion in §2.5, we obtain the higher
observables on Hanany-Witten Dp⊥D(p+2)-configurations by passing to weight systems evaluated on the skew-
symmetrized horizontal chord diagrams in (94). By Prop. 3.4 this introduces two extra pieces of data, namely:

(i) numbers Nc,i of coincident Dp-branes ending on the ith strand, and

(ii) winding monodromies σ of these strands, modulo some equivalence relations.
But from (53) it is evident that up to these equivalence relations only the conjugacy class of the winding mon-
odromy σ ∈ Sym(Nf) matters, where an equivalence

σ ∼ σ̃ ◦σ ◦ σ̃
−1

corresponds to reordering the strands according to any other permutation σ̃ ∈ Sym(Nf). With the tuple ~Nf of
numbers of coincident Dp-branes specified, this means that we may partially gauge-fix this freedom in the winding
monodromy σ by requiring that the elements of ~Nf are monotonically ordered:

Nc,1 ≤ Nc,2 ≤ ·· · ≤ Nc,Nf .

Under the identification (96) this is the ordering constraint that was found in [GW08, 3.5].

Acknowledgements. We thank Vincent Braunack-Mayer, Qingtao Chen, Carlo Collari, David Corfield, and
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