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Abstract

The “brane scan” classifies consistent Green–Schwarz strings and membranes in terms of
the invariant cocycles on super-Minkowski spacetimes. The “brane bouquet” generalizes this by
consecutively forming the invariant higher central extensions induced by these cocycles, which
yields the complete brane content of string/M-theory, including the D-branes and the M5-
brane, as well as the various duality relations between these. This raises the question whether
the super-Minkowski spacetimes themselves arise as maximal invariant central extensions. Here
we prove that they do. Starting from the simplest possible super-Minkowski spacetime, the
superpoint, which has no Lorentz structure and no spinorial structure, we give a systematic
process of consecutive maximal invariant central extensions, and show that it discovers the super-
Minkowski spacetimes that contain superstrings, culminating in the 10- and 11-dimensional
super-Minkowski spacetimes of string/M-theory and leading directly to the brane bouquet.
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1 Introduction

In his “vision talk” at the annual string theory conference in 2014, Greg Moore highlighted the
following open question in string theory [39, section 9]:

Perhaps we need to understand the nature of time itself better. [. . . ] One natural way to
approach that question would be to understand in what sense time itself is an emergent
concept, and one natural way to make sense of such a notion is to understand how
pseudo-Riemannian geometry can emerge from more fundamental and abstract notions
such as categories of branes.

We are going to tell an origin story for spacetime, in which it emerges from the simplest kind of
supermanifold: the superpoint, denoted R0|1. This is the supermanifold with no bosonic coordinates,
and precisely one fermionic coordinate. From this minimal mathematical space, which has no Lorentz
structure and no spin structure, we will give a systematic process to construct super-Minkowski
spacetimes up to dimension 11, complete with their Lorentz structures and spinorial structures.
Indeed this is the same mathematical mechanism that makes, for instance, the M2-brane and then
the M5-brane emerge from 11-dimensional spacetime. It is directly analogous to the D0-brane
condensation by which 11d spacetime emerges out of type IIA space-time of dimension 10.

To make all this precise, first recall that the super p-branes of string theory and M-theory, in
their incarnation as “fundamental branes”1 or “probe branes”, are mathematically embodied in
terms of what are called ‘κ-symmetric Green–Schwarz-type functionals’. See Sorokin [46] for review
and further pointers.

Not long after Green and Schwarz [29] discovered their celebrated action functional for the su-
perstring, Henneaux and Mezincescu observed [30] that the previously somewhat mysterious term
in the Green–Schwarz functional, the one which ensures its κ-symmetry, is in a fact nothing but
the WZW-type functional for super-Minkowski spacetime regarded as a super-group. This is math-
ematically noteworthy, because higher dimensional WZW-type functionals are a natural outgrowth
of Lie algebra cohomology [3], namely they are simply the higher volume holonomy functionals of
left-invariant higher gerbe connections whose curvature is the given cocycle [25]. This suggests that
the theory of super p-branes is to some crucial extent a topic purely in super Lie theory, hence
amenable to mathematical precision and classification tools.

Indeed, Azcárraga and Townsend [4] later showed (following [1]) that it is the Spin(d − 1, 1)-
invariant super Lie algebra cohomology of super-Minkowski spacetime which classifies the Green–
Schwarz super-string [29], the Green–Schwarz-type super-membrane [9], as well as all their double
dimensional reductions [20] [27, section 2], a fact now known as the “old brane scan”.2

For example, for minimal spacetime supersymmetry then there is, up to an irrelevant prefactor,
a single non-trivial invariant (p + 2)-cocycle corresponding to a super p-brane in d dimensional
spacetime, for just those pairs of (d, p) with d ≤ 11 that are marked by an asterisk in the following
table.

1Notice that the conformal field theories on the worldvolume of non-fundamental “solitonic branes” or “black
branes” are but the perturbation theory of these Green-Schwarz-type functionals around fundamental brane config-
urations stretched along asymptotic boundaries of AdS spacetimes, an observation that predates the formulation of
the AdS/CFT correspondence [21, 16, 17].

2 The classification of these cocycles is also discussed by Movshev et al. [40] and Brandt [11, 12, 13]. A slick unified
derivation of the cocycle conditions is given by Baez and Huerta [6, 7]. See also Foot and Joshi [?].
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d\p 1 2 3 4 5 6 7 8 9

11 ?

10 ? ?

9 ?

8 ?

7 ?

6 ? ?

5 ?

4 ? ?

3 ?

Table 1: The old brane scan.

Here the entry at d = 10 and p = 1 corresponds to the Green–Schwarz superstring, the entry at
d = 10 and p = 5 to the NS5-brane, and the entry at d = 11, p = 2 to the M2-brane of M-theory
fame [19, chapter II]. Moving down and to the left on the table corresponds to double dimensional
reduction [20] [27, section 2].

This result is striking in its achievement and its failure: On the one hand it is remarkable that
the existence of super p-brane species may be reduced to a mathematical classification of super Lie
algebra cohomology. But then it is disconcerting that this classification misses so many p-brane
species that are thought to exist: The M5-brane in d = 11 and all the D-branes in d = 10 are absent
from the old brane scan, as are all their double dimensional reductions.3

But it turns out that this problem is not a shortcoming of super Lie theory as such, but only of
the tacit restriction to ordinary super Lie algebras, as opposed to “higher” super Lie algebras, also
called ‘super Lie n-algebras’ or ‘super L∞-algebras’ [33, 25].4

One way to think of super Lie n-algebras is as the answer to the following question: Since, by a
classical textbook fact, 2-cocycles on a super Lie algebra classify its central extensions in the category
of super Lie algebras, what do higher degree cocycles classify? The answer ([25, prop. 3.5] based
on [23, theorem 3.1.13]) is that higher degree cocycles classify precisely higher central extensions,
formed in the homotopy theory of super L∞-algebras. But in fact the Chevalley-Eilenberg algebras
for the canonical models of these higher extensions are well known in parts of the supergravity
literature, these are just the “FDA”s of D’Auria and Fré [2].

Hence every entry in the “old brane scan”, since it corresponds to a cocycle, gives a super Lie
n-algebraic extension of super-Minkowski spacetime. Notably the 3-cocycles for the superstring
give rise to super Lie 2-algebras and the 4-cocycles for the super-membrane classify super Lie 3-
algebras. These are super-algebraic analogs of the string Lie 2-algebra [24, appendix] which controls
the Green–Schwarz anomaly cancellation of the heterotic string [45], and hence they are called the

3 A partial completion of the old brane scan was observed in [10, 18], by classifying superconformal structure that
may appear in the near horizon geometry of solitonic (“black”) p-branes.

4Notice that these are Lie n-algebras in the sense of Stasheff [35, 36, 44] as originally found in string field theory
by Zwiebach [50, section 4] not “n-Lie algebras” in the sense of Filippov. However, the two notions are not unrelated.
At least the Filippov 3-algebras that appear in the Bagger-Lambert model for coincident solitonic M2-branes may
naturally be understood as Stasheff-type Lie 2-algebras equipped with a metric form. This observation is due to
Palmer and Saemann [41, section 2].
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superstring Lie 2-algebra [33], to be denoted string:

d\p 1

10 ? ↔

string

��

extended super Minkowski
super Lie 2-algebra

R9,1|16 super Minkowski
super Lie algebra

and the supermembrane Lie 3-algebra, denoted m2brane:

d\p 2

11 ? ↔

m2brane

��

extended super Minkowski
super Lie 3-algebra

R10,1|32 super Minkowski
super Lie algebra

An exposition of these structures as objects in higher Lie theory appears in Huerta’s thesis [33]. In
their dual incarnation as “FDA”s these algebras are the extended super-Minkowski spacetimes con-
sidered by Chryssomalakos et al. [15]. We follow their idea, and call extensions of super-Minkowski
spacetime to super Lie n-algebras such as string and m2brane extended super-Minkowski space-
times, noticing that in fact these are “higher extended” in the sense of extensions of super Lie
n-algebras.

Now that each entry in the old brane scan is identified with a higher super Lie algebra in this
way, something remarkable happens: there appear new cocycles on these extended super-Minkowski
spacetimes, cocycles which do not show up on plain super-Minkowski spacetime itself. (In homotopy
theory this is in fact a familiar phenomenon, it is the hallmark of the construction of the ‘Whitehead
tower’ of a topological space.)

And indeed, in turns out that the new invariant cocycles thus found do correspond to the branes
that were missing from the old brane scan [25]: On the super Lie 3-algebra m2brane there appears
an invariant 7-cocycle, which corresponds to the M5-brane, on the super Lie 2-algebra stringIIA

there appears a sequence of (p+ 2)-cocycles for p ∈ {0, 2, 4, 6, 8, 10}, corresponding to the type IIA
D-branes, and on the superstring Lie 2-algebra stringIIB there appears a sequence of (p+2)-cocycles
for p ∈ {1, 3, 5, 7, 9}, corresponding to the type IIB D-branes. Under the identification of super
Lie n-algebras with formal duals of “FDA”s, the algebra behind this statement is in fact an old
result: For the M5-brane and the type IIA D-branes this is due to Chryssomalakos et al. [15], while
for the type IIB D-branes this is due to Sakaguchi [43, section 2]. In fact the 7-cocycle on the
supermembrane Lie 3-algebra that, according to Bandos et al. [8], corresponds to the M5-brane was
already discovered in the 1982 by D’Auria and Fré [2, equations (3.27) and (3.28)].

If we again denote each of these further cocycles by the super Lie n-algebra extension which it
classifies according to [25, prop. 3.5] [23, theorem 3.1.13], and name these extensions by the super
p-brane species whose WZW-term is given by the cocycle, then we obtain the following diagram in
the category of super L∞-algebras:
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m5brane

��
m2brane

��

d5brane

��

d3brane

��

d1brane

��

d0brane

��

d2brane

��

d4brane

��

d7brane

""

R10,1|32

��

d6brane

||
d9brane // stringIIB

##

stringhet

��

stringIIA

{{

d8braneoo

R9,1|16+16 oo
oo R9,1|16 //

// R9,1|16+16

Hence in the context of higher super Lie algebra, the “old brane scan” is completed to a tree of
consecutive invariant higher central extensions emanating out of the super-Minkowski spacetimes,
with one leaf for each brane species in string/M-theory and with one edge whenever one brane species
may end on another [25, section 3]. This was called the “brane bouquet” in [25, def. 3.9 and section
4.5].

Interestingly, a fair bit of the story of string/M-theory is encoded in this purely super Lie-
n-algebraic mathematical structure. This includes in particular the pertinent dualities: the KK-
reduction between M-theory and type IIA theory, the HW-reduction between M-theory and heterotic
string theory, the T-duality between type IIA and type IIB, the S-duality of type IIB, and the relation
between type IIB and F-theory. All of these are reflected as equivalences of super Lie n-algebras
obtained from the brane bouquet, this is shown in [26, 27, 34]. The diagram of super L∞-algebras
that reflects these L∞-equivalences looks like a canditate to fill Polchinski’s famous cartoon picture
of M-theory [42, figure 1] [49, figure 4] with mathematical life:

D0brane

**

D2brane

%%

D4brane

��

D6brane

yy

D8brane

tt

KK

@@

stringIIA

d=10
N=16+16

��

OO

T

��

HW

��

m5brane // m2brane d=11
N=32

// Rd−1,1|N

ns5brane

d=10
N=16

33

stringhet

d=10
N=16

44

stringIIB

d=10
N=16+16

BB

(p, q)stringIIB

d=10
N=16+16

OO

Dstring

d=10
N=16+16

\\

(p, q)1brane

44

(p, q)3brane

99

(p, q)5brane

OO

(p, q)7brane

ee

(p, q)9brane

jj

oo
S

//
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But observe that not all of the super p-brane cocycles are of higher degree. One of them, the
cocycle for the D0-brane, is an ordinary 2-cocycle. Accordingly, the extension that it classifies is
an ordinary super Lie algebra extension. In fact one finds that the D0-cocycle classifies the central
extension of 10-dimensional type IIA super-Minkowski spacetime to the 11-dimensional spacetime of
M-theory. Precisely, the following diagram of super Lie n-algebras is what in the jargon of homotopy
theory is called a homotopy pullback :

d0brane

(pb)

super L∞-extension
classified by
D0-cocycle

��

zz
R10,1|32

M-theory
spacetime
extension

��

stringIIA

super L∞-extension
classified by
type IIA string cocycle

{{
R9,1|16+16

This is the precise way to say that the D0-brane cocycle on stringIIA comes from pulling back an

ordinary 2-cocycle on R9,1|16+16. Following [25, remark 4.6] we may think of this as a super L∞-
theoretic reflection of the observation that D0-brane condensation in type IIA string theory leads to
the growth of the 11th dimension of M-theory, as explained by Polchinski [42, section 6].

This raises an evident question: Might there be a precise sense in which all dimensions of
spacetime originate from the condensation of some kind of 0-branes in this way? Is the brane
bouquet possibly rooted in the super-point? Such that the ordinary super-Minkowski spacetimes,
not just their higher brane condensate extensions, arise from a process of 0-brane condensation,
“from nothing”?

Since the brane bouquet proceeds at each stage by forming maximal invariant extensions, the
mathematical version of this question is: Is there a sequence of maximal invariant central extensions
that start at the super-point and produce the super-Minkowski spacetimes in which super-strings
and super-membranes exist?

To appreciate the substance of this question, notice that it is clear that every super-Minkowski
spacetime is some central extension of a superpoint (a fact amplified in [15, section 2.1]): the super-
2-cocycle classifying this extension is just the super-bracket that turns two super-charges into a
translation generator. But there are many central extensions of superpoints that are nothing like
super-Minkowski spacetimes. The question hence is whether the simple principle of consecutively
forming maximal invariant central extensions of super-Lie algebras (as opposed to more general
central extensions) discovers space-time.

Here we prove that this is the case, this is our main theorem 12 below. It says that in the following
diagram of super-Minkowski super Lie algebras, each vertical (diagonal) morphism is singled out as
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being the maximal invariant central extension of the super Lie algebra that it points to:5

R10,1|32

��
R9,1|16+16 oo

oo R9,1|16

##

//
// R9,1|16+16

R5,1|8

{{

R5,1|8+8//
//

R3,1|4+4 oo
oo R3,1|4

{{
R2,1|2+2 oo

oo R2,1|2

{{
R0|1+1 oo

oo R0|1

Notice that here we do not specify by hand the groups under which these extensions are to be in-
variant. Instead these groups are being discovered stagewise, along with the spacetimes. Namely we
say (this is our definition 6 below) that an extension ĝ→ g is invariant if it is invariant with respect
to the semi-simple factor Extsimp(g) (in the sense of Lie theory) inside the external automorphism
group of g (definition 4 below). This is a completely intrinsic concept of invariance.

We show that for g a super-Minkowski spacetime, then this intrinsic group of semi-simple external
automorphisms is the Spin-group cover of the Lorentz group in the corresponding dimension – this
is our proposition 3 below. This may essentially be folklore (see [22, p. 95]) but it seems worthwhile
to pinpoint this statement. For it says that as the extension process grows out of the superpoint,
not only are the super-Minkowski spacetimes being discovered as super-translation supersymmetry
groups, but also their Lorentzian metric structure is being discovered alongside.

super-Minkowski
super Lie algebra

semi-simple factor
of external automorphisms

induced
Cartan-geometry

super-torsion
freedom

Rd−1,1|N Spin(d− 1, 1) supergravity
in d = 11:

Einstein equations

To amplify this, observe that with every pair (V,G) consisting of a super vector space V and
a subgroup G ⊂ GL(V ) of its general linear super-group, there is associated a type of geometry,
namely the corresponding Cartan geometry : A (V,G)-geometry is a supermanifold with tangent
super-spaces isomorphic to V and equipped with a reduction of the structure group of its super
frame bundle from GL(V ) to G, see for instance [38].

Now for the pairs (Rd−1,1|N ,Spin(d−1, 1)) that emerge out of the superpoint according to proposi-
tion 3 and theorem 12, this is what encodes a field configuration of d-dimensional N -supersymmetric
supergravity: Supermanifolds locally modeled on Rd−1,1|N is precisely what underlies the superspace
formulation of supergravity, and the reduction of its structure group to the Spin(d − 1, 1)-cover of

5 The double arrows stand for the two different canonical inclusions of Rd−1,1|N into Rd−1,1|N+N , being the
identity on Rd−1,1 and sending N identically either to the first or to the second copy in the direct sum N + N .
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the Lorentz group O(d− 1, 1) is equivalently a choice of super-vielbein field, hence a super-pseudo-
Riemannian structure, hence a field configuration of supergravity.

Observe also that the mathematically most natural condition to demand from such a super-
Cartan geometry is that it be (super-)torsion free, see [38]. In view of this it is worthwhile to recall
the remarkable theorem of [32], based on [14]: For d = 11 then the super-Einstein equations of
motion of supergravity are implied already by (super-)torsion freedom of the super-vielbein.

In summary, theorem 12 shows that the brane bouquet, and with it at least a fair chunk of
the structure associated with the word “M-theory”, has its mathematical root in the superpoint,
and proposition 3 adds that as the super-spacetimes grow out of the superpoint, they consecutively
discover their relevant super-Lorentzian metric structure, and finally their supergravity equations of
motion.

m5brane

��
m2brane

��

d5brane

��

d3brane

��

d1brane

��

d0brane

(pb)

��

zz

d2brane

��

d4brane

��

d7brane

""

R10,1|32

��

d6brane

||
d9brane // stringIIB

##

stringhet

��

stringIIA

{{

d8braneoo

R9,1|16+16 oo
oo R9,1|16

##

//
// R9,1|16+16

R5,1|8

{{

R5,1|8+8//
//

R3,1|4+4 oo
oo R3,1|4

zz
R2,1|2+2 oo

oo R2,1|2

zz
R0|1+1 oo

oo R0|1
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2 Automorphisms of super-Minkowski spacetimes

For the main theorem 12 below we need to know the automorphisms (definition 16) of the super
Minkowski super Lie algebras Rd−1,1|N (definition 20). This is possibly essentially folklore (see [22,
p. 95]) but since we did not find a full account in the literature, we provide a proof here. After some
simple lemmas, the result is proposition 3 below.

Lemma 1. The underlying vector space of the bosonic automorphism Lie algebras aut(Rd−1,1|N )
(proposition 17) of the super-Minkowski Lie algebras Rd−1,1|N (definition 20) in any dimension d
and for any real Spin(d − 1, 1)-representation N is the graph of a surjective and Spin(d − 1, 1)-
equivariant (with respect to the adjoint action) Lie algebra homomorphism

K : gs −→ gv ,

where
gs ⊕ gv := im

(
aut(Rd−1,1|N ) −→ gl(N)⊕ gl(Rd)

)
is the image of the canonical inclusion induced by forgetting the super Lie bracket on Rd−1,1|N .

In particular the kernel of K is the internal symmetries (definition 4) hence the R-symmetries
(example 5):

ker(K) ' int(Rd−1,1|N ) .

Proof. Consider the corresponding inclusion at the level of groups

Aut(Rd−1,1|N ) −→ GL(N)×GL(Rd)

with image Gs ×Gv. Observe that the spinor bilinear pairing

[−,−] : N ⊗N −→ Rd

is surjective, because it is a homomorphism of Spin(d − 1, 1)-representations, and because Rd is
irreducible as a Spin(d − 1, 1)-representation. Hence for every vector v ∈ Rd there exist ψ, φ ∈ N
such that

v = [ψ, φ]

and so for (f, g) ∈ Aut(Rd−1,1|N ) ↪→ Gv ×Gs then f is uniquely fixed by g via

f(v) = [g(ψ), g(φ)] .

The function K : g 7→ f thus determined is surjective by construction of Gv, is a group homomor-
phism because Aut(Rd−1,1|N ) is a group, and is Spin(d − 1, 1|N)-equivariant (with respect to the
adjoint action) by the Spin(d− 1, 1)-equivariance of the spinor bilinear pairing.

Lemma 2. Let N be a real Spin(d−1, 1)-representation in some dimension d. Then the Lie algebra
gv from lemma 1 decomposes as a Spin(d − 1, 1)-representations into the direct sum of the adjoint
representation with the trivial representation

gv ' so(d− 1, 1)⊕ R

while the Lie algebra gs from lemma 1 decomposes as a direct sum of some exterior powers of the
vector representation Rd:

gs ' ⊕
i
∧ni Rd .
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Proof. First assume that N is a Majorana or symplectic Majorana Spin-representation according to
example 23.

Consider the statement for gs. Since the (symplectic) Majorana representation N is a real sub-
representation of a complex Dirac representation CdimR(N) there is a canonical R-linear inclusion

EndR(N) ↪→ EndC(CdimR(N)) .

Therefore it is sufficient to observe that the space of endomorphisms of the Dirac representation over
the complex numbers decomposes into a direct sum of exterior powers of the vector representation.
This is the case due to the inclusion

EndC(CdimR(N)) ↪→ Cl(Rd−1,1)⊗ C .

Explicitly, in terms of the Dirac Clifford basis of example 23, the decomposition is given by the usual
component formula

ψφ =
(
φψ
)

+
(
φΓaψ

)
Γa + 1

2

(
φΓabψ

)
Γab + 1

3!

(
φΓa1a2a3ψ

)
Γa1a2a3 + · · · .

Now consider gv. Recall that, by definition, the bosonic automorphism group of Rd−1,1|N is

Aut(Rd−1,1|N ) :=

{
f ∈ GL(Rd) , g ∈ GL(N) | ∀

ψ,φ∈N
: f([ψ, φ]) = [g(ψ), g(φ)]

}
and its Lie algebra is

aut(Rd−1,1|N ) =

{
(X,Y ) ∈ gl(Rd)⊕ gl(N) | ∀

ψ,φ∈N
: X([ψ, φ]) = [Y (ψ), φ] + [ψ, Y (φ)]

}
.

Of course Aut(Rd−1,1|N ) always contains Spin(d−1, 1)), acting canonically, since the spinor bilinear
pairing is Spin(d, 1− 1)-equivariant. Another subgroup of automorphisms that exists generally is a
copy of the multiplicative group of real numbers R× where t ∈ R× acts on spinors ψ as rescaling by√
t and on vectors v as rescaling by t:

v 7→ tv

ψ 7→
√
t ψ

.

The Lie algebra of this scaling action is the scaling derivations of example 18. Hence for all d and
N we have the obvious Lie algebra inclusion

so(d− 1, 1)⊕ R ↪→ aut(Rd−1,1|N ) .

This shows that there is an inclusion

so(d− 1, 1)⊕ R ↪→ gv ↪→ gl(Rd) .

Hence it now only remains to see that there is no further summand in gv. But we know that there
is at most one further summand in gl(Rd), since this decomposes in the form

gl(Rd) ' so(d− 1, 1)⊕ R⊕
(
Rd ⊗ Rd

)
symmetric
traceless

It follows that the only further summand that could appear in gv is the symmetric traceless d× d-
matrices. Now by lemma 1, the homomorphism K : gs → gv is surjective, hence if the symmetric
traceless matrices were a summand in gs, they would have to be in the image of K. But since the
symmetric traceless matrices as well as the exterior powers ∧•Rd all are irreducible representations,
they do not map to each other under the Spin-equivariant function K. Therefore the nature of gs
established above implies that the symmetric tracless matrices do not appear in gv.

This concludes the proof for the case that N is a (symplectic) Majorana representation. Now a
general real spin representation is a direct sum of N or possibly of the two Weyl sub-representations
of N . The above argument generalizes immediately to such direct sums.

Expand?
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Proposition 3. For all d ∈ N and N ∈ RepR(Spin(d − 1, 1)), then the Lie algebra of external
automorphism (definition 4) of the super-Minkowski super Lie algebra Rd−1,1|N (definition 20) is
the direct sum

ext(Rd−1,1|N ) ' so(d− 1, 1)⊕ R

of the canonical Spin-Lorentz action (from definition 20) and the scaling action from example 18.

Proof. By lemma 1 we have aut(Rd−1,1|N ) ' gs and by lemma 2 we have a decomposition as Spin-
representations

aut(Rd−1,1|N ) ' (so(d− 1, 1) ⊕ R) ⊕ ker(K)︸ ︷︷ ︸
=int(Rd−1,1|N )

,

where the last summand is the internal automorphisms (definition 4), hence the internal R-symmetries
(example 5). Therefore the claim follows by definition 4.

3 The consecutive maximal invariant central extensions of
the superpoint

We now compute consecutive maximal invariant central extensions of the superpoint, this is our
main theorem 12 below. First we state the precise definition of the extension process:

Definition 4 (external and internal symmetries). Let g be a super-Lie algebra (definition 13). The
Lie algebra of infinitesimal internal symmetries is the stabilizer of geven inside the automorphism
Lie algebra (from proposition 17)

int(g) := Stabaut(g)even(geven) ,

hence is the sub-Lie algebra of derivations ∆ on those which vanish on geven ↪→ g. This is clearly a
normal sub-Lie algebra, so that the quotient

ext(g) := aut(g)even/int(g)

of all automorphisms by internal ones is again a Lie algebra, the Lie algebra of external symmetries
of g, sitting in a short exact sequence

0→ int(g) ↪→ aut(g)even → ext(g)→ 0 .

Finally, the Lie algebra of simple external automorphisms

extsimp(g) ↪→ ext(g) ↪→ aut(g)

is the maximal semi-simple sub-Lie algebra of the external automorphism Lie algebra.

Example 5. The internal automorphisms (definition 4) of the super-Minkowski Lie algebramathbbRd−1,1|N

are the R-symmetries from the physics literature ([28, p. 56]).

Definition 6 (maximal invariant central extensions). Let g be a super Lie algebra (definition 13),
let h ↪→ aut(g)even be a sub-Lie algebra of its automorphism Lie algebra (proposition 17) and let

V �
� // ĝ

��
g

be a central extension of g by a vector space V in even degree. Then we say that: ĝ is
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1. an h-invariant central extension if the 2-cocycles that classify the extension, according to
example 15, are h-invariant 2-cocycles according to definition 19;

2. an invariant central extension if it is h-invariant and h = extsimp(g) is the semi-simple part of
its external automorphism Lie algebra (definition 4);

3. a maximal h-invariant central extension if it is an h-invariant central extension such that the
n-tuple of h-invariant 2-cocycles that classifies it (according to example 15) is a linear basis
for the h-invariant cohomology H2(g,R)h (definition 19).

The maximal invariant central extensions (i.e. the maximal h-invariant central extensions for h =
extsimp(g)) we indicate by the following symbols:

V �
� // ĝ

?

��
g

Proposition 7. The maximal invariant central extension (definition 6) of the superpoint R0|2 (ex-
ample 22) is the 3-dimensional super Minkowski super Lie algebra R2,1|N=2 according to definition
20, example 26,

R3 �
� // R2,1|2

?
��

R0|2

with N = 2 the irreducible real representation of Spin(2, 1) from proposition 26.

Proof. Since (R0|2)even = 0, here ext(R0|2) = 0 and so for the case of the superpoint every central
extension is invariant in the sense of definition 6.

According to example 15 the maximal central extension is that induced by the maximal space
of super Lie algebra 2-cocycles on R0|2 according to definition 14. Since R0|2 is concentrated in odd
degree and has trivial super Lie bracket, a 2-cocycle here is simply a symmetric bilinear form on
(R0|2)odd = R2. There is a 3-dimensional real vector space of such. This shows that the underlying
super-vector space of the maximal central extension is R3|2. It remains to see that the induced super
Lie bracket is that of 3d super-Minkowski.

If we let {dθ1, dθ2} denote the canonical basis of ∧1(R0|2)∗ then the space of 2-cocycles is spanned
by these three elements:

dθ1 ∧ dθ1 dθ1 ∧ dθ2

dθ2 ∧ dθ2 .

By the formula for the induced central extension from example 15, this means that the super Lie

bracket is given on 2-component spinors ψ =

 ψ1

ψ2

 and φ =

 φ1

φ2

 by

[ψ, φ] =

 ψ1φ1
1
2 (ψ1φ2 + φ1ψ2)

ψ2φ2

 = 1
2

(
ψφ† + φ†ψ

)
.

As shown on the far right, by example 26 this is indeed the spinor-to-vector pairing on the real
representation 2 of Spin(2, 1).

12



To deduce the following consecutive maximal invariant central extensions of R2,1|2, we first
establish a few lemmas:

Lemma 8. Let K ∈ {R,C,H} from example 25, and let K ↪→ Kdbl be its Cayley-Dickson double
according to definition 24. Consider the induced real spin representations via proposition 26. Then
under the induced inclusion of Spin-groups

Spin(dimR(K) + 1, 1) ↪→ Spin(2dimR(K) + 1, 1)

the irreducible real Spin(2dimR(K) + 1, 1)-representation Ndbl (either of the two) branches into the
direct sum of the two irreducible real Spin(dimR(K) + 1, 1)-representations N+, N−:

Ndbl ' N+ ⊕N− .

Proof. By proposition 26 the spin representation Ndbl,+ is on the real vector space K2
dbl. By Cayley-

Dickson doubling (definition 26), this is is given in terms of K as the direct sum

K2
dbl ' K2 ⊕K2` .

This makes it immediate that the first summand K2 is N+, as a restricted representation. We need
to show that the second summand is isomorphic to N− as we restrict the Spin action on Ndbl,+.

To that end observe, by the relations in the Cayley-Dickson construction (defintion 24), that for
ψ ∈ K2 and B ∈ Matherm

2×2 (K) we have the following identity:

B(ψ`) = B(`ψ)

= `(Bψ)

= `(ψB)

= (ψB)`

= (BRψ)` .

It follows that the Clifford action of Mather
2×2(K) ↪→ Mather

2×2(Kdbl) on the summand K2` is actually
by right linear action on the factor K2:

ÃL ◦BL(ψ`) = Ã(B(ψ`))

=
(
ÃR ◦BR(ψ)

)
`

Therefore we are now reduced to showing that this right linear action

ψ 7→ ÃR ◦ B̃R(ψ)

is isomorphic to the left linear action with the position of the trace reversal exchanged:

ψ 7→ AL ◦ B̃L(ψ) .

We claim that such an isomorphism is established by

F : ψ 7→ Jψ ,

with

J :=

(
0 −1
1 0

)
.

To see this, use the relation
JA = −ÃJ

13



(which is directly checked) to deduce that

F (ÃR ◦BR(ψ)) = J ÃR ◦BR(ψ)

= J Ã (B ψ)

= A(B̃Jψ)

= AL ◦ B̃L(F (ψ))

Lemma 9. For K ∈ {R,C,H,O} (example 25) and for N± the real Spin(dimR(K)+1, 1)-representations
from proposition 26, then

1. (End(N±))
Spin '

{
K |K ∈ {R,C,H}
R |K = O

2.
(
Sym2(N±)

)Spin ' 0

Proof. For part 1, the algebra of Spin(k + 1, 1)-equivariant real linear endomorphisms of N±:

EndSpin(k+1,1)(N±) = (End(N±))
Spin

is called the commutant of N±. For an irreducible representation such as N±, Schur’s lemma tells
us the commutant must be a division algebra. By the Frobenius theorem, the only associative
real division algebras are R,C,H. We must now determine which case occurs, but this is done by
Varadarajan [48, theorem 6.4.2].

For part 2, recall from Proposition 26 that we have an invariant pairing

〈−,−〉 : N+ ⊗N− → R.

Thus N± ' N∗∓, and in particular, Sym2N± ' Sym2N∗∓. But the latter is the space of symmetric
pairings:

Sym2N∓ → R,

which is a subspace of the space of all pairings on N∓. The invariant elements of the space of all
pairings are tabulated according to dimension and signature mod 8 by Varadarajan [48, theorem
6.5.10]. In particular, for K = R,C where N∓ = K2 are the spinors in signature (2, 1) and (3, 1)

respectively, the nonzero invariant pairings are antisymmetric, so
(
Sym2(N±)

)Spin
= 0. For K =

H,O, where N∓ = K2 is the space of spinors in signature (5, 1) and (9, 1) respectively, N∓ is not

self-dual, so there are no nonzero invariant pairings, and again we conclude
(
Sym2(N±)

)Spin
= 0.

Proposition 10. Let K ∈ {R,C,H}. Then the maximal invariant central extension of RdimR(K)+1,1|N+⊕N−

with N± the irreducible real spin representations from proposition 26, is RdimR(Kdbl)+1,1|Ndbl , for Kdbl

the Cayley–Dickson double of K (definition 24):

K �
� // RdimR(Kdbl)+1,1|Ndbl

?
��

RdimR(K)+1,1|N+⊕N−

Proof. By Proposition 3 we need to compute the so(dimR(K)+1, 1)-invariant cohomology of RdimR(K)+1,1

in degree 2. It is clear - expand? - that such Spin-Lorentz invariant 2-cocycles need to pair two
fermions. Due to the simple nature of the Lie bracket on super Minkowski spacetime, this means
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that we need to compute the space of so(dimR(K) + 1, 1)-invariant symmetric bilinear forms on
N+⊕N−. We now observe that Lemma 8 produces examples of these, and then we check that these
examples already exhaust the space of possibilities.

Namely let v ∈ RdimR(Kdbl)+1,1 be any vector in the complement of RdimR(K)+1,1. Then the
symmetric pairing

Ndbl,+ ⊗Ndbl,+ −→ R

ψ ⊗ φ 7→ η(v, [ψ, φ])

is clearly Spin(dimR(K) + 1, 1)-invariant, by the Spin-equivariance of the spinor pairing (proposition
26) and the assumption on v. But by Lemma 8 Ndbl,+ is N+ ⊕ N− as a Spin(dimR(K) + 1, 1)-
representation. Therefore this construction yields a dimR(K)-dimensional space of Spin-invariant
symmetric bilinear pairings on N+⊕N−. Moreover, by the very definition of the pairing above, it fol-
lows that the central extension classified by these pairings, regarded as 2-cocycles, is RdimR(K)+1,1|Ndbl .

Hence to conclude the proof we are now reduced to showing that this invariant extension is in
fact maximal, hence that dimR(K) already equals the space of all Spin-invariant symmetric pairings
on N+ ⊕N−. The space of all symmetric pairings, invariant or not, is:

Spin2(N+ ⊕N−) ' Sym2(N+) ⊕ N+ ⊗N− ⊕ Sym2(N−) .

So, we seek the Spin-invariant elements of the latter space. By Lemma 9 the Spin-invariant subspaces
of Sym2(N±) vanishes. Therefore the space of 2-cocycles is that of Spin-invariant elements in
N+ ⊗ N−. By the spinor-to-scalar pairing from Prop. 26 the two spaces N+ and N− are linear
dual to each other, as Spin-representations. Therefore the Spin-invariant elements in N+ ⊗N− are
equivalently the Spin-equivariant linear endomorphisms of the form

N+ → N+ .

By Lemma 9 this space of invariant endomorphisms is identified with K

(End(N+))
Spin ' K .

Hence the dimension of this space is dimR(K), which concludes the proof.

Proposition 11. The maximal invariant central extension (definition 6) of the type IIA super-

Minkowski spacetime R9,1|16⊕16 is Rd−1,1|32:

R �
� // R10,1|32

?
��

R9,1|16⊕16

Proof. By proposition 2 we need to consider Spin(9, 1)-invariance. Since the extension in question
is clearly Spin(9, 1)-invariant, it is now sufficient to show that the space of all Spin(9, 1)-invariant 2-

cocycles on R9,1|16+16 is 1-dimensional. As in the proof of proposition 10, that space is equivalently
the space of Spin(9, 1)-invariant elements in

Sym2(N+ ⊕N−) ' Sym2(N+) ⊕ N+ ⊕N− ⊕ Sym2(N−) .

By lemma 9 all invariants in Sym2(N±) are trivial and the space of invariants in N+ ⊗ N1 is one-
dimensional.

In summary, this proves the main theorem:
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Theorem 12. The process that starts with the superpoint R0|1 and then consecutively doubles the su-
persymmetries and forms the maximal invariant central extension according to definition 6 discovers
the super-Minkowski super Lie algebras Rd−1,1|N from definition 20 in dimensions d ∈ {2, 3, 6, 10, 11}
and for N = 1 and N = 2 supersymmetry: there is a diagram of super Lie algebras of the following
form

R10,1|32

?
&&

R9,1|16

?
&&

R9,1|16+16//
//

R5,1|8

?
yy

R5,1|8+8//
//

R3,1|4+4 oo
oo R3,1|4

?
yy

R2,1|2+2 oo
oo R2,1|2

?
yy

R0|1+1 oo
oo R0|1

where each single arrow
? // denotes a maximal invariant central extension according to defini-

tion 6 and where each double arrow denotes the two evident injections (remark 21).

Proof. This is the joint statement of proposition 7, proposition 10 and proposition 11. Here we
use in proposition 10 that for K ∈ {R,C} the two representations N± from prop. 26 are in fact
isomorphic.

4 Outlook

In view of the brane bouquet [25], theorem 12 is suggestive of phenomena still to be uncovered.
Further corners of M-theory, currently less well understood, might be found by following the process
of maximal invariant central extensions in other directions. Because, notice that theorem 12 only
states that the central extensions that it does show are maximal invariant central extensions, but it
does not claim that there are not further maximal central extensions in other directions.

For example, the N = 1 superpoint R0|1 also has a maximal central extension, namely the
super-line R1|1 = R1,0|1

R1|1

?
��

R0|1

This follows immediately with the same argument as in proposition 7.
Therefore we next ought to ask: What is the bouquet of maximal central extensions emerging out

of R0|3? It is clear that the first step yields R6|3, with the underlying bosonic 6-dimensional vector
space canonically identified with the 3×3 symmetric matrices with entries in the real numbers. Now
if an analogue of proposition 10 would still be true in this case (which needs to be checked), then the
further consecutive maximal invariant extensions might involve the 3 × 3 hermitian matrices with
coefficients in C, H and then O. The last of these, Matherm

3×3 (O) is the famous exceptional Jordan
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algebra or Albert algebra of dimension 27. Just as Matherm
2×2 (O), equipped with the determinant func-

tion, is isomorphic to Minkowski spacetime R9,1, so Matherm
3×3 (O) is isomorphic to the 27-dimensional

direct sum R9,1 ⊕ 16⊕R consisting of 10d-spacetime, one copy of the real 10d spinors and a scalar,
see [5, section 3.4]. This kind of data is naturally associated with heterotic M-theory, and grouping
its spinors together with the vectors and the scalar to a 27-dimensional bosonic space is reminiscent
of the speculations about bosonic M-theory in [31]. Therefore, should the bouquet of maximal in-
variant extensions indeed arrive at Matherm

3×3 (O), this might help to better understand the nature of
the bosonic and/or heterotic corner of M-theory.

In a similar vein, we ought to ask how the tower of steps in theorem 12 continues beyond
dimension 11, and what the resulting structures mean.

A Background

For reference, we briefly recall here some definitions and facts that we use in the main text.

A.1 Super Lie algebra cohomology

We recall the definition of super Lie algebras and their (invariant) cohomology. All our vector spaces
and algebras are over R, and they are all of finite dimension.

Definition 13. The tensor category of super vector spaces is that of Z/2-graded vector spaces, but
equipped with the unique non-trivial braiding, the one which on elements vi of homogeneous degree
σi ∈ Z/2 is given by

τ super : v1 ⊗ v2 7→ (−1)σ1σ2 v2 ⊗ v1

A super Lie algebra is a Lie algebra internal to super vector spaces, hence is a super vector space

g = geven ⊕ godd

equipped with a bilinear map (the super Lie bracket)

[−,−] : g⊗ g −→ g

which is graded skew symmetric in that

[v1, v2] = (−1)σ1σ2+1[v2, v1]

and which satisfies the super Jacobi identity :

[v1, [v2, v3]] = [[v1, v2], v3] + (−1)σ1σ2 [v2, [v1, v3]] .

A homomorphism of super Lie algebras g1 −→ g2 is a linear function on the underlying vector space,
such that this preserves the Z/2-grading and respects the bracket.

Definition 14 (super Lie algebra cohomology). Let V be a super R-vector space of finite dimension.
Then the super-Grassmann algebra ∧•V ∗ is the Z × (Z/2)-bigraded-commutative associative R-
algebra, generated from the elements in g∗even regarded as being in bidegree (1, even), and from
the element in g∗odd regarded as being in bidegree (1, odd), subject to the relation that for αi two
elements of homogeneous bidegree (ni, σi), then

α1 ∧ α2 = (−1)n1n2(−1)σ1σ2 α2 ∧ α1 .

Let (g, [−,−]) be a super Lie algebra of finite dimension. Then its Chevalley-Eilenberg algebra
CE(g) is the dg-algebra whose underlying graded algebras is the super-Grassmann algebra ∧•g∗,
equipped with the differential which on ∧1g∗ is given by the linear dual of the super Lie bracket

dCE : ∧1g∗
[−,−]∗−→ ∧2g∗ ↪→ ∧•g∗
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and which is extended from there to all of ∧•g∗ as a bi-graded derivation of bi-degree (1, even).
For p ∈ N we say that a (p + 2)-cocycle on g with coefficients in R is a dCE-closed element in

∧p+2g∗. The super Lie algebra cohomology of g with coefficients in R is the cochain cohomology of
the super-Chevalley-Eilenberg algebra:

H•(g,R) := H•(CE(g)) .

Example 15. For g a finite dimensional super Lie algebra, and for ω ∈ ∧2g∗ a 2-cocycle according
to definition 14, then there is a new super Lie algebra ĝ whose underlying super vector space is

ĝ := geven ⊕ R︸ ︷︷ ︸
even

⊕ godd︸︷︷︸
odd

and with super Lie bracket given by

[(x1, c1), (x2, c2)] = ([x1, x2], ω(x1, x2)) .

The evident forgetful morphism exhibits ĝ as a central extension of super Lie algebras

R �
� // ĝ

��
g

.

Just as for ordinary Lie algebras, this construction establishes a natural equivalence between central
extensions of g by R (in even degree) and super Lie algebra 2-cocycles on g.

More generally, an central extension in even degree is by some vector space V ' Rn

Rn �
� // ĝ

��
g

which is equivalently the result of extending by n 2-cocycles consecutively.

We will be interested not in the full super Lie algebra cohomology, but in the invariant coho-
mology with respect to some action:

Definition 16. For g a super Lie algebra (definition 13), then its bosonic automorphism group is
the Lie subgroup

Aut(g)even ↪→ GL(geven)×GL(godd)

of the group of general degree-preserving linear maps on the underlying vector space, on those
elements which are Lie algebra homomorphisms, hence which preserve the super Lie bracket.

Proposition 17. For g a super Lie algebra, then the Lie algebra of its automorphism Lie group
(definition 16)

aut(g)even

called the the automorphism Lie algebra of g (or derivation Lie algebra), is the Lie algebra whose
underlying vector space is that of those linear maps ∆ : g→ g which preserve the degree and satisfy
the derivation property:

∆([x, y]) = [∆(x), y] + [x,∆(y)]

for all x, y ∈ g. The Lie bracket on aut(g)even is the commutator operation:

[∆1,∆2] := ∆1 ◦∆2 −∆2 ◦∆1 .
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Example 18. The super Minkowski super Lie algebras Rd−1,1|N from definition 20 all carry an
automorphism action of the abelian Lie algebra R which is spanned by the scaling derivation that
acts on vectors v ∈ Rd by

v 7→ v

and on spinors ψ ∈ N by
ψ 7→ 1

2ψ .

Definition 19. Let g be a super Lie algebra (definition 13) and let

h ↪→ aut(g)even

be a sub-Lie algebra of its automorphism Lie algebra (proposition 17).
Write

(−)CE : h −→ Der(CE(g))0

for the canonical Lie algebra homomorphism to the Lie algebra of derivations on the Chevalley-
Eilenberg dg-algebra of g (definition 14), which on ∧1g∗ acts as the linear dual ∆∗ of ∆

∆CE : ∧1g∗
∆∗−→ ∧1g∗

and which is extended from there to all of ∧•g∗ as a derivation of vanishing bi-degree. That this
commutes with the Chevalley-Eilenberg differential

dCE ◦∆CE −∆CE ◦ dCE = 0

is equivalent to the Lie derivation property of ∆.
Hence those elements of CE(g) which are annihilated by ∆CE for all ∆ ∈ h form a sub-dg-algebra

CE(g)h ↪→ CE(g)

Then an h-invariant (p + 2)-cocycle on g is an element in CE(g)h which is dCE-closed and the
h-invariant cohomology of g with coefficients in R is the cochain cohomology of this subcomplex:

H•(g,R)h := H•(CE(g)h) .

A.2 Super Minkowski spacetimes

We recall the definition of super-Minkowski super Lie algebras (the super-translation supersymme-
try algebras, definition 20 below) as well as their construction, on the one hand via (symplectic)
Majorana spinors (example 23 below), on the other hand via the four normed division algebras
(proposition 26 below). We freely use basic facts about spinors, as may be found for instance in [37].

Definition 20 (super Minkowski Lie algebras). Let d ∈ N (spacetime dimension) and let N ∈
RepR(Spin(d−1, 1)) be a real representation of the Spin-cover of the Lorentz group in this dimension.
Then d-dimensional N -supersymmetric super-Minkowski spacetime Rd−1,1|N is the super Lie algebra
(definition 13) whose underlying super-vector space is

Rd−1,1|N := Rd︸︷︷︸
even

⊕ N︸︷︷︸
odd

and whose only non-trivial component of the super Lie bracket is the odd-odd-component which is
given by the symmetric bilinear Spin(d− 1, 1)-equivariant spinor-to-vector pairing

[−,−] : N ⊗R N −→ Rd
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which comes with any real spin representation.
There is a canonical action of Spin(d− 1, 1) on Rd−1,1|N by Lie algebra automorphisms, and the

corresponding semidirect product Lie algebra is the super Poincarée super Lie algebra

iso(Rd−1,1|N ) = Rd−1,1|N o so(d− 1, 1) ,

often called just the supersymmetry algebra. In this terminology then

Rd−1,1|N ↪→ iso(Rd−1,1|N )

is the super-translation subalgebra of the supersymmetry algebra.

Remark 21 (number of super-symmetries). In the physics literature the choice of real spin rep-
resentation in definition 20 is often referred to as the “number of supersymmetries”. While this
is imprecise, it fits well with the convention of labelling irreducible representations by their linear
dimension in boldset. For example for d = 10 then there are two irreduible real spin representations,
both of real dimension 16, but of opposite chirality, and hence traditionally denoted 16 and 16.
Hence we may speak of N = 16 supersymmetry (also called N = 1 or heterotic) and N = 16⊕ 16
supersymmetry (also called N = (1, 1) of type IIA) and N = 16 ⊕ 16 supersymmetry (also called
N = (2, 0) or type IIB).

In section 3 the generalization of the last of these cases plays a central role, where for any
given real spin representation N we pass to the doubled supersymmetry N ⊕ N . Observe that
the two canonical linear injections N → N ⊕ N into the direct sum induce two super Lie algebra
homomorphisms

Rd−1,1|N //
// Rd−1,1|N⊕N .

The following degenerate example will play a key role:

Example 22 (superpoint). For d = 0 then definition 20 reduces to that of the superpoint : the super
Lie algebra

R0|N

which has zero super Lie bracket, and whose underlying super vector space is all in odd degree,
where it is given by some vector space N.

We will use two different ways of constructing real spin representations, and hence super-
Minkowski spacetimes: via (symplectic) Majorana spinors (example 23 below) and via real normed
division algebras (proposition 26 below).

Example 23 (Majorana representations). For d = 2ν or 2ν + 1 then there exists a complex repre-
sentation of the Clifford algebra Cl(Rd−1,1)⊗C, hence of the spin group Spin(d− 1, 1) on C2ν such
that

1. all skew-symmetrized products of p ≥ 1 Clifford elements Γa1···ap are traceless;

2. Γ†temporal = Γtemporal and Γ†spatial = −Γspatial.

This is the Dirac representation in RepC(Spin(d − 1, 1)). For d = 2ν this is the direct sum of two
subrepresentations on C2ν−1, the Weyl representations.

For d ∈ {3, 4, 9, 10, 11} then then there exists a real structure J on the complex Dirac representa-
tion, restricting to the Weyl representations for d ∈ {4, 10}, hence a Spin(d− 1, 1)-equivariant linear
endomorphism J : S → S which squares to unity, J2 = +1. This carves out a real representation
N := Eig(J,+1), being the eigenspace of J to eigenvalue +1, whose elements are called the Majo-
rana spinors inside the Dirac/Weyl representation. In this case the Dirac conjugate ψ 7→ ψ†Γ0 on
elements ψ ∈ C[d/2] restricts to N and is called there the Majorana conjugation operation denoted
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(−). In terms of this matrix representation then the spinor bilinear pairing that appears in definition
20 is given by the following matrix product expression:

[ψ, φ] =
(
ψΓaφ

)d−1

a=0
.

Similarly, for d ∈ {5, 6, 7} then there exists a quaternionic structure on the Dirac representation,
hence an endomorphism J̃ as above which however squares to minus the identity, J̃2 = −1. It follows
that

J :=

(
0 −J̃
J̃ 0

)
is a real structure on the direct sum of the Dirac representation with itself. Hence as before N :=
Eig(J,+1) is a real sub-representation, called the representation of symplectic Majorana spinors.
For these the spinor-to-vector bilinear pairing is again of the above form

Definition 24 (Cayley-Dickson double, see e.g. [5, section 2.2]). Let K be a real star-algebra, i.e. a
real algebra (not necessarily associative) equipped with an algebra anti-automorphism (−) : K→ K.
Then the Cayley-Dickson double K′ of K is the real star-algebra obtained from K by adjoining one
element ` such that `2 = −1 and such that the following relations hold, for all a, b ∈ K:

a(`b) = `(ab) , (a`)b = (ab)` , (`a)(b`) = − (ab) .

Finally, the algebra-anti-automorphism (−) on Kdbl is given by that of K on the elements coming
from there and by ` = −`.

Example 25. For R the real numbers regarded as a star algebra with trivial involution, then its
Cayley-Dickson double (definition 24) is the complex numbers C, the Cayley-Dickson double of these
is the quaternions H and the Cayley-Dickson double of those is the octonions O.

Proposition 26 ([6]). Let K ∈ {R,C,H,O} be one of the real algebras from example 25. Write
Matherm

2×2 (K) for the R-vector space of 2× 2 hermitian matrices with coefficients in K.
Then:

1. There is an isomorphism of inner product spaces (“forming Pauli matrices over K”)

(RdimR(K)+1,1, η)
'−→
(

Matherm
2×2 (K),−det

)
identifying Rd equipped and its Minkowski inner product

η := diag(−,+,+, · · · ,+)

with the space of hermitian matrices equipped with the negative of the determinant operation.

2. There are irreducible real Spin(dimR(K) + 1, 1)-representations N±, whose underlying vector
space is, in both cases,

N± = K2

and the Clifford action on which is given by

Γ+(A)Γ+(B) = ÃL ◦BL

Γ−(A)Γ−(B) = AL ◦ B̃L ,

where we are identifying spacetime vectors A,B with 2×2 matrices by the above, where (̃−) :=
(−)−tr(−) is the trace reversal operation on these matrices, and where (−)L denotes the linear
map given by left matrix multiplication.

For K ∈ {R,C} then these two representations are in fact isomorphic and are the Majorana
representation of Spin(dimR(K) + 1, 1), while for K ∈ {H,O} they are the two non-isomorphic
Majorana-Weyl representations of Spin(5, 1) and Spin(9, 1), respectively.
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3. Under the above identifications the symmetic bilinear Spin-equivariant spinor-to-vector pairing
is given by

N± ⊗N± −→ Matherm
2×2 (K)

ψ, φ 7→ 1
2

(
ψφ† + φψ†

)
.

4. There is in addition a bilinear symmetric, non-degenerate and Spin-invariant spinor-to-scalar
pairing give by

N± ⊗N∓ −→ R

ψ, φ 7→ Re(ψ† · φ)
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