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Abstract

There are fundamental open problems in the precise global nature of RR-field tadpole cancellation condi-
tions in string theory. Moreover, the non-perturbative lift as M5/MO5-anomaly cancellation in M-theory had
been based on indirect plausibility arguments, lacking a microscopic underpinning in M-brane charge quantiza-
tion. We provide a framework for answering these questions, crucial not only for mathematical consistency but
also for phenomenological accuracy of string theory, by formulating the M-theory C-field on flat M-orientifolds
in the generalized cohomology theory called Equivariant Cohomotopy. This builds on our previous results for
smooth but curved spacetimes, showing in that setting that charge quantization in twisted Cohomotopy rigor-
ously implies a list of expected anomaly cancellation conditions. Here we further expand this list by proving
that brane charge quantization in unstable equivariant Cohomotopy implies the anomaly cancellation condi-
tions for M-branes and D-branes on flat orbi-orientifolds. For this we (a) use an unstable refinement of the
equivariant Hopf-tom Dieck theorem to derive local/twisted tadpole cancellation, and in addition (b) the lift to
super-differential cohomology to establish global/untwisted tadpole cancellation. Throughout, we use (c) the
unstable Pontrjagin-Thom theorem to identify the brane/O-plane configurations encoded in equivariant Coho-
motopy and (d) the Boardman homomorphism to equivariant K-theory to identify Chan-Paton representations
of D-brane charge. We find that unstable equivariant Cohomotopy, but not its image in equivariant K-theory,
distinguishes D-brane charge from the finite set of types of O-plane charges.
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1 Introduction
Organizing and formalizing results in the string theory literature, we start by noticing the following curious sys-
tematics, to be elaborated upon throughout the paper.

Toroidal orientifolds with ADE-singularities – A curious pattern. Consider type II superstring vacua com-
pactified on fluxless toroidal orientifolds ([Sag88][DLP89, p. 12][Mu97][dBD+02, 3]; see also [IU12, 5.3.4,
10.1.3][BLT13, 15.3]) with ADE-type singularities ([AM97][In97]; see [HSS18]), hence on orbifold quotients
T4H�G (e.g. [Ra06, 13]) of 4-tori by crystallographic point groups (22). These are finite subgroups G⊂ SU(2)'
Sp(1) of the group unit quaternions acting by left multiplication on the space H'R R4 of all quaternions (17).

The consistency condition on such compactifications known as (Ramond-Ramond) RR-field tadpole anomaly
cancellation ([GP96, Sec. 3][Wi12, Sec. 9.3]; see [IU12, 4.4][BLT13, 9.4]), essentially says that the joint D-brane
and O-plane charge in such compact orientifolds has to vanish, albeit with some subtle fine print. Explicitly, we
observe that a case-by-case analysis of the string worldsheet superconformal field theory shows (Table 1) that, for
single wrapping number, RR-field tadpole anomaly cancellation is the following condition on the G-representation
of D-brane charge and the G-set of O-planes:

(i) Local/twisted tadpole cancellation: D-brane charge is a combination of a regular representation kreg and
the trivial one 1triv, with coefficients the number of integral and fractional branes, respectively:

cDbra = N brane
integ
·kreg +N brane

frac
·1triv .

(ii) Global/untwisted tadpole cancellation: The dimension of D-brane charge is the cardinality of the G-set of
O-planes:

dim(cDbra) = card(cOpla) .

In particular, cDbra comes from, and cOpla gives rise to, a permutation representation, in the image of β (46) [BSS19]:

cDbra
∈ RO(G) ' KO0

G S0
G

βoo ' A(G) oo GSet/∼ 3 cOpla

D-brane charge
on toroidal orientifold

representation
ring

equivariant
K-theory

equivariant
stable Cohomotopy

Burnside
ring

G-sets
(G-permutations)

O-plane charge
on toroidal orientifold

(1)

Single D-brane species
on toroidal orientifold

Local/twisted
tadpole cancellation

condition

Global/untwisted
tadpole cancellation

condition
Comments

Branes on
T4H�GADE

cDbra = N brane
int
·kreg

+N brane
frac
·1triv

dim
(
ctot
)
= card

(
cOpla

) The general pattern
of the following
case-by-case results

D5/D9-branes
on T4H�Z2

cDbra = N ·2reg
([BST99, (19)])

cDbra = 16 ·2reg
([BST99, (18)]) Following

[GP96]
[GJ96]D5/D9-branes

on T4H�Z4

cDbra = N ·4reg
([BST99, (19)])

cDbra = 8 ·4reg
([BST99, (18)])

D4-branes
on T4H�Zk

cDbra = N ·kreg
([AFIRU00a, 4.2.1])

Re-derived via M5-branes
below in §4

D4-branes
on T4H�Z3

cDbra = N ·3reg
[AFIRU00b, (7.2)]

cDbra = 4 ·3reg +4 ·1triv
([KS02, (14)-(17)],

The special case of k = 3
(review in [Ma03, 4])

D8-branes
on T4H�Z3

cDbra = N ·3reg cDbra = 4 ·3reg +4 ·1triv
([Hn01, 4], [Hn02, (29)])

Equivalent by T-duality
to previous case
([Hn01, p.1 ], [Hn02, 6])

D3-branes
on T4H�Zk

cDbra = N ·kreg
([FHKU01, (25)])

D7-branes
on T4H�Zk

cDbra = N ·kreg
([FHKU01, (5), (6)])

D6-branes
on T6�Z4

cDbra = 8 ·kreg
([IKS99, (25)])

Table 1 – Tadpole cancellation conditions between D-branes and O-planes on toroidal ADE-orientifolds as derived from case-by-case

analysis in perturbative string theory. The geometric content is shown in Figure A. The re-derivation from Hypothesis H is in §4.2.
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The D-brane species in Table 1 with the most direct lift to M-theory are the D4-branes, lifting to M5-branes
under double dimensional reduction ([APPS97a, 6][APPS97a, 6][LPSS11]); see Table 7. With an actual formula-
tion of M-theory lacking, indirect plausibility arguments have been advanced [DM95][Wi95b, 3.3][Ho98, 2.1] that
for M5-branes on M-theoretic orientifolds of the form T5sgn �Z2, anomaly cancellation implies Table 2:

Single M-brane species
on toroidal orientifold

Local/twisted
tadpole cancellation

condition

Global/untwisted
tadpole cancellation

condition
Comments

M5-branes
on T5sgn �Z2

cMbra = N ·2reg cMbra = 16 ·2reg
plausibility arguments([DM95] [Wi95b, 3.3] [Ho98, 2.1])

Table 2 – M5/MO5 anomaly cancellation in M-theory according to Folklore 4.1. While it has remained open in which cohomology

theory the charge cMbra is quantized, the geometric picture is again that illustrated in Figure A.

We highlight in Figure A the geometric interpretation of these tadpole cancellation conditions from Table 1
and Table 2. The left side of Figure A shows a 2-dimensional slice through the toroidal orbifold T4H �Z4 =
(R4/Z4)�Z4 with transversal branes/O-plane charges appearing as points. The O-plane charges (shown as open
circles) are stuck one-to-one to the fixed points of the point reflection subgroup Z2 ↪! Z4 (see also Table RT)
and, in the example shown, are permuted by the full orbifold group action of Z4 according to the permutation
representation 2 · 1triv + 1 · 2perm. The local/twisted tadpole cancellation condition says that the branes (shown as
filled circles) appear in the vicinity of the O-planes with all their distinct mirror images under the full group action,
thus contributing Chan-Paton fields in the regular representation 4reg. The global/untwisted tadpole cancellation
condition says that the total charge of branes minus O-planes, hence the net charge if all branes/O-planes could
freely move and pairwise annihilate, vanishes:

︷ ︸︸ ︷
local/twisted

tadpole cancellation

ctot = 4 ·
( cDbra︷ ︸︸ ︷

1 ·4reg−

β

(
cOpla

)︷ ︸︸ ︷
(2 ·1triv +1 ·2perm)

)
global/untwisted

tadpole cancellation

︷ ︸︸ ︷4 ·
(

1 ·4− (2 ·1+1 ·2)
)

= 0

dim

orientifold
action

O-plane

mirror
O-plane

brane

mirror branes

x1 = 0 x1 = 1
2 x1 = 0 x1 = 1

2

x2 = 0

x2 = 1
2

Figure A – Illustration of the geometric situation of tadpole cancellation on toroidal ADE-orientifolds according to Table 1, shown

for the case GADE = Z4. This is for single wrapping number of the branes along any further compact dimensions; but the general statement

is just the tensor product of this situation with the cohomology of these further compact spaces.

In view of the evident pattern evidenced by Table 1 and Table 2, here we ask the following question:

Is there a generalized cohomological brane charge quantization which enforces tadpole anomaly cancellation?

We show in this paper that (see Figure U), for fluxless toroidal ADE-orientifolds, the answer to this question
is unstable equivariant Cohomotopy theory; see (3) below. Before explaining this, we put the open problem in
perspective:
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The open problem – Systematic understanding of tadpole cancellation by charge quantization. While the
RR-field tadpole cancellation conditions are thought to be crucial not just for mathematical consistency, but also
for phenomenological accuracy of string model building [IU12, Sec. 4.4], a real understanding of the conditions
in full detail and generality has remained an open problem; see [BDS06, p. 2][Mo14, 4.6.1][HMSV19, p. 2] for
critical discussion. In particular, most of the existing literature on tadpole cancellation simply regards D-brane
charge as being in ordinary cohomology, while widely accepted arguments say that D-brane charge instead must
be regarded in (a twisted differential enhancement of) K-theory; in this context, see [BSS19] for review, and see
[GS17][GS19a][GS19b] for detailed constructions and accounts of the twisted differential case. D-brane charge in
K-cohomology may be understood as a generalized charge quantization rule, in analogy to how Dirac’s classical
argument for charge quantization [Dir31] (see [Fra97, 16.4e]) expresses the electromagnetic field as a cocycle in
(the differential refinement of) ordinary cohomology; see [Fre00]. Notice that cohomological charge quantization
concerns the full non-perturbative structure of a physical theory, including its instanton/soliton charge content.

Accordingly, in [Ur00, 5] it was suggested that RR-tadpole cancellation must be a consistency condition ex-
pressed in K-theory. Specifically, for orientifolds this could be Atiyah’s Real K-theory [At66], i.e., KR-theory
restricting on O-planes to KO-theory, which has been argued to capture D-brane charges on orientifolds in [Wi98,
5][Gk99][BGS01, §3]; explicit constructions are given in [DMDR14][DMDR15][HMSV15][HMSV19][GS19b].
In more detail, D-brane charge on orbifolds is traditionally expected [Wi98, 5.1][dBD+02, 4.5.2][GC99] to be in
equivariant K-theory (see [Gr05]). Hence orientifolds are expected to have charge quantization in a combination
of these aspects in some Real equivariant K-theory [Mou11][Mou12][FM12][Go17].

However, before even formulating tadpole cancellation in Real equivariant K-theory, the full formulation of
O-plane charge has remained open:

Open issue 1: Single O-plane charge. While O-plane charge is not supposed to vary over all integers, perturbative
string theory predicts it to vary in the set {0,±1} (e.g. [HIS00, p. 2]), illustrated in Figure B.

x2 = 0

x1 = 0

orientifold
action

O
0
-plane

x1 = 0

orientifold
action

O
−

-plane

x1 = 0

orientifold
action

O
+

-plane

'

Figure B – The charge carried by a single O-plane takes values in the set {0,±1} (in units of corresponding integral D-brane charge),

visualized here following the geometric illustration of Figure A. For O4-planes this situation lifts to MO5-planes in M-theory [Ho98][Gi98]

[AKY98, II.B][HK00, 3.1]. (The notation for O
0

originates with [Ho98, p. 29][Gi98, p. 4]; see Figure T for more.)

But in plain KR-theory all O-planes are O
−
-planes. To capture at least the presence of O

+
-planes requires

adding to KR-theory an extra sign choice [DMDR14]. In some cases this may be regarded as part of a twisting of
KR-theory [HMSV19], but the situation remains inconclusive [HMSV19, p. 2]. 1

Open issue 2: Total O-plane charge. As highlighted in [BGS01, p. 4, p. 25], it remains open whether a putative
formalization of tadpole cancellation via Real K-theory reflects the absolute total charge to be carried by O-planes.
This is a glaring open problem, since the absolute total charge -32 of Op-planes in toroidal orientifolds (see Table
3) fixes the gauge algebra so(32) of type I string theory required for duality with heterotic string theory (see, e.g.,
[BLT13, p. 250] [APT97]) with Green-Schwarz anomaly cancellation. This core result of string theory, is the basis
of the “first superstring revolution” [Sw11, p. 21], and a successful formalization of tadpole cancellation ought to
reproduce it.

1Note that [HMSV19, footnote 1] claims a problem with the sign choice in [DMDR14], and hence also in [Mou12]. These continuing
issues with orbifold K-theory for D-brane charge may motivate but do not affect the discussion here, where instead we propose equivariant
Cohomotopy theory for M-brane charge as an alternative. 4



A proposal for capturing absolute background charge of O-planes by equipping K-theory with a quadratic
pairing has been briefly sketched in [DFM11], but the implications remain somewhat inconclusive [Mo14, p.
22]. We notice that the implications on M-brane charge quantization of analogous quadratic functions in M-theory
[HS05] are reproduced by charge quantization in twisted Cohomotopy theory [FSS19b]. Here we further check this
alternative proposal: That brane charge quantization is in Cohomotopy cohomology theory, which lifts K-theory
through the Boardman homomorphism; see (4) below.

The proposal – Charge quantization on ori- O-plane
species

Charge
q

Op−
/qDp

Transverse
orientifold

Number of
singularities

O9− -32 T0�Z2 1
O8− -16 T1�Z2 2
O7− -8 T2�Z2 4
O6− -4 T3�Z2 8
O5− -2 T4�Z2 16
O4− -1 T5�Z2 32

Table 3 – Absolute Op-plane charge [IU12, (5.52)][BLT13, 10.212] −32 is
not implied by K-theory [BGS01], but is implied by Cohomotopy.

entifolds in Equivariant Cohomotopy theory.
When educated guesswork gets stuck, it is desir-
able to identify principles from which to system-
atically derive charge quantization in M-theory,
if possible, and seek the proper generalized co-
homology theory to describe the M-theory fields,
as was advocated and initiated in [Sa05a][Sa05b]
[Sa06][Sa10]. A first-principles analysis of su-
per p-brane sigma-models in rational homotopy
theory shows [Sa13][FSS15][FSS16a][FSS16b]
that rationalized M-brane charge is quantized in rational Cohomotopy cohomology theory; see [FSS19a] for review.
This naturally suggests the following hypothesis about charge quantization in M-theory [Sa13][FSS19b][FSS19c]
[BSS19][SS19] (for exposition see [Sc20]):

Hypothesis H. The M-theory C-field is charge-quantized in Cohomotopy theory.

Applied to toroidal orbifolds, the relevant flavor of unstable Cohomotopy theory is (see Table 4) unstable
equivariant Cohomotopy ([tD79, 8.4][Cr03]), denoted π•G (3). This is the cohomology theory whose degrees are
labeled by orthogonal linear G-representations, called the RO-degree (see, e.g., [Bl17, 3])

“RO-degree”

orthogonal linear G-representation

��
V

G⊂O(dim(V ))

��
∈ RO(G) representation ring (2)

and whose value on a topological G-space X (representing a global G-quotient orbifold X�G) with specified point
at infinity ∞ ∈ X – see diagram (11) – is the set of G-homotopy classes (33) of pointed G-equivariant continuous
functions (31) from X to the V -representation sphere SV (21) (see §3 for details and illustration):

πV
G

(
X
)

:=

{
X

G
�� c // SV

G
		

}
/
∼

equivariant Cohomotopy set
of the orbifold X�G

in RO-degree V

set of G-homotopy classes
of G-equivariant continuous functions

from X to SV

(3)

This is the evident enhancement to unstable G-equivariant homotopy theory (see [Bl17, 1]) of unstable plain
Cohomotopy theory π• ([Bo36][Sp49][KMT12][FSS19b, 3.1]).

Equivariant Cohomotopy is a non-abelian (i.e. “unsta-
ble”) Cohomology theory [SSS09][NSS12] that maps to
equivariant K-theory via stabilization followed by the
Boardman homomorphism, see §3.1.2 and [BSS19].

π•G
Σ∞

stablilization

// SG
β

Boardman
homomorphism

// KOG
unstable

equivariant
Cohomotopy

stable
equivariant

Cohomotopy
equivariant

K-theory

(4)
The solution – From Hypothesis H. In this article we explain how lifting brane charge quantization to ADE-
equivariant Cohomotopy, regarded as the generalized Dirac charge quantization of the M-theory C-field (e.g.
[Duf99]) on toroidal M-orientifolds ([DM95][Wi95b][Ho98][HSS18]), gives the local O-plane charges in {0,±1}
from Figure B and enforces on D-brane charge in the underlying equivariant K-theory (4) the RR-field tadpole
cancellation constraints from Table 1 via their M-theory lift from Table 2.
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Overall picture – M-Theory and Cohomotopy. As we further explain in [SS20], unstable equivariant Coho-
motopy theory is the incarnation on flat orbifolds of unstable twisted Cohomotopy cohomology theory, which we
showed in [FSS19b][FSS19c] implies a list of M-theory anomaly cancellation conditions on non-singular (i.e.,
“smooth”) but topologically non-trivial spacetimes; see Table 4:

Spacetime Flat Curved

Smooth
plain

Cohomotopy
([FSS15][BMSS18])

twisted
Cohomotopy

([FSS19b][FSS19c])

Orbi-
singular

equivariant
Cohomotopy

([HSS18][BSS19] §4)

orbifold
Cohomotopy

([SS20])

Table 4 – M-theory anomaly cancellation by C-field charge
quantization in Cohomotopy. On smooth but curved space-
times, Cohomotopy theory is twisted via the J-homomorphism
by the tangent bundle. On flat orbi-orientifolds the space-
time curvature is all concentrated in the G-singularities, around
which the tangent bundle becomes a G-representation and
twisted Cohomotopy becomes equivariant Cohomotopy. In
each case the respective charge quantization implies expected
anomaly cancellation conditions. See also Table 8.

Each entry in Table 4 supports Hypothesis H in different corners of the expected phase space of M-theory. This
suggests that Hypothesis H is a correct assumption about the elusive mathematical foundation of M-theory.

The necessity of unstable = non-abelian charge quantization for O-planes. We highlight that most authors who
discuss equivariant Cohomotopy consider stable equivariant Cohomotopy theory (e.g. [Seg71][Ca84] [Lu05]),
represented by the equivariant sphere spectrum SG in equivariant stable homotopy theory ([LMS86][HHR16, Ap-
pendix]); see §3.1.2 below. There are comparison homomorphisms (4) from equivariant unstable Cohomotopy
to stable Cohomotopy and further to K-theory but each step forgets some information (has a non-trivial kernel)
and produces spurious information (has a non-trivial cokernel); see [BSS19]. For the result presented here (just
as for the previous discussion in [FSS19b][FSS19c]), it is crucial that we use the richer unstable version of the
Cohomotopy theory, hence the non-abelian Cohomology theory [SSS09][NSS12], which is the one that follows
from analysis of super p-brane cocycles [Sa13][FSS19a]. We find that:

(a) the difference in the behavior between the O-plane charges and the D-brane charges (in Table 1, Table 2 and
Figure P) and

(b) the unstable/non-abelian nature of O-plane charge itself (Figure OP)

are reflected in the passage from the unstable to the stable range in unstable ADE-equivariant Cohomotopy, where
the O-plane charges are distinguished as being in the unstable range; see Figure C:

toroidal
orientifold

cocycle in
equivariant Cohomotopy

equivariant cohomotopy
classifying space

(representation sphere)

T4H

Z2 


c // S4H

Z2 



set of fixed points
in orientifold

(O-planes)

(
T4H
)Z2 =

{
0, 1

2

}4 c(Z2)

O-plane charge
(a subset)

//
� _

��

{0,∞}︸ ︷︷ ︸
S0

=
(
S4H
)Z2

� _

��

set of fixed points
in classifying space

(the 0-sphere)

underlying
plain 4-torus

(
T4H
)1

= T 4 (c)1

net charge
(an integer)

// S4 =
(
S4H
)1 underlying

plain 4-sphere

Figure C – A cocycle in unstable ADE-equivariant Cohomotopy on a toroidal orientifold according to (3), and its decomposition on

fixed point strata into Elmendorf stages; see [Bl17, 1.3][HSS18, 3.1].

Characterizing brane/O-plane charges – Unstable (equivariant) differential topology. Since in Figure C
the fixed locus in the classifying space is just a 0-sphere, and since the Hopf degree of maps Xn ! Sn stabilizes
only for n≥ 1 – see diagram (15) – the fixed points in the spacetime (= O-planes) carry “unstable” or “non-linear”
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charge: not given by a group element, but by a subset, distinguishing O
±
-planes from O

0
-planes as in Figure OP.

The further distinction between O
−
-planes and O

+
-planes is implied by normal framing that enters in the unstable

Pontrjagin-Thom theorem (discussed in §2.2). Moreover, the local/twisted tadpole cancellation condition in the
vicinity of O-planes is implied by the unstable equivariant Hopf degree theorem (discussed in §3.1). Last but not
least, it is the unstable Pontrjagin-Thom theorem, discussed in §2, which identifies all these charges with sub-
manifolds, hence with actual brane/O-plane worldvolumes as shown in Figure A, (while the stable PT-theorem
instead relates stable Cohomotopy to manifolds equipped with any maps to spacetime).

Classical theorem Reference
Interpretation for brane charge quantization

in unstable Cohomotopy (Hypothesis H) Discussed in

Unstable
Pontrjagin-Thom theorem [Kos93, IX (5.5)] Cohomotopy charge is sourced by submanifolds

hence by worldvolumes of branes and O-planes §2.1

Unstable
Hopf degree theorem

[Kos93, IX (5.8)]
[Kob16, 7.5]

Charge of flat transversal branes is integer
while charge of flat transversal O-planes is in {0,1} §2.2

Unstable
equivariant Hopf degree theorem [tD79, 8.4]

Branes appear in regular reps around O-planes
= local/twisted tadpole anomaly cancellation §3

Organization of the paper. In §2 we discuss how the classical unstable Pontrjagin-Thom isomorphism says that
plain Cohomotopy classifies charge carried by brane worldvolumes. In §3 we introduce the enhancement of this
situation to equivariant Cohomotopy on toroidal orbifolds, where it encodes joint D-brane and O-plane charge. We
explain in §3 that now the equivariant Hopf degree theorem encodes the form of local/twisted tadpole cancellation
conditions, and explain in §3.2 that super-differential refinement at global Elmendorf stage encodes the form of
global/untwisted tadpole cancellation conditions as in Table 1 and Table 2. The Pontrjagin-Thom theorem now
serves to map these charges precisely to the geometric situations of the form shown in Figure A. Finally, in §4
we specify these general considerations to the physics of M5-branes at MO5-planes in toroidal ADE-orientifolds
in M-theory, with the C-field charge-quantized in equivariant Cohomotopy theory, according to Hypothesis H. To
set the scene, we first recall in §4.1 the situation of heterotic M-theory on ADE-orbifolds and highlight subtleties
in the interpretation of MO5-planes. With this in hand, we apply in §4.2 the general discussion of equivariant
Cohomotopy from §3 to ADE-singularities intersecting MO9-planes in M-theory, and find (Cor. 4.4, Cor. 4.6)
that this correctly encodes the expected anomaly cancellation of M5-branes at MO5-planes, and this, upon double
dimensional reduction (see Table 7 and Figure U), the RR-field tadpole anomaly cancellation for D-branes on
ADE-orientifolds.

2 Cohomotopy and brane charge
Before turning to equivariant/orbifold structure in §3, we first discuss basics of plain unstable Cohomotopy on
plain manifolds. The key point is that the unstable Pontrjagin-Thom theorem, reviewed in §2.1, identifies cocycles
in unstable Cohomotopy theory with cobordism classes of submanifolds carrying certain extra structure (normal
framing). These submanifolds are naturally identified with the worldvolumes of branes that source the correspond-
ing Cohomotopy charge, and the normal structure they carry corresponds to the charge carried by the branes,
distinguishing branes from anti-branes. In §2.2 we highlight that coboundaries in unstable Cohomotopy accord-
ingly correspond to brane pair creation/annihilation processes. This way the Pontrjagin-Thom theorem establishes
Cohomotopy as a natural home for brane charges, as proposed in [Sa13].

2.1 Pontrjagin-Thom theorem and brane worldvolumes

Cohomotopy cohomology theory. The special case of unstable G-equivariant Cohomotopy (3) with G = 1 the
trivial group is unstable plain Cohomotopy theory ([Bo36][Sp49][KMT12][FSS19b, 3.1]), denoted π• := π•1 . This
is the unstable/non-abelian cohomology theory whose degrees are natural numbers n ∈ N and which assigns to an
un-pointed topological space X the Cohomotopy set of free homotopy classes of continuous maps into the n-sphere:
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πn(X) :=
{

X c // Sn
}
/∼

Cohomotopy set
of the space X

in degree n

set of homotopy classes
of continuous functions

from X to the n-sphere Sn

(5)

The contravariant assignment X 7! πn(X) is analogous to the assignment X 7! Hn(X ,Z) of integral cohomology
groups, or of the assignment X 7! Kn(X) of K-theory groups, and as such may be regarded as a generalized but
non-abelian cohomology theory [SSS09][NSS12]: For n ≥ 1 we have (as for any connected topological space) a
weak homotopy equivalence between the n-sphere and the classifying space of its loop group, Sn 'whe B

(
ΩSn

)
,

which means that the Cohomotopy sets (5)

π
n(X)

n-Cohomotopy set
' H1(X ,ΩSn)

non-abelian cohomology set
with coefficients in

loop group of n-sphere

are equivalently the non-abelian cohomology sets with coefficient in the loop-group of the n-sphere, in direct
generalization of the familiar case of non-abelian cohomology H1(X ,G) ' GBund(X)/∼ with coefficients in a
compact Lie group G.

In this way we may think of (5) as defining a generalized cohomology theory, different from but akin to, say,
K-theory, and as such we call it Cohomotopy cohomology theory, or Cohomotopy theory or just Cohomotopy, for
short. The capitalization indicates that this term is the proper name of a specific cohomology theory (we might
abbreviate further to C-theory to bring out the analogy with K-theory yet more) and not on par with homotopy
theory, which instead is the name of the general mathematical framework within which we are speaking. In
particular, Cohomotopy cohomology theory is not the dual concept of homotopy theory, but is the dual concept
of the unstable/non-abelian generalized homology theory which assigns homotopy groups X 7! πn(X) to pointed
topological spaces X (hence: Homotopy homology theory, mostly familiar in its stable form).

Unstable Pontrjagin-Thom theorem. Thinking of X here as spacetime, we are interested in the case that X = XD

admits the structure of closed smooth manifold of dimension D ∈ N. In this case, the unstable Pontrjagin-Thom
theorem (7) identifies (see e.g. [Kos93, IX.5]) the degree-n Cohomotopy set of XD (5) with the set of cobordism
classes of normally framed codimension-n closed submanifolds of XD (see e.g.[Kos93, IX.2]), hence of closed

submanifolds Σd i
↪! XD which are of dimension d = D−n and equipped with a choice of trivialization

NiΣ
normal framing

'
// Σ×Rn

normal bundle
of codimension n submanifold Σ

inside ambient manifold X

trivial vector bundle
of rank n

(6)

of their normal vector bundle:

Unstable
Pontrjagin-Thom
theorem

πn
(
XD
) take pre-image at 0 of regular representative

fib0 ◦ reg
'

//
oo

“PT collapse”
assign directed asymptotic distance

 Closed submanifolds Σd i
↪! XD

of dimension d = D−n
and equipped with normal framing

/
cobordism

Cohomotopy set in degree n
of closed D-dim. manifold X

(7)

The construction which exhibits this bijection is traditionally called the Pontrjagin-Thom collapse, but a more sug-
gestive description, certainly for our application to brane charges, is this: The Cohomotopy class corresponding to
a submanifold/brane is represented by the function which assigns directed asymptotic distance from the subman-
ifold/brane, as measured with respect to the given normal framing (6) upon identifying the normal bundle with a
tubular neighborhood and regarding all points outside the tubular neighborhood as being at infinite distance. See
Figure D:
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X Sn = (Rn)cptc

manifold︷ ︸︸ ︷ n-sphere
Cohomotopy coefficient︷ ︸︸ ︷

Cohomotopy cocycle

0 regular
value− ∞

)

)

−ε

+ε

codimension n submanifold

tu
bu

la
r

ne
ig

hb
or

ho
od

!
no

rm
al

fr
am

in
g

constant on ∞

away from tubular neighborhood

Figure D – The Pontrjagin-Thom construction which establishes the unstable Pontrjagin-Thom theorem (7). The cocycle c in Cohomo-

topy eq. (5) is the continuous function which sends each point to its directed asymptotic distance from the given submanifold.

One-point compactifications by adjoining the point at infinity. Here and in all of the following, we are making
crucial use of the fact that the n-sphere is the one-point compactification (−)cpt of the Cartesian space Rn,

Sn 'homeo

(
Rn)cpt :=

(
{x ∈ Rn or x = ∞},τcpt

)
for all n ∈ N, (8)

as indicated on the right of Figure D. Here the one-point compactification Xcpt of a topological space X is defined
(e.g. [Ke55, p. 150]) by adjoining one point to the underlying set of X – denoted “∞” as it becomes literally the
point at infinity – and by declaring on the resulting set a topology τcpt whose open subsets are those of X , not
containing ∞, and those containing ∞ but whose complement in X is compact. Notice that this construction also
applies to topological spaces that already are compact, in which case the point at infinity appears disconnected

X already compact ⇒ Xcpt = X+ := X t{∞} . (9)

This means that (8) indeed holds also in the “unstable range” of n = 0:(
R0)cpt

=
(
{0}
)cpt

= {0}t{∞} = S0 . (10)

Cohomotopy charge vanishing at infinity. In view of the Pontrjagin-Thom theorem (7), it makes sense to say
that a cocycle in Cohomotopy vanishes wherever it takes as value the point at infinity ∞ ∈

(
Rn
)cpt ' Sn in the

coefficient sphere, identified under (8). This means to regard the coefficient sphere as a pointed topological space,
with basepoint ∞ ∈ Sn. Given then a non-compact (spacetime) manifold X (such as X = Rn), a Cohomotopy
cocycle X −! Sn vanishes at infinity if it extends to the one-point compactification Xcpt (8) such as to send the
actual point at infinity ∞ ∈ Xcpt to the point at infinity in the coefficient sphere.

A Cohomotopy cocycle on a non-compact space X which vanishes at
infinity is a Cohomotopy cocycle on the one-point compactification Xcpt

that sends the point at infinity in the domain to that in the coefficient n-
sphere.

Xcpt c //
(
Rn
)
' Sn

{∞}
?�

OO

c|{∞}
// {∞}
?�

OO
(11)

Example 2.1 (Figure E). For X =Rn, we have that Cohomotopy n-cocycles on X vanishing at infinity are equiva-
lently maps from an n-sphere to itself:

9



(Rn)cpt Sn = (Rn)cptc = 1−3 =−2

Euclidean n-space
compactified by

a point at infinity︷ ︸︸ ︷
n-sphere

Cohomotopy coefficient︷ ︸︸ ︷
Cohomotopy cocycle
counting net number

of charged submanifolds

∞

•

••

cocycle vanishes at infinity

0
regular
value− ∞

)

)

−ε

+ε

here with opposite
normal framing

(see Figure F)

more submanifolds

codimension n submanifold

tu
bu

la
r

ne
ig

hb
or

ho
od

!
no

rm
al

fr
am

in
g

Figure E – Cohomotopy in degree n of Euclidean n-space vanishing at infinity is given by Cohomotopy cocycles (5) on the one-point

compactification (Rn)' Sn (8) that send ∞ to ∞ (11).

Of course, this is just the cohomotopical version of instantons in ordinary gauge theory:

Instantons and solitons. If G is a compact Lie group with classifying space BG equipped with the canonical point
∗ ' B{e} −! BG, then a G-instanton sector on Euclidean space X = Rn is the homotopy class of a continuous
function from the one-point compactification of X to BG, which takes the base points to each other 2

A G instanton sector is a cocycle in degree-1 G-cohomology which van-
ishes at infinity in that it is a cocycle on the one-point compactification
Xcpt (8) which sends the point at infinity in the domain to the base point
in the classifying space BG.

(
Rn
)cpt c // BG

{∞}
?�

OO

c|{∞}
// B{e}
?�

OO

(12)

Cohomotopy and SU(N)-instanton sectors. Specifically for n = 4 and G = SU(N) any map S4 ε
−! BSU(N)

representing a generator 1 ∈ Z ' π4
(
BSU(N)

)
of the 4th homotopy group of the classifying space exhibits a

bijection between the 4-Cohomotopy of R4 vanishing at infinity (11), and the set of SU(N) instanton sectors

π
4((Rn)cpt) =

{
(R4)cpt // S4

}/
∼

ε∗'
{
(R4)cpt // BSU(N)

}/
∼
'
{

SU(n)-instanton sectors
on R4

}
.

Under this identification of SU(N)-instanton sectors with Cohomotopy vanishing at infinity, the Pontrjagin-Thom
construction (7) produces precisely the distribution of instanton center points, again illustrated by the left hand
side in Figure E. To see all this in more detail, we next turn to further discussion of the charge structure encoded
by Cohomotopy.

2.2 Hopf degree theorem and brane-antibrane annihilation

The classical Hopf degree theorem describes the n-Cohomotopy (5) of orientable closed D-manifolds X (7) in the
special case where n = D. It says that, in the “stable range” n≥ 1, the Cohomotopy set is in bijection with the set
of integers, where the bijection is induced by sending the continuous function representing a Cohomotopy coycle
to its mapping degree (see, e.g., [Kob16, 7.5]):

Hopf degree
theorem

in stable range n≥ 1

n-Cohomotopy
of n-manifold

πn
(
X
) Sn ε∗−!K(Z,n)

'
// Hn
(
X ,Z

)
' Z[

Xn c
−! Sn

] � //
[
Xn c
−! Sn ε

−! K(Z,n)
]

=: deg(c)
(13)

2An actual instanton in this instanton sector is a G-principal connection on Xcpt whose underlying G-principal bundle has this classifying
map. Ultimately we are interested in such enhancement to differential cohomology, but this is beyond the scope of the present article.
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Under the Pontrjagin-Thom theorem (7) the Hopf degree theorem (13) translates into the following geometric
situation for signed (charged) points in Xn (see [Kos93, IX.4]): A codimension-n submanifold in an n-manifold
Xn is a set of points in Xn, and a choice of normal framing (6) is, up to normally framed cobordism, the same as
choice of sign (charge) in {±1} for each point, as shown in Figure F:

︷ ︸︸ ︷ ︷ ︸︸ ︷manifold
sphere

Cohomotopy coefficient
Cohomotopy cocycle

tubular
neighborhood

tubular
neighborhood

0

∞

∞

∞

∞

Xn Sn = D(Rn)/S(Rn)
c

positively charged submanifold

negatively charged submanifold

'
opposite charges
cancel each other

no charge here

Figure F – Charge in Cohomotopy carried by submanifolds, under the PT-isomorphism (7) is encoded in their normal framing (6). In

full codimension the normal framing is a normal orientation and hence a choice in {±1}, which we indicate graphically by • ↔ −1
◦ ↔ +1

Under this geometric translation, we have the correspondence

Hopf degree
of Cohomotopy cocycle on X

oo PT // Net number of ±-charges
carried by points in X

The mechanism which implements this on the geometric right hand side is that points of opposite sign/normal
framing are cobordant to the empty collection of points, hence mutually annihilate each other via coboundaries in
Cohomotopy, as shown in Figure G:

[0,1]×X Sn = (Rn)cpt0' (−1)+(+1)

product space
of interval with manifold︷ ︸︸ ︷ n-sphere

Cohomotopy coefficient︷ ︸︸ ︷Cohomotopy coboundary

{1}×X{0}×X

0 regular
value− ∞

)

)

−ε

+ε

positively charged
submanifold

negatively charged
submanifold

no
submanifold cobordism

Figure G – Cobordisms between submanifolds of opposite normal framing as in Figure F exhibit their pair creation/annihilation. This

is the geometric mechanism which underlies the Hopf degree theorem (13) when translating via the Pontrjagin-Thom theorem (7) between

Cohomotopy charge and the submanifolds sourcing it, as in Figure D.
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Hopf degree in unstable range. The classical Hopf degree theorem (13) is stated only in the stable range n ≥ 1,
but it is immediate to extend it to the unstable range. While this is a simple statement in itself, it is necessary to
conceptually complete the discussion of the equivariant Hopf degree theorem in §3.1 below, where the ordinary
Hopf degree appears jointly in stable and unstable range, with the distinction being responsible for the difference
in nature between O-plane charge (unstable range) and D-brane charge (stable range): For X = X0 a compact
0-manifold, hence a finite set, and Xcpt = X+ = X t{∞} the same set with a “point at infinity” adjoined (9), its
unstable Cohomotopy classes (5) in degree 0, being functions to the 0-sphere hence to the 2-element set S0 = {0,∞}
that take ∞ 7! ∞

π
0(Xcpt) =

{
X c
−−! S0},

are in bijection to the subsets S ⊂ X of X , by the assignment that sends c to the pre-image c−1
(
{0}
)

of 0 ∈ S0

under c. We may think of these subsets as elements of the power set {0,1}X and as such call them the sets deg(c)
of Hopf degrees in {0,1} for n = 0:

Hopf degree
theorem

in unstable range n = 0

0-Cohomotopy
of 0-manifold

sets of
unstable Hopf degrees

π0
(
Xcpt

) S0={0,∞}
'

// Subsets(X) ' {0,1}X[
X0 c
−! S0

] � //
[
c−1
(
{0}
)
⊂ X

]
=: deg(c)

(14)

Example 2.2. For X = {0} the single point so that, with (10), Xcpt is the 0-sphere, we have π0
(
{0}cpt

)
' {0,1},

as illustrated in the following figure: (
R0
)cpt︷︸︸︷

∞

0

vanishing at infinity

charge

c = 1
S0︷︸︸︷

∞

0

(
R0
)cpt︷︸︸︷

∞

0

vanishing at infinity

no charge

c = 0
S0︷︸︸︷

∞

0

Figure H – Hopf degree in the unstable range takes values in the set {0,1} (14), corresponding to the binary choice of there being or not

being a unit charge at the single point.

The point of unstable Hopf degree in {0,1} is that it exhibits homogeneous behavior under suspension Σ1 (41)
across the unstable and stable range of Hopf degrees, with the unstable Hopf degrees in {0,1} injecting into the
full set of integers in the stable range:

unstable
Hopf degrees

{0,1}
(14)

'

� � injection //

stable
Hopf degrees

Z
(13)

'

= //

stable
Hopf degrees

Z
(13)

'

= //

stable
Hopf degrees

Z
(13)

'

// · · ·
...

π0
(
S0
)

Σ1

suspension // π1
(
S1
)

Σ1
// π2
(
S2
)

Σ1
// π3
(
S3
)

// · · ·

(15)

As we next turn from plain to equivariant Cohomotopy in §3, we find that unstable and stable Hopf degrees
unify in the equivariant Hopf degree theorems, and that the D-brane charge is what appears in the stable range,
while the O-plane charge is what appears in the unstable range (in particular, via the proof of Theorem 3.13
below).

3 Equivariant Cohomotopy and tadpole cancellation

We now turn to the equivariant enhancement (3) of Cohomotopy theory. We discuss in §3.1 and in §3.2, respec-
tively, how this captures the form of the local/twisted (see Diagram (58) in §3.2) and of the global/untwisted tadpole
cancellation conditions (see §4.1) according to Table 1 and Table 2, by appeal to the equivariant enhancement of
the Hopf degree theorem applied to representation spheres, which we state as Theorem 3.10 and Theorem 3.13.
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Basic concepts of unstable equivariant homotopy theory. To set up notation, we start with reviewing a minimum
of underlying concepts from unstable equivariant homotopy theory (see [Bl17, 1][HSS18, 3.1] for more).

Topological G-spaces. For G a finite group, a topological G-space X

G
��
(or just G-space, for short) is a topological

space X equipped with a continuous G-action, hence with a continuous function G×X ·
−! X such that for all gi ∈G

and x ∈ X we have g1 · (g2 · x) = (g1g2) · x and e · x = x (where e ∈ G is the neutral element).

Here we are concerned with the classes of examples of G-spaces shown in Table 5:3

G-representation G-space G-orbifold Terminology

G
finite group

V ∈ RO(G)
orthogonal linear
G-representation

RV

G
		

Euclidean
G-space (19)

RV �G
Euclidean orbifold

singularity ADE-singularities

G⊂ SU(2)
finite subgroup of SU(2)

(16)

V = 4H
quaternionic representation

(17)

SV

G
		

G-representation
sphere (21)

SV �G =
(
RV �G

)cpt

Euclidean orbifold
including point at infinity (11)

vicinity of
singularity

GoZdim(V ) ⊂ Iso
(
RV
)

crystallographic group (22))

TV

G
		

G-representation
torus (23)

TV �G =
(
RV �G

)
/Zdim(V )

toroidal orbifold

flat, compact
singular space

Table 5 – Flat G-orbifolds and the G-spaces covering them. Examples arising in application to M-theory are discussed in §4.1.

Orbifold terminology. As common in string theory, we will be thinking of G-spaces X as stand-ins for their
homotopy quotients X�G, which are the actual orbifolds. This is mathematically fully justified by the fact that the
proper notion of generalized cohomology of such global quotient orbifolds X�G is equivalently the G-equivariant
generalized cohomology of the space X . We relegate a comprehensive discussion of this technical point to [SS20],
but this is mathematical folklore: see [PrSc10, §1][Schw17, p. 1][Schw18, p. ix-x]. Moreover, in the specific
application to M-theory, below in §4, the relevant orbifolds are always part of orbi-orientifolds, in that a subgroup
Zrefl

2 of the orbifold quotient group G = GADE combines with a Hořava-Witten-involution ZHW
2 to an orientation-

changing involution ZHW+refl
2 which fixes an “MO5-plane”. This is made precise in §4.1 below; see (67) there.

Since, with passage to the ZHW
2 -fixed locus (the “MO9-pane”) understood (80), the further localization to the

MO5-plane coincides with the orbifold singularity, we will often refer here to orbifold fixed points as orientifold
fixed points, wherever this serves the preparation of the application in §4. Accordingly, the orbifold singularities
in the applications below in §4 are always inside an O-plane, so that the relevant flavor of equivariant K-theory
considered below in Prop. 3.14 and in Figure P, Figure M is KO.

Linear G-representations. The G-spaces of interest for the discussion of toroidal orbifolds all come from orthog-
onal linear G-representations V : finite-dimensional Euclidean vector spaces equipped with a linear action by G
factoring through the canonical action of the orthogonal group. We will denote concrete examples of such V of
dimension n ∈ N and characterized by some label “l” in the form V = nl, and also refer to them as an RO-degree
(2).

The key class of examples of interest here are finite subgroups (see, e.g., [BSS19, A.1])

GADE ⊂ SU(2) ' Sp(1) ' U(1,H) ' S(H) (16)

of the multiplicative group of unit norm elements q ∈ S(H) in the vector space H'R R4 of quaternions, and their
defining 4-dimensional linear representation on this space (by left quaternion multiplication), which we denote by

4H ∈ RO
(
GADE) . (17)

3For our purposes here, the covering G-space X is all we need to speak about the corresponding orbifold X �G. For a dedicated
discussion of geometric orbifolds we refer to [Ra06, 13][SS20]. Note that [Ra06, 13] says “Euclidean orbifold” for any flat orbifold.
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All of these, except the cyclic groups of odd order, contain the subgroup

Zrefl
2 :=

〈
−1 ∈ S(H)

〉
⊂ GAevDE (18)

generated by the quaternion −1 ∈ H. This acts on the 4-dimensional quaternionic representation (17) by point
reflection at the origin, hence as the 4-dimensional sign representation

R4H

Zrefl
2 


' R4sgn

Z2



,

as illustrated for 2 of 4 dimensions in Figure I.

Euclidean G-Spaces. The underlying Euclidean space of a linear G-representation V is of course a G-space, hence
a Euclidean G-space, which we suggestively denote by RV :

linear G-representation V ∈ RO(G) ⇒ RV

G
		

Euclidean G-space (19)

Example 3.1 (Figure I). With G = Z2 and V = 2sgn its 2-dimensional sign representation, the Euclidean G-spaces
R2sgn is the Cartesian plane equipped with the action of point reflection at the origin:

Figure I – The Euclidean Z2-space (19) of the 2-
dimensional sign representation 2sgn. The under-
lying topological space is the Euclidean plane R2,
with group action by point reflection at the origin.

Z2
action

R2sgn =

x1 =− 1
2 x1 = 0 x1 = 1

2

x2 = 0

x2 = 1
2

x2 =− 1
2

Notice that for V,W ∈ RO(G) two orthogonal linear G-representations, with V ⊕W ∈ RO(G) their direct sum
representation, the Cartesian product of their Euclidean G-spaces (19) is the Euclidean G-space of their direct sum:

RV ×RW ' RV⊕W . (20)

G-Representation spheres. The one-point compactification (8) of a Euclidean space RV (19) becomes itself a G-
space, with the point at infinity declared to be fixed by all group elements; this is called the representation sphere
of V (see, e.g., [Bl17, 1.1.5]):

one-point compactification
of Euclidean space V

unit sphere
in product of V

with the 1d trivial representation

SV :=
(
RV
)cpt ' D

(
RV
)
/S
(
RV
)

' S
(
R1triv⊕V

)
.

representation
sphere

unit disk in V
with boundary collapsed

to the point at infinity

(21)

Example 3.2 (Figure J). With G := Z2 the group of order 2 and 1sgn its 1-dimensional sign-representation, the
corresponding representation sphere (21) is the circle equipped with the Z2-action that reflects across an equator:

Figure J – The Z2-representation sphere of the 1-
dimensional sign representation 1sgn is the Z2-space
whose underlying topological space is the circle,
and equipped with the Z2-action that reflects points
across the equator through 0 and the point at infinity.

S1sgn

Z2



= ∞0−

Z2
action
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G-Representation tori. Similarly, consider the linear G-representation V such that G ⊂ Iso
(
Rdim(V )

)
is the point

group of a crystallographic group C (see, e.g., [Far81]) of the underlying Euclidean space Rdim(V ) with correspond-
ing translational sub-lattice Zn ⊂ Iso(n) inside the Euclidean group in n = dim(V ) dimensions. This means we
have an exact sequence of this form:

lattice of translations
normal subgroup

crystallographic
group

point group
'C/Zn

1 // Zn
� _

��

� � // C� _

��

// // G� _

��

// 1

1 // Rn � � // Iso(n) // // O(n) // 1
translation group Euclidean group

(isometries of Rn) orthogonal group

(22)

Then the corresponding torus Tn := Rn/Zn inherits a G-action from RV . We may call the resulting G-space the
representation torus of V . This is the type of G-space whose global quotients are toroidal orbifolds:

V ∈ RO(G) ⇒ RV

G
		

⇒ TV

G
		

:= RV

G
		
/Zn ⇒ TV �G .

orthogonal linear
G-representation

Euclidean
G-space

if G is point group
of crystallographic group representation torus toroidal

orbifold

(23)

Example 3.3 (Figure K). For G = Z4 the cyclic group of order 4 and 2rot its 2-dimensional linear representation
given by rotations around the origin by integer multiples of π/2, this action descends to the 2-torus quotient to give
the representation torus T2rot :

Figure K – The Z4-representation torus (23) of the 2-dimensional
rotational representation 2rot. The underlying topological space is the
2-torus T 2 = R2/Z2, of which we show the canonical covering R2-
coordinate chart. Due to the coordinate identifications(

[x1], [x2]
)
=
(
[x1 +n], [x2 +m]

)
∈ T2 = R2/Z2

the fixed point set (24) of the Z2-subgroup has four points is(
T2rot

)Z2 =
{(

[0], [0]
)
,
(
[ 1

2 ], [
1
2 ]
)
,
(
[0], [ 1

2 ]
)
,
(
[ 1

2 ], [0]
)}
⊂ T2 .

while that of the full group has two points(
T2rot

)Z4 =
{(

[0], [0]
)
,
(
[ 1

2 ], [
1
2 ]
)}
⊂ T2 .

T2rot

Z4



=

Z4
action

Z2 ⊂ Z4
action

x1 =− 1
2 x1 = 0 x1 = 1

2

∼

x2 = 0

x2 = 1
2

H-Fixed subspaces and isotropy groups. For X

G
��
a G-space and H ⊂ G any subgroup, the H-fixed subspace

XH :=
{

x ∈ X
∣∣h · x = x for all h ∈ H

}
⊂ X (24)

is the topological subspace of X on those points which are fixed by the action of H. In particular, for 1 ⊂ G the
trivial group we have X1 = X . We also write

IsotrX(G) :=
{

StabG(x)⊂ G
∣∣x ∈ X

}
(25)

for the set of isotropy subgroups of G, hence those that appear as stabilizer groups of some point, namely as
maximal subgroups fixing a point: StabG(x) :=

{
g ∈ G|g · x = x

}
⊂ G . It is the isotropy subgroups (25), but not

necessarily the generic subgroups, which serve to filter a G-space in a non-degenerate way, since if one isotropy
subgroup is strictly larger than another, then its fixed subspace (24) is strictly smaller

H1 ( H2 ∈ IsotrX(G) ⇒ XH2 ( XH1 .
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Example 3.4 (fixed subspaces of ADE-singularities). The non-trivial fixed subspaces of the Euclidean G-space
(19) of the quaternionic representation 4H (17) are all the singleton sets consisting of the origin:

(
R4H

)H
=

{
R4 if H = 1
{0} otherwise.

(26)

Example 3.5 (Figure K). For G = Z2 and nsgn the n-dimensional sign representation, the corresponding represen-
tation torus (23) has as Z2-fixed space (24) the 0-dimensional space which is the set of points whose canonical
coordinates are all either 0 mod Z or 1

2 mod Z:

Tnsgn := (Rn

[x]7![−x]

��
/Zn) =⇒

(
Tnsgn

)Z2 =
{
[0], [1

2 ]
}n ⊂ Tn = Rn/Zn. (27)

Example 3.6 (Kummer surface). The reflection ADE-action (18) R4H

Zrefl
2 



is clearly crystallographic (22). The
orbifold T4H�Zrefl

2 'T4sgn�Z2 presented by the corresponding representation torus (23) (when equivalently thought
of as an orbifold of the complex 2-dimensional torus) known as the Kummer surface (e.g. [BDP17, 5.5]). The
cardinality of its fixed point set (24) is (by Example 3.5)∣∣∣(T4Z

)Zrefl
2
∣∣∣ = ∣∣{[0], [1

2 ]}
4∣∣ = 16.

Residual action on fixed spaces. There is a residual group action on any H-fixed subspace XH (24) inherited from
the G-action on all of X , with the residual group being the “Weyl group” [May96, p. 13]

WG(H) := NG(H)/H (28)

which is the quotient group of the maximal subgroup NG(H)⊂G for which H is a normal subgroup (the normalizer
of H in G) by H itself. Thereby any H-fixed subspace becomes itself a WG(H)-space:

X

G
��

: (H ⊂ G) 7−! XH

WG(H)

		
.

A G-space induces for each subgroup H the H-fixed space with
residual WG(H)-action

(29)

Notice the two extreme cases of the Weyl group (28):

WG(1) = G and WG(G) = 1 . (30)

Maps between G-spaces and their Elmendorf stages. The relevant morphisms between G-spaces are continuous
functions between the underlying spaces that are G-equivariant:

X

G
�� f // Y

G
��

⇔ X
f // Y such that f (g · x) = g · f (x)

for all g ∈ G and all x ∈ X .
(31)

This G-equivariance implies that H-fixed points are sent to H-fixed points, for every subgroup H ⊂ G, hence that
every G-equivariant continuous function (31) induces a system of plain continous functions f H := f|XH between H-
fixed point spaces (24), which are each equivariant with respect to the residual WG(H)-action (28) and compatible
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with each other with respect to inclusions Hi ⊂ H j of subgroups:

X

G
�� f // Y

G
��

⇒

XG 88
f // Y Gee 1� _

��
XHiWG(Hi) 88
?�

OO

f Hi
// Y Hi WG(Hi)ff
?�

OO

for all

Hi� _

��
XH jWG(H j) 88
?�

OO

f Hj
// Y H j WG(H j)ff
?�

OO

H j� _

��
XG
?�

OO

f G
// Y G
?�

OO

G
G-equivariant function between G-spaces induces system of WG(H)-equivariant functions between H-fixed subspaces

(32)

We will refer to the component f H here as the Elmendorf stage labeled by H [Bl17, 1.3][HSS18, 3.1].

Finally, a G-homotopy between two G-equivariant functions f1, f2 (31)

XG 88

f0

&&

f1

88 Y Geeη�� (33)

is a homotopy [0,1]×X
η
−! X between the underlying continuous functions, hence such that fi = η(i,−), which

is equivariant as a function on the product G-space X × [0,1], where the G-action on the interval [0,1] is taken to
be trivial.

3.1 Equivariant Hopf degree on spheres and Local tadpole cancellation

We discuss the unstable (Theorem 3.10) and the stabilized (Theorem 3.13) equivariant Hopf degree theorem for
representation spheres, which characterizes equivariant Cohomotopy in compatible RO-degree (Def. 3.7 below),
on Euclidean G-spaces and vanishing at infinity, hence of the vicinity of G-singularities inside flat Euclidean
space (Def. 3.9 below). Using this we show (Prop. 3.14) that equivariant Cohomotopy implies the form of the
local/twisted tadpole cancellation conditions from Table 1, Table 2.

3.1.1 Unstable equivariant Hopf degree

For stating the equivariant Hopf degree theorem, we need the following concept of compatible RO-degree for
equivariant Cohomotopy. This condition is really a reflection of the structure of J-twisted Cohomotopy (as in
[FSS19b][FSS19c]) in its version on flat orbifolds, and as such is further developed in [SS20].

Definition 3.7 (Compatible RO-degree). Given a G-space X

G
��
such that each H-fixed subspace XH (24) for

isotropy groups H ∈ IsotrX(G) (25) admits the structure of an orientable manifold, we say that an orthogonal linear
G-representation V is a compatible RO-degree for equivariant Cohomotopy of X if for each isotropy subgroup
H ∈ IsotrX(G) (25) the following two conditions hold: 4

(i) Compatible fixed space dimensions: the dimension of the H-fixed subspace of V equals that of the H-fixed
subspace of X :

dim
(
XH) = dim

(
V H). (34)

4These conditions are a specializations of the conditions stated in [tD79, p. 212-213], streamlined here for our purpose.
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(ii) Compatible orientation behavior: the action (29) of an element [g] ∈WG(H) (28) on V H is orientation
preserving or reversing, respectively, precisely if it is so on XH

orient


XH

[g]∈WH(H)

		

 = orient


(SV )H

[g]∈WH(H)

		

 . (35)

Example 3.8 (Compatible RO-degree for representation-spheres and -tori). We observe that every real linear
G-representation V is a compatible RO-degree (Def. 3.7)

(i) for the corresponding representation sphere SV (21);

(ii) and for the corresponding representation torus TV (23)
If the latter exists, hence if G is the point group of a crystallographic group on RV (22).

For brevity, we introduce the following terminology, following Table 5, for the situation in which we will now
consider equivariant Cohomotopy in compatible RO-degree:

Definition 3.9 (Cohomotopy of vicinity of the singularity). Given a finite group G and an orthogonal linear
G-representation V ∈ RO(G), we say that the Cohomotopy of the vicinity of the singularity is the unstable G-
equivariant Cohomotopy (3)

π
V
G
(
(RV )cpt) = π

V
G
(
SV )

in compatible RO-degree V (Def. 3.7, Example 3.8) of the Euclidean G-space RV (19) and vanishing at infinity
(11), hence of the representation sphere SV (21) and preserving the point at infinity.

The key implication of the first clause (34) on compatible RO-degrees is that each Elmendorf stage cH (32) of a
G-equivariant Cohomotopy cocycle c is a cocycle in ordinary Cohomotopy (5) to which the ordinary Hopf degree
theorem applies, either in its stable range (13) or in the unstable range (14):

X

G
�� c // SV

G
		

equivariant Cohomotopy cocycle (3)
in compatible RO-degree V (34)

⇒

X c // Sdim(X)>0 deg( f ) ∈ Z

XH
?�

...

OO

cH
// Sdim(XH)>0

?�

...

OO

deg(cH) ∈ Z
ordinary stable Hopf degree (13)

. . .
N.

. . .

]]

// . . .P0

. . .

bb

Elmendorf stages (32) XK
?�

...

OO

cK
// Sdim(V K)>0

?�

...

OO

deg(cK) ∈ Z

. . .
O/

. . .

__

//
?�

...

OO

. . .Q1

. . .

cc

?�

...

OO

XJ
?�

...

OO

cJ
//

OO

Sdim(V J)=0
?�

...

OO

OO

deg(cJ) ∈ {0,1}(XJ)

ordinary unstable Hopf degree (14)
OO OO

(36)
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Theorem 3.10 (Unstable equivariant Hopf degree theorem for representation spheres). The unstable Coho-
mopotopy of the vicinity of a G-singularity RV (Def. 3.9) is in bijection to the product set of one copy of the integers
for each isotropy group (25) with positive-dimensional fixed subspace Isotrdfix>0

X (G) (24), and one copy of {0,1} if
there is an isotropy group with 0-dimensional fixed subspace Isotrdfix=0

X (G) (which is then necessarily unique and,
in fact, the group G itself):

πV
G

((
RV
)cpt) c 7! (H 7!NH(c))

'
// Z

Isotr
dfix>0
X (G)

×{0,1}
Isotr

dfix=0
X (G)

, (37)

where, for H ∈ Isotrdfix>0
X (G), the ordinary Hopf degree at Elmendorf stage H (36) is of the form

deg
(
cH
)

= φH
(
{deg

(
cK
)∣∣K ) H ∈ IsotrX(G)}

)
− NH(c) ·

∣∣(WG(H)
)∣∣ ∈ Z.

The ordinary Hopf degree (13)
at Elmendorf stage K (32)

offset, being a function φH of
the Hopf degrees at all lower stages.

an integer multiple of
the order of the Weyl group (28)

(38)

The isomorphism (37) is exhibited by sending an equivariant Cohomotopy cocycle c to the sequence of the integers
NH(c) from (38) in positive fixed subspace dimensions, together with possibly the choice of an element of {0,1},
which is the unstable Hopf degree in dimension 0 (14), at Elmendorf stage G (if dim(V G) = 0).

Proof. In the special case that no subgroup H ⊂ G has a fixed subspace of vanishing dimension, this is [tD79,
Theorem 8.4.1] (the assumption of positive dimension is made “for simplicity” in [tD79, middle of p. 212]). Hence
we just need to convince ourselves that the proof given there generalizes: in the present case of representation
spheres, the only possible 0-dimensional fixed subspace is the 0-sphere. Hence we need to consider the case that
(SV )G = S0.

To generalize the inductive argument in [tD79, p. 214] to this case, we just need to see that every function
(SV )G! (SV )G extends to a WG(H)-equivariant function (SV )H ! (SV )H on a next higher Elmendorf stage H. But
this holds in the present case: every function from S0 = {0,∞} to itself (as in Figure H) readily extends even to
a G-equivariant function SV ! SV , and by assumption of vanishing at infinity (11) one of exactly two extensions
will work, namely either the identity function or the function constant on ∞ ∈ SV :

{0,1} oo
deg((−)G)

πV
(
SV
)

configuration of
a single point in S0

sitting at 0 ∈ S0

[
S0 idS0
−−! S0

]
 − [

[
SV c=idSV
−−−−! SV

] configuration of
a single charged point in SV

which is sitting at 0 ∈ SV

configuration of
no point in S0

[
S0 const∞−−−! S0

]
 − [

[
SV c=const∞−−−−−! SV

]
configuration of
no point in SV

(39)

From this induction forward, the proof of [tD79, 8.4.1] applies verbatim and shows that on top of this initial Hopf
degree number of -1 (a charge at 0 ∈ S0) or 0 (no charge at 0 ∈ S0) there may now be further NH · |WG(H)|-worth
of Hopf degree at the next higher Elmendorf stage H, and so on.

Example 3.11 (Z2-equivariant Cohomotopy). Consider

c ∈ π
nsgn
Z2

(
(Rnsgn)cpt)

(i.e., a cocycle in Z2-equivariant Cohomotopy vanishing at infinity (11) of the n-dimensional Euclidean orientifold
Rnsgn (19) underlying the n-dimensional sign representation nsgn, as in Figure I, hence the equivariant Cohomotopy
of the representation sphere Snsgn (21), as in Figure J, in compatible RO-degree nsgn, by Example 3.8). Then the
unstable equivariant Hopf degree theorem 3.10 says, when translated to a geometric situation via the unstable
Pontrjagin-Thom theorem (7), that:

(i) there either is, or is not, a single charge sitting at the finite fixed point 0 ∈ Snsgn , corresponding, with (39), to
an offset of −1 or 0, respectively, in (38);

(ii) in addition, there is any integer number (the N1 ∈ N in (38)) of orientifold mirror pairs (since |WZ2(1)| =
|Z2|= 2, by (30)) of charges floating in the vicinity.
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( Rnsgn

sign
representation

Z2

��
)cpt Snsgn = ( Rnsgn

sign
representation

Z2

��
)cptc

Euclidean n-space
around orientifold singularity

compactified by a point at infinity︷ ︸︸ ︷ representation sphere
equivariant Cohomotopy coefficient︷ ︸︸ ︷

equivariant Cohomotopy cocycle

∞
orientifold
singularity

•

•

•

•

orientifold
action

cocycle vanishes
at infinity

(far away from the singularity)

0− ∞

)

)

−ε

+ε

Z2

submanifolds away from
fixed point/singularity

mirror submanifolds

submanifold inside
fixed point/singularity

Figure L – The Z2-Equivariant Cohomotopy of Euclidean n-orientifolds vanishing at infinity according to the unstable equivariant

Hopf degree theorem 3.10 applied to sign-representation spheres (Figure J) and visuallized by the corresponding configurations of charged

points via the unstable Pontrjagin-Thom construction (7), in equivariant enhancement of the situation show in Figure E. The same situation,

just crossed with an interval, appears in the application to M5/MO5 charge in Figure V.

It is possible and instructive to make this fully explicit in the simple special case of the 1-dimensional sign
representation, where the statement of the equivariant Hopf degree theorem 3.10 may be found in elementary
terms: It is readily checked that all the continuous functions c1 : S1! S1 which take 0 to either of 0,∞ ∈ S1 and
wind around at constant parameter speed are Z2-equivariant, hence are Elmendorf stages (32) of Z2-equivariant
cocycles c: (

R1sgn
)cpt ' S1sgn c // S1sgn

S1 c1
// S1

S0
?�

OO

cZ2 // S0
?�

OO

. (40)

If such a function vanishes at infinity (11), in that it takes ∞ 7! ∞ as shown in Figure L, then we have one of two
cases:

(i) either c1 winds an odd number of times, so that (38) reads:

deg(c1) =

offset︷︸︸︷
1 − N1 ·2 ,

in which case it satisfies c1(0) = 0, so that under the PT-theorem (7) there is precisely one charge at the
singular fixed point, together with the even integer number 2 ·N1 ∈ Z of net charges in its “vicinity” (namely:
away from infinity) which are arranged in Z2-mirror pairs, due to the Z2-equivariance of c; this is what is
shown on the left of Figure L;

(ii) or c1 winds an even number of times so that (38) reads:

deg(c1) =

offset︷︸︸︷
0 − N1 ·2 ,

in which case it satisfies c1(0) = ∞, so that under the PT-theorem (7) there is no charge at the singular fixed
point, but a net even integer number 2 ·N1 ∈ Z of charges in its vicinity, as before.

Remark 3.12 (Number of branes and offset). Notice that:
(i) For N1 = 0 (no branes) this is the situation of (39): either there is a non-vanishing charge associated with the

singular fixed point (O-plane charge), or not.
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(ii) Furthermore, if there is, it is either +1 or -1, so that in general the charge associated with the singular fixed
point is in {0,±1}, as befits O-plane charge according to Figure OP.

(iii) The offset is relevant only modulo 2, so that we could have chosen an offset of +1 instead of as −1 in the
first case. This choice just fixes the sign convention for D-brane/O-plane charge.

Characterizing the brane content around a singularity. In the above example in RO-degree 1sgn (40), it is clear
that the configurations of branes implied by the unstable equvariant Hopf degree theorem (Theorem 3.10) appear in
multiples of the regular G-set around a fixed O-plane charge stuck in the singularity, as illustrated in Figure L and
as demanded by the local/twisted tadpole cancellation conditions according to Table 1. In order to prove that this
is the case generally, we now turn to the stabilized equivariant Hopf degree theorem (Theorem 3.13 below), which
concretely characterizes the (virtual) G-sets of branes that may appear classified by equivariant Cohomotopy.

3.1.2 Stable equivariant Hopf degree

In a homotopy-theoretic incarnation of perturbation theory, we may approximate unstable equivariant Cohomotopy
(Theorem 3.13) by its homotopically linearized, namely stabilized (see [BMSS18]) version. We briefly recall the
basics of stable equivariant Cohomotopy in RO-degree 0 ([Seg71], see [tD79, 7.6 & 8.5][Lu05]) before applying
this in Theorem 3.13 and Prop. 3.14 below.

Equivariant suspension. For V,W ∈ RO(G) two orthogonal linear G-representations, and for[
SV '

(
RV )cpt c

−!
(
RV )cpt ' SV ] ∈ π

V
G
((
RV )cpt)

the class of a cocycle in the equivariant Cohomotopy (3) of the Euclidean G-space RV (19) in compatible RO-
degree V (Example 3.8) and vanishing at infinity (11), we obtain the class of a cocycle vanishing at infinity on the
product G-space RV⊕W (20) in compatible degree V ⊕W , simply by forming the Cartesian product of c with the
identity on RW . This is the equivariant suspension of c by RO-degree W :

Σ
W c

equivariant suspension
by RO-degree W

of equivariant Cohomotopy cocycle

:=
[(
RV ×RW)cpt c× idRW

−−−−−!
compactified Cartesian product
of cocycle with identity on RW

(
RV ×RW)cpt

]
∈ π

V⊕W
G

((
RV⊕W)cpt)

. (41)

Note that this reduces to the ordinary suspension operation eq. (15) for G = 1 the trivial group, hence for RO-
degrees ntriv = n. These equivariant suspension operations form a directed system on the collection of equivariant
Cohomotopy sets (3), indexed by inclusions of orthogonal linear representations:(

V ↪!V ⊕W
)
7−!

(
π

V
G
((
RV )cpt) ΣW

−−! π
V⊕W
G

((
RV⊕W)cpt))

. (42)

Stable equivariant Cohomotopy. As a consequence of the above, one may consider the union of all unstable
equivariant Cohomotopy sets of representation spheres in all compatible degrees, with respect to the identifications
along the equivariant suspension maps (42) (the colimit of this system):

π
V
G
((
RV )cpt)

unstable equivariant Cohomotopy set
in compatible RO-degree V

Σ∞

//
stabilization map

(coprojection into colimit)

lim
−!

W

π
W
G
((
RW)cpt)

union (colimit) of
all unstable Cohomotopy sets

in compatible RO-degrees
identified along equivariant suspensions

= S0
G

stable
equivariant Cohomotopy ring

in RO-degree 0

. (43)

Since the resulting union/colimit is, by construction, stable under taking further such suspensions, this is called
the stable equivariant Cohomotopy in degree 0 ([Seg71, p. 1], see [Lu05, p. 9-10]) also called the 0th stable
G-equivariant homotopy group of spheres or the G-equivariant stable 0-stem or similar (see [May96, IX.2][Schw,
3]). Notice that here the stable RO-degree is the formal difference of the unstable RO-degree by the RO-degree of
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the singularity, so that vanishing stable RO-degree is another expression of compatibility of unstable degree, in the
sense of Example 3.8:

− V︸︷︷︸
RO-degree of

singularity

+ V︸︷︷︸
compatible RO-degree of

unstable Cohomotopy

= 0︸︷︷︸
RO-degree of

stable Cohomotopy

via
πV (SW ) = [SV ,SW ] = π

W (SV )
Σ∞

−! SW−V .

Extensive computation of stable Z2-equivariant Cohomotopy of representation spheres in non-vanishing RO-
degrees, i.e., computation of the abelian groups Snsgn+mtriv

Z2
, is due to [AI82][Ir82]; see also [DI16, 5][Du08, p.

10-15]. Under Hypothesis H, these groups are relevant for tadpole cancellation with branes wrapping orientifold
singularities non-transversally. This is of interest to us but goes beyond the scope of this article.

Equivalence to the Burnside ring. Due to the stabilization, the stable equivariant Cohomotopy set (43) has the
structure of an abelian group, in fact the structure of a ring. As such, it is isomorphic to the Burnside ring A(G) of
virtual G-sets ([Bur01][So67][tD79, 1], for exposition in our context see [BSS19, 2]):

stable
equivariant Cohomotopy

S0
G '

Burnside ring

A(G) =
{

Virtual G-sets
}
. (44)

This result is due to [Seg71, p. 2]; see [tD79, 7.6.7 & 8.5.1][Lu05, 1.13], we highlight its geometric meaning
below; see Figure M. This is a non-linear analog (more precisely, the analog over the absolute base “field” F1
[Co04, p. 3][Dur07, 2.5.6]) of the fact that the equivariant K-theory in degree 0 is the representation ring of virtual
linear G-representations over the field of real numbers (see, e.g., [Gr05, 3]):

equivariant K-theory

KO0
G '

representation ring

RO(G) =
{

Virtual G-representations
}
. (45)

In fact, the operation S 7! R[S] that sends a (virtual) G-set S ∈ A(G) to its linearization, hence to its linear span
R[S], hence to the (virtual) permutation representation that it induces (see [tD79, 4][BSS19, 2]), is a ring homomor-
phism from the Burnside ring to the representation ring. Furthermore, it exhibits the value on the point of unique
multiplicative morphism from equivariant stable Cohomotopy theory to equvariant K-theory, called the Boardman
homomorphism [Ada74, II.6], which is the Hurewicz homomorphism generalized from ordinary cohomology to
generalized cohomology theories:

equivariant stable Cohomotopy S0
G'

Boardman homomorphism
β // KO0

G'

equivariant K-theory

Burnside ring A(G)
S 7!R[S]

linearization
sending G-sets S to

linear G-representations R[S]

// RO(G) representation ring

(46)

In summary, the composite of the stabilization morphism (43) with the isomorphism (44) to the Burnside
ring explicitly extracts from any cocycle c in unstable equivariant Cohomotopy a virtual G-set {branes}, hence a
virtual G-permutation representation R[{branes}]. The following theorem explicitly identifies this G-set {branes}
in terms of the Elmendorf stage-wise Hopf degrees of the cocycle c; see Figure M below for illustration.

Theorem 3.13 (Stabilized equivariant Hopf degree theorem for representation spheres). Consider a cocycle
c in unstable Cohomotopy of the vicinity of a G-singularity RV (Def. 3.9). Its image under stabilization in equiv-
ariant stable Cohomotopy (43) is, under the identification (44) with the Burnside ring, precisely that virtual G-set
{branes} ∈ A(G) whose net number of H-fixed points (“Burnside marks”, see [BSS19, 2]), equals the Hopf degree
of c at any Elmendorf stage H ∈ IsotrX(G) (36). Hence if H = 〈g〉 is a cyclic group generated by an element g∈G,
this number also equals the character value at g (i.e., the trace of the linear action of g) on the linear representation
R
[
{branes}

]
:
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cocycle in
unstable equivariant Cohomotopy

c

∈

� //

cocycle in stable equivariant Cohomotopy
' virtual G-set of branes

{branes}

∈

� //

virtual linear G-representation
spanned by virtual G-set of branes

R[{branes}]

∈
πV

G

((
RV
)cpt)

(37)

'

stabilization
Σ∞

// S0
G

(44)

'

β // KO0
G

(45)

'

Z
Isotr

dfix>0
X (G)

×{0,1}
Isotr

dfix=0
X (G) // A(G)

R[−]
linearization

// RO(G)

G⊃ H :
Elmendorf
stage (32)

deg
(
cH
)

Hopf degree at stage H (36)
of Cohomotopy cocycle

∣∣∣{branes}H
∣∣∣

net number of H-fixed elements
= Burnside marks at stage H

in virtual set of branes

H = 〈g〉 :
Elmendorf stage

at cyclic subgroup
generated by g ∈ G

deg
(
c〈g〉
)

Hopf degree at stage H = 〈g〉 (36)
of Cohomotopy cocycle

∣∣∣{branes}〈g〉
∣∣∣

virtual number of fixed points
under action of g ∈ G

on virtual set of branes

Trg
(
R[{branes}]

)
character value at g

of virtual permutation representation
spanned by branes

(47)

Proof. For the case that all fixed subspace dimensions are positive, this is essentially the statement of [tD79, 8.5.1],
after unwinding the definitions there (see [tD79, p. 190]). We just need to see that the statement generalizes as
claimed to the case where the full fixed subspace

(
SV
)G

= S0 is the 0-sphere. But, under stabilization map Σ∞

(43), the image of a Cohomotopy cocycle SV c
−! SV and its equivariant suspension (41) S1triv⊕V Σ

1triv c
−−−! S1triv⊕V

by, in particular, the trivial 1-dimensional representation, have the same image Σ∞(c) ' Σ∞
(
Σ1trivc

)
. Now to the

suspended cocycle Σ1trivc the theorem [tD79, 8.5.1] applies, and hence the claim follows from the fact (15) that the
unstable Hopf degree in {0,1} injects under suspension into the stable Hopf degrees:[

S0 =
(
SV )G cG

−−!
(
SV )G

= S0] ∈ {0,1} ↪! Z .

For ADE-singularities, this implies the following (see Figure M):

Proposition 3.14 (Classification of Cohomotopy charge in the vicinity of ADE-singularities). Consider G =
GADE ⊂ SU(2) a finite ADE-group (16) and 4H its canonical quaternionic representation (17). Then the homo-
morphism (47) from Theorem 3.13 identifies the unstable Cohomotopy of the vicinity of the GADE-singularity R4H

(Def. 3.9) with its image in the representation ring

π
4H
GADE

((
R4H

)cpt) � � β◦Σ∞

// KO0
G ' RO(G)

which consists of all the virtual representations of the form

R[{branes}] = NOpla ·1triv−N brane
int
·kreg for

N brane
int
∈ N ,

NOpla ∈ {0,1}
(48)

hence of the form of the local/twisted tadpole cancellation conditions in Table 1 and Table 2.

Proof. By (26), the representation 4H is such that every non-trivial subgroup 1 6= H ⊂G has a 0-dimensional fixed
space:

dim
((

R4H
)H
)

=

{
4 if H = 1
0 otherwise.

This means that for c ∈ π4H
((
R4H

)cpt) an equivariant Cohomotopy cocycle in the vicinity of an ADE-singularity,
its only Elmendorf stage-wise Hopf degree (36) in positive dimension is, by equation (38) in Theorem 3.10, of the
form

deg
(
c1) =

∈ {0,1}︷ ︸︸ ︷
QOpla−N1 · |G| ,
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where we used the fact that WG(1) = G (30). But, by Theorem 3.13, this implies that the virtual G-set {branes} of
branes corresponding to c has the following Burnside marks

{branes}H =

{
QOpla−N1 · |G| if H = 1

QOpla otherwise ,

hence that the corresponding permutation representation of branes has the following characters:

Trg
(
R{branes}

)
=

{
QOpla−N1 · |G| if g = e

QOpla otherwise .

The unique G-set/G-representation with these Burnside marks/characters is the sum of the N1-fold multiple of the
regular G-set/G-representation and the QOpla-fold multiple of the trivial representation (see Figure M):

R[{branes}] = QOpla ·1triv − N1 ·kreg ,

The situation is illustrated by Figure M:

equivariant Cohomotopy
vanishing at infinity

of Euclidean G-space
in compatible RO-degree V

πV
G

((
RV
)cpt)

Σ∞

stabilization

stable
equivariant

Cohomotopy

S0
G β

Boardman
homomorphism

'

AG
Burnside

ring

R[−]
linearization

equivariant
K-theory

KO0
G'

RO(G)
representation

ring

e.g. one O
−

-plane and two branes︷ ︸︸ ︷ minus the trivial G-set
with two regular G-sets ︷ ︸︸ ︷minus the trivial G-representation

plus two times the regular G-representation︷ ︸︸ ︷
∞

∞

∞∞

+1triv

−4reg

−4reg

Figure M – Virtual G-representations of brane configurations classified by equivariant Cohomotopy in the vicinity of ADE-singularities

(Def. 3.9), according to Prop. 3.14, following Theorem 3.10 and Theorem 3.13. The results reproduces the form of the local/twisted tadpole

cancellation conditions in Table 1, Table 2. Shown is a situation for G = Z4 and V = 2rot as in Figure K.

3.2 Equivariant Hopf degree on tori and Global tadpole cancellation

We now globalize the characterization of equivariant Cohomotopy from the vicinity of singular fixed points to
compact toroidal orbifolds, in Theorem 3.17 below. Prop. 3.18 below shows that the two are closely related,
implying that the local/twisted tadpole cancellation carries over to toroidal orbifolds. Then we informally discuss
the enhancement of unstable equivariant Cohomotopy to a super-differential cohomology theory (55) and show that
its implications (58) on the underlying equivariant Cohomotopy enforce the form of the global/untwisted tadpole
cancellation conditions.

Globalizing from Euclidean orientifolds to toroidal orientifolds. In §3.1 we discussed the characterization of
equivariant Cohomotopy in the vicinity of singularities (according to Table 5). We may globalize this to compact
toroidal orientifolds by applying this local construction in the vicinity of each singularity, using that the condition
of “vanishing at infinity” (11) with respect to any one singularity means that the local constructions may be glued
together. This local-to-global construction is indicated in Figure N:
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︷ ︸︸ ︷ ︷ ︸︸ ︷toroidal orientifold
representation sphere

equivariant Cohomotopy coefficient

Z2-equivariant Cohomotopy cocycle

(0,0)

orientifold
action

( 1
2 ,0)

(0, 1
2 )a fixed point

disk around fixed point

( 1
2 ,

1
2 )

•

•

x1 = 0 x1 = 1
2

x2 = 0

x2 = 1
2

Z2

0

∞

∞

∞

Tnsgn = Rnsgn

sign
representation

Z2

��
/Zn Snsgn = D( Rnsgn

sign
representation

Z2

��
)/S(Rnsgn)

c

some charge at this singularity

mirror charge

O-plane unit charge at this singularity

vanishing charge far away from all singularities

no charge at this singularity

Figure N – Equivariant Cohomotopy cocycle on toroidal orbifolds glued from local cocycles in the vicinity of singularities, as

formalized in the proof of Theorem 3.17. Shown is a situation for G = Z2, as in Figure I and Figure J.

Well-isolated singularities. In order to formalize this local-to-global construction conveniently, we make the
following sufficient assumption on the G-spaces to which we apply it:

Definition 3.15. We say that a G-space X

G
��
has well-isolated singularities if all the minimal subgroups with 0-

dimensional fixed subspaces (24) are in the center of G, i.e. if the following condition holds:

H ⊂ G minimal such that dim
(
XG)= 0 ⇒ H ⊂ Center(G) . (49)

Example 3.16. The ADE-singularites (Table 5) with well-isolated fixed points in the sense of (49) are all those
in the A-series, as well as the generalized quaternionic ones in the D-series – see Table 6. This is because, for
ADE-singularities, all non-trivial subgroups have 0-dimensional fixed space (26), so that here the condition of
well-isolated singularities (49) requires that all non-trivial minimal elements in the subgroup lattice be in the
center. This is trivially true for the cyclic groups in the A-series, since they are abelian. For the generalized
quaternionic groups in the D-series there is in fact a unique minimal non-trivial subgroup, and, in fact, it is always
the orientifold action Hmin = Z2 which coincides with the center, as shown for the first few cases in Table 6.

The point of the notion of well-isolated fixed points (49) is that it is sufficient to guarantee that the action of
the full group restricts to the union of the 0-dimensional fixed subspaces, since then

H · xfixed = xfixed ⇒ H · (g · xfixed) = (H ·g) · xfixed = (g ·H) · xfixed = g · (H · xfixed) = g · xfixed, (50)

for all g ∈ G. Hence, with (49), the quotient set

IsolSingPtsG(X) :=

( ⋃
H ⊂ G,dim(XH) = 0

XH

)/
G (51)

exists and is the set of isolated singular points in the orbifold X�G.
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Table 6 – The ADE-Singularities R4H

GADE

��
with well-isolated fixed points according to (49) are those in the A-series GADE = Zn and the

quaternionic groups Q2n+2 = 2D2n+2 in the D-series. For the latter and for the even-order cyclic groups, the minimal non-trivial central

subgroup is unique and given by the point reflection group Zrefl
2 (18).

Unstable equivariant Hopf degree of representation tori. With these preliminaries in hand, we may now state
and prove the unstable equivariant Hopf degree theorem for representation tori with well-isolated singularities,
Theorem 3.17 below. Its statement and proof are directly analogous to the case for representation spheres in
Theorem 3.10. The difference here, besides the passage from spheres to tori, is the extra assumption on well-
isolated singularities and the fact that the proof here invokes the construction of the previous proof around each
one of the well-isolated singularities.

Theorem 3.17 (Unstable equivariant Hopf degree theorem for representation tori). The unstable equivariant
Cohomotopy (3) of a G-representation torus TV (23) with well-isolated singularities (49) and with a point at
infinity adjoined (9) in compatible RO-degree V (Example 3.8) is in bijection to the product set of one copy of the
integers for each isotropy group (25) with positive dimensional fixed subspace (24), and one copy of {0,1} for
each well-isolated fixed point (51)

πV
G

((
TV
)
+

) c 7! (H 7!NH(c))
'

// Z
Isotr

dfix>0
X (G)

×{0,1}IsolSingPtsG(X)
, (52)

where, for H ∈ Isotrdfix>0
X (G), the ordinary Hopf degree at Elmendorf stage H (36) is of the form

deg
(
cH
)

= φH
(
{deg

(
cK
)∣∣K ) H ∈ IsotrX(G)}

)
− NH(c) ·

∣∣(WG(H)
)∣∣ ∈ Z.

The ordinary Hopf degree (13)
at Elmendorf stage K (32)

a fixed offset, being a function of
the Hopf degrees at all lower stages.

an integer multiple of
the order of the Weyl group (28)

(53)

The isomorphism (52) is exhibited by sending an equivariant Cohomotopy cocycle to the sequence of the integers
NH from (53) in positive fixed subspace dimensions, together with the collection of elements in {0,1}, which are
the unstable Hopf degrees in dimension 0 (14), at Elmendorf stage G at each one of the well-isolated singularities.
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Proof. In the special case when no subgroup H ⊂ G has a fixed subspace of vanishing dimension, this is [tD79,
Theorem 8.4.1], where the assumption of positive dimension is made “for simplicity” ([tD79, middle of p. 212]).
Hence we just need to convince ourselves that the proof given there generalizes.

To that end, assume that dim
(
V G
)
= 0. To generalize the inductive argument in [tD79, p. 214] to this case, we

need to see that every G-invariant function on the isolated fixed points (51)

IsolSingPtsG(X) // S0

⋃
H ⊂ G,dim(XH) = 0

XH (cH) //

q
OO

S0

(54)

extends to a WG(K)-equivariant function (SV )K ! (SV )K on the next higher Elmendorf stage K ∈ Isotrdfix>0
X (G).

For this, consider a G-equivariant tubular neighborhood around the well-isolated fixed points. This is guaranteed
to exist on general grounds by the equivariant tubular neighborhood theorem, since, by assumption (49), the set of
points (in the bottom left of (54)) is an equivariant (and of course closed) subspace, by (50). In fact, in the present
specific situation of global orthogonal linear actions on a Euclidean space we obtain a concrete such equivariant
tubular neighborhood by forming the union of Euclidean open balls of radius ε around each of the points, for any
small enough positive real number ε . This kind of tubular neighborhood is indicated by the collection of dashed
circles in Figure A and Figure N. Given this or any choice of equivariant tubular neighborhood, the extensions
(39) in the proof of Theorem 3.10 apply to the vicinity of any one fixed points. This is a choice in {0,1} for each
element in IsolSingPtsG(X) (51), hence in total is the choice of an element in {0,1}IsolSingPtsG(X)

, as it appears in (37).
Since all these local extensions to the vicinity of any of the singularities “vanish at infinity” (11), i.e., at some
distance > ε from any and all of the well-isolated fixed points, they may jointly be further extended to a global
cocycle TV c

−! SV by declaring that c sends every other point in TV outside the given tubular neighborhood to
∞ ∈ SV (shown in Figure N). From this induction onwards, the proof of [tD79, 8.4.1] applies verbatim and shows
that on top of this initial Hopf degree choice in {0,1}IsolSingPtsG(X)

there may now be further NH · |WG(H)|-worth of
Hopf degree at the next higher Elmendorf stage H, and so on.

Stable equivariant Hopf degree of representation tori. Note that the unstable equivariant Hopf degrees of
representation spheres (Theorem 3.10) and of representation tori (Theorem 3.17) have the same form, (37) and (52),
respectively, away from the unstable Hopf degrees in vanishing fixed space dimensions. It follows immediately
that, up to equivariant homotopy, all brane charge may be thought of as concentrated in the vicinity of the “central”
singularity (see Figure O):

Proposition 3.18 (Pushforward in unstable equivariant Cohomotopy). Let TV

G
		

be a G-representation torus

(23) with well-isolated singularities (49), and write Dε(RV )
i
↪! TV , 0 ↪! x0, for the inclusion of the G-equivariant

tubular neighborhood around the fixed point x0 ∈TV covered by 0∈RV that is given by the open ε-ball around the
point, for any small enough positive radius ε . Then pushforward along i from the unstable equivariant Cohomotopy
of the vicinity of this fixed point (as in Theorem 3.10) to that of the full representation torus (as in Theorem 3.17)

unstable equivariant Cohomotopy
of vicinity of G-singularity

identify with vicinity of x0 unstable equivariant Cohomotopy
of G-representation torus

πV
G

((
RV
)cpt) � � i∗

'
(dfix>0)

// πV
G

((
TV
)
+

)RV c
−−−−−−! SV

x 7−!

{
c(x) if d(x,0)< ε

∞ otherwise

 7−!

 TV i∗(c)
−−−−−−−−! SV

x 7−!

{
c(x) if d(x,x0)< ε

∞ otherwise


is an isomorphism on Hopf degrees at Elmendorf stages H>0 of non-vanishing fixed space dimension and an
injection on the unstable Hopf degree set at Elemendorf stages H=0 with vanishing fixed subspace dimension:

i∗ :
{

NH=0(c) ↪! NH=0(i∗(c))
NH>0(c) 7! NH>0(i∗(c)) .
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This is illustrated by Figure O:

unstable equivariant Cohomotopy
of vicinity of singularity

π
4H
Z4

((
R4H

)cpt)
︷ ︸︸ ︷

orientifold
action

O-plane

mirror
O-plane

branes

mirror branes

x1 = 0

x2 = 0

unstable equivariant Cohomotopy
of representation torus

π
4H
Z4

((
T4H
)
+

)
︷ ︸︸ ︷

orientifold
action

branes

mirror branes

x1 = 0 x1 = 1
2

x2 = 0

x2 = 1
2

i∗

'dfix>0

Figure O – Pushforward in equivariant Cohomotopy from the vicinity of a singularity to the full toroidal orientifold is an isomor-

phism on brane charges and an injection on O-plane charges, by Prop. 3.18. Shown is a case with G = Z4, as in Figure M. All integer

number of branes (black dots) are in the image of the map, but only the O-plane at (x1,x2) = (0,0) is in the image.

Local tadpole cancellation in toroidal ADE-orientifolds. Under the identification from Prop. 3.18, the stabilized
equivariant Hopf degree theorem for representation spheres (Theorem 3.13) applies also to representation tori, and
hence so does Prop. 3.14, showing now for the case of toroidal orbifolds with ADE-singularities that the brane
charges classified by equivariant Cohomotopy are necessarily multiples of the regular representation. This result
is visualized in Figure P:

︷ ︸︸ ︷

equivariant Cohomotopy
of representation torus

(orientifold Cohomotopy)

π
4H
Z4

((
T4H
)
+

)
4 · [Z4/Z4 ]−3 · [Z4/1]

equivariant K-theory
of representation torus
= representation ring

︷ ︸︸ ︷
KO0

Z4
' RO(Z4)

4 ·1−3 ·4reg

stabilize and linearize

orientifold
action

O-plane

mirror
O-plane

brane

mirror branes

x1 = 0 x1 = 1
2

x2 = 0

x2 = 1
2

4 ·1triv

−3 ·4reg

Figure P – Local/twisted tadpole cancellation in a toroidal ADE-orientifold is enforced by equivariant Cohomotopy according to

Prop. 3.18, which reduces to the situation in the vicinity of a single singularity, as in §3.1. Shown is a case with G = Z4 as in Figure O.

This is the local/twisted tadpole cancellation in toroidal ADE-orentifolds according to Table 1 and Table 2.

Global/untwisted tadpole cancellation from super-differential Cohomotopy. This concludes our discussion
of local tadpole cancellation in global (i.e. toroidal) ADE-orientifolds implied by C-field charge quantization in
equivariant Cohomotopy. Finally, we turn to discuss how the global/untwisted tadpole cancellation condition on
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toroidal orbifolds follows from charge quantization in super-differential equivariant Cohomotopy. We state the
concrete condition below in (58), but first we explain how this condition arises from super-differential refinement:

Super-differential enhancement of unstable equivariant Cohomotopy theory. Given any generalized coho-
mology theory for charge quantization, it is its corresponding enhancement to a differential cohomology theory
which classifies not just the topological soliton/instanton sectors, but the actual geometric higher gauge field con-
tent, hence including the flux densities. For stable/abelian cohomology theories this is discussed for instance in
[Fre00][Bu12], while in the broader generality of unstable/non-abelian cohomology theories this is discussed in
[FSS10][SSS09][FSS12][FSS15]. For example, ordinary degree-2 integral cohomology theory BU(1)' B2Z clas-
sifies magnetic charge sectors, but it is its differential cohomology enhancement BU(1)conn (Deligne cohomology)
which is the universal moduli for actual electromagnetic field configurations. Similarly, plain (twisted) K-theory
KU and KO classifies topological RR-charge sectors, but it is differential K-theory which classifies the actual
RR-fields; see [GS17][GS19a][GS19b].

Hence with Hypothesis H we are ultimately to consider the refinement of ADE-equivariant Cohomotopy theory
π

4H
G , discussed so far, to some differential equivariant Cohomotopy theory, denoted

(
π

4H
G

)
conn and characterized as

completing a homotopy pullback diagram of geometric unstable cohomology theories of the following form:

super-differential
unstable equivariant Cohomotopy

[SS20] = [FSS15] ∧ [HSS18]

(
π•G
)

conn

⇒

universal homotopy

forget topological data,
retain only flux super-forms //

forget flux forms,
retain underlying cocycle in

plain equivariant Cohomotopy

��

{(
µM2/M5

)
G

}
inject this cocycle, thereby

enforce 11d SuGra torsion constraint

��

G-equivariant enhancement [HSS18, 5]
of M2/M5-brane super WZW-terms

jointly regarded as a cocycle in
super-rational 4-Cohomotopy

[FSS15, 3][FSS16a, 2.3][FSS19a, (57)]

unstable equivariant Cohomotopy
cohomology theory

(3)
π•G rationalize, i.e.:

forget all torsion subgroups
in homotopy/cohomology groups

// ΩG(−, lS4
G)

super-rational
unstable equivariant Cohomotopy theory

[HSS18, 3.2]

(55)

Discussing this construction
(
π

4H
G

)
conn in detail requires invoking concepts from ∞-stacks and L∞-algebroids

[FSS10][SSS09], as well as their application to super-geometric orbifolds [SS20], which is beyond the scope
of this article. However, for the present purpose of seeing the global tadpole cancellation condition arise, all that
matters are the following implications of super-differential refinement, which we make explicit by themselves:

Rational flux constraints from equivariant enhancement of M2/M5-cocycle. The homotopy pullback construc-
tion (55) amounts to equipping the rationalization of cocycles in plain unstable equivariant Cohomotopy (3) with
equivalences (connection data) to prescribed flux super-forms in super-rational equivariant Cohomotopy theory
[HSS18, 3.2]. The flux super-forms relevant for charge-quantization of the M-theory C-field according to Hy-
pothesis H are G-equivariant enhancements of the joint M2/M5-brane cocycle [FSS15, 3][FSS16a, 2.3][HSS18,
3.42][FSS19a, (57)] with coefficients in the rationalized 4-sphere lS4:

R10,1|32
D = 11, N = 1

super-Minkowski spacetime

µM2/M5
:=
( i

2 ψΓa1a2 ψ∧ea1∧ea2 ,

1
5 ψΓa1 ···a5 ψ∧ea1∧···∧ea2

)
M2/M5-brane super-cocycle

(joint M2/M5 WZW-term curvatures)

// lS4
rationalized

4-sphere

. (56)

Specifically, for GADE-equivariance (16) at ADE-singularities 4H (17), a choice of equivariant extension of this
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cocycle is a choice of extension to an Elmendorf-stage diagram as in (36) – see [HSS18, 5]:5

(R10,1|32)

GADE


 (µM2/M5 )GADE // (lS4H)

GADE




GADE-equivariant enhancement
of M2/M5-brane super-cocycle

(−)H=1

Elmendorf stages
(32)

R10,1|32
µM2/M5 // lS4H M2/M5-brane super-cocycle

(56)

(−)H=GADE
R6,1|16

MK6 super-embedding
(see [HSS18, Thm. 4.3] and Rem. 4.7)

?�

OO

∈{0,1} // lS0
?�

OO

charge at fixed planes

(57)

This involves a binary choice at lowest (and hence any other, by Example 3.4) Elmendorf stage. The homotopy
in the diagram (55) enforces this local choice of rationalized flux globally onto the rationalized fluxes of the
equivariant Cohomotopy cocycles. This has two effects:

1. Super-differential enhancement at global Elmendorf stage implies vanishing total flux. Note the M2/M5-
brane super-cocycle µM2/M5 (56) appearing at global Elmendorf stage in (57) has vanishing bosonic flux ( µM2/M5 |ψ=0 =
0 by (56)). Also, the infinitesimal fermionic component ψ does not contribute to the topology seen by plain equiv-
ariant Cohomotopy (see [SS20] for details). Hence the homotopy in (55) forces the underlying classes in plain
equivariant Cohomotopy to be pure torsion at global Elmendorf stage. But, since in compatible RO-degree (as
in Example 3.8) the Hopf degree theorem (13) implies non-torsion Cohomotopy groups at all positive Elmendorf
stages (36), this means that super-differential refinement (55) of equivariant Cohomotopy in compatible RO-degree
enforces vanishing Hopf degrees at global Elmendorf stage H = 1 (36).

Explicitly, this means that the super-differential enhancement (55) forces the underlying plain equivariant Co-
homotopy cocycles of ADE-orientifolds in compatible RO-degree to be in the kernel of the forgetful map (−)1

(36) from equivariant to ordinary Cohomotopy, which projects out the global Elmendorf stage at H = 1:

unstable equivariant Cohomotopy
admitting super-differential refinement

π
4H
GADE

((
T4H
)
+

)
Sdiffble

“super-differentiable”
(55)� _

kernel
��

//

(pb)

{0}� _

��
π

4H
GADE

equivariant Cohomotopy (3)
of toroidal orbifold (23)

with ADE-singularities (17)

((
T4H
)
+

) |Qtot|:=(−)1

project out
global charge =

Hopf degree at global Elmendorf stage
(36)

// π4
((
T4
)
+

)
plain Cohomotopy

of plain 4-torus
(5)

' Z
global Hopf degree

= net brane/O-plane charge
(13)

(58)

It is now immediate, from Theorem 3.10 and Theorem 3.17, that this enforces the condition of vanishing net
brane/O-plane charge, precisely in the form of the global/untwisted tadpole cancellation condition from Table 1
and Table 2 in the way illustrated in Figure A.

2. Super-differential enhancement at lower Elmendorf stage implies choice of O-plane charge. The global-
ization via (58) of the lower S0-valued Elmendorf stage in the equivariantized M2/M5-brane cocycle (57) means
to impose the chosen charge ∈ {0,1} to all O-planes, via Prop. 3.14 as illustrated in Figure H. We will denote
the ADE-equivariant Cohomotopy sets which admit super-differential refinement with the choice −1 ∈ {0,−1} in
(57) by a subscript (−)−:

5For more general actions this involves extension to a functor on the orbit category; see [HSS18, Lemma 5.4].
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Example 3.19 (Super-differentiable equivariant Cohomotopy of ADE-orbifolds). Locally, the super-differentiable
equivariant Cohomotopy of the vicinity of an ADE-singularity (Table 5) with respect to the choice−1 ∈ {−0,−1}
in the equivariant enhancement (57) of the super-flux form (56) is

π
4H
GADE

((
R4H

)cpt)
− =

{
1 ·1triv−Nbrane ·kreg

local charge structure
(Prop. (3.14))

∣∣∣ Nbrane ∈ Z
}
. (59)

Globally, the super-differentiable equivariant Cohomotopy specifically of the Kummer surface ADE-orbifold
T4H �Zrefl

2 (Example 3.6) is

π
4H
Zrefl

2

((
T4H
)
+

)
Sdiffble−

ADE-equivariant Cohomotopy
admitting super-differential lift

(55)

=
{

16 ·1triv

super-differentiability
at low Elmendorf stage

(57)

− Nbrane ·2reg

local charge structure
(Prop. 3.14, Prop. 3.18)

∣∣ 2Nbrane−16 = 0
super-differentiablity

at global Elmendorf stage
(58)

}
. (60)

4 M5/MO5 anomaly cancellation

We now apply the general discussion of equivariant Cohomotopy in §3 to cohomotopical charge quantization of
the M-theory C-field, according to Hypothesis H, for compactifications of heterotic M-theory on toroidal orbifolds
with ADE-singularities. The resulting M5/MO5-anomaly cancellation is discussed in §4.2 below. In order to set
the scene and to sort out some fine print, we first discuss in §4.1 relevant folklore regarding heterotic M-theory on
ADE-orbifolds.

4.1 Heterotic M-theory on ADE-orbifolds

We now explain how the singularity structure (as in Table 5), which must really be meant when speaking of MO5-
planes (61) coinciding with black M5-branes (62), is that of “ 1

2 M5-branes” (65) [HSS18, 2.2.7][FSS19d, 4]; see
Figure S below. This singularity structure goes back to [Sen97, 3] with further discussion and development in
[FLO99][KSTY99][FLO00a][FLO00b][FLO00c][CHS19]; the type IIA perspective is considered in [GKST01]
and also briefly in [KS02, p. 4]. We highlight the systematic picture behind the resulting heterotic M-theory on
ADE-orbifolds and its string theory duals, further below in Table 7.

Critique of pure MO5-planes. We highlight the following:

(i) Seminal literature on M-theoretic orientifolds speaks of M5-branes parallel and/or coincident to MO5 singu-
larities [DM95][Wi95b, 3.3][Ho98, 2.1], namely to Euclidean Z2-orientifolds (19) of the form (see [HSS18,
2.2.2]):

MO5 R5,1 � � // R5,1× R5sgn

Z2
		
, (61)

where R5sgn is the Euclidean singularity (19) of the 5-dimensional sign representation of the group Z2.

(ii) But 1/2BPS M5-brane solutions of D = 11 supergravity themselves have been classified [dMFO10, 8.3] and
found to be given, in their singular far horizon limit [AFCS99, 3], by singularities for finite subgroups GADE⊂
SU(2)' Sp(1) (16) of the type

M5 R5,1 � � // R5,1×R1× R4H

GADE



, (62)

where the last factor is an ADE-singularity (17).
(iii) As orbifold singularities, this coincides with the far horizon geometry of coincident KK-monopole solutions

to 11d supergravity (e.g. [IMSY98, (47)][As00, (18)]; see [HSS18, 2.2.5])

MK6 R6,1 � � // R6,1× R4H

GADE



, (63)
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which, from the perspective of type IIA theory, reflects the fact that NS5-branes are domain walls inside D6-
branes (e.g. [EGKRS00, p. 5], see [Fa17, 3.3.1. 3.3.2]). This is illustrated by the central dot on the vertical
axis in Figure S. Hence for the special case that GADE = Zrefl

2 (18), this yields the product R1×R4sgn of the
4-dimensional sign representation with the trivial 1-dimensional representation, instead of the 5-dimensional
sign representation in (61).

(iv) In order to allow M5-singularities (62) to coincide with MO5-singularities (61) we have to consider inter-
secting a 1/2BPS 5-brane solution with an MO9 locus fixed by a Hořava-Witten involution ZHW

2 ([HW95],
see [HSS18, 2.2.1]):

MO9 R9,1 � � // R9,1× R1sgn

ZHW
2 



. (64)

(v) This intersection is called the 1
2 M5 in [HSS18, 2.2.7][FSS19d, 4]

1
2 M5 = MK6∩MO9 R5,1 � � // R5,1× T1sgn

ZHW
2




×

×

��
T4H

GADE




(65)

since its type IIA incarnation is known as the 1
2 NS5 [GKST01, 6][AF17, p. 18]. This is the brane con-

figuration thought to geometrically engineer D = 6, N = (1,0) field theories [HZ97][HKLY15][DHTV14,
6].

Since the fixed point set of the toroidal orbifolds (23) for
both the 1

2 M5 (65) and the MO5 (61) is the same set (27)
of 32 points, all arguments about MO5 (61) which depend
only on the set of isolated orientifold fixed points, such as in
[DM95][Wi95b, 3.3][Ho98, 2.1], apply to 1

2 M5 (65) as well.
But the 1

2 M5 orientifold has in addition fixed lines, namely
the MK6 loci, and fixed 4-planes, namely the MO9, as shown
on the right of Figure S. This reflects the fact that, by the
classification of [dMFO10, 8.3], the black M5 not only may,
but must appear as a domain wall inside an MK6 singular
locus.
We conclude from this that: The 1

2 M5 (65) orientifold is the
correct model of orientifolded M5/MO5 geometry, while the
pure MO5 (61) is just its restriction along the diagonal sub-
group inclusion (66), as shown in Figure R

orientifold
subgroup

H ⊂ G

fixed/singular subspace (24)

R5,1×
(
R1HW

sgn +4ADE
H
)H

ZHW
2 ×GADE

1
2 M5

R5,1

ZHW
2

- 

<<

Zrefl
2

P0

aa
MO9

R9,1
MK6

R6,1

Zrefl+HW
2

?�

diag

OO

R5,1

MO5

M-

\\
� 1

BB

1U5

PP

?�
OO
	)

NN

Figure R – Fixed subspaces in the 1
2 M5-singularity

(61) with MO5 (61) in the intersection of MK6 (63)
with MO9 (64), illustrated in Figure S.

Zrefl+HW
2

(61)

� � diag // ZHW
2

(64)

×Zrefl
2

(18)

� � // ZHW
2

(64)

×GADE
(16)

. (66)

In summary, this data arranges into a short exact sequence of orbi-/orienti-fold group actions (as in [DFM11, p. 4])

1 // GADE

orbifold

� � index-2 subgroup //

{e,σ}︷︸︸︷
ZHW

2 ×GADE

(e,q) 7! (e,+q)

(σ ,q) 7! (R,−q)

'
//

——————————— orbi-orientifold ———————————

{e,R}︷ ︸︸ ︷
ZHW+refl

2 ×GADE // // ZHW+refl
2

orientifold

// 1

R1triv+4H R1sgn+4H R5 R5sgn

(67)

This situation is illustrated by the following figure:
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Orientifold MO5 1
2 M5

Global quotient
group G = Z2 ZHW

2 ×GADE

Global quotient
group action TV

G

		
= T5sgn

Z2

		
T1sgn

ZHW
2

		
×

×

��
T4sgn

GADE

		

Fixed/singular
points

(
TV
)G

= {0, 1
2}

5 = 32

Far horizon-limit
of M5 SuGra solution? no yes

Figure S – Singularity structure of heterotic M-theory on ADE-singularities, as in Figure R, [HSS18, 2.2.2, 2.2.7]. The corresponding

toroidal orbifolds (as per Table 5) are illustrated in Figure V and Table 8.

O0-planes and M2-brane CS level. There is one more ingredient to the G-space structure of heterotic M-theory
on ADE-orbifolds (see Table 7 below for the full picture): While the MO5-planes (61) are supposed to be the
M-theory lifts of the charged O4±-planes [Ho98, 3][Gi98, III.A][HK00, 3.1.1], the M-theory lift of the un-charged
O40-planes (see Figure OP) involves one more group action on spacetime [Gi98, III.B], being rotation of the circle
fiber in M/IIA-duality, which we hence indicate as follows:

IIA0 R9,1×∅ � � // R9,1× S1

Zrot
k 		
. (68)

Here on the right we have the circle regarded as a Zk-space (§3) via rigid rotation by multiples of 2π/k, for any
k ∈ Z\{0}. This is of course a free action (in particular, not a representation sphere (21)) hence with empty fixed
subspace (24), whence the superscript (−)0 and the empty set ∅ of fixed points in (68). But passing along the
unique Zrot

k -equivariant function (31)

S1

Zrot
k 		 KKS1

rot

KK-reduction on S1
rot

// ∗

Zrot
k

��
(69)

from the circle to the point ∗ with its necessarily trivial Zrot
k -action, as befits KK-reduction from M-theory to type

IIA string theory (see [BMSS18] for discussion in the context of Hypothesis H), we obtain a non-empty fixed
subspace:

IIA R9,1 � � // R9,1× ∗

Zrot
k

��
. (70)

In these terms, we may phrase the core of M/IIA duality as saying that

The lift of IIA (70) through KKS1
rot

(69) is IIA0 (68).

Notice in the case that the global 11d-spacetime is AdS3 times S7 regarded as an S1
rot-fibration

S1

Zrot
k 		

// S7

Zrot
k 		

// CP3

the order k of Zrot
k in (68) is the level of the dual 3d Chern-Simons-matter theory [ABJM08].

The argument in [Gi98, III.B], together with our discussion above, suggests that the analogous statement for
O40-planes is this:

The lift of O40 through KKS1
rot

(69) is MO50 (71) .

Hence we take MO50 to be the following G-space/orbifold, combining MO5 (61) with IIA0 (68):

MO50 R4,1×∅ � � // R4,1× S1

Zrot
k 		
× T5sgn

Zrefl+HW
2

		
. (71)
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As before in (68), the fixed subspace of the diagonal group action (now for k = 2, as in [Gi98, (3.2)])

Zrefl+rot+HW
2

� � diag // Zrefl+HW
2 ×Zrot

2

in (71) is actually empty, since the action of Zrot
2 and hence that of Zrefl+HW+rot

2 is free, whence the superscript
(−)0. But, as before in (70), under M/IIA KK-reduction (69) we have an equivariant projection map to the orbifold

O40 R4,1 � � // R4,1× ∗

Zrot
k

��
× T5sgn

Zrefl+HW
2

		
, (72)

with non-empty fixed/singular subspace being the O4-worldvolume – which is thereby exhibited as being un-
charged, as its lift to M-theory in in fact non-singular.

In the same manner, there is the analogous Zrot
k -resolution of the MK6-singularity (63)

MK60 R6,1×∅ � � // R5,1× S1

Zrot
k 		
× T4H

GADE



, (73)

as well as of the MO9-singularity (64):

MO90 R9,1×∅ � � // R8,1× S1

Zrot
k 		
× T1sgn

ZHW
2 



. (74)

The reduction of the latter along KKS1
rot

(69) is

O80 R8,1 � � // R8,1× ∗

Zrot
k

��
× T1sgn

ZHW
2 



. (75)

In summary, the full singularity structure of heterotic M-theory on ADE-orbifolds, such as to admit
(i) black M5-branes coinciding with MO5-planes and

(ii) the MO50-lift of O40-planes
is as shown in Table 7.

M5-branes at
MO9-planes intersecting

ADE-singularities in
M-theory on

S1sgn

ZHW
2 ��
× T4H

GADE

��
× S1

Zrot
k
��

([Sen97, 3],
[FLO99],
[KSTY99] )

reduction on
S1

ADE

reduction on
S1

rot (69)
([HW95])

reduction on
S1

HW

NS5-branes at
O8-planes intersecting

D6-branes in
I′-theory on

S1sgn

ZHW
2 ��
× S1

Zrot
2
�� ([GKST01])

D4-branes at
O8-planes intersecting
ADE-singularities in

I′-theory on

S1sgn

ZHW
2 ��
× T4H

GADE

�� ([BRG12],
[HKKP15, 3.4.2])

NS5-branes
at

ADE-singularities in
HETE -theory on

S1

Zrot
2
��
× T4H

GADE

�� ([Wi99])

Table 7 – Singularity structure of heterotic M-theory on ADE-orbifolds and its string theory duals given by combining the 1
2 M5-

structure of Figure S with IIA0-structure (68), hence admitting also MO50-structure (71).

The following Figure T shows the corresponding subgroup lattice with its associated fixed/singular spaces:

34



MHET/ADE-orbifold subgroups
H ⊂

GADE×Zrot
k ×ZHW

2︷ ︸︸ ︷

Zrefl+rot
2

Zrot
k

(69)

Zrot+HW
2

ZHW
2

Zrefl+HW
2

(66)Zrefl
2

(18)

Zrefl+rot+HW
2

Fixed/singular subspaces (24)(
T4H

GADE
		
× S1

Zrot
k 		
× S1sgn

ZHW
2 		 )H

︷ ︸︸ ︷

MK60
(73)

IIA0
(68)

MO90
(74)

MO9
(64)

MO5
(61)MK6

(63)

MO50
(71)

Figure T – Subgroup lattice and fixed/singular subspaces in the singularity structure for heterotic M-theory on ADE-orbifolds from
Table 7. On the left, groups associated to the middle of a sub-simplex are diagonal subgroups inside the direct product of subgroups

associated to the vertices, as indicated by the superscripts. On the right, all fixed loci with superscript (−)0 are actually empty, but appear

as superficially non-empty (un-charged) singularities after M/IIA KK-reduction (69), e.g. O40 (72), O80 (75), as on the right of Figure OP.

The numbered subscripts (xx) indicate the corresponding expression in the text.

4.2 Equivariant Cohomotopy charge of M5 at MO5ADE

Applying the general mathematical results of §3 to the MHET/ADE-singularities from §4.1, we finally show here
(see Figure V ) that Hypothesis H formalizes and validates the following widely accepted but informal Folklore
4.1, concerning the nature of M-theory:

Folklore 4.1 (M5/MO5 anomaly cancellation [DM95][Wi95b, 3.3]
[Ho98, 2.1]). For M-theory on the toroidal orientifold R5,1×T5sgn�Z2
(Table 5) with MO5-singularities (61), consistency requires the situa-
tion shown in Table 2:

(i) a charge of qMO5/qM5 = −1/2 is carried by each of the
fixed/singular MO5-planes (61);

(ii) the M5-brane charge is integral in natural units, hence on the
covering Z2-space T5sgn the M5-branes appear in Z2-mirror
pairs around the MO5-planes, as in Figure L and Figure N;

(iii) the total charge of the NM5 M5-branes has to cancel that of the 32
O-planes (27), NM5qM5 +32qMO5 = 0, as indicated in Figure A.

Via the similarly widely accepted Folklore 4.2, the statement of Folk-
lore 4.1 implies tadpole anomaly cancellation in string theory. Notice
that this is not so much a claim than part of the defining criterion for
M-theory:

Folklore 4.2 (Double dimensional reduction of M5/MO5 to D4/O4
[Ho98, 3][Gi98, III.A][HK00, 3.1.1]). Under M/IIA duality, the situa-
tion of Folklore 4.1 becomes the string-theoretic tadpole cancellation
condition from Table 1 for D4-branes and O4−-planes.

Folklore 4.3 (T-duality relating O-planes, e.g. [BLT13, p.317-318]).
By iterative T-duality, the situation of Folklore 4.2 implies general tad-
pole cancellation for Dp-branes and Op−-planes (Table 3).

Hypothesis H

Equivariant Cohomotopy
of MHET/ADE-orbifolds Rigorous: Cor. 4.4, 4.6

��

M5/MO5 anomaly cancellation
(Folklore 4.1)

KS

M/IIA duality Folklore 4.2

��

D4/O4 tadpole cancellation
KS

T-duality Folklore 4.3

��

Dp/Op-tadpole cancellation

Figure U – Structure of the argument.
We demonstrate that Hypothesis H on C-
field charge quantization in Cohomotopy, ap-
plied to heterotic M-theory on toroidal ADE-
oribolds, implies M5/MO5-anomaly cancel-
lation in M-theory. This directly subsumes
and implies the statement of tadpole cancel-
lation for D4/O4 branes in string theory.
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︷ ︸︸ ︷ ︷ ︸︸ ︷
semi-complement (80)

of MO5⊂ 1
2 M5-singularities (Figure S)

in heterotic M-theory on ADE-orbifolds (Table 7)

C-field charge quantization
in ADE-equivariant Cohomotopy (3)

M-theory C-field
charge-quantized by Hypothesis H

as a cocycle in equivariant Cohomotopy

x1 = 0 x1 > 0

x2 = 0

x2 = 1
2

∞− 0

)

)

−ε

+ε

Z2

(
R1sgn/ZHW

2

)
× T4sgn

Zrefl
2 



S4H

Z2




residual
Zrefl

2 -action

codimension 1 submanifolds

codimension 1 submanifold

cocycle vanishes far away from fixed lines

MO9

MK6

MO5

1
2 M5

− 1
2 M5 = MO5

mirror 1
2 M5

Figure V – Equivariant Cohomotopy of ADE-orbifolds in heterotic M-theory with singularity structure as in Figure S. The resulting

charge classification (Cor. 4.4) implies, via the unstable PT isomorphism (§2.1), the 1
2 M5 = MO9∩MK6-brane configurations (65)

similarly shown in [FLO99, Fig. 1][KSTY99, p. 7][FLO00a, Fig. 1][FLO00b, Fig. 2][FLO00c, Fig. 1][GKST01, p. 4, 68, 71]. This is as

in Figure L but with points (M5s) extended to half-line (MK6s), see Remark 4.7 and Table 8.

C-Field flux quantization at pure MO5-Singularities. To put the discussion below in perspective, it is instruc-
tive to first recall the success and the shortcoming of the existing argument [Ho98, 2] for M5/MO5-brane charge
quantization around a pure MO5-singularity (61) (see the left column ofTable 8): Following the classical argu-
ment of [Dir31], we consider removing the locus of the would-be M5-brane from spacetime and then computing
the appropriate cohomology of the remaining complement. For the pure MO5-singularity (61) the complement
spacetime is, up to homotopy equivalence, the 4-dimensional real projective space:

X11
MO5

complement spacetime
around pure MO5-singularity

=
(
R5,1× R5sgn

pure (66)
orbifold quotient

�Zrefl+HW
2

)
full Euclidean orientifold (19)

with pure MO5-singularity (61)

\{R5,1×{0}}
Zrefl+HM

2 -fixed
subspace (24)

'homotopy S
(
R5sgn

)
unit 4-sphere
around MO5

/Zrefl+HW
2
pure (66)

MO5-quotient

' RP4
real projective

4-space

. (76)

Since this ambient spacetime (76) is a smooth but curved (i.e. non-parallelizable) manifold, the flavor of Cohomo-
topy theory that measures its M-brane charge, according to Hypothesis H, is, according to Table 4, the J-twisted
Cohomotopy theory of [FSS19b, 3]. This implies, by [FSS19b, Prop. 4.12], that rationalized brane charge (bot-
tom of (55)) is measured by the integral of a differential 4-form G4 ∈ Ω4

(
X11
)

(the C-field 4-flux density) which
satisfies the half-integral shifted flux quantization condition

[G4]+
[1

4 p1
]
∈ H4(X11,Z

)
! H4(X11,R

)
(77)

as is expected from the M-theory folklore (recalled in [FSS19b, 2.2]). Applying this to the complement X11
MO5 (76)

around a pure MO5-plane implies, as pointed out in [Ho98, 2.1], that there must be an odd integer of brane charge
in the pure MO5-spacetime

π

twist
TRP4(

X11
MO5

)
R

J-twisted Cohomotopy ([FSS19b, 3.1])
of pure MO5-complement (76)

=

{
2
∫
RP4

G4 =

odd integer
net charge

1−2N | N ∈ N

}
due to half-integral G4-flux quantization (77)

implied by twisted Cohomotopy [FSS19b, Prop. 4.12]

. (78)

The need to resolve further microscopic details. If one could identify in (78) the offset of 1mod2 in (78) with
the charge carried by the pure MO5-plane (61), and the remaining even charge 2N with that of N M5-branes in its
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vicinity
1−N ·2 ?

= QMO5−Nbrane ·QM5 (79)

this would be the local/twisted M5/MO5-anomaly cancellation condition of Table 2. Without such further in-
formation, the charge quantization (78) around pure MO5-planes (61) is only consistent with the local/twisted
M5/MO5-anomaly cancellation from Table 2, as noticed in [Ho98, bottom of p. 5].

But with the results of §3 and in view of §4.1, we may now complete this old argument (see the right column
of Table 8):

Equivariant Cohomotopy implies local/twisted M5/MO5-anomaly cancellation at 1
2 M5-singularities. We

know from §3.1 that the identification (79) missing from the result (78) for twisted Cohomotopy on smooth but
curved spacestimes is implied by the result of Prop. 3.14 for equivariant Cohomotopy of singular but flat space-
times. Moreover, we have argued in §4.1 that having black M5-branes actually coinciding with MO5-planes
requires/implies that the pure MO5-planes are but the diagonally fixed sub-loci (shown in Table 6) inside the richer
1
2 M5 = MK6∩MO9-singularities (65) of heterotic M-theory on ADE-orbifolds (Figure S). Hence for a rigorous
M5/MO5-anomaly cancellation result not just consistent with (as in (78)), but actually implying Folkore 4.1, we
need to compute the M-brane charge at MO5-singularities inside 1

2 M5-singularities (65). Concretely, this means
with Hypothesis H that M5/MO5-charge at a single MO5-singularity is measured by the equivariant Cohomotopy
of the following 1

2 M5-refinement of the naive MO5-complement spacetime (76):

X11
1
2 M5

semi-complement spacetime
around MO5 in 1

2 M5-singularity

:=
(
R5,1×R1sgn ×R4H �ZHW

2 ×Zrefl
2
)

full Euclidean orientifold (19)
with 1

2 M5-singularity (65)

\
(
R5,1×{0}×R4H
ZHW

2 -fixed subspace (24)
with residual Zhet

2 -action (28)

�Zrefl
2
)

'
homotopy

S(R1sgn)
unit 0-sphere
around MO9

/ZHW
2

HW-quotient
(64)︸ ︷︷ ︸

' ∗

× R4H �Zrefl
2

ADE-singularity
(Table 5)

. (80)

As shown in the second line, this is homotopy-equivalent to a residual ADE-singularity (Table 5). Therefore, the
discussion from §3.1 applies:

Corollary 4.4 (Equivariant Cohomotopy implies local/twisted M5/MO5-anomaly cancellation). The super-
differentiable (55) equivariant Cohomotopy charge of the vicinity (Def. 3.9) of the semi-complement spacetime of
a single charged MO5-singularity (80)

π
4H
((

X11
1
2 MO5

)cpt)
−

=
{

1 ·1triv

MO5-plane
charge

−NM5 ·2reg

M5-brane
charge

∣∣∣ NM5 ∈ Z
}

as in Folklore 4.1, Table 2, regarding the local/twisted form of M5/MO5-anomaly cancellation.

Proof. By G-homotopy invariance of G-equivariant homotopy theory, this follows as the special case of Prop. 3.14
with (59) in Example 3.19, for G = Z2, hence with k = |WG(1)|= 2.

Remark 4.5 (Super-exceptional geometry of MO5 semi-complement). While here we consider only topological
orientifold structure, the full super-exceptional geometry corresponding to (80) is introduced in [FSS19d, 4]; shown
there to induce the M5-brane Lagrangian on any super-exceptional embedding of the 1

2 M5-locus.

Equivariant Cohomotopy implies local/untwisted M5/MO5-anomaly cancellation at 1
2 M5-singularities. It is

immediate to consider the globalization of this situation to the semi-complement around one MO9 in heterotic
M-theory compactified on the toroidal Zrefl

2 -orbifold T5sgn �Zrefl+HW
2 with MO5-singularities:

X11
MHET/Zrefl

2
semi-complement spacetime
around MO5s in MHET/Zrefl

2

:= R5,1 ×

'∗︷ ︸︸ ︷
S(R1sgn)

unit 0-sphere
around MO9

/ZHW
2

HW-quotient
(64)

× T4H �Zrefl
2 .

toroidal reflection-orbifold (18)
(Table 5)

(81)

To this toroidal ADE-orbifold the discussion in §3.2 applies as follows.
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Corollary 4.6 (Equivariant Cohomotopy implies global/untwisted M5/MO5-anomaly cancellation). The super-
differentiable (55) equivariant Cohomotopy charge (3) of the semi-complement spacetime (81) of heterotic M-
theory on a toroidal MO5-orientifold (§4.1) with charged MO5-planes in compatible RO-degree (Example 3.8)
and admitting equivariant super-differential refinement (58) is

π
4H
((

X11
MHET/Zrefl

2

)
+

)
Sdiffble−

=
{

16 ·1triv

MO5-plane
charge

− 8 ·2reg

M5-brane
charge

}
as expected from Folklore 4.1, Table 2, regarding the global/untwisted form of M5/MO5-anomaly cancellation
(recalling that the semi-complement (81) is that around one of the two MO9-planes).

Proof. By G-homotopy invariance of equivariant Cohomotopy, this follows from the statement (60) in Example
3.19.

More generally we have the following:

M5/MO5-anomaly cancellation in heterotic M-theory on general ADE-orbifolds. The statements and proofs
of Corollary 4.4 and Cor. 4.6 directly generalize to heterotic M-theory on general GADE-singularities R4H §4.1,
because the underlying results in §3 apply in this generality. Hence Hypothesis H implies that on the semi-
complement spacetime of an MO9 intersecting a toroidal ADE-orbifold

X11
MHET/GADE

semi-complement spacetime
around 1

2 M5ADE in MHET/ADE
(Figure S)

:= R5,1 ×

'∗︷ ︸︸ ︷
S(R1sgn)

unit 0-sphere
around MO9

/ZHW
2

HW-quotient
(64)

× T4H �GADE

toroidal ADE-orbifold
(Table 5)

(82)

the M5/MO5 charge, measured in equivariant Cohomotopy, is

Qtot = 16 ·1triv−NM5 ·kreg |Qtot|= 0 ,

for k =
∣∣GADE

∣∣ the order of the global quotient group. Under double dimensional reduction to type IIA string
theory according to Table 7, this implies the tadpole cancellation conditions for D4-branes in ADE-orientifolds,
from Table 1.
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Spacetimes on which to measure flux sourced by M5/MO5-charge

Definition XMO5 'htpy S(R1sgn+4sgn)/Zhet+HW
2 X1/2M5 'htpy S(R1sgn)/ZHW

2 ×T4H �Zrefl
2

(76) (80)

Illustration
x2 = 1

2x2 = 0

x1 = 0

x1 > 0

MO5

MK6

MO9

MO5

1
2 M5

mirror 1
2 M5

residual
Zrefl

2 -action

Geometry smooth but curved singular but flat

Cohomological charge quantization
by Hypothesis H

Cohomology theory
(by Table 4)

J-twisted Cohomotopy πT X
(
X
)

[FSS19b][FSS19c]
equivariant Cohomotopy πV

Z2

(
TV
)

§3

Illustration
(Remark 4.7) M5

S4

MK6

S4

1
2 M5

MO9

Charge classification ctot = 1−N ·2
(78)

ctot = NMO5 ·1triv−NM5 ·2reg
|Qtot| = 0

⇔ NM5 = 8
(Cor. 4.4) (Cor. 4.6)

Table 8 – Two ways of measuring M5/MO5-charge. On the left is the traditional approach not resolving the singularities. On the right

(which shows the same situation as in Figure V but with the periodic identification indicated more explicitly) the fine-grained microscopic

picture seen by C-field charge quantization in equivariant Cohomotopy.

With these result in hand, we highlight that not only did equivariant Cohomotopy inform us about M-theory,
but M-theory also shed light on a subtle point regarding the interpretation of equivariant Cohomotopy:

Remark 4.7 (Equivariant Cohomotopy and MK6 ending on M5). (i) The heuristic way to see that ordinary
Cohomotopy π4 from (5) canonically measures charges of 5-branes inside 11-dimensional spacetime is that the
‘classifying space’ S4 of π4 gets essentially identified with the (any) spacetime 4-sphere around a 5-brane in an 11-
dimensional ambient space (see [HSS18, (6)] for the heuristic picture, and [FSS19b, 4.5] for the full mathematical
detail).
(ii) But as we pass from plain to equivariant Cohomotopy, this picture
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Brane charge sourced in the center of S4 M5

S4

may superficially appear to be in tension with the picture provided by the Pontrjagin-Thom theorem as in Figure
D and Figure L, where instead

Brane charge is sourced at the 0-pole of S4
MK6

S4

1
2 M5

However, in the orbi-geometry of heterotic M-theory on ADE-singularities §4.1 indeed both pictures apply simul-
taneously, witnessing different but closely related brane species (see Table 8):
(iii) The black 1

2 M5-brane locus (Figure S) is the terminal point of an MK6-singularity which extends radially
away from the M5. Hence, given any radial 4-sphere with the 1

2 M5 at its center, the MK6 will pierce this 4-
sphere at one point. Since the 1

2 M5 and the MK6 are necessarily related this way, the 5-brane charge inside the S4

may equivalently be measured by 6-brane charge piercing through S4. This is exactly what the Pontrjagin-Thom
theorem says happens in Corollary 4.4, as shown in Figure V and on the right of Table 8.
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