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Abstract

The development of modern physics in the first half of the 20th cen-
tury was closely related to the development of differential geometry, first
via Riemannian geometry in Einstein’s theory of gravity and then later
via Cartan geometry in Yang-Mills’s theory of gauge fields. But, as high-
lighted by Grothendieck in the second half of the 20th century and as
witnessed by a multitude of modern developments, a more natural math-
ematical description of many phenomena in geometry is obtained by re-
fining from traditional geometric spaces to more refined kinds of spaces
known as “stacks”. In this thesis we explain in elementary terms how the
possibly esoteric-seeming concepts of sheaves and stacks naturally capture
fundamental aspects of modern physics, namely the gauge principle and
the locality principle. We explain the universal moduli stack of the elec-
tromagnetic field configurations in a way that highlights how natural and
simple this concept is from the point of view of physics. In an outlook
section we indicate how this stack helps to understand non-perturbative
gauge theory effects such as Dirac monopoles and charge quantization.
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1 Introduction

This thesis is about natural examples in physics of stacks on smooth manifolds,
which we think of as smooth groupoids. Its intention is to introduce this concept
to physics students and teachers alike. This is motivated by its wide application
in modern research (see for instance section 6 of [6]), yet it doesn’t appear in
most of the standard textbooks. We shall motivate stacks as follows. In the sec-
tion of smooth spaces we will discus sheaves and show how they relate to locality
as we know it in physics. Locality says that from local physical data we can
acquire knowledge of the global physics in our space. In the following sections
stacks are introduced and it is shown how they relate to the gauge principle;
which says that physical data is identifiable only up to gauge equivalence.

Our main motivation to consider sheaves and stacks is to provide a non-
perturbative framework in which we can do physics. Much of gauge theory is
done in perturbation theory, but in fact non-perturbative effects such as Dirac
monopoles and Yang-Mills instantons play a crucial role in fundamental physics
[5]. The language of stacks is the natural language for these phenomena.

The origins of current research on stacks are found in a document called “À
la Poursuite des Champs” or in English “Pursuing Stacks” written in 1983 [4].
In this document Alexander Grothendieck lays out a program to motivate the
use of stacks in mathematics.

In spite of all this interest from mathematicians in sheaves and stacks, they
haven’t received the same interest from physicists. It is often seen as an exotic
and intractable branch of mathematics, with little physical application. This
thesis intends to show that in fact the opposite is true. We shall explain that
stacks as mathematical objects statisfy exactly the locality principle and the
gauge principle, two cornerstones of modern physics:

stack condition = gauge principle + locality principle

By first developing the theory of sheaves on smooth manifolds in section
2, we develop a generalization of the concept of smooth manifolds. A smooth
space is closely related to the spaces studied in physics in the sense that we
define them by how we can map smooth manifolds into it. This process can
be seen as laying out coordinate systems in our space that give us information
on the way our space is structured. In a way we are probing the space. It
gives us information on how coordinate charts map into the space and also how
worldlines on which particles move are mapped into our space.

Then in section 3 we generalize from sheaves to stacks. For this we turn to
spaces for which we have a concept of gauge equivalence between their points.
We however are interested in what happens locally since this is the only data
we can measure. We will use this to relate global space(-time)s to local space(-
time)s defined by locally gauge equivalent field configurations.
Hence smooth groupoids are the natural kind of “spaces of gauge fields”, also
called “moduli stacks of gauge fields”.
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We close this thesis with an outlook on how seemingly subtle aspects of non-
perturbative gauge theory are easily described using stacks: Dirac monopoles
and charge quantization. This will be done in section 4.

In the appendix we recall the relevant concepts of symplectic geometry (in
A) and of category theory (in B). If your not familiar with these theories, it is
a good idea to briefly look at them now.

2 Smooth spaces – Sheaves

In this section we introduce a concept of smooth spaces which are more gen-
eral than smooth manifolds, but which faithfully contain smooth manifolds and
hence generalize them to something more flexible. Here “faithfully” means that
the relationships between smooth manifolds are conserved when studying them
as a sub-category of smooth spaces. We give some examples of smooth spaces
that naturally occur in physics. In particular we show that there is a smooth
space Ω2

cl of closed differential 2-forms, and that the “slice” of the category of
smooth spaces over Ω2

cl faithfully contains the symplectic manifolds that appear
as phase spaces in physics:

SymplecticManifolds ↪→ SmoothSpaces/Ω2
cl

One may also think of Ω2
cl as the space of electromagnetic Faraday tensors

(electromagnetic field strengths) in which case one wants to ask for a “gauge
potential” (“vector potential”) for that field strength. Doing so leads further
from smooth spaces to smooth groupoids below in section 3.

2.1 Smooth spaces

The motivation for looking at smooth spaces is the idea in physics that spaces
(spacetimes) should be characterized by how matter propagates around in them,
hence how they are probeable by coordinate charts, by worldlines (of point par-
ticles) and by higher dimensional worldvolumes (of higher dimensional branes).

The following is a way of understanding how the coordinate systems used in
physics relate to mathematics.

Definition 1. The following terminology is useful:

1. We shall call a Cartesian space Rn an abstract coordinate system.

2. We shall call a smooth function f : Rn1 → Rn2 an abstract coordinate
transformation.

Abstract coordinate systems (of any dimension n ∈ N) with abstract coordinate
transformations between them form a category (def. B.1), which we denote:

CartSp
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The traditional concept of a smooth manifold X is that of a space that is
locally isomorphic to an abstract coordinate chart Rn, hence such that there is
an atlas by smooth maps Rn → X which are diffeomorphisms onto their image.
We consider now a concept of smooth space that is actually a little simpler than
that, while at the same time being more general. Namely we consider a kind
of space such that abstract coordinate systems may be laid out inside it, hence
simply such that Rns may be smoothly mapped into it. This is of course also
true for smooth manifolds, but we will ignore for the moment the condition that
there is an atlas of coordinate charts that are diffeomorphisms onto their image,
and only demand that coordinate charts may be mapped into the space:

Definition 2. A pre-smooth space X is an assignment

Rn 7→ X(Rn) ∈ Set

of a set X(Rn) to any abstract coordinate chart Rn (to be thought of as the set
of smooth functions from Rn into the space X, thereby defined) together with
an assignment

Rn1

f

��
Rn2

7→

X(Rn1)
OO

X(f)

X(Rn2)

of functions X(f) to abstract coordinate transformations f (to be thought of
as the operations of precomposing smooth maps from Rn2 to X with f); such
that this assignment respects the identity functions (X(id) = id) and such that
it is compatible with composition of functions:

Rn1 � //

f◦g

��

g

��

X(Rn1)

Rn2 � //

f

��

X(Rn2)

X(g)

OO

Rn3 � // X(Rn3)

X(f)

OO
X(f◦g)

^^

In terms of category theory this just means that a pre-smooth space X is a
presheaf (see def. 56) on CartSp. Accordingly we write

PreSmoothSpaces := PSh(CartSp)

for the category of pre-smooth spaces.

Remark 3. A pre-smooth space is defined by the sets X(Rn), which we have
defined as the maps into it. We however want to relate these maps with mor-
phisms into the pre-smooth space. These are morphisms of the form Rn → X
in the category PSh(CartSp).
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Rn is a pre-smooth space by letting it work as a functor on the category
CartSp. By the Yoneda lemma we have Rn(Rn) ∼= PSh(CartSp)(HomCartSp

(−,Rn),Rn) (see appendix B.2). So every Rn represents a (pre-)smooth space.
A pre-smooth space is a functor X on CartSp by definition. By the Yoneda

lemma X(Rn) ∼= PSh(CartSp)(HomCartSp(−,Rn), X). Where on the left side
we have the set we defined as the smooth maps into X and on the right the
natural transformations between HomCartSp(−,Rn) and X. So we know how
maps into Rn correspond to maps into X, which justifies our notation.

While this definition nicely captures the simple idea that a smooth space is
something that may be probed by mapping abstract coordinate systems into it,
the definition does not yet know about locality.

The locality principle in physics concerns expressing physical field configu-
rations on “large” spaces (spacetimes) by their local values. In order to precise
what “locality” means here, we have to specify what it means for an abstract
coordinate chart to be covered by local charts. That is what the following
definition does.

Definition 4. For Rn an abstract coordinate chart according to def. 1 we call a
set {Ui → Rn}i∈I of abstract coordinate transformations into it a differentially
good open cover of Rn if it satisfies the following three conditions:

1. ∪i∈IUi = Rn;

2. Ui → Rn is an open embedding for every i;

3. every non-empty finite intersection of the Ui is diffeomorphic to an open
ball; hence for a non-empty finite intersection Ui1 ∩Ui2 ∩· · ·∩Uik ∼= Bn ∼=
Rn.

Remark 5. In general we can also take covers {Ui ↪→ X} of smooth manifolds
X. In this text we will however use covers of Rn, these can be generalized to
covers of smooth manifolds.

Definition 6. Consider a presheaf A ∈ PSh(CartSp). Then for any Cartesian
space Rn and cover {Ui → Rn}i∈I by coordinate systems, a matching family
of local elements of A on Rn with respect to this cover is an I-tuple of elements

φi ∈ A(Ui)

such that for all pairs of patches (Ui, Uj) the restrictions of these elements to
the intersections Ui ∩ Uj agree:

A(Ui ∩ Uj
ιi−→ Ui)(φi) =: φi|Ui∩Uj

= φj |Ui∩Uj
:= A(Ui ∩ Uj

ιj−→ Uj)(φj)
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This means a set (φi)∈iI of elements such that the right diagram below
commutes:

Ui ∩ Uj
ιi

zz

ιj

$$

A(Ui ∩ Uj)

Ui
pi

$$

Uj
pj

zz

A(Ui)

A(ιi)
88

A(Uj)

A(ιj)
ff

X (φi)i∈I

ff 88

We write Match(A, {Ui ↪→ Rn}) for the set of all matching families for the
given presheaf on the given coordinate chart with respect to the given cover.

Here we can think of A(X) as the global field configurations and Match(A,
{Ui ↪→ X}) as the local field configurations. For a physical space we want each
local field configuration to match to a global field configuration. This is called
the sheaf condition as defined now:

Definition 7. We call a presheaf A ∈ PSh(CartSp) a sheaf if for every n ∈ N
we have for all covers {Ui ↪→ X} that the canonical map

h : A(X)→Match(A, {Ui ↪→ X})
f 7→ {f |Ui

}

is a bijection between the set assigned by the presheaf to Rn and the set of its
matching families on Rn with respect to the given cover.

Definition 8. A smooth space is a pre-smooth space (def. 2) that satisfies
locality in that it satisfies the sheaf condition (def. 7). We write

SmoothSpaces ↪→ PreSmoothSpaces

for the full subcategory of smooth spaces inside pre-smooth spaces.

We want smooth spaces to generalize the concept of smooth manifolds. For
this we need to (at least) check that the smooth manifolds satisty the axioms of
a smooth space. Let us first recall what the definition of a smooth manifold is.

Definition 9. A smooth n-manifold is a topological space with the following
properties:

1. second countable Hausdorff

2. locally homeomorphic to Rn

3. has a maximal atlas: a set of charts {φα : Ui → Rn} on which the transi-
tion functions {ψij : Ui → Uj |φα(Ui)∩φβ(Uj) 6= ∅} are smooth functions.

8



Every manifold X corresponds to a Hom-Functor HomSmoothMfld(−, X), en-
coding the ways of laying out Cartesian spaces in X.

Given a smooth m-manifold X, let’s look at the assignment: X : n 7→
C∞(Rn, X), the smooth functions into X. Then the assignment R0 7→ X(R0)
gives us smooth maps to the points in X. Likewise the assignment R1 7→ X(R1)
gives us smooth maps to the lines in X (assuming n ≥ 1).

Lemma 10. Every smooth manifold X is a pre-smooth space as defined in
definition 2.

Proof. We have

1. The set X(Rn) = HomSmoothMfld(Rn, X), which are the smooth functions
of Rn into X.

2. Given a smooth function f : Rn1 → Rn2 we have the pull-back X(f) :
C∞(Rn2 , X) → C∞(Rn1 , X). This is precomposition of f , so we have

X(f) := (−) ◦ f . Let g ∈ X(Rn2), then X(f)(g) = g(f) : Rn1
f−→ Rn1

g−→
X.

We now check that the pull-back satisfies the two properties required for X
to be a smooth space.

1. For g ∈ X(Rn), X(idRn)(g) = g(idRn) = g

2. Given two smooth functions f : Rn1 → Rn2 and g : Rn1 → Rn2 . We have
X(f) ◦X(g) = X(g) ◦ f = ((−) ◦ g) ◦ f = (−) ◦ (f ◦ g) = X(f ◦ g)

Lemma 11. The pre-smooth space represented by a manifold X is a smooth
space as in definition 8.

Proof. We need to show that we have a bijection: h : X(Rn)→Match(X, {Ui ↪→
Rn}). Where h sends every smooth function in X(Rn) to a matching family;
this is the mapping f 7→ {f |Ui}i∈I .

Given a matching family {f |Ui
}, we know that f |Ui

(x) = f |Uj
(x) for x ∈

Ui ∩ Uj . This implies that f |∪Ui
is a smooth function of ∪Ui = Rn to X. Thus

h is surjective.
Now given a matching family {f |Ui}i∈I . Assume we have a f ′ such that,

h(f ′) = h(f) and f 6= f ′′. Then f |Ui = f ′|Ui for all i ∈ I. The patches agree on
the overlap, so we have f |Rn = f |∪Ui

= f ′|∪Ui
= f ′|Rn , which is in contradiction

with our assumption that f 6= f ′. Thus h is injective.

Corrollary 12. A direct corrollary is that Cartesian spaces are smooth spaces
and in fact that the category of smooth manifolds is a full subcategory of that
of smooth spaces:

SmoothManifolds ↪→ SmoothSpaces.
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The following is another simple example of a smooth space, which is however
far from being a smooth manifold and hence is our first example that highlights
the usefulness of smooth spaces.

Lemma 13. For every m ∈ N the space of smooth differential m-forms is a
smooth space under the assignment Ωm : Rn 7→ Ωm(Rn).

Proof. We have

1. Ωm(Rn), the set of smooth differential m-forms on Rn;

2. we define Ωn(f) := f∗ for a smooth f , where f∗ is the pull-back as defined
in definition 42.

We now check that this assignment satisfies the demands for a smooth space:

1. If we take the pull-back allong the identity function idRn , we have Ωn(idRn)
ωp(v1, ...vn) = (id∗Rnω)p(v1, ...vn) = ωidRn (p)(idRn∗v1, ..., idRn∗vn) = ωp(v1,
..., vn) = idΩn(Rn)ωp(v1, ..., vn), since idRn∗(p) = idRn(p) = p. So the pull-
back along the identity function on Rn gives the identity on the pre-smooth
space Ωm(Rn).

2. Now given f : Rn1 → Rn2 and g : Rn2 → Rn3 , Ωm(g ◦ f)(ωp(v1, ..., vn))
= (g ◦ f)∗ωp(v1, ..., vn) = ωg◦f(p)((g ◦ f)∗v1, ..., (g ◦ f)∗vn) = ωg◦f(p)(g∗ ◦
f∗v1, ..., g∗◦f∗vn) = f∗ωf(p)(g∗v1, ..., g∗vn) = f∗◦g∗ωp(v1, ..., vn) = Ωm(f)
◦Ωm(g)(ωp(v1, ..., vn)).

3. Now we check that Ωm satisfies the sheaf condition. Define:

h : Ωm(Rn)→Match(Ωm, {Ui ↪→ Rn})
ω 7→ {ω|Ui

}

Given two ω, ω′ ∈ Ωm(Rn) that agree on a matching family, they agree on
every point p ∈ Rn so they are equal. So h is injective.

Given a matching family {ω|Ui
}i then we can define ω := ω|Ui

on Ui.
Given a p ∈ Rn then ωp is a m-form in p. So we can conclude ω is a
m-form. So h is surjective.

So h is a bijection.

We can now conclude that Ωm is a smooth space – the smooth space of all
smooth m-forms!

Using this smooth space of differential forms, we may now in section 2.2 give
a useful reformulation of symplectic geometry as it appears in the physics of
phase space.

10



2.2 Symplectic smooth spaces

In the previous section we defined smooth spaces, which are a generalization of
smooth manifolds. We will now show how the symplectic manifolds relate to
these smooth spaces.

Remark 14. By the Yoneda lemma (see appendix B.2) we have:

HomSmoothSpaces(R2n,Ω2
cl)
∼= Ω2

cl(R2n)

This says that 2-forms in Ω2
cl(R2n) are naturally identified with maps of smooth

spaces of the form ω : Ω2
cl 7→ R2n.

Theorem 15. Given two symplectic manifolds of the form (R2n, ω) and (R2n, ω′),
thought of by remark 14 as maps of smooth spaces

R2n

ω

!!

R2n

ω′

}}
Ω2
cl

then symplectomorphisms f : R2n → R2n between them (def. 49) are equiva-
lently diagrams of smooth spaces of the form:

R2n

ω

!!

f // R2n

ω′

}}
Ω2
cl

Proof. =⇒ Given two symplectic structures ω, ω′ ∈ PSh(CartSp)(R2n,Ω2
cl)

and a symplectomorphism f : R2n → R2n. Since f is a symplectomorphism it is
a bijective smooth function from R2n to R2n for which we have a pull-back f∗.
By the Yoneda lemma (see appendix B.2) we have a natural isomorphism g :

PSh(CartSp)(R2n,Ω2
cl) = PSh(CartSp)(HomCartSp(−,R2n),Ω2

cl)
∼=−→ Ω2

cl(R2n).
This gives a diagram:

PSh(CartSp)(HomCartSp(−,R2n),Ω2
cl)

g // Ω2
cl(R2n)

PSh(CartSp)(HomCartSp(−,R2n),Ω2
cl)

g //

−◦f

OO

Ω2
cl(R2n)

Ω2
cl(f)=f∗

OO

Tracing an element ω′ from the bottom left of the diagram to the top right we
get: g(ω′ ◦ f) clockwise and f∗(g(ω′)) = g ◦ω′(f) = g(ω′ ◦ f) counter-clockwise,
which implies that this diagram commutes.
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⇐= Given a commuting diagram:

R2n

ω

!!

f // R2n

ω′

}}
Ω2
cl

ω and ω′ correspond to representable presheaves, as defined in definition 57.

These representable presheaves are R2n ω−→ Ω2
cl and R2n ω′−→ Ω2

cl. Combining
these with the given f ∈ Hom(CartSp), this results in the diagram below:

R2n ω //

f

��

Ω2
cl(R2n)

R2n ω′ // Ω2
cl(R2n)

f∗

OO

Here we have f∗ = Ω2
cl(f), since Ω2

cl is a smooth space, which implies we
have a pull-back. So we have that f is smooth since it is a element in CartSp
and we have a pull-back along symplectic structures, which implies that f is a
symplectomorphism.

Remark 16. In terms of the concept of slice categories (def. 58) one may
formulate theorem 15 as follows: when a symplectic smooth space (X,ω) is
regarded as an map ω : X → Ω2

cl via remark 14, hence as an object in the slice
category SmoothSpaces/Ω2

cl
, then morphisms in the slice category between such

objects are equivalently symplectomorphisms. In particular this means that
there is a fully faithful embedding:

SymplecticSmoothManifolds ↪→ SmoothSpaces/Ω2
cl

3 Smooth groupoids – Stacks

In this section we will generalize the notion of a smooth space even further.
We will motivate this generalization by an example in physics. First we take
a look at the original formulation of electromagnetics according to Maxwell.
Take two observers who are measuring the electromagnetic field strength F , a
2-form. They will stricly agree on this, minus of course measurement errors. In
example 46 in appendix A it is shown how Maxwell’s equations can be expressed
in 2-forms.

An electromagnetic field strength F corresponds locally to a 1-form A in the
sense that F = dA. We call this A the electromagnetic vector potential. This
more general notion is according to Dirac. When measuring A, two observers
will only agree on their data up to gauge transformation, which means that
multiple vector potentials will correspond to the same field strength. This is an
example of a groupoid.
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The electromagnetic field strength varies smoothly in a space. The same
goes for vector potentials relating to that field strength. To incorporate this
into our theory we will generalize smooth spaces to smooth groupoids.

We will now turn to the definition of a groupoid.

3.1 Groupoids

In this section we study the mathematics that allow us to deal with fields for
which we have a gauge equivalence. The structures we study for this are the
groupoids.

Groupoids are a generalization of groups. A groupoid consists of a set of
objects and a set of morphisms f . The demands on the morphisms are equivalent
to that of a group. So for these we have:

1. Composition of morphisms: if x1
f1−→ x2, x2

f2−→ x3 ∈ G1, then f2 ◦ f1 =

x1
f1−→ x2

f2−→ x3 ∈ G1

2. For each x ∈ G0 we have an identity morphism: x
idx−−→ x ∈ G1

3. For every f ∈ G1 we have an inverse f−1 : x
f−1

−−→ x such that f−1 ◦ f =
idx ∈ G1

As can be seen, a groupoid whose set of objects is a singleton, is a group.
Now that we know what a groupoid is made of, we turn to the defintion.

Definition 17. A small groupoid is a made up of three sets:

1. X0, the set of objects.

2. X1, the set of morphisms.

3. X1 ◦X0
X1, the set of composable morphisms. We shall call this the fiber

product of X1 over X0.

and the following four assignments:

s : X1 → X0 assigns to each morphism g ∈ X1 an element x ∈ X0, which we
shall call the source of g.

t : X1 → X0 assigns to each morphism g ∈ X1 an element x ∈ X0, which we
shall call the target of g.

i : X0 → X1 assigns to each x ∈ X0 an identity element g ∈ X1, such that
t(g) = s(g) = x.

◦ : X1 ◦X0
X1 → X1 assigns to each two elements g, h ∈ X1 with t(g) = s(h) a

composition. A function f ∈ X1 such that g ◦ h = f .

and lastly we demand:
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i. ◦ is associative. This means for composable f, g, h ∈ X1, we have f◦(g◦h) =
(f ◦ g) ◦ h.

ii. i is a unit for ◦. This means that for f ∈ X1, we have f = f ◦ i = i ◦ f .

iii. Every morphism has an inverse under ◦.

We can summarize the above in the following diagram:

X0

s
i
t

X1
◦ X1 ◦X0

X1

Remark 18. We shall also call the objects configurations and the morphisms
transformations. These terms are motivated by field configurations and gauge
transformations in physics.

Remark 19. We add small to the definition of a groupoid in definition 17
because the configurations form a set, not a proper class.

Remark 20. We could have equivalently defined a small groupoid as a category
in which the objects form a set and all morphisms are isomorphisms.

Since we are concerned with the structure on groupoids, we now turn to
functors. The following definition is relevant for equivalences between groupoids.

Definition 21. A functor F• between groupoids X and Y is a function F0 :
X0 → Y0 and a function F1 : X1 → Y1 such that the diagram below commutes.

X1 ◦X0 X1

◦

X1

s i t

X0

(F1, F1)

F1

F0

Y1 ◦Y0 Y1

◦

Y1

s i t

Y0

In the above diagram commutation implies that if we trace an element two
ways through the diagram, that both paths agree. Let us chase a x ∈ X1

for instance to Y0, so we have t(F1(x)) = F1(t(x)) and s(F1(x)) = F1(s(x)).
It captures that the source and target of a morphism f are mapped to the
source and target of F1(f) and also that this mapping respects the identity and
composition. Commutativity here does not mean that s(F1(x)) and F1(t(x))
agree!
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Definition 22. We call a functor between two groupoids an equivalence if it
is a equivalence of categories as defined in appendix B definition 54.

We now have the category of groupoids. The objects are groupoids and the
morphisms are the functors between them. The isomorphisms are given exactly
by the equivalences as defined above. We denote this category:

Grpd

Remark 23. Let us check that the above definition is equivalent to definition

51 given in appendix B. Given a diagram of the form x1
f−→ x2 in X•, then

we have for F1(f) in Y1: F1(x1) = y1 and F1(x2) = y2 for certain y1, y2 ∈ Y0.
Furthermore writing this out gives us: s(F1(g)) = y1 = F0(x1) = F0(s(g)) and
t(F1(g)) = y2 = F0(x2) = F0(t(g)), since the diagram commutes.

This tells us that for every morphism in X•, we have a morphism in Y•. Also

source and target are preserved. So given two morphisms in X•, x1
f−→ x2 and

x2
g−→ x3. We have F0(x1)

F1(f)−−−→ F1(x2) = y1
f ′−→ y2 and F0(x2)

F1(g)−−−→ F1(x3) =

y2
g′−→ y3. For the composition we have F0(x1)

F1(f◦g)−−−−−→ F0(x3) = y1
(f◦g)′−−−−→ y3.

So the above definition respects composition.

For the functor working on identity morphisms we have: F0(x)
F1(idx)−−−−−→

F0(x) = F0(x)
idF0(x)−−−−→ F0(x).

This verifies that our above definition of functors agrees with the definition
given in appendix B.

3.2 The electromagnetic field configurations as a groupoid

In physics we are used to dealing with global field configurations on Rn. This
is justified by the Poincaré lemma, which says that closed forms are exact on
contractible manifolds. In terms of differential forms the electromagnetic field
strength is a closed 2-form as explained in appendix A. So the Poincaré lemma
says that there is a 1-form A such that dA = F . On Rn it is therefore logical
to define the groupoid of gauge fields as the smooth space that assigns 1-forms
to every Rn. The gauge transformations are the 0-forms. We shall call this
groupoid BU(1)conn.

We will now turn to the following assignment. It sends a spacetime R4 to the
electromagnetic field configurations BU(1)conn(R4). This is the groupoid whose
objects are the 1-forms on R4 (see example 46) and whose morphisms are pairs
of 0-forms and 1-forms on R4, where the 1-form serves to remember what the
source of the morphism is:

R4 7→ BU(1)conn(R4) ∈ Grpd
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This forms a groupoid as we shall prove in lemma 25. For clarification we
give the internal definition of this groupoid (def. 17). Notice here that what we
know as gauge transformations in physics are the morphisms of this groupoid:

BU(1)conn(R4) =

Ω1(R4)× C∞(R4, U(1))

s i t

Ω1(R4)

{A g−→ Ag =
A+ dg = t(A, g)}

=

[A] = {A0dx
0 +A1dx

1

+A2dx
2 +A3dx

3}
=

Here it is made explict that the objects of BU(1)conn are given by electro-
magnetic field configurations A and the morphisms are given by pairs (A, g)
and g ∈ C∞(A, U(1)).

We now turn to the definition of the electromagnetic field configurations as
a groupoid on given Rn.

Definition 24. We define a groupoid BU(1)conn(Rn) for a spacetime Rn by:

1. the objects are BU(1)0 := Ω1(Rn), the 1-forms on Rn.

2. the morphisms are BU(1)1 := Ω1(Rn)×Ω0(Rn,R/Z) = Ω1(Rn)×C∞(Rn,R/Z),
which are pairs (A, f) where f is a smooth function into R/Z.

We have now assigned to each morphism a source, target and identity. To
two morphisms we assign a composition:

1. define the source map s : BU(1)1 → BU(1)0 for which s((A, f)) := A.

2. define the target map t : BU(1)1 → BU(1)0 for which t((A, f)) := A+df .

3. define the identity map i : BU(1)0 → BU(1)1 for which i(A) := (A, 0).

4. given two morphisms such that t((A, f)) = s((A′, g)), we define the com-
position: ◦((A, f), (A′, g)) := (A, f + g).

Lemma 25. BU(1)conn(Rn) is a groupoid.

Proof. We will now check that the defined groupoid satisfies the demands given
in definition 17:

1. Given two composable morphisms ((A, f), (A′, g)), ((A′, g), (A′′, h)) ∈
BU(1)1 ×BU(1)0 BU(1)1, we have ((A, f) ◦ (A′, g)) ◦ (A′′, h) = (A, f + g) ◦
(A′′, h) = (A, (f + g) + h) = (A, f + (g + h)) = (A, f) ◦ (A′, g + h) =
(A, f) ◦ ((A′, g) ◦ (A′′, h)). Proving that ◦ is associative.
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2. Now we check that the identity morphism satisfies i◦(A, f) = (A, f)◦i for
every (A, f) ∈ BU(1)1. We have i(A+df)◦(A, f) = (A+df, 0)◦(A, f) =
(A, f +0) = (A, 0+f) = (A, f)◦ (A, 0) = (A, f)◦ i(A), which verifies that
i acts as the unit on morphisms.

3. Given a morphism (A, f) ∈ BU(1)1 and given f ∈ C∞(Rn,R/Z) then
we have a −f ∈ C∞(Rn,R/Z); an inverse given by (A + df,−f), since
(A+ df,−f) ◦ (A, f) = (A, f +−f) = (A, 0) = i(A) as demanded.

Corrollary 26. Thus far we have only worked on electromagnetic gauge fields
on Cartesian spaces. For electromagnetic field configurations A on a spacetime
R4 the Yoneda lemma gives a natural correspondence: HomGrpd(Rn,BU(1)conn)
' BU(1)conn(Rn). This motivates us to generalize this definition to smooth
manifolds. We are interested in what happens when we look at the morphism
X → BU(1)conn mapping a manifold to BU(1)conn. If we could apply our
current version of the Yoneda lemma B.2 on the groupoid of morphisms from
a manifold X into BU(1)conn this would give the groupoid of electromagnetic
field configurations on the manifold X. With our currect tools we can’t define
this yet on a smooth manifold X. We will turn to S2 → BU(1)conn later on,
which is the Dirac monopole.

Definition 27. Given the groupoid BU(1)conn(R4) and the smooth space Ω2
cl,

we have a functor F (−), that sends gauge equivalent elements in BU(1)conn to
the corresponding field strength and the gauge transformations between these
to the identity function. This is shown by the following diagram:

BU(1)conn(R4)
� F(−) // Ω2

cl(R4)

A � g //

��

dA = F
id��

Ag � // dAg = F

where dAg = F follows because dAg = d(A+ dg) = dA = F .

Remark 28. Here F = dA is the Faraday tensor, encoding the electromagnetic
field strength.

3.3 Smooth groupoids and the locality principle

We are now going to generalize smooth spaces to smooth groupoids. We have
just discussed what a groupoid is. The question remains: what does it mean for
a groupoid to be smooth? We will now look at matching families of groupoids.
The main difference with the preceding discussion on smooth spaces is that now
the matching family is a groupoid itself. This means we shall look for a way to
define an equivalence of groupoids.

We shall also limit ourselves to good open covers of Rn. We can do this
without losing generality of our spaces.
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Definition 29. A pre-smooth groupoid is a groupoid-valued presheaf, hence
a functor X• : Cartop → Grpd such that:

1. X• assigns to every n ∈ N a groupoid X•(Rn).

2. For every smooth φ : Rn1 → Rn2 we have a functor X•(φ) : X•(Rn2) →
X•(Rn1) that respects composition: X•(φ) ◦ X•(ρ) = X•(φ ◦ ρ) for φ :
Rn1 → Rn2 and ρ : Rn2 → Rn3 . We call this functor the pull-back.

Definition 30. We generalize BU(1)conn (def. 24) with the following assign-
ment:

BU(1)conn : Rn1

φ

��

BU(1)conn(Rn1)

aaaa � // aaaaaaa

Rn2 BU(1)conn(Rn2)

φ∗

OO

where for a smooth function φ : Rn1 → Rn2 we have the pull-back φ∗ :=
(−) ◦ φ : BU(1)conn(Rn2)→ BU(1)conn(Rn1).

Lemma 31. BU(1)conn is a pre-smooth groupoid.

Proof. BU(1)conn assigns every Rn to a groupoid BU(1)conn(Rn) by lemma 25,
so it satisfies the first demand of a smooth groupoid.

In example 13 we have shown that Ωncl is a smooth space. So precomposition
acts as a pull-back on both the objects and morphisms in BU(1)conn(Rn), from
which follows that the pull-back behaves as we demanded.

Now that we have pre-smooth groupoids, we want to pass on to smooth
groupoids. In section 2 we have the sheaf condition on smooth spaces. Here
we demanded that given differentially good open cover {Ui → Rn} we have
a natural bijection X(Rn) → Match(X, {Ui ↪→ Rn}). We will impose similar
restrictions on our pre-smooth groupoids. This we shall call the stack condition.
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U2

A2 ∈ G(U2)

U1

A1 ∈ G(U1)

Rn

U3

A3 ∈ G(U3)

We turn our attention to the gray part in the above diagram: the triple
intersection U1 ∩ U2 ∩ U3. Here we will demand that the elements A1, A2 and
A3 agree. This means we demand that we have isomorphisms gij : Ai|Ui∩Uj →
Aj |Ui∩Uj

for i, j ∈ {1, 2, 3} on the double intersections. On the triple intersection
we demand that: g12 ◦ g23|U1∩U2∩U3

∼= g13|U1∩U2∩U3
. Equivalently we ask for

the following diagram to commute:

A1|U1∩U2∩U3

'
g13

$$

'
g12

// A2|U1∩U2∩U3

'
g23

zz
A3|U1∩U2∩U3

The above theory works well when we are dealing with a single groupoid.
In physics we are however dealing with different groupoids that carry the same
physical information. Therefore we also need to define what makes two groupoids
equivalent.

Remark 32. We can think of {Ai} and {A′i} as vector potentials. We have
shown in example 25 that these form a groupoid. So we can have mutiple
vector potentials corresponding to the same field. We however want these vector
potentials to be considered the “same”. Now if one measurement yields {Ai}
and another measurement of the same field yields {A′i}, we are able to relate
these with {hi}.

Definition 33. Given a pre-smooth groupoid X• and a good cover {Ui → Rn},
then the groupoid Match(X•, {Ui → Rn}) of matching families is the following:
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1. its objects are pairs consisting of:

a) tuples {Ai} in X0(Ui).

b) tuples gij in X1(Ui ∩ Uj).

such that

a) on double intersections: Aj |Ui∩Uj = gij(Ai|Ui∩Uj )

b) on triple intersections: g12 ◦ g23|U1∩U2∩U3
= g13|U1∩U2∩U3

.

2. given two tuples {Ai} and {A′j}, the morphisms of Match(X•, {Ui → Rn})
are tuples {hi} such that the diagram below commutes:

A′1

g′13

  

g′12 // A′2

g′23

��
A1

g13

  

g12 //

h1

>>

A2

g23

��

h2

>>

A′3

A3

h3

>>

Definition 34. Given a pre-smooth groupoid X• with objects A ∈ X0 and
morphisms g ∈ X1, then we have a groupoid Match(X•, {Ui ↪→ Rn, }). We
say that X• is a smooth groupoid if we have for every Rn an equivalence of
groupoids given by the functor:

F• : X•(Rn)→Match(X•, {Ui ↪→ Rn})
A 7→ {Ai := A|Ui

, gij := id}
g 7→ {hi := g|Ui

}

This means F• is fully faithful and essentially surjective.

We shall also denote this X•
'−→Match(X•, {Ui ↪→ Rn, }) or say equivalently

X• ∈ Sheaf(Grpd). The stack condition is the condition that this functor F•
just defined is an equivalence of groupoids for all Rn and all covers {Ui ↪→ Rn}.

Now we will show how the smooth groupoids relate to the smooth spaces.
A smooth space naturally gives rise to a smooth groupoid. We show this now.

Lemma 35. Every smooth space X is also a smooth groupoid X•, under the
following assignments:

1. X0(Rn) := X(Rn)
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2. X1(Rn) := {f id−→ f |f ∈ X(Rn)}

Furthermore the pull-back of a function works on the set of objects like it
would on the smooth space and it sends identity functions to identity functions.

Proof. We have a pull-back and thus a pre-smooth groupoid. What is left to
show is that we have an equivalence as defined in definition 34:

F• : X• →Match(X•, {Ui ↪→ Rn})
f 7→ {f |Ui

, gij = id}
id 7→ {hi = id|Ui

}

Since X0 is a smooth space, each matching tuple {f |Ui
} corresponds uniquely

to a f ∈ X0(Rn). This implies that the first assignment is a bijection, since each
f corresponds to a unique identity function. The second assignment is also a
bijection. Thus F• is a bijection and an equivalence of groupoids.

Remark 36. From this follows that we have an inclusion:

SmoothSpaces ↪→ SmoothGroupoids

With a similar proof the inclusion below follows. This is however less relevant
for our purposes so we omit the proof here.

PreSmoothSpaces ↪→ PreSmoothGroupoids

Theorem 37. BU(1)conn is a smooth groupoid.

Proof. We have proven in lemma 31 that electromagnetic field configurations
BU(1)conn form a pre-smooth groupoid under the assignment BU(1)conn : n 7→
BU(1)conn(Rn). Composition of two smooth functions is again smooth. So
given a smooth f : Rn1 → Rn2 we have a pullback given by precomposition
(−) ◦ f : BU(1)conn(Rn1)→ BU(1)conn(Rn2).

Given a good cover {Ui → Rn}, then we define the groupoidMatch(BU(1)conn,
{Ui → Rn}) to be the following:

1. its objects are pairs consisting of

a) tuples {Ai} in A0(Ui) of 1-forms in each patch.

b) tuples gij in A1(Ui ∩ Uj) of 0-forms in each double intersection.

such that

a) on double intersections: Aj |Ui∩Uj
= Ai|Ui∩Uj

+ dgij |Ui∩Uj
.

b) on triple intersections: g12 ◦ g23|U1∩U2∩U3 = g13|U1∩U2∩U3 .
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2. Given two tuples {Ai} and {A′j}, the morphisms of Match(R•, {Ui →
Rn}) are equivalences {hi} as defined in definition 33.

We need to show that we have an equivalence as in definition 34:

F• : X• →Match(X•, {Ui ↪→ X})
A 7→ {Ai := A|Ui , gij := id}
g 7→ {hi := g|Ui}

This functor is well defined since given A,A′ ∈ BU(1)0 and a global equiv-

alence (A, g) such that: A g−→ A′. Then we have locally on a patch Ui:

A|Ui

g|Ui−−−→ A′|Ui .
We will now show that F• is bijective on hom-sets. Given A,A′ ∈ X•(Rn)

we have F•(A) = {A, gij = id} and F•(A′) = {A′, g′ij = id}.
If {hi = g|Ui

}, {hi = g′|Ui
} ∈ HomMatch(X•,{Ui↪→Rn})({Ai, gij}, {A′i, g′ij})

such that {hi = g|Ui
} = {hi = g′|Ui

}, equivalently F•((g,A)) = F•((g
′,A)). So

g and g′ agree on all patches Ui on Rn. Thus g = g′. This implies that F• is
injective.

Given {hi = g|Ui
} ∈ HomMatch(X•,{Ui↪→Rn})({Ai, gij}, {A′i, g′ij}), we define

g := g|Ui
on Ui. We have gij between all patches A|Ui

which match on the
overlaps. This implies g : A → A′. So F• is surjective on hom-sets.

We will now show that F• is essentially surjective. Given {Ai, gij} ∈Match(
X•, {Ui ↪→ Rn}), on every overlap of two Ai,Aj we have gauge transformations
gij such that Ai = Aj − dgij . We can do this for every overlap inductively,
which gives a set of the form {Ai, gij = id}, an element on which F• maps.

Remark 38. Theorem 37 says that the electromagnetic vector potentials form
a smooth groupoid. This means that it satisfies the stack condition as defined in
definition 34. Physically this means that when we measure the electromagnetic
field configurations in a given space we can find a global electromagnetic field
configuration that is locally gauge equivalent to the measured values. Equiv-
alently this means that if we measure the electromagnetic patches through a
space and we glue these patches together, where the gluing is done by means
of gauge equivalences such that all the patches agree, then this gives rise to a
global field configuration.

4 Outlook: examples and applications

In this section we will look at the applications of stacks in physics. We shall
start by showing the concept of prequantization. After that we shall turn our
attention to the Dirac monopole. Here we use BU(1)conn to show that flux is
quantized.
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4.1 Prequantization

We will now discuss how the Faraday tensor F , and the vector potential A
relate. To do this, we show in a diagram how the field strengths relate to the
more general vector potentials.

Example 39. Given BU(1)conn,Ω2
cl and a smooth space X, then we have a

commuting diagram of the following form:

BU(1)conn
F (−) // Ω2

cl

X

A

OO

F (A)=dA

99

Here BU(1)conn is a smooth groupoid by theorem 37. Now given a functor
F (−) that sends every A ∈ BU(1)conn(X) to its field strength F ∈ Ω2

cl, we can
again relate the field strength to dA. Now we have a concept for field strength
in more general spaces.

4.2 The Dirac monopole

In the previous chapters we have set up all the theory to think of electromag-
netic field configurations on the site of smooth manifolds. Until this point we
have however only considered covers of Cartesian spaces. If we study these
electromagnetic field configurations, Poincaré’s lemma says that every closed
2-form on such a space is exact. With Stokes theorem we find for the flux:∫
D3 F =

∫
D3 dA =

∫
S2 A = 0 (see page 156 in [3]). There is no magnetic charge

in a Cartesian space. We will now show how the theory of stacks naturally gives
rise to the quantization of the Dirac monopole.

The Dirac monopole is a spacetime R3\{(0, 0, 0)} × R with a non-zero
magnetic field supported by a magnetic charge at the origin. From topology we
know that R3\{(0, 0, 0)}×R ∼= S2 × (0,∞)×R. Therefore the Dirac monopole
is equivalently a space which is a 2-sphere.

The origin is removed from the spacetime R4 to ensure it is not singular.
As discussed we don’t have magnetic charge for the electromagnetic field con-
figurations on Cartesian spaces. However, now something interesting happens.
The Poincaré lemma doesn’t hold for non-contractable manifolds. The magnetic
charge of a smooth manifold does not have to be 0.

We shall now show that the flux through the Dirac monopole is quantized.
Let us look at a Dirac monopole covered by two patches U1 and U2 that cover
respectively the northern- and southern hemisphere, which overlap. On both
patches we have electromagnetic field configurations such that they are gauge
equivalent on the equator. We call these fields A1 and A2. This is the electro-
magnetic groupoid as defined in theorem 37.
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The situation described can be visualized as follows:

U1

U2

On the overlap we have a gauge tranformation g such that dg = A2−A1. If
we take the patch U2 to cover all of the sphere except for the north pole. We take
U2 to have a boundery of a small size ε > 0. Furthermore U1∩U2

∼= S1. So we get
the integral of the gauge tranformation g on the overlap

∮
S1 g =

∮
S1 A2 −A1 =∮

S1 A2 −
∮
S1 A1 =

∫
B2−(0,0,1)

dA2 −
∫
|(1,0,0)−x|<ε dA2, where we applied Stokes

theorem and x ∈ S2. Then
∮
S1 g =

∫
B2−(0,0,1)

dA2 =
∫
B2−(0,0,1)

F = φmag, the

magnetic flux through the monopole.
We also have g ∈ C∞(U1 ∩ U2, U(1)) ∼= C∞(S1, S1). Furthermore we can

parametrize S1 with a function φ(t) : [0, T ] → S1 which gives a unique t for
every x ∈ S2. So we have g(x) = g(φ(t)) with for every x a unique t ∈ [0, T ].
For g to be smooth it needs to be infinitely differentiable on its starting and
end point. This gives: g(0) = g(φ(0)) = g(φ(T )) = g(T ). Now we turn to the
integral

∮
S1 g. We know it to turn a fixed number of times around S1 since

it needs to be smooth. So every g ∈ C∞(S1, S1) has to be a multiple of the
integral

∮
S1 idS1 . We call this number the winding number n ∈ N.

Putting it all together:

φmag =

∮
S1

g = n

∮
S1

idS1

from which we can deduce that the magnetic flux φmag is quantized.
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A Symplectic geometry

What we are interested in in physics is information with invariant meaning.
We usually express formulas in coordinates as a means to relating them to
the world around us. However, coordinates in different reference frames have
different meanings. This is why it is beneficial to see if we can describe the
world around us by surface elements. This is done studying n-forms on spaces
of different kinds.

A.1 Differential forms

In this section we will shortly review differential n-forms. See for instance page
40 of [3] and see [2].

Definition 40. Given a function f : M → R where M is a manifold. We define
the differential f∗ : Mn

p → R in a point p ∈ M by f∗ := df(v) = vp(f) =∑
vj(p) ∂f∂xj (p).

Definition 41. A exterior n-form is a skew symmetric covariant n-tensor
α ∈

⊗n
E∗. So we have α : E × E × ...× E → R with E a vector space. Skew

symmetry implies that α(..., vi, ..., vj , ...) = −α(..., vj , ..., vi, ...). We denote the
space of all n-forms on a manifold M by ΩnM

Definition 42. The pull-back of a m-form along a function f : M → N
from a M to a manifold N is defined for every p ∈ M by: (f∗ω)p(v1, ...vn) =
ωf(p)(f∗v1, ..., f∗vn), where f∗ is the differential along f.

Definition 43. Define exterior differentiation on n-forms by: d :Ωn(M)→
Ωn+1(M).

Let α ∈ Ωn(M) and β ∈ Ωm(M), then d satisfies the following rules:

1. d(α+ β) = d(α) + d(β)

2. For f a 0-form df =
∑
xi

∂f
∂xi

dxi, the differential of f .

3. d(α ∧ β) = dα ∧ β + (−1)nα ∧ dβ

4. For all n ∈ N we have d2α = 0

Example 44. The following are respectively examples of 0, 1, 2 and 3 forms.

1. A smooth function f : M → R from a manifold into R is a 0-form.

2. The gradient df =
∑
i
∂f
∂xi

dxi of a smooth function f is a 1-form.

3. The curl of a smooth 1-form ω = ωxdx + ωydy + ωzdz is given by dω =

(∂ωz

∂y −
∂ωy

∂z )dy∧dz+ (∂ωx

∂z −
∂ωz

∂x )dz∧dx+ (
∂ωy

∂x −
∂ωx

∂y )dx∧dy, a 2 - form.

4. The divergence of a smooth 2-form α = Qdx∧ dy+Rdy ∧ dz+Sdz ∧ dx
is given by dα = (∂Q∂x + ∂R

∂y + ∂S
∂z )dx ∧ dy ∧ dz, a 3 - form.
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Definition 45. The Hodge star operator sends n-forms to their dual. Given
a α ∈ Ωn(M) with M of dimension m and for every p ∈ M an orthonormal
basis (e1, ...en) with respect to a metric g, we define:

? :Ωn(M)→ Ωm−n(M)

e1 ∧ ... ∧ en 7→ en+1 ∧ ... ∧ em

Example 46. Using these new operators we can define electromagnetics us-
ing forms. It turns out that we can capture electromagnetics in the following
formulae.

A differential 1-form A ∈ Ω1(R4) in Minkowski space has components:

A = A1dx
1 +A2dx

2 +A3dx
3 + φdx0 ,

which we may identify with the vector potential known in physics. One checks
then that the exterior derivative:

F = dA =E1dx
1 ∧ dx0 + E2dx

2 ∧ dx0 + E3dx
3 ∧ dx0

+B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2

as components is precisely the Faraday tensor of the corresponding electro-
magnetic field strength. In terms of this Maxwell’s equations read:

dF = 0

?d ? F = J

For a further discussion refer to section 3.5c of reference [3].

A.2 Symplectic manifolds

Example 47. Let (R2, ω) be the Cartesian space with ω := dp ∧ dq. Given
a smooth function H : R2 → R and v a velocity vector of a particle in phase
space, then we have:

dH =
∂H

∂q
dq +

∂H

∂p
dp

ivω(−,−) := (vq∂q + vp∂p)dq ∧ dp = vqdp− vpdq =
∂q

∂t
dp− ∂p

∂t
dq

If we demand that dH = ivω(−,−), Hamiltons equations emerge:
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∂H

∂p
=
∂q

∂t

∂H

∂q
= −∂p

∂t

This example illustrates that 2-forms relate to phase space.

Definition 48. A symplectic manifold is a smooth manifold X with a non-
degenerate closed 2-form ω.

Definition 49. A symplectomorphism φ is a diffeomorphism between two
symplectic manifolds (X1, ω1) and (X2, ω2), such that ω1 = φ∗ω2.

B Category theory

In this section we give a short introduction to category theory. It plays an
important rôle in mathematics since it provides an ideal way to see the relation-
ships between different theories. It studies the relationships between different
objects by looking at the morphisms between them. In the most basic picture
we think of objects as elements and morphisms as arrows. For a more thorough
introduction to the subject see [8].

B.1 Basic definitions

Definition 50. A category C is a class of objects Obj(C) and a class Hom(C)
of morphisms between objects, where a class is a collection of sets.

Morphisms have the following properties:

1. A morphism maps an object to another unique object. We denote the set
of morphisms from a to b in C, two objects a, b ∈ Obj(C) by HomC(a, b).

2. We have composition of morphisms. Given morphisms f ∈ Hom(a, b) and
g ∈ Hom(b, c), thus f : a→ b and g : b→ c we have g ◦ f : a→ c.

Morphisms satisfy the following axioms:

1. Morphisms are associative. Given f : a → b, g : b → c and h : c → d,
a, b, c ∈ Obj(C), we have (h ◦ g) ◦ f = h ◦ (g ◦ f).

2. For every object a ∈ Obj(C) we have an identity morphism ida : a→ a.

Definition 51. A functor F : C → D from a category C to a category D has
the following properties:

1. F (g ◦ f) = F (g) ◦F (f), where f, g ∈ hom(C). Functors preserve composi-
tion.
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2. F (ida) = idF (a), where a ∈ C. Functors preserve identity morphisms.

Definition 52. Given a functor F : C → D:

1. We call F full if F is surjective on every Hom-set. This means every
F : HomC(a, b)→ HomC(F (a), F (b)) is surjective.

2. We call F faithful if F is injective on every Hom-set. This means every
F : HomC(a, b)→ HomC(F (a), F (b)) is injective.

3. We call F essentially surjective if for every object y in D we have a x

in C such that for F (x) we have an isomorphism F (x)
f−→ y in C.

If a functor is both full and faithful then we shall call it fully faithful.

Example 53. An example from section 2. CartSp ↪→ SmoothMfld
↪→ SmoothSpaces are all fully faithful embeddings. Here SmoothMfld is the
category of smooth manifolds.

Definition 54. We shall call a functor F : C → D between two categories an
equivalence if it is fully faithful and essentially surjective.

Definition 55. Given two categories C,D and two functors: F : C → D and
G : C → D, we call a transformation α : F → G a natural transformation if
the following diagram commutes for c, c′ ∈ C:

F(c)
F(f) //

αc

��

F(c′)

αc′

��
G(c)

G(f) // G(c′)

Definition 56. A presheaf is a functor F : Cop → Set. The category of
presheaves PSh(C) of a category C is defined by:

1. Obj(PSh(C)) are the presheaves on C

2. Hom(PSh(C)) are the natural tranformations between presheaves on C

Definition 57. A representable presheaf is a functor F : Cop → Set that
is naturally isomorphic to a functor HomC(−, c)→ F for a c ∈ C.

Definition 58. Given a category C, the slice category over an object a is

denoted C/a. It is the category with Obj(C/a) := {b f−→ a|b ∈ Obj(C)}, the
morphisms into a. The morphisms Hom(C/a) are given by commuting diagrams
of the form:

b

f ��

h // c

f ′��
a
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B.2 Yoneda lemma

We recall the statement and the proof of the Yoneda lemma.

Lemma 59. Given a small category D, we have for PSh(D) a natural isomor-
phism:

A(d) ∼= PSh(D)(HomD(−, d),A)

Proof. Let F and G be objects in PSh(D). Thus F and G are functors from Dop

to Set. Let α be a natural transformation from F to G. This gives the situation
in the following diagram:

Dop

F

=⇒

α

%%

G

;;Set

This means that for every c′, c objects in D for which we have a morphism
f : c→ c′ in D, the following diagram commutes:

F(c′)
F(f) //

αd

��

F(c)

αc

��
G(c′)

G(f) // G(c)

Now pick c′ = d, F = HomD(-,d) and denote G = A, a functor from Dop to
Set:

HomD(d, d)
HomD(f,d) //

αd

��

HomD(d, c)

αc

��
A(d)

A(f) // A(c)

Now we trace idD ∈ HomD(d, d) through the diagram.
Clockwise this gives us: idD 7→ αc(HomD(f, d)(idD)) = αc(f ◦ idD) = αc(f)
Counterclockwise it gives us: idD 7→ A(f)(αd(idD))
Since the diagram commutes, we have: A(f)(αd(idD)) = αc(f). If we

know what element αd(idD) is mapped to, we know αc for every c ∈ D.
This implies that to every a ∈ A(d) corresponds a natural isomorphism in
PSh(D)(HomD(−, d),A).

Now we still have left to prove that the correspondence we have is a natu-
ral isomorphism. Given a morphism f from d to d′, we can use precomposition to
send natural isomorphisms from PSh(D)(HomD(−, d)) to PSh(D)(HomD(−, d′)):
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PSh(D)(HomD(−, d),A)
g // A(d)

PSh(D)(HomD(−, d′),A)
g′ //

−◦f

OO

A(d′)

A(f)

OO

Let a ∈ PSh(D)(HomD(−, d′),A) and g′ be given bijection. We have just
proved this bijection exists. For a given f the morphism A(f) is fixed. So if
we chase a counterclockwise through the diagram, we get (A(f) ◦ g′)(a). g′ is
a bijection and A(f) is a morphism so (A(f) ◦ g′) is onto. So we can pick a
bijection g that maps a ◦ f ∈ PSh(D)(HomD(−, d),A) to (A(f) ◦ g′)(a). This
proves that the correspondence is a natural isomorphism.

Corrollary 60. The Yoneda embedding is given by:

J (−) :D → PSh(D)

HomD(a, b) 7→ PSh(D)(HomD(−, a),Hom(−, b))

This is full and faithful. See appendix A for these definitions.

Proof. For the embedding to be fully faithful it needs to be a bijection on the
Hom-sets. Thus HomD(a,b) ∼= HomPSh(D)(a,b). The Yoneda lemma says
PSh(D)(HomD(−, a),Hom(−, b)) ∼= Hom(a, b), since Hom(−, b) is an object in
PSh(D).
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