
Supplementary Material for:
Classifying Fragile Crystalline Fractional Chern Phases by Equivariant 2-Cohomotopy

We compile some facts needed for the computation of nonabelian equivariant cohomology of 2-tori,
such as for the computation of unstable equivariant 2-cohomotopy, which in the companion article
[1] is used to classify fragile crystalline Chern phases of quantum materials. While nothing here will
come as a surprise to experts in equivariant homotopy theory, the details appear not have to been
made explicit before, and the methods appear not to have been considered in the topological phases
community before.
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I. EQUIVARIANT CELL STRUCTURE OF
2-TORI

a. Result. We determine (Table I) minimal equivari-
ant cell decompositions for finite group G actions (mini-
malG-CW complex structures, cf. [2, §I.1-2][3, Ex. 1.3.6]
and §II B below) on the 2-torus T 2 := R2/Z2 accord-
ing to the 13 symmorphic 2D space groups (symmorphic
wallpaper groups, cf. [4, §26][5, §2]).

Point
group

G

Space
group
G⋉ Z2

minimal cell
structure on
G ↷(R2/Z2)

Z/1 p1 Fig. 1

Dih1 pm Fig. 2

Dih1 cm Fig. 3

Z/2 p2 Fig. 4

Dih2 pmm Fig. 5

Dih2 cmm Fig. 6

Z/3 p3 Fig. 7

Dih3 p31m Fig. 8

Dih3 p3m1 Fig. 9

Z/4 p4 Fig. 10

Dih4 p4m Fig. 11

Z/6 p6 Fig. 12

Dih6 p6m Fig. 13

TABLE I. The names of the 13 symmorphic 2D space
groups, arranged according to their point groups G and refer-
enced to the cell decomposition of the corresponding G-torus.
Here Z/n := Z/n denotes the cyclic group of order n and
Dihn ≃ Z/n ⋊ Z/2 the corresponding dihedral group of order
2n (obtained by adjoining a reflection generator σ subject to
σ2 = e and σ · [n] · σ = [−n], cf. [4, §4]).

b. Proof. The proof of the following cell decomposi-
tions (according to Table I) is by immediate inspection: it
may take work to find a cell decomposition but it is easy
to recognize one when found. The rule is that cells appear
in G-orbits (coset spaces G/H for subgroups H ⊂ G, as
shown on the right of the following figures) subject to
no further constraint except that their boundaries are
equivariantly glued to lower-dimensional cells (as shown
on the left of the following figures).
c. Status. The concept of G-equivariant cell com-

plexes is fundamental in equivariant homotopy theory,
and equivariant cell decomposition of a domain G-space
is pivotal for general computation of its equivariant (gen-
eralized) cohomology. Moreover, cell decompositions of
G-tori are among the simplest non-trivial examples of the
general concept and of key importance for computations
of crystalline topological phases (where they appear as
Brillouin tori of crystal momenta subject to crystal sym-
metries). And yet we are not aware that the following cell
decompositions (Table I.) have been spelled out before.
d. Terminology. What in equivariant topology are

called fixed points — orbits of 0-cells of the form D0 ×
G/G — are what in crystallography are known as the
high symmetry points. Larger orbits of 0-cells D0×G/H
are accordingly referred to in crystallography by the sub-
symmetry H which fixes them (such as “rotation center
of order 3” for an orbit D0 × Z/6/Z/3). Crystallographic
terminology for higher dimensional G-cells, and hence for
G-cell complexes as such, seems to be largely missing.
e. Remarks. While there are crystals with non-

symmorphic symmetry in their ordinary “position
space”, crystal symmetries of Brillouin tori “reciprocal
spaces” are all expected to be symmorphic. Therefore
the list in Table I is complete for the purpose of classify-
ing 2D crystalline topological phases.
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FIG. 1. Minimal cell structure on the torus without symme-
try, corresponding to the space group p1.

Z/1 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [x, y]

p1

⟳

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 × Z/1/Z/1 •

D1 × Z/1/Z/1

D1 × Z/1/Z/1

D2 × Z/1/Z/1 ⟳

FIG. 2. Minimal equivariant cell structure on the torus with
mirror symmetry corresponding to the space group pm.

Z/2 × (R2/Z2) (R2/Z2)(
σ, [x, y]

)
7−→ [−x, y]

pm

⟳ ⟲

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 × Z/2/Z/2 •

D0 × Z/2/Z/2 •

D1 × Z/2/Z/2

D1 × Z/2/Z/2

D1 × Z/2/1

D2 × Z/2/1 ⟳ ⟲

FIG. 3. Minimal equivariant cell structure on the torus with
mirror symmetry corresponding to the space group cm.

Dih1 × (R2/Z2) (R2/Z2)(
σ, [x, y]

)
7−→ [y, x]

cm

⟳

⟲

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 ×Dih1/Dih1 •

D1 ×Dih1/Dih1

D1 ×Dih1/1

D2 ×Dih1/1
⟳

⟲
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FIG. 4. Minimal equivariant cell structure on torus with
2-fold rotation symmetry corresponding to the space group
p2.

Z/2 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [−x,−y]

p2

⟲⟳

⟲ ⟳

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 × Z/2/Z/2 •
D0 × Z/2/Z/2 •

D0 × Z/2/Z/2 •

D0 × Z/2/Z/2 •

D1 × Z/2/1

D1 × Z/2/1

D1 × Z/2/1

D1 × Z/2/1

D2 × Z/2/1
⟲

⟲

D2 × Z/2/1
⟳

⟳

FIG. 5. Minimal equivariant cell structure on torus with
2-fold dihedral symmetry corresponding to the space group
pmm.

Dih2 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [−x,−y](

σ, [x, y]
)

7−→ [x, y]

pmm

⟲⟳

⟲ ⟳

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 ×Dih2/Dih2 •
D0 ×Dih2/Dih2 •

D0 ×Dih2/Dih2 •

D0 ×Dih2/Dih2 •

D1 ×Dih2/ Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D1 ×Dih2/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih2/ Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D1 ×Dih2/Dih1︸ ︷︷ ︸
⟨σ⟩

D2 ×Dih2/1
⟲

⟲

⟳

⟳
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FIG. 6. Minimal equivariant cell structure on torus with
2-fold dihedral symmetry corresponding to the space group
cmm.

Dih2 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [−x,−y](

σ, [x, y]
)

7−→ [y, x]

cmm

⟳
⟲⟳

⟲

⟳
⟲

⟳
⟲

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 ×Dih2/Dih2 •
D0 ×Dih2/Dih2 •

D0 ×Dih2/Z/2

D1 ×Dih2/Dih1

D1 ×Dih2/Dih1

D1 ×Dih2/1

D1 ×Dih2/1

D2 ×Dih2/1

⟳
⟲

⟳
⟲

D2 ×Dih2/1
⟳

⟲

⟳
⟲

FIG. 7. Minimal equivariant cell structure on torus with
3-fold rotation symmetry corresponding to the space group
p3.

Z/3 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y,−y − x]

p3
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⟳

Cell decomposition

D0 × Z/3/Z/3 •
D0 × Z/3/Z/3 •
D0 × Z/3/Z/3 •

D1 × Z/3/1

D1 × Z/3/1

D1 × Z/3/1

D2 × Z/3/1
⟲

⟲ ⟲

D2 × Z/3/1
⟳

⟳

⟳
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FIG. 8. Minimal equivariant cell structure on torus with
3-fold dihedral symmetry corresponding to the space group
p31m.

Dih3 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y,−y − x](

σ, [x, y]
)

7−→ [−y,−x]

p31m

v

w

−
w
−
v

v
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⟳

Cell decomposition

D0 ×Dih3/Dih3 •
D0 ×Dih3/Dih3 •
D0 ×Dih3/Dih3 •

D1 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih3/ Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D1 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D2 ×Dih3/1
⟲⟳

⟲
⟳

⟲
⟳

FIG. 9. Minimal equivariant cell structure on torus with
3-fold dihedral symmetry corresponding to the space group
p3m1.

Dih3 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y,−y − x](

σ, [x, y]
)

7−→ [x,−y − x]

p3m1
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Cell decomposition

D0 ×Dih3/Dih3 •

D0 ×Dih3/Z/3

D0 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D0 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih3/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih3/1

D1 ×Dih3/1

D2 ×Dih3/1

⟲ ⟳

⟲
⟳

⟲

⟳

D2 ×Dih3/1

⟲

⟳

⟲⟳

⟲
⟳
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FIG. 10. Minimal equivariant cell structure on torus with
4-fold rotation symmetry corresponding to the space group
p4.

Z/4 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y,−x]

p4

⟲⟲

⟲ ⟲

0− 1
2

+ 1
2

0

− 1
2

+ 1
2

Cell decomposition

D0 × Z/4/Z/4 •
D0 × Z/4/Z/4 •

D0 × Z/4/Z/2

D1 × Z/4/1

D1 × Z/4/1

D2 × Z/4/1
⟲⟲

⟲ ⟲

FIG. 11. Minimal equivariant cell structure on torus with
4-fold dihedral symmetry corresponding to the space group
p4m.

Dih4 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y,−x](

σ, [x, y]
)

7−→ [x,−y]

p4m

⟳
⟲⟳

⟲

⟳
⟲ ⟳

⟲

0− 1
2

+ 1
2

0
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2

Cell decomposition

D0 ×Dih4/Dih4 •
D0 ×Dih4/Dih4 •

D0 ×Dih4/Dih2︸ ︷︷ ︸
⟨[2],σ⟩

D1 ×Dih4/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih4/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih4/ Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D2 ×Dih4/1

⟳
⟲⟳

⟲

⟳
⟲ ⟳

⟲
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FIG. 12. Minimal equivariant cell structure on torus with
6-fold rotation symmetry corresponding to the space group
p6.

Z/6 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y, y − x]

p6
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Cell decomposition

D0 × Z/6/Z/6 •
D0 × Z/6/Z/3

D0 × Z/6/Z/2

D1 × Z/6/1

D1 × Z/6/1

D1 × Z/6/1

D2 × Z/6/1
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D2 × Z/6/1
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FIG. 13. Minimal equivariant cell structure on torus with
6-fold dihedral symmetry corresponding to the space group
p6m.

Dih6 × (R2/Z2) (R2/Z2)(
[1], [x, y]

)
7−→ [y, y − x](

σ, [x, y]
)

7−→ [x, x− y]

p6m

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v

w

w
−
v

v
w

w
−
v

v

w

w
−
v

⟲⟳

⟲
⟳

⟲
⟳ ⟲ ⟳

⟲
⟳

⟲
⟳

Cell decomposition

D0 ×Dih6/Dih6 •
D0 ×Dih6/Dih3︸ ︷︷ ︸

⟨[2], σ·[1]⟩

D0 ×Dih6/Dih2︸ ︷︷ ︸
⟨[3],σ·[1]⟩

D1 ×Dih6/Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D1 × Z/6/Dih1︸ ︷︷ ︸
⟨σ⟩

D1 ×Dih6/Dih1︸ ︷︷ ︸
⟨σ·[1]⟩

D2 ×Dih6/1

⟲

⟲
⟲

⟲
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⟳
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II. MATHEMATICAL BACKGROUND

For reference, we briefly recall some basics from homo-
topy theory and algebraic topology that are used in the
main text. Introductory references include [6] and [7].
For introduction in our context see [8, §A.3][9, §1] and
specifically for the case of equivariant homotopy theory
see [3].

A. Basic homotopy theory

By a space X ∈ Top we mean a compactly gener-
ated topological space (cf. [3, Ntn.1.0.16]), and we speak

of maps f : X Y for the continuous maps between

these. The set of path-connected components of a space
is denoted π0(X) ∈ Set.
First recall some basic notions of category theory (for

pointers in our context see [10][8, §A.2]). Given a pair of
maps into the same space, the pullback (pb) of one along
the other is their universal completion to a commuting
square:

A′ A

B′ B

(pb) ⇔

∀Q

A′′ A

B′ B .

∀

∀

∃!

(1)

For instance, the pullback of a map along a point inclu-

sion ∗ ≃ {x} B is its fiber Ax over that point:

Ax A

{x} B .

(pb) (2)

Dually, for a pair of maps out of the same space, their
pushout (po) is again the universal completion to a com-
muting square

A B

A′ B′
(po)

⇔

A B

A′ B′

∀P .

∀

∀

∃!

(3)

For instance, the pushout along the inclusion of an n−1-
sphere Sn−1 as the boundary of a closed n-ball Dn is an
n-cell attachment :

Sn−1 X

Dn Dn ∪f X .

f

attaching map

(po)
(4)

Constructing a space by iterative cell attachments start-
ing with S−1 ≡ ∅ means to give it a cell complex struc-
ture or a cell decomposition.

Now, a homotopy η : f ⇒ g between a pair of maps
is a map

η : X × [0, 1] Y s.t.

{
η(−, 1) = f(−) ,

η(−, 0) = g(−) .
(5)

For (pointed) spaces X,A ∈ Top(∗) we write Map(X,A)

for the mapping space of all maps X Y , equipped
with the compact-open topology, and we write

Map∗(X,A) ⊂ Map(X,A) (6)

for the subspace of maps that preserve the basepoints.
Homotopies (5) are precisely the continuous paths in

these mapping spaces (6), whence their path-connected
components are the homotopy classes [−] of maps[

X Y
f ]

∈ π0 Map(∗)(X,Y ) . (7)

For X = S1 the circle, these mapping spaces (6) are
the based and the free loop space, respectively, cf. (20):

ΩA ⊂ LA . (8)

Forming mapping spaces is covariantly functorial in the
second variable, and forming mapping spaces into a pull-
back (1) yields again a pullback:

A′ A

B′ B

(pb) ⇒
Map(∗)(X,A′) Map(∗)(X,A)

Map(∗)(X,B′) Map(∗)(X,B) .

(pb) (9)

Dually, forming mapping space is contravariantly functo-
rial in the first variable (reverses the direction of maps),
and forming mapping spaces out of a pushout (3) gives
a pullback (1):

A′ A

B′ B

(po)
⇒

Map(∗)(A′, X) Map(∗)(A,X)

Map(∗)(B′, X) Map(∗)(B,X) .

(pb)

(10)

The fundamental group of a pointed space A is the
connected components of its based loop space (8):

π1(A) ≡ π0(ΩA) , (11)

and iteratively so for the higher homotopy groups:

πn(A) ≡ π0(Ω
nA) ≡ π0( Ω · · ·ΩA︸ ︷︷ ︸

nfold loop space

) , (12)

which implies in particular that

πn

(
ΩkA

)
= πn+k(A) . (13)

For example, the non-torsion homotopy groups of the 2-
sphere are

π2(S
2) ≃ Z , π3(S

2) ≃ Z . (14)
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A map f : X Y induces a map of connected com-

ponents π0 as well as homomorphisms between all ho-
motopy groups πn (12) for all basepoints x ∈ X and
induced basepoints f(x) ∈ Y :

X Y

π0(X) π0(Y )

πn(X,x) πn

(
Y, f(x)

)
.

f

π0(f)

πn(f)

(15)

If π0(f) is a bijection and πn(f, x) is an isomorphism for
all n and x, then f is called a weak homotopy equiva-

lence, to be denoted “ ∼ ” and X is said to be (weak
homotopy) equivalent to Y , denoted

∃
(
f : X Y∼ )

⇔ X ∼ Y . (16)

A map f : X Y is a (Serre-)fibration, to be de-

noted “ ”, if all families of paths continuously pa-
rameterized by higher dimensional disksDn may be lifted
through f for arbitray lifts of their starting points:

Dn × {0} X

Dn × [0, 1] Y .

∀

∀

∃ (17)

For A B
p

a fibration (17) of pointed spaces with
fiber F (2), there is induced a long exact sequence of
homotopy groups (12) of the form:

F A B

· · · π3(S) π3(B)

π2 F π1A π2 B

π1 F π1A π1 B

π0 F π0A π0 B .

fibp p

π3 p

δ2

π2 fibp π2 p

δ1

π1 fibp π1 p

δ0

π0 fibp π0 p

(18)

These long exact sequences are natural in that a com-
muting square of pointed maps induces a commuting lad-
der of homotopy groups:

A′ A

B′ B

⇒

πn+1 B
′ πn+1 B

πn F
′ πn F

πn A
′ πn A

πn B
′ πn B .

(19)

For example, the based loop space (8) is the fiber of
the point-evaluation map of its free loop space

Map∗(S1, A)︸ ︷︷ ︸
ΩA

Map(S1, A)︸ ︷︷ ︸
LA

A
fibev ev

cnst

(20)

(as well as the fiber of the based path space fibration

Map∗(S1, A)︸ ︷︷ ︸
ΩA

Map∗
(
D1, A

)
A ,

fibev1 ev1 (21)

where in the second case ∗ := 0 ∈ D1 is one endpoint
of the interval, while 1 ∈ D1 is the other), and due to
the section cnst (20) the induced homotopy long exact
sequence (18) splits to yield:

πnLA ≃ πnΩA× πnA (22)

(where the base point of the loop spaces is the loop con-
stant on the base points of A).
For instance, for A = S2 this gives, with (14) and (13):

π1ΩS
2 π1LS2

Z Z ,

π2ΩS
2 π2LS2 π2S

2

Z Z2 Z .

π1fibev

id

π2fibev

π2 ev

π2 cnst

[
1

0

]
[ 0 1 ]

[
0

1

]

(23)

Note in this context that from long exact sequences of
groups there are induced short exact sequences by trun-
cation

A−2 A−1 A0 A1

1 A−1/A−2 A0 im(f1) 1 .

f−2 f−1 f1

f−1 f1
(24)

More generally, a commuting diagram of spaces is said
to be a homotopy pullback (hpb) if there exists a factor-
ing via weak homotopy equivalences through an ordinary
pullback of a fibration:

A′ A

B′ B

f ′ (hpb)
f ⇔ ∃

A A

Â′ Â

B′ B

∼

f ′

∼

f
(pb)

(25)

For example a general homotopy fiber Fb of a map

F B is the homotopy pullback of that map to the
given base point b:

Fb F

∗ B ,

hfib

(hpb)

b

(26)
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and a based loop space (8) is equivalently the homotopy
pullback of the base point inclusion along itself:

ΩX ∗

∗ X ,

(hpb) (27)

while a product is just a homotopy pullback from the
point:

X × Y Y

X ∗ .
(hpb) (28)

Homotopy pullbacks (25) are invariant, up to equiv-
alence, under homotopy (5). For example the space of
x0-based loops in a connected space X is equivalent to

the space of paths (maps D1 X ) whose endpoints
are pinned to a pair of not necessarily coincident points
x0, x1 ∈ X:

Map∗0,∗1(D1, X) Map∗0
(
D1, X

)
Ωx0X

∗ X .
∗

∼ (hpb)

ev1(hpb)

x1

x0

(29)

Moreover, homotopy pullbacks (25) satisfy the pasting
law saying that if in a commuting diagram of the form

A′′ A′ A

B′′ B′ B .

(hpb) (30)

the right square is a homotopy pullback, then the left
square is so if and only if the total rectangle is.

For example, the left square in the following diagram
is a homotopy pullback:

∗ ΩX ∗

X LX X ,

(hpb) (hpb)

cnst

id

ev

(31)

because the right square is so by (20) and the total rect-
angle is so because the (homotopy) pullback of an iden-
tity is (equivalent to) an identity.

B. Equivariant homotopy theory

All of the above generalizes to spaces equipped with an
action G ↷X by a finite group G (regarded as a discrete
topological group), given by maps

G×X X

(g, x) 7−→ g · x
(32)

such that

∀ gi∈G
x∈X

{
e · x = x

(g2 · g1) · x = g2 · (g1 · x) .

A basic example of G-spaces are the (discrete) coset
spaces G/H for subgroups H ⊂ G (with the action given
by left multiplication in G). These are the canonical
orbits of points under G, in that for a point x ∈ X with
stabilizer or isotropy group

Stab(x) :=
{
g ∈ G

∣∣ g · x = x
}

⊂ G

the G-orbit of all images of x under the action of G is
G-equivariantly identified with the G/Stab(X).
Pullbacks (1) and pushouts (3) along G-equivariant

maps are constructed as for the underlying plain maps
and inherit unique G-space structure (cf. [3, Lem
1.1.10]).
For example, a G-cell attachment to a G-space G ↷X

is like a plain cell attachment (4) but now by G-orbits of
cells:

Sn−1 ×G/H X

Dn ×G/H (Dn ×G/H) ∪f X .

f

equiv. attaching map

(po)
(33)

Constructing a space by iterative G-cell attachments
starting with S−1 × G/H ≡ ∅ means to give it a G-
cell complex structure or a G-cell decomposition (cf. [3,
Ex. 1.3.6]).
For example, the G/G-orbits of cells in a G-space are

its G-fixed points which in crystallography, with G a crys-
tallographic point group, are known as the high symmetry
points.
In equivariantly mapping out of an equivariant cell

complex, note that, for X ∈ Top(∗) a (pointed) space
with trivial G-action and G ↷Y any (pointed) G-space:

• G-Equivariant maps out of a free action are equiv-
alently ordinary maps on the components of the
neutral element:

Map
(
X ×G/1 , Y

)G ≃ Map
(
X,Y

)
. (34)

• G-Equivariant maps out of a trivial action are
equivalently maps to the G-fixed locus (−)G (36)
inside the domain space:

Map
(
X ×G/G , Y

)G ≃ Map
(
X,Y G

)
. (35)

Here, for a G-space G ↷X and subgroup H ⊂ G, the
H-fixed locus is the subspace

XH :=
{
x ∈ X

∣∣ ∀g∈G g · x = x
}
. (36)

For example, given (pointed) G-spaces G ↷X and G ↷Y ,
the (pointed) mapping space (6) of their underlying
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spaces naturally carries the G-conjugation action

G×Map(∗)(X,Y ) Map(∗)(X,Y )

(g, f) 7−→ g ◦ f ◦ g−1

and the subspace of G-equivariant maps is the corre-
sponding G-fixed locus (36)

Map(X,Y )G ⊂ Map(X,Y ) . (37)

Passage to G-fixed loci (36) preserves pullbacks (1):

G ↷A′ G ↷A

G ↷B′ G ↷B

(pb) ⇒
A′G AG

B′G BG .

(pb) (38)

In particular, with (37) and (10) this implies that forming
equivariant maps out of an equivariant pushout yields a
pullback:

G ↷A′ G ↷A

G ↷B′ G ↷B
(po)

⇓
Map(∗)(A′, X)G Map(∗)(A,X)G

Map(∗)(B′, X)G Map(∗)(B,X)G .

(pb)

(39)
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