

Radboud University Nijmegen

Pursuing stacks Fundamental principles Smooth spaces Smooth groupoids End

Gauge principle and groupoids Pursuing stacks

Ragnar Eggertsson

ragnar.eggertsson@student.ru.nl

Institute for Algebra and Topology Radboud University Nijmegen

13th June 2014

Radboud University Nijmegen

Pursuing stacks

Fundamental principles

Smooth spaces

Smooth groupoids

End

Pursuing stacks Fundamental principles End

Physics meets mathematics

Physics

- Locality
- Gauge principle

Stacks

Mathematics

- Differential geometryHomotopy theory

Radboud University Nijmegen

Locality principle

What does it mean physically

Global field configurations have to be obtained by summing up local data. That means by gluing local field configurations together.

What does it mean mathematically

This is captured by the theory of sheaves.

Radboud University Nijmegen

What does it mean physically

Given two electromagnetic field configurations it only makes sense to ask if they are equal up to gauge equivalence.

What does it mean mathematically

This motivates the study of groupoids.

Idea of a smooth space

- We want to make it smooth, because physics happens on smooth spaces.
- 2 We want our space to be probable by test functions.
- **3** We want it to be satisfy the locality principle.

Radboud University Nijmegen

Definition

- **1** $X(\mathbb{R}^n)$ a set of functions from \mathbb{R}^n to X.
- **2** We have a pull-back $X(f) : X(\mathbb{R}^{n_2}) \to X(\mathbb{R}^{n_1})$ for every smooth $f : \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$

With the following demands:

$$1 X(Id_{\mathbb{R}^n}) = Id_{X(\mathbb{R}^n)}$$

- **2** We have $X(g) \circ X(f) = X(f \circ g)$ for smooth f and g.
- **8** It satisfies the <u>sheaf condition</u>.

Radboud University Nijmegen

Pursuing stacks Fundamental principles Smooth spaces Smooth groupoids End

Assignment of a smooth space

Note: pullback of functions may be composed consistently, meaning that it is functorial

Radboud University Nijmegen

The sheaf condition

Given a cover by two patches as on the left, the sheaf condition says that $\mathcal{A}(X)$ is the universal solution (the fiber product) of completing this square.

Ragnar Eggertsson

Radboud University Nijmegen

Pursuing stacks Fundamental principles Smooth spaces Smooth groupoids End

Groups vs groupoids

group

Radboud University Nijmegen

Definition

A groupoid G consists of:

- A set of objects G₀
- A set of morphisms G_1

We demand for morphisms:

- Composition: $f_2 \circ f_1 = x_1 \xrightarrow{f_1} x_2 \xrightarrow{f_2} x_3 \in \mathcal{G}_1$
- Associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$
- We have an identity morphism: $x \xrightarrow{Id_x} x \in \mathcal{G}_1 \ \forall x \in \mathcal{G}_0$
- Given $f \in \mathcal{G}_1$ we have an inverse f^{-1} such that $f^{-1} \circ f = Id_x \in \mathcal{G}_1$

Electromagnetic field configurations

The electromagnetic field configurations form a groupoid

- The set of objects given by $\Omega^1(\mathbb{R}^n) = \{A | \text{ the vector potentials} \}$
- The morphisms are given by Ω¹(ℝⁿ) × C[∞](ℝⁿ, ℝ/ℤ).
 Motivation: d(A + df) = dA

$$A \xrightarrow{f} (A + \mathbf{d}f) \xrightarrow{g} (A + \mathbf{d}(f + g))$$

Radboud University Nijmegen

Pre smooth groupoids

Idea: characterize general smooth groupoids by how to smoothly map charts into them

Definition

A pre smooth groupoid G_{\bullet} :

- Is an assignment: n → G_•(ℝⁿ) which assigns to every n ∈ N to a groupoid
- For every φ : ℝⁿ¹ → ℝⁿ² a pull-back
 G_●(φ) : G_●(ℝⁿ²) → G_●(ℝⁿ¹) such that it has associative and unital composition.

Radboud University Nijmegen

Stack condition I

Given a cover $\{U_i \hookrightarrow \mathbb{R}^n\}$ and a pre smooth groupoid G_{\bullet} ...

Radboud University Nijmegen

Stack condition II

On the triple intersections we have a commuting diagram:

Stack condition

The globally assigned groupoid is the local assignments glued by equivalences.

Electromagnetic field configurations

Proposition

The electromagnetic field configurations form a smooth groupoid (hence a stack!).

- Data measured by observers (locally) will only agree up to gauge equivalence.
- We know that matching local data corresponds to the same global electromagnetic field configuration.

In terms of the previous definitions this is simply the assignment that to each spacetime \mathbb{R}^n assigns the groupoid of gauge field configurations on it.

Radboud University Nijmegen