
A cohomotopical ADHM construction.
Pullback of the volume
form on Sn along the
Cohomotopy charge map
(118) assigns to solitonic
codim < n branes (p.
75) their flux density, cf.
eq. (2).
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[SS24-Cnf]: This map
Φ represents the coho-
motopical character, and
thus induces a shape-
equivalence Φ̂ to differen-
tial Cohomotopy, showing
that the configuration
space is a gauge-fixed
phase space of multi-
core solitons represent-
ing every solitonic Coho-
motopy charge sector.
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Intersecting solitonic brane charges in Cohomotopy. Noticing that the n-flux density arising this way
has vanishing cup-square (simply by degree reasons in low codimension) hence behaves linearly, the gauge-fixed
phase space of intersecting flat branes of low codimension must be the fiber product of these configuration spaces
[SS22-Cnf, Ex. 2.3].

Gauge enhancement on domain wall intersections. In the special case that one of the intersecting brane
species is of codimension=1 something remarkable happens [SS22-Cnf, Prop. 2.4. 2.11]: The fiber product of the
“labelled” configuration spaces (p. 75) is homotopy-equivalent to a configuration space of ordered points in the
remaining n− 1 transverse dimensions that may no longer escape to ∞:
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(119)

Now, the homotopy type of such configuration spaces where points are no longer allowed to escape to ∞ is quite
rich (see eg. [Kn18]) considerably richer than that of the “labeled” configuration spaces on p. 75. With Hypothesis
H this provides a substantiation of the expection of rich physics appearing on intersecting branes. We next check
this by computing the lightcone quantum observables of these configurations.
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