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Abstract

It is well known that the proper action functional of (4k+ 3)-dimensional U(1)-Chern-Simons theory
including the instanton sectors is given on gauge equivalence classes of fields by the fiber integration
of the cup product square of classes in degree-(2k + 2) differential cohomology. We first refine this
statement from gauge equivalence classes to the full higher smooth moduli stack of fields, to which
the higher-order-ghost BRST complex is the infinitesimal approximation. Then we generalize the refined
formulation to cup product Chern-Simons theories of nonabelian and higher nonabelian gauge fields, such
as the nonabelian Stringc-2-connections appearing in quantum-corrected 11-dimensional supergravity
and M-branes [FSS12a, FSS12b]. We discuss aspects of the off-shell extended geometric pre-quantization
(in the sense of extended or multi-tiered QFT) of these theories [∞Quant, Sc12b], where there is a
prequantum circle k-bundle (equivalently: (k−1)-bundle gerbe) in each codimension k. Examples we
find include moduli stacks for differential T-duality structures as well as the anomaly line bundles of
higher electric/magnetic charges, such as the 5-brane charges appearing in heterotic supergravity, as line
bundles with connection on the smooth higher moduli stacks field configurations.

Contents

1 Introduction and Overview 2

2 General theory 10
2.1 Smooth higher stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Deligne cohomology and the cup product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Moduli n-stacks of circle n-connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Fiber integration and extended higher Chern-Simons actions . . . . . . . . . . . . . . . . . . 16

3 Examples and applications 20
3.1 Unary examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Higher differential Dixmier-Douady class and higher dimensional U(1)-holonomy . . . 22
3.1.2 Ordinary 3d Spin-Chern-Simons theory and String-2-connections . . . . . . . . . . . . 22
3.1.3 7d String-Chern-Simons theory and Fivebrane 6-connections . . . . . . . . . . . . . . 24
3.1.4 (2n+ 1)d Chern-Simons (super)gravity and WZW2n-models . . . . . . . . . . . . . . . 25

3.2 Quadratic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 3d U(1)-theory with two species and differential T-duality . . . . . . . . . . . . . . . . 26
3.2.2 Ordinary 3d U(1)-Chern-Simons theory and generalized Bn-geometry . . . . . . . . . 26
3.2.3 (4k + 3)d U(1)-Chern-Simons theory and self-dual (2k + 1)-form field theory . . . . . 27
3.2.4 The cup-product of two extended CS theories and the higher charge anomaly . . . . . 28

3.3 Cubic and higher order examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 5d supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 11d supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Higher order examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



1 Introduction and Overview

It has become a familiar fact, known from various examples, that there should be an n-dimensional topological
quantum field theory Zc associated to the following data:

1. a gauge group G: a Lie group such as U(n); or more generally a higher smooth group, such as the smooth
circle n-group Bn−1U(1) or the String 2-group or the smooth Fivebrane 6-group [SSS09b, FSS10];

2. a universal characteristic class [c] ∈ Hn+1(BG,Z) and/or its image ω in real/de Rham cohomology,

where Zc is a G-gauge theory defined naturally over all closed oriented n-dimensional smooth manifolds Σn,
and such that whenever Σn happens to be the boundary of some manifold Σn+1 the action fuctional on a
field configuration φ is given by the integral of the pullback form φ̂∗ω (made precise below) over Σn+1, for

some extension φ̂ of φ. These are Chern-Simons type gauge theories.

Notably for G a connected and simply connected simple Lie group, for c ∈ H4(BG,Z) ' Z any integer
– the “level” – and hence for ω = 〈−,−〉 the Killing form on the Lie algebra g, this quantum field theory is
the original and standard Chern-Simons theory introduced in [Wi89]. See [Fr95] for a comprehensive review.
Familiar as this theory is, there is an interesting aspect of it that has not yet found attention, and which is
an example of our constructions here.

To motivate this, it is helpful to look at the 3d Chern-Simons action functional as follows: if we write
H(Σ3,BGconn) for the set of gauge equivalence classes of G-principal connections ∇ on Σ3, then the (expo-
nentiated) action functional of 3d Chern-Simons theory over Σ3 is a function of sets

exp(iS(−)) : H(Σ3,BGconn)→ U(1) .

Of course this function acts by picking a representative of the gauge equivalence class, given by a smooth
1-form A ∈ Ω1(Σ3, g) and sending that to the element exp(2πik

∫
Σ3

CS(A)) ∈ U(1), where CS(A) ∈ Ω3(Σ3)

is the Chern-Simons 3-form of A [CS74], that gives the whole theory its name. That this is well defined is
the fact that for every gauge transformation g : A → Ag, for g ∈ C∞(Σ3, G), both A as well as its gauge
transform Ag, are sent to the same element of U(1). A natural formal way to express this is to consider the
groupoid H(Σ3,BGconn) whose objects are gauge fields A and whose morphisms are gauge transformations
g as above. Then the fact that the Chern-Simons action is defined on individual gauge field configurations
while being invariant under gauge transformations is equivalent the statement that it is a functor, hence a
morphism of groupoids,

exp(iS(−)) : H(Σ3,BGconn)→ U(1) ,

where the set underlying U(1) is regarded as a groupoid with only identity morphisms. Hence the fact that
exp(iS(−)) has to send every morphism on the left to a morphism on the right is the gauge invariance of
the action.

Furthermore, the action functional has the property of being smooth. It takes any smooth family of
gauge fields, over some parameter space U , to a corresponding smooth family of elements of U(1) and such
that these assignmens are compatible with precomposition of smooth functions U1 → U2 between parameter
spaces. The formal langauge that expresses this concept is that of stacks on the site of smooth manifolds (see
section 2.1 below for a review and pointers to the literature): to say that for every U there is a groupoid, as
above, of smooth U -families of gauge fields and smooth U -families of gauge transformations between them,
in a consistent way, is to say that there is a smooth moduli stack, denoted [Σ3,BGconn], of gauge fields on
Σ3. Finally, the fact that the Chern-Simons action functional is not only gauge invariant but also smooth is
the fact that it refines to a morphism of smooth stacks

exp(iS(−)) : [Σ3,BGconn]→ U(1) ,

where now U(1) is regarded as a smooth stack by declaring that a smooth family of elements is a smooth
function with values in U(1).
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It is useful to think of a smooth stack simply as being a smooth groupoid. Lie groups and Lie groupoids are
examples (and are called “differentiable stacks” when regarded as special cases of smooth stacks) but there are
important smooth groupoids which are not Lie groupoids in that they have not a smooth manifold but a more
general smooth space of objects and of morphisms. Just as Lie groups have an infinitesimal approximation
given by Lie algebras, so smooth stacks/smooth groupoids have an infinitesimal approximation given by Lie
algebroids. The smooth moduli stack [Σ3,BGconn] of gauge field configuration on Σ3 is best known in the
physics literature in the guise of its underlying Lie algebroid: this is the formal dual of the (off-shell) BRST
complex of the G-gauge theory on Σ3: in degree 0 this consists of the functions on the space of gauge fields
on Σ3, and in degree 1 it consists of functions on infinitesimal gauge transformations between these: the
“ghost fields”.

The smooth structure on the action functional is of course crucial in field theory: in particular it allows
to define the differential d exp(iS(−)) of the action functional and hence its critical locus, characterized by
the Euler-Lagrange equations of motion. This is the phase space of the theory, which is a substack

[Σ2, [BG] ↪→ [Σ2,BGconn]

equipped with a presymplectic 2-form. To formalize this, write Ω2
cl(−) for the smooth stack of closed 2-forms

(without gauge transformations), hence the rule that sends a parameter manifold U to the set Ω2
cl(U) of

smooth closed 2-forms on U . This may be regarded as the smooth moduli 0-stack of closed 2-forms in that
for every smooth manifold X the set of morphisms X → Ω2

cl(−) is in natural bijection to the set Ω2
cl(X) of

closed 2-forms on X. This is an instance of the Yoneda lemma. Similarly, a smooth 2-form on the moduli
stack of field configurations is a morphism of smooth stacks of the form

[Σ2,BGconn]→ Ω2
cl(−) .

Explicitly, for Chern-Simons theory this morphism sends for each smooth parameter space U a given smooth
U -family of gauge fields A ∈ Ω1(Σ2 × U, g) to the 2-form∫

Σ2

〈dUA ∧ dUA〉 ∈ Ω2
cl(U) .

Notice that if we restrict to genuine families A which are functions of U but vanish on vectors tangent to
U (technically these are elements in the concretification of the moduli stack) then this 2-form is the fiber
integral of the Poincaré 2-form 〈FA ∧ FA〉 along the projection Σ2 × U → U , where FA := dA+ 1

2 [A ∧A] is
the curvature 2-form of A. This is the first sign of a general pattern, which we highlight in a moment.

There is more fundamental smooth moduli stack equipped with a closed 2-form: the moduli stack
BU(1)conn of U(1)-gauge fields, hence of smooth circle bundles with connection. This is the rule that
sends a smooth parameter manifold U to the groupoid H(U,BU(1)conn) of U(1)-gauge fields ∇ on U , which
we have already seen above. Since the curvature 2-form F∇ ∈ Ω2

cl(U) of a U(1)-principal connection is gauge
invariant, the assignment ∇ 7→ F∇ gives rise to a morphism of smooth stacks of the form

F(−) : BU(1)conn → Ω2
cl(−) .

In terms of this morphism the fact that every U(1)-gauge field ∇ on some space X has an underlying field
strength 2-form ω is expressed by the existence of a commuting diagram of smooth stacks of the form

BU(1)conn

F(−)

��

gauge field / differential cocycle

X
ω //

∇
::

Ω2
cl(−) field strength / curvature .

Conversely, if we regard the bottom morphism ω as given, and regard this closed 2-form as a (pre)symplectic
form, then a choice of lift ∇ in this diagram is a choice of refinement of the 2-form by a circle bundle with
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connection, hence the choice of a prequantum circle bundle in the language of geometric quantization (see
for instance section II in [Br93] for a review of geometric quantization).

Applied to the case of Chern-Simons theory this means that a smooth (off-shell) prequantization of the
theory is a choice of dashed morphism in a diagram of smooth stacks of the form

BU(1)conn

F(−)

��
[Σ2,BGconn] ∫

Σ2
〈F(−),F(−)〉

//

55

Ω2
cl(−) .

Similar statements apply to on-shell geometric (pre)quantization of Chern-Simons theory, which has been
so successfully applied in the original article [Wi89]. In summary, this means that in the context of smooth
stacks the Chern-Simons action functional and its prequantization are as in the following table:

dimension moduli stack description
k = 3 action functional (0-bundle) exp(iS(−)) : [Σ3,BGconn]→ U(1)
k = 2 prequantum circle 1-bundle [Σ2,BGconn]→ BU(1)conn

There is a precise sense, discussed in section 2.3 below, in which a U(1)-valued function is a circle k-
bundle with connection for k = 0. If we furthermore regard an ordinary U(1)-principal bundle as a circle
1-bundle then this table says that in dimension k Chern-Simons theory appears as a circle (3 − k)-bundle
with connection – at least for k = 3 and k = 2.

Formulated this way, it should remind one of what is called extended or multi-tiered topological quantum
field theory (formalized and classified in [Lu09a]) which is the full formalization of locality in the Schrödinger
picture of quantum field theory. This says that after quantization, an n-dimensional topological field theory
should be a rule that to a closed manifold of dimension k assigns an (n−k)-categorical analog of a vector space
of quantum states. Since ordinary geometric quantization of Chern-Simons theory assigns to a closed Σ2

the vector space of polarized sections (holomorphic sections) of the line bundle associated to the above
circle 1-bundle, this suggests that there should be an extended or multi-tiered refinement of geometric
(pre)quantization of Chern-Simons theory, which to a closed oriented manifold of dimension 0 ≤ k ≤ n assigns
a prequantum circle (n − k)-bundle (bundle (n − k − 1)-gerbe) on the moduli stack of field configurations
over Σk, modulated by a morphism [Σk,BGconn] → B(n−k)U(1)conn to a moduli (n − k)-stack of circle
(n− k)-bundles with connection (details on this are below in section 2.3).

In particular for k = 0 and Σ0 connected, hence Σ0 = ∗ the point, we have that the moduli stack of fields
on Σ0 is the universal moduli stack itself, [∗,BGconn] ' BGconn, and so a fully extended prequantization of
3-dimensional G-Chern-Simons theory would have to involve a universal characteristic morphism

cconn : BGconn → B3U(1)conn

of smooth moduli stacks, hence a smooth circle 3-bundle with connection on the universal moduli stack of
G-gauge fields. This indeed naturally exists: an explicit construction is given in [FSS10]. This morphism
of smooth higher stacks is a differential refinement of a smooth refinement of the level itself: forgetting
the connections and only remembering the underlying (higher) gauge bundles, we still have a morphism of
smooth higher stacks

c : BG→ B3U(1) .

This expression should remind one of the continuous map of topological spaces

c : BG→ B3U(1) ' K(Z, 4)
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from the classifying space BG to the Eilenberg-MacLane space K(Z, 4), which represents the level as a class
in integral cohomology H4(BG,Z) ' Z. Indeed, there is a canonical derived functor or ∞-functor

| − | : H→ Top

from smooth higher stacks to topological spaces [Sc12], derived left adjoint to the operation of forming locally
constant higher stacks, and under this map we have

|c| ' c .

In this sense c is a smooth refinement of [c] ∈ H4(BG,Z) and then cconn is a further differential refinement
of c.

However, more is true. Not only is there an extension of the prequantization of 3d G-Chern-Simons
theory to the point, but this also induces the extended prequantization in every other dimension by tracing :
for 0 ≤ k ≤ n and Σk a closed and oriented smooth manifold, there is a canonical morphism of smooth
higher stacks of the form

exp(2πi

∫
Σk

(−)) : [Σk,B
nU(1)conn]→ Bn−kU(1)conn ,

which refines the fiber integration of differential forms, that we have seen above, from curvature (n+1)-forms
to their entire prequantum circle n-bundles (we discuss this below in section 2.4). Since, furthermore, the
formation of mapping stacks [Σk,−] is functorial, this means that from a morphism cconn as above we get
for every Σk a composite morphism as such:

exp(2πi

∫
Σk

[Σk, cconn]) : [Σk,BGconn]
[Σk,cconn] // [Σk,BnU(1)conn]

exp(2πi
∫
Σk

(−))
// Bn−kU(1)conn .

For 3d G-Chern-Simons theory and k = n = 3 this composite is the action functional of the theory (down
on the set H(Σ3,BGconn) this is effectively the perspective on ordinary Chern-Simons theory amplified in
[CJMSW05]). Therefore, for general k we may speak of this as the extended action functional, with values
not in U(1) but in Bn−kU(1)conn.

This way we find that the above table, containing the Chern-Simons action functional together with its
prequantum circle 1-bundle, extends to the following table that reaches all the way from dimension 3 down
to dimension 0.

dim. prequantum (3− k)-bundle

k = 0
differential fractional

first Pontrjagin
cconn : BGconn → B3U(1)conn [FSS10]

k = 1
WZW

background B-field
[S1,BGconn]

[S1,cconn] // [S1,B3U(1)conn]
exp(2πi

∫
S1 (−))

// B2U(1)conn [∞WZW]

k = 2
off-shell CS

prequantum bundle
[Σ2,BGconn]

[Σ2,cconn] // [Σ2,B
3U(1)conn]

exp(2πi
∫
Σ2

(−))
// BU(1)conn [Sc12]

k = 3
3d CS

action functional
[Σ3,BGconn]

[Σ3,cconn] // [Σ3,B
3U(1)conn]

exp(2πi
∫
Σ3

(−))
// U(1) [FSS10]

For each entry of this table one may compute the total space object of the corresponding prequantum k-
bundle. This is now in general itself a higher moduli stack. In full codimension k = 0 one finds [∞Quant]
that this is the moduli 2-stack of String(G)-2-connections described in [SSS09b, FSS12b]. This we discuss
in section 3.1.2 below.

It is clear now that this is just the first example of a general class of theories which we may call higher
extended prequantum Chern-Simons theories or just ∞-Chern-Simons theories, for short [∞CS]. These are
defined by a choice of
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1. a smooth higher group G;

2. a smooth universal characteristic map c : BG→ BnU(1);

3. a differential refinement cconn : BGconn → BnU(1)conn.

An example of a 7-dimensional such theory on String-2-form gauge fields is discussed in [FSS12a], given by
a differential refinement of the second fractional Pontrjagin class to a morphism of smooth moduli 7-stacks

1
6 (p2)conn : BStringconn → B7U(1)conn .

We expect that these ∞-Chern-Simons theories are part of a general procedure of extended geometric quan-
tization (multi-tiered geometric quantization) which proceeds in two steps, as indicated in the following
table.

classical system geometric prequantization quantization

char. class c of deg. (n+ 1)
with de Rham image ω:
invariant polynomial/

n-plectic form

prequantum circle n-bundle
on moduli ∞-stack of fields
cconn : BGconn → BnU(1)conn

extended quantum field theory

Zc : Σk 7→


polarized sections of
prequantum (n− k)-bundle
exp(2πi

∫
Σk

[Σk, cconn])


Here we are concerned with the first step, the discussion of n-dimensional Chern-Simons gauge theories
(higher gauge theories) in their incarnation as prequantum circle n-bundles on their universal moduli ∞-
stack of fields. A dedicated discussion of higher geometric prequantization, including the discussion of higher
Heisenberg groups, higher quantomorphism groups, higher symplectomorphisms and higher Hamiltonian
vector fields, and their action on higher prequantum spaces of states by higher Heisenberg operators, is
in [∞Quant], see also [Sc12b]. As shown there, plenty of interesting physical information turns out to be
captured by extended prequantum n-bundles. For instance, if one regards the B-field in type II superstring
backgrounds as a prequantum 2-bundle, then its extended prequantization knows all about twisted Chan-
Paton bundles, the Freed-Witten anomaly cancellation condition for type II superstrings on D-branes and
the associated anomaly line bundle on the string configuration space.

Generally, all higher Chern-Simons theories that arise from extended action functionals this way enjoy
a collection of very good formal properties. Effectively, they may be understood as constituting examples
of a fairly extensive generalization of the refined Chern-Weil homomorphism with coefficients in secondary
characteristic cocycles. Moreover, we have shown previously that the class of theories arising this way is
large and contains not only several familiar theories, some of which are not traditionally recognized to be of
this good form, but also contains various new QFTs that turn out to be of interest within known contexts,
e.g. [FSS12a, FSS12b]. Here we further enlarge the pool of such examples.

Notably, here we are concerned with examples arising from cup product characteristic classes, hence of∞-
Chern-Simons theories which are decomposable or non-primitive secondary characteristic cocyles, obtained
by cup-ing more elementary characteristic cocycles. The most familiar example of these is again ordinary
3-dimensional Chern-Simons theory, but now for the non-simply connected gauge group U(1). In this
case a gauge field configuration in H(Σ3,BU(1)conn) is not necessarily given by a globally defined 1-form
A ∈ Ω1(Σ3), instead it may have a non-vanishing “instanton number”, the Chern-class of the underlying
circle bundle. Only if that happens to vanish is the value of the action functional again given by the simple
expression exp(2πik

∫
Σ3
A ∧ ddRA) as before. But in view of the above we are naturally led to ask: which

circle 3-bundle (bundle 2-gerbe) with connection over Σ3, depending naturally on the U(1)-gauge field, has
A ∧ ddRA as its connection 3-form in this special case, so that the correct action functional in generality is
again the volume holonomy of this 3-bundle (see section 3.1.1 below)? The answer is that it is the differential
cup square of the gauge field with itself. As a fully extended action functional this is a natural morphism of
higher moduli stacks of the form

(−)∪
2
conn : BU(1)conn → B3U(1)conn .
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We explain this below in section 2.3. This morphism of higher stacks is characterized by the fact that under
forgetting the differential refinement and then taking geometric realization as before, it is exhibited as a
differential refinement of the ordinary cup square on Eilenberg-MacLane spaces

(−)∪
2

: K(Z, 2)→ K(Z, 4)

and hence on ordinary integral cohomology. By the above general procedure, we obtain a well-defined action
functional for 3d U(1)-Chern-Simons theory by the expression

exp(2πi

∫
Σ3

[Σ3, (−)∪
2
conn ]) : [Σ3,BU(1)conn]→ U(1)

and this is indeed the action functional of the familiar 3d U(1)-Chern-Simons theory, also on non-trivial
instanton sectors, see section 3.2.2 below.

In terms of this general construction, there is nothing particular to the low degrees here, and we have
generally a differential cup square / extended action functional for a (4k + 3)-dimensional Chern-Simons
theory

(−)∪
2
conn : B2k+1U(1)conn → B4k+3U(1)conn

for all k ∈ N, which induces an ordinary action functional

exp(2πi

∫
Σ3

[Σ4k+3, (−)∪
2
conn ]) : [Σ4k+3,B

4k+3U(1)conn]→ U(1)

on the moduli (2k+ 1)-stack of U(1)-(2k+ 1)-form gauge fields, given by the fiber integration on differential
cocycles over the differential cup product of the fields. This is discussed in section 3.2.3 below.

Forgetting the smooth structure on [Σ4k+3,B
2k+1U(1)conn] and passing to gauge equivalence classes of

fields yields the cohomology group H2k+2
conn (Σ4k+3). This is what is known as ordinary differential cohomology

and is equivalent to the group of Cheeger-Simons differential characters, a review with further pointers is in
[HS05]. That gauge equivalence classes of higher degree U(1)-gauge fields are to be regarded as differential
characters and that the (4k + 3)-dimensional U(1)-Chern-Simons action functional on these is given by
the fiber integration of the cup product is discussed in detail in [FP89], also mentioned notably in [Wi96,
Wi98b] and expanded on in [Fr00]. Effectively this observation led to the general development of differential
cohomology in [HS05]. Or rather, the main theorem there concerns a shifted version of the functional of
(4k+3)-dimensional U(1)-Chern-Simons theory which allows to further divide it by 2. We have discussed the
refinement of this to smooth moduli stacks of fields in [FSS12b]. These developments were largely motivated
from the relation of (4k+ 3)-dimensional U(1)-Chern-Simons theories as the holographic duals to theories of
self-dual forms in dimension (4k+ 2) (see [BM06] for survey and references): a choice of conformal structure
on a Σ4k+2 naturally induces a polarization of the prequantum 1-bundle of the (4k+ 3)-dimensional theory,
and for every choice the resulting space of quantum states is naturally identified with the corresponding
conformal blocks (correlators) of the (4k + 2)-dimensional theory.

Therefore we have that regarding the differential cup square on smooth higher moduli stacks as an
extended action functional yields the following table of familiar notions under extended geometric prequan-
tization.

dim. prequantum (4k + 3− d)-bundle

d = 0 differential cup square (−)∪
2
conn : B2k+1U(1)conn → B4k+3U(1)conn

...
...

...

d = 4k + 2
“pre-conformal blocks” of

self-dual 2k-form field
[Σ4k+2,B

2k+1U(1)conn]
[Σ4k+2,(−)∪

2
conn ]// [Σ4k+2,B

2k+1U(1)conn]
exp(2πi

∫
Σ4k+2

(−))

// BU(1)conn

d = 4k + 3
CS

action functional
[Σ4k+3,B

2k+1U(1)conn]
[Σ4k+3,(−)∪

2
conn ]// [Σ4k+3,B

2k+1U(1)conn]
exp(2πi

∫
Σ4k+3

(−))

// U(1)
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This fully extended prequantization of (4k+3)-dimensional U(1)-Chern-Simons theory allows for instance
to ask for and compute the total space of the prequantum circle (4k+ 3)-bundle. This is now itself a higher
smooth moduli stack. For k = 0, hence in 3d-Chern-Simons theory it turns out to be the moduli 2-stack of
differential T-duality structures. This we discuss in section 3.2.2 below.

More generally, as the name suggests, the differential cup square is a specialization of a general differential
cup product. As a morphism of bare homotopy types this is the familiar cup product of Eilenberg-MacLane
spaces

(−) ∪ (−) : K(Z, p+ 1)×K(Z, q + 1)→ K(Z, p+ q + 2)

for all p, q ∈ N. Its smooth and then its further differential refinement is a morphism of smooth higher stacks
of the form

(−) ∪conn (−) : BpU(1)conn ×B1U(1)conn → Bp+q+1U(1)conn ,

which, as before, we describe below in section 2.3.

By the above discussion this now defines a higher extended gauge theory in dimension p + q + 1 of two
different species of higher U(1)-gauge fields. One example of this is the higher electric-magnetic coupling
anomaly in higher (Euclidean) U(1)-Yang-Mills theory, as explained in section 2 of [Fr00]. In this example
one considers on an oriented smooth manifold X (here assumed to be closed, for simplicity) an electric current
(p+ 1)-form Jel ∈ Ωp+1

cl (X) and a magnetic current (q+ 1)-form Jmag ∈ Ωq+1
cl (X), such that p+ q = dim(X)

is the dimension of X. A prequantization of these current forms in our sense of higher geometric quantization
[∞Quant] is a lift to differential cocycles

BpU(1)conn

F(−)

��
X

Ĵel

66

Jel // Ωp+1
cl (−) ,

BqU(1)conn

F(−)

��
X

Ĵmag

66

Jmag // Ωq+1
cl (−)

and here this amounts to electric and magnetic charge quantization, respectively: the electric charge is the
universal integral cohomology class of the circle p-bundle underlying the electric charge cocycle: its higher
Dixmier-Doudy class [Ĵel] ∈ Hp+1

cpt (X,Z) (see section 3.1.1 below); and similarly for the magnetic charge.
Accordingly, the higher mapping stack [X,BpU(1)comm ×BqU(1)conn] is the smooth higher moduli stack of
charge-quantized electric and magnetic currents on X. Recall that this assigns to a smooth test manifold U
the higher groupoid whose objects are U -families of pairs of charge-quantized electric and magnetic currents,
namely such currents on X × U . As [Fr00] explains in terms of such families of fields, the U(1)-principal
bundle with connection that in the present formulation is the one modulated by the morphism

∇an := exp(2πi

∫
X

[X, (−) ∪conn (−)]) : [X,BpU(1)comm ×BqU(1)conn]→ BU(1)conn

is the anomaly line bundle of (p − 1)-form electromagnetism on X, in the presence of electric and mag-
netic currents subject to charge quantization. In the language of ∞-Chern-Simons theory as above, this is
equivalently the off-shell prequantum 1-bundle of the higher cup product Chern-Simons theories on pairs of
U(1)-gauge p-form and q-form fields.

Regarded as an anomaly bundle, one calls its curvature the local anomaly and its holonomy the “global
anomaly”. In our contex the holonomy of ∇an is (discussed again in section 3.1.1 below) the morphism

hol(∇an) = exp(2πi

∫
S1

[S1,∇an]) : [S1, [X,BpU(1)comm ×BqU(1)conn]]→ U(1)

from the loop space of the moduli stack of fields to U(1). By the characteristic universal propery of higher
mapping stacks, together with the “Fubini-theorem”-property of fiber integration, this is equivalently the
morphism

exp(2πi

∫
X×S1

[X × S1, (−) ∪conn (−)]) : [X × S1,BpU(1)comm ×BqU(1)conn]→ U(1) .
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But from the point of view of∞-Chern-Simons theory this is the action functional of the higher cup product
Chern-Simons field theory induced by ∪conn. The situation is now summarized in the following table.

dim. prequantum (dim(X) + 1− k)-bundle

k = 0 differential cup product (−)∪
2
conn : BpU(1)connB

qU(1)conn → Bd+2U(1)conn

...
...

...

k = dim(X)
higher E/M-charge

anomaly line bundle
exp(2πi

∫
X

[X, (−) ∪conn (−)]) : [X,BpU(1)conn ×BqU(1)conn] // BU(1)conn

k = dim(X) + 1 global anomaly exp(2πi
∫
X×S1 [X × S1, (−) ∪conn (−)]) : [X × S1,BpU(1)conn ×BqU(1)conn]→ U(1)

These higher electric-magnetic anomaly Chern-Simons theories are of particular interest when the higher
electric/magnetic currents are themselves induced by other gauge fields. Namely if we have any two ∞-
Chern-Simons theories given by extended action functionals c1

conn : BG1
conn → BpU(1)conn and c2

conn :
BG2

conn → BqU(1)conn, respectively, then composition of these with the differential cup product yields an
extended action functional of the form

c1
conn ∪conn c2

conn : B(G1 ×G2)conn

(c1
conn,c

2
conn) // BpU(1)conn ×B1U(1)conn

(−)∪conn(−) // Bp+q+1U(1)conn ,

which describes extended topological field theories in dimension p + q + 1 on two species of (possibly non-
abelian, possibly higher) gauge fields, or equivalently describes the higher electric/magnetic anomaly for
higher electric fields induced by c1 and higher magnetic fields induced by c2.

For instance for heterotic string backgrounds c2
conn is the differential refinement of the first fractional

Pontrjagin class 1
2p1 ∈ H4(BSpin,Z) [SSS09b, FSS10] of the form

c2
conn = ĴNS5

mag = 1
2 (p1)conn : BSpinconn → B3U(1)conn ,

formalizing the magnetic NS5-brane charge needed to cancel the fermionic anomaly of the heterotic string by
way of the Green-Schwarz mechanism. It is curious to observe, going back to the very first example of this
introduction, that this ĴNS5

mag is at the same time the extended action functional for 3d Spin-Chern-Simons
theory.

Still more generally, we may differentially cup in this way more than two factors. Examples for such higher
order cup product theories appear in 11-dimensional supergravity. We discuss this in section 3.3. Notably
plain classical 11d supergravity contains an 11-dimensional cubic Chern-Simons term whose extended action
functional in our sense is

(−)∪
3
conn : B3U(1)conn → B11U(1)conn .

Here for X the 11-dimensional spacetime, a field in [X,B3U(1)] is a first approximation to a model for the
supergravity C-field. If the differential cocycle happens to be given by a globally defined 3-form C, then
the induced action functional exp(2πi

∫
X

[X, (−)∪
3
conn ]) sends this to element in U(1) given by the familiar

expression

exp(2πi

∫
X

[X, (−)∪
3
conn ]) : C 7→ exp(2πi

∫
X

C ∧ ddRC ∧ ddRC) .

More precisely this model receives quantum corrections from an 11-dimensional Green-Schwarz mechanism.
In [FSS12a, FSS12b] we have discussed in detail relevant corrections to the above extended cubic cup-product
action functional on the moduli stack of flux-quantized C-field configurations.

This paper is meant to be of interest to both mathematicians and theoretical/mathematical physicists. It
provides some basic constructions and variations on theories that are familiar to the former, and illustrates
this with reduction to explicit examples familiar to the latter. Our aim is to show and illustrate by further
classes of interesting examples how Chern-Weil theory interpreted in higher geometry, hence ∞-Chern-
Simons theory, usefully unifies a wealth of structures that are of interest both in themselves as well as in
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the role they play in quantum field theory and string theory. A more general and encompassing discussion
should appear in [∞Quant, ∞CS, ∞WZW].

2 General theory

In this section we describe the general formal definition and construction of higher extended cup-product
Chern-Simons theories defined on their full higher moduli stacks of fields. This is the conceptual basis for
the discussion of the examples below in section 3.

2.1 Smooth higher stacks

We briefly indicate the context of smooth higher stacks (equivalently: smooth ∞-groupoids or smooth ho-
motopy types) in which we place our discussions of differential cohomology and extended action functionals.
We initiated this approach in [SSS09b] (with an unpublished precursor set of notes [SSSS08], presented at
[Sc09]), and so the reader can find more detailed surveys with emphasis on different aspects in the series of
papers [SS10, FSS10, FRS11, FSS12a, FSS12a, NSS12a, NSS12b]. A comprehesive account is in [Sc12]; an
introductory lecture series with emphasis on applications to string theory is in [Sc12a]. The basic idea has
then also been propagated at the end of [Ho11]1, together with the statement this is the context in which the
seminal article [HS05] was eventually meant to be considered. The following should serve to fix our notation
and terminology for the present purpose and to give the reader unfamiliar with the details a quick idea of
the conceptual background.

Higher geometry is determined by a choice of geometric test spaces or affine spaces forming a category C
equipped with a notion of cover: a site. The relevant example for the present application to higher differential
geometry is the category

C := CartSp ↪→ SmthMfd

of Cartesian spaces, i.e., of finite-dimensional smooth manifolds diffeomorphic to Rn for some n, with smooth
maps as morphisms. These form manifestly a local model for smooth manifolds. Namely, every local
construction in differential geometry, i.e., every construction which can be expressed in terms of local charts,
is actually a construction taking place over CartSp. More precisely, smooth manifolds are presheaves of sets
over the site of Cartesian space, and precisely those that are locally affine with respect to CartSp. Once
this point of view has been adopted, one has an immediate generalization from sets to simplicial sets, and
this provides a powerful and natural language to generalize from smooth manifolds to smooth orbifolds, to
smooth stacks. Every such object X determines a functor Cop → sSet to the category of simplicial sets –
a simplicial presheaf – which is to be thought of as sending a test space U in C to the simplicial set whose
vertices are the smooth maps U → X, whose edges are the smooth (orbifold-like-)transformations between
two such smooth maps, and so on. Since these transformations can be composed and inverted, the simplicial
set obtained this way is an Kan complex, a combinatorial model for an ∞-groupoid.

We write [Cop, sSet] for the category whose objects are such simplicial presheaves, and whose morphisms
are natural transformations between them, and – since Kan complexes are precisely the fibrant objects in the
standard model category structure on simplicial sets – we write [Cop, sSetfib] for the subcategory of presheaves
taking values in Kan complexes. We say a morphism f : X → Y of Kan-complex valued presheaves is a
local homotopy equivalence if it is stalkwise a homotopy equivalence of Kan complexes, hence if for every
manifold U and every point x ∈ U there is a neighbourhood x ∈ Ux ⊂ U such that f(Ux) : X(Ux)→ Y (Ux)
is a homotopy equivalence of Kan complexes. We then write

H := Sh∞(C) := LW [Cop, sSetfib]

for the Kan complex-enriched category which is universal with the property that local homotopy equivalences
in [Cop, sSetfib] become actual homotopy equivalences. For X and A any two simplicial presheaves, we

1We are grateful to Alexander Kahle for pointing out this talk to us at String-Math 2012.
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write H(X,A) for the resulting ∞-groupoid of morphisms between them. This construction is called the
simplicial localization of the category of simplicial presheaves at the local homotopy equivalences W ⊂
Mor([Cop, sSetfib]). More abstractly, the resulting H is called the ∞-topos of ∞-stacks over C. This is the
context for higher geometry modeled on C. Given a simplicial presheaf X ∈ [Cop, sSet], its image in H is also
called its ∞-stackification.

Every stack on smooth manifolds is naturally an object in H, and in particular so are differentiable
stacks and hence Lie groupoids. A basic example is obtained from a Lie group G. This defines a presheaf
of Kan complexes which sends a test manifold U to the 1-groupoid with a single object and the (discrete)
group of smooth functions C∞(U,G) as morphisms from that object to itself. We write BG ∈ H for the
corresponding smooth stack. This is the moduli stack for G-principal bundles; namely, a morphism X → BG
in H modulates a smooth G-principal bundle P → X. We write

H(X,BG) ' GBund(X)

for the cocycle groupoid whose objects are morphisms X → BG and whose morphisms are homotopies be-
tween such maps. This is equivalently the groupoid of G-principal bundles and smooth gauge transformations
between these.

Generally, an ∞-stack G with group structure (up to higher homotopy: a groupal A∞-structure) de-
termines and is determined by a moduli ∞-stack BG which modulates G-principal ∞-bundles in this way
[NSS12a]. For such a G and for X ∈ H, we call H(X,BG) the cocycle ∞-groupoid of G-cocycles on X. Its
set of connected components is

H1(X,G) := π0H(X,BG) ,

the degree-1 nonabelian cohomology of X with coefficients in G. If BG itself again has a group structure, we
may form B2G, and so on. Generally, if an object A is n-times deloopable this way we write

Hn(X,A) := π0H(X,BnA)

for the degree-n cohomology of X with coefficients in A.

In order to compute H(X,A) in concrete situations, we invoke various tools in homotopy theory, notably
the fact that the stalkwise weak homotopy equivalences of simplicial presheaves are the weak equivalences
in the projective local model structure on simplicial presheaves. Details of this the reader may find in
[Sc12, NSS12b]. Here we just remark that if X happens to be a smooth manifold, and A an abelian Lie
group, then H(X,BnA) is equivalent to the simplicial function complex of maps of simplicial presheaves
C({Ui}) → DK(A[n]), where C({Ui}) is the Cech nerve simplicial presheaf of any differentially good cover
{Ui → X}. This says that H(X,A) may be computed by nonabelian hyper-Cech cohomology.

A useful tool for producing ∞-stacks A with abelian ∞-group structure such that the delooping BnA
exists for all n ∈ N is the Dold-Kan correspondence, which we here briefly recall. First, at an algebraic level,
we have the classical Dold-Kan correspondence

Ch+
•

Γ

'
// sAb,

which establishes an equivalence of categories between chain complexes concentrated in non-negative degrees
and simplicial abelian groups. Then there is the forgetful functor

F : sAb→ sSetfib ↪→ sSet

which forgets the group structure on a simplicial abelian group and just remembers the underlying simplicial
set, which in turn is guaranteed to be a Kan complex. This is such that the elements in degree k of a chain
complex label the extension of k-cells in the corresponding simplicial set; and the chain homology group in
degree k identifies with the simplicial homotopy group in the same degree

Hk(V ) ' πk(F (Γ(V ))) .
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All this prolongs directly to presheaves of chain complexes and presheaves of abelian groups, and we will use
the same symbols and write

DK : [Cop,Ch•]
Γ // [Cop, sAb]

F // [Cop, sSet] .

for the composite and refer to it as the Dold-Kan map. A crucial property of the Dold-Kan map is the
following.

Proposition 2.1.1. Let A,B and C be presheaves of chain complexes concentrated in non-negative degrees,
and let ∪ : A⊗B → C be a morphism of presheaves of chain complexes. Then the Dold-Kan map induces a
natural morphism of simplicial preseheaves ∪DK : DK(A)×DK(B)→ DK(C)

Proof. Both the categories Ch+
• and sAb are monoidal categories under the respective standard tensor

products (on Ch+
• this is given by direct sums of tensor products of abelian groups with fixed total degree

and on sAb by the degreewise tensor product of abelian groups), and the functor Γ is lax monoidal with
respect to these structures, i.e., for any V,W ∈ Ch+

• we have natural weak equivalences

∇V,W : Γ(V )⊗ Γ(W )→ Γ(V ⊗W ) .

The forgetful functor F is the right adjoint to the functor forming degreewise the free abelian group on a
set, therefore it preserves products and hence there are natural isomorphisms

F (V ×W )
'−→ F (V )× F (W ) ,

for all V,W ∈ sAb. Finally, by the definition of tensor product, there are universal natural quotient maps
V,W ∈ sAb

pV,W : V ×W → V ⊗W .

The morphism ∪DK is then defined as the composition indicated in the following diagram:

DK(A)×DK(B)
∪DK // DK(C)

F (Γ(A))× F (Γ(B))

'
��

F (Γ(A)× Γ(B))
F (p) // F (Γ(A)⊗ Γ(B))

F (∇) // F (Γ(A⊗B))
F (Γ(∪)) // F (Γ(C)) .

Given the presentation H ' LW [Cop, sSet], for every presheaf of chain complexes A on C we obtain a
corresponding ∞-stack, the ∞-stackification of the image of A under the Dold-Kan map, which we will
denote by the same symbol: DK(A) ∈ H.

Definition 2.1.1. For A ∈ [Cop,Ab] a sheaf of abelian groups, we write A[n] ∈ [Cop,Ch+
• ] for the corre-

sponding presheaf of chain complexes concentrated on A in degree n, and

BnA ' DK(A[n]) ∈ H

for the corresponding ∞-stack.

In this case the corresponding cohomology

Hn(X,A) = π0H(X,BnA)
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is the traditional sheaf cohomology of X with coefficients in A. More generally, if A ∈ [Cop,Ch+
• ] is a sheaf

of chain complexes not necessarily concentrated in one degree, then

H0(X,A) := π0H(X,A)

is what traditionally is called the sheaf hypercohomology of X with coefficients in A. The central coefficient
object in which we are interested here is the sheaf of chain complexes called the Deligne complex, to which
we now turn.

2.2 Deligne cohomology and the cup product

Ordinary degree-2 integral cohomology H2(X,Z) on a smooth manifold X classifies smooth circle-bundles
on X. Ordinary differential cohomology H2

conn(X,Z) classifies smooth circle bundles with connection. In
more detail, there is a groupoid H1

conn(X,U(1)) whose objects are circle bundles with connection on X,
and whose morphisms are smooth gauge transformations on X, such that H2

conn(X,Z) = π0H
1
conn(X,U(1)).

Generalized to arbitrary degree, one obtains n-groupoids Hn
conn(X,U(1)) whose objects are interpreted as

circle n-bundles/bundle (n−1)-gerbes with connection, whose morphisms as smooth gauge transformations,
whose 2-morphisms as gauge-of-gauge transformations, and so on.

A famous model for these n-groupoids using chain complexes is due to Deligne and Beilinson, known as
the Deligne complex, which we briefly review, together with its cup product operation. In the context of
differential geometry the use of Deligne cohomology was amplified notably by Brylinski [Br93].

Definition 2.2.1. Write Z[n+ 1]∞D ∈ [CartSpop,Ch+
• ] for the sheaf of chain complexes given by

Z[n+ 1]∞D :=

[
Z �
� // C∞(−,R)

ddR // Ω1(−)
ddR // · · · ddR // Ωn(−)

]
,

with the constant sheaf of integers Z in degree (n + 1), including into the sheaf of smooth real functions
in degree n and with all further differential being the de Rham differential on sheaves of differential forms.
This is the Deligne complex in degree (n+ 1). The sheaf hypercohomology with coefficients in Z[n+ 1]∞D is
accordingly Deligne cohomology.

Remark 2.2.1. In the literature the Deligne complex is traditionally regarded as a sheaf on a fixed space
X, instead of on the category of all Cartesian spaces. We see below that this difference translates into that
between the moduli of circle n-bundles on a given space and the universal moduli n-stack of circle n-bundles.

The Beilinson-Deligne cup product is an explicit presentation of the cup product in ordinary differential
cohomology for the case that the latter is modeled by the Čech-Deligne cohomology.

Definition 2.2.2. The Beilinson-Deligne cup product is the morphism of sheaves of chain complexes

∪BD : Z[p+ 1]∞D ⊗ Z[q + 1]∞D −→ Z[(p+ 1) + (q + 1)]∞D ,

given on homogeneous elements α, β as follows:

α ∪BD β :=


α ∧ β = αβ if deg(α) = p+ 1 .

α ∧ ddRβ if deg(α) ≤ p and deg(β) = 0

0 otherwise .

.

Remark 2.2.2. When restricted to the diagonal in the case that p = q, this means that the cup product
sends a p-form α to the (2p + 1)-form α ∧ ddRα. This is of course the local Lagrangian for cup product
Chern-Simons theory of p-forms. We discuss this case in detail in section 3.2.3.

The Beilinson-Deligne cup product is associative and commutative up to homotopy, so it induces an
associative and commutative cup product on ordinary differential cohomology. A survey of this can be found
in [Br93] (around Prop. 1.5.8 there).
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2.3 Moduli n-stacks of circle n-connections

Under the simplicial localization H ' LW [Cop, sSetfib] together with the Dold-Kan correspondence DK :
[Cop,Ch+

• ] → [Cop, sSetfib] from section 2.1, the Deligne chain complexes of section 2.2 present smooth ∞-
stacks. We briefly discuss these and their induced cup product.

We have already mentioned that BnU(1) ' DK(C∞(−, U(1))[n]) is the moduli n-stack for circle n-
bundles.

Definition 2.3.1. Write BnU(1)conn := DK(Z[n + 1]∞D ) for the smooth n-stack presented by the Deligne
complex, definition 2.2.1, under definition 2.1.1.

This n-stack sits in a diagram

BnU(1)conn

χ

��

F(−) // Ωn+1
cl (−)

��
BnU(1)

curv
// [dRBn+1U(1)

'

x�

of n-stacks in H, where

1. BnU(1) ' DK(C∞(−, U(1))[n]) is the moduli n-stack of circle n-bundles (without connection); and χ
is induced under DK from the evident morphism of chain complexes;

2. Ωn+1
cl (−) is the ordinary sheaf of closed (n+ 1)-forms;

3. [dRBn+1U(1) ' DK([Ω1(−)
ddR−→ · · · −→ Ωn+1

cl (−)]) is induced from the truncated de Rham complex,
and curv – the universal curvature characteristic – is induced from a zig-zag of chain complexes such
that it equips a circle n-bundle with a pseudo-connection and then produces the corresponding pseudo-
curvature.

In fact this diagram is a homotopy pullback and characterizes BnU(1)conn as the moduli n-stack for curvature-
twisted flat n-bundles. We call it the moduli n-stack of circle n-bundles with connection.

Proposition 2.3.1. Given a morphism c : X → BnU(1), hence a class in Hn(X,U(1)) (for X a smooth
manifold or itself a smooth ∞-stack such as BG), the total space object P → X (total higher stack) of the
circle n-bundle modulated by this morphism is the homotopy fiber of this morphism, the object universally
fitting into a square

P //

��

∗

��
X

c
// BnU(1) .

'~�

This is a special case of the first main theorem in [NSS12a].

Proposition 2.3.2. For a morphism ∇ : X → BnU(1)conn modulating a circle n-bundle with connection,
the total space of the underlying circle n-bundle is equivalently the homotopy pullback

P //

��

Ω1≤•≤n(−)

��
X

∇
// BnU(1)conn .

'
|�

14



where the right vertical morphism includes the image under DK of the chain complex [Ω1(−)
ddR−→ · · · ddR−→

Ωn(−)], hence includes the modli (n − 1)-stack of circle n-connections whose underlying circle n-bundle is
trivial.

Proof. By Prop. 2.3.1 the total space object is the homotopy pullback

P //

��

∗

��
X

χ(∇)
// BnU(1) ,

'~�

where the bottom morphism is the composite

χ(∇) : X
∇ // BnU(1)conn

χ // BnU(1)

that projects out the moduli of the circle n-bundle underlying the given n-connection. By the pasting law
for homotopy pullbacks the pullback along such a composite map may be computed by iteratively pulling
back along the two components, hence by forming the following pasting composite of homotopy pullback
squares:

P //

��

Ωn≥•≥1(−) //

��

∗

��
X // BnU(1)conn

χ // BnU(1) .

Since (see [Sc12] for details of such arguments)

1. the map DK is right Quillen for the global projective model structure on simplicial presheaves,

2. homotopy pullbacks in the local model structure may be computed in the global model structure (since
∞-stackification is left exact),

3. the pre-image under DK of the morphism χ is manifesty a fibration,

we may compute the homotopy pullback on the right as the ordinary pullback of presheaves of chain com-
plexes, under DK(−). Moreover, since these are computed as objectwise and degreewise pullbacks of abelian
groups, this manifestly yields the fiber Ω1≤•≤n as indicated. Hence by the pasting law we obtain the homo-
topy pullback on the left as claimed. �

Remark 2.3.1. In the context of higher geometry such total space objects P may have a deeper meaning
than in ordinary geometry: if X is a higher moduli stack, say of G-∞-connections X = BGconn for some
smooth higher group G, then P in the above is itself also a higher moduli stack: namely that of those G-gauge
fields equipped with a trivialization of their underlying class χ. Noteworthy examples of this phenomenon
are discussed below in sections 3.1.2, 3.1.3 and 3.2.1.

Definition 2.3.2. For p, q ∈ N the morphism of simplicial presheaves

∪conn : BpU(1)conn ×BqU(1)conn → Bp+q+1U(1)conn

is the morphism associated to the Beilinson-Deligne cup product ∪BD : Z[p+1]∞D⊗Z[q+1]∞D −→ Z[p+q+2]∞D
by Proposition 2.1.1.
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Since the Beilinson-Deligne cup product is associative up to homotopy, this induces a well defined morphism

Bn1U(1)conn ×Bn2U(1)conn × · · · ×Bnk+1U(1)conn → Bn1+···+nk+1+kU(1)conn.

In particular, if n1 = · · · = nk+1 = 3, we find(
B3U(1)conn

)k+1 → B4k+3U(1)conn.

Furthermore, we see from the explicit expression of the Beilinson-Deligne cup product that, on a local chart
U , if the 3-form datum of a connection on a U(1)-3-bundle is the 3-form C, then the 4k+3-form local datum
for the corresponding connection on the associated U(1)-(4k + 3)-bundle is

C ∧ dC ∧ · · · ∧ dC︸ ︷︷ ︸
k times

. (2.3.1)

We will illustrate the above constructions with various (classes of) examples arising from string theory and
M-theory.

2.4 Fiber integration and extended higher Chern-Simons actions

We discuss fiber integration in ordinary differential cohomology refined to smooth higher stacks and how this
turns every differential characteristic maps into a tower of extended higher Chern-Simons action functionals
in all codimensions.

One of the basic properties of∞-toposes such as our H = Sh∞(CartSp) is that they are cartesian closed.
This means that:

Fact 2.4.1. For every two objects X,A ∈ H – hence for every two smooth higher stacks – there is another
object denoted [X,A] ∈ H that behaves like the “space of smooth maps from X to A.” in that for every
further Y ∈ H there is a natural equivalence of cocycle ∞-groupoids of the form

H(X × Y,A) ' H(Y, [X,A]) ,

saying that cocycles with coefficients in [X,A] on Y are naturally equivalent to A-cocycles on the product
X × Y .

Remark 2.4.1. The object [X,A] is in category theory known as the internal hom object, but in applications
to physics and stacks it is often better known as the “families version” of A-cocycles on Y , in that for each
smooth parameter space U ∈ SmthMfd, the elements of [X,A](U) are “U -parameterized families of A-
cocycles on X”, namely A-cocycles on X × U . This follows from the above characterizing formula and the
Yoneda lemma:

[X,A](U)
Yoneda

' // H(U, [X,A])
' // H(X × U,A) .

Notably for G a smooth ∞-group and A = BGconn a moduli ∞-stack of smooth G-principal ∞-bundles
with connection the object

[Σk,BGconn] ∈ H

is the smooth higher moduli stack of G-connection on Σk. It assigns to a test manifold U the ∞-groupoid
of U -parameterized families of G-∞-connections, namely of G-∞-connections on X ×U . This is the smooth
higher stack incarnation of the configuration space of higher G-gauge theory on Σk.

Example 2.4.1. In the discussion of anomaly polynomials in heterotic string theory over a 10-dimensional
spacetime X one encounters degree-12 differential forms I4 ∧ I8, where Ii is a degree i polynomial in char-
acteristic forms. Clearly these cannot live on X, as every 12-form on X, given by an element in the
hom-∞-groupoid

H(X,Ω12(−))
Yoneda

' // Ω12(X)
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is trivial. Instead, these differential forms are elements in the internal hom [X,Ω12(−)], which means that
for every choice of smooth parameter space U there is a smooth 12-form on X ×U , such that this system of
forms transforms naturally in U .

Below in section 3.2.4 we discuss how such anomaly forms appear from morphisms of higher moduli
stacks

cconn : BGconn → B11U(1)conn

for BGconn the higher moduli stack of supergravity field configurations by sending the families of moduli of
field configurations on spacetime X to their anomaly form:

[X,BGconn]
[X,cconn] // [X,B11U(1)conn]

[X,curv] // [X,Ω12(−)] .

We now discuss how such families of n-cocycles on some X can be integrated over X to yield (n−dim(X))-
cocycles.

Proposition 2.4.1. Let Σk be a closed (= compact and without boundary) oriented smooth manifold of
dimension k. Then for every n ≥ k there is a natural morphism of smooth higher stacks

exp(2πi

∫
Σk

(−)) : [Σk,B
nU(1)conn]→ Bn−kU(1)conn

from the moduli n-stack of circle n-bundles with connection on Σk to the moduli (n − k)-stack of smooth
circle (n− k)-bundles with connection such that

1. for k = n this yields a U(1)-valued gauge invariant smooth function

exp(2πi

∫
Σk

(−)) : [Σn,B
nU(1)conn]→ U(1) ,

which is the n-volume holonomy of a circle n-connection over the “n-dimensional Wilson volume” Σn;

2. for k1, k2 ∈ N with k1 + k2 ≤ n we have

exp(2πi

∫
Σk1

(−)) ◦ exp(2πi

∫
Σk2

(−)) ' exp(2πi

∫
Σk1
×Σk2

(−)) .

Proof. Since BnU(1)conn is fibrant in the projective local model structure [CartSpop, sSet]proj,loc (since every
circle n-bundle with connection on a Cartesian space is trivializable) the mapping stack [Σk,B

nU(1)conn] is
presented for any choice of good open cover {Ui → Σk} by the simplicial presheaf

U 7→ [CartSpop, sSet](Č(U)× U,BnU(1)conn) ,

where Č(U) is the Čech nerve of the open cover {Ui → Σk}. Therefore a morphism as claimed is given by
natural fiber integration of Deligne hypercohomology along product bundles Σk × U → U for closed Σk.
This has been constructed for instance in [GT1]. �

Definition 2.4.1. Let cconn : BGconn → BnU(1)conn be a differential characteristic map. Then for Σk a
closed smooth manifold of dimension k ≤ n, we call

exp(2πi

∫
Σk

[Σk, cconn]) : [Σk,BGconn]
[Σk,cconn] // [Σk,BnU(1)conn]

exp(2πi
∫
Σk

(−))
// Bn−kU(1)conn
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the off-shell prequantum (n − k)-bundle of extended cconn-∞-Chern-Simons theory. For n = k we have a
circle 0-bundle

exp(2πi

∫
Σn

[Σn, cconn]) : [Σn,BGconn]
[Σn,cconn] // [Σn,BnU(1)conn]

exp(2πi
∫
Σn

(−))
// U(1) ,

which we call the action functional of the theory.

This construction subsumes several fundamental aspects of Chern-Simons theory:

1. gauge invariance and smoothness of the (extended) action functionals, remark 2.4.2;

2. inclusion of instanton sectors (nontrivial gauge ∞-bundles), remark 2.4.3;

3. level quantization, remark 2.4.4;

4. definition on non-bounding manifolds and relation to (higher) topological Yang-Mills on bounding
manifolds, remark 2.4.5.

We discuss these in more detail in the following remarks, as indicated.

Remark 2.4.2 (Gauge invariance and smoothness). Since U(1) ∈ H is an ordinary manifold (after forget-
ting the group structure), a 0-stack with no non-trivial morphisms (no gauge transformation), the action
functional exp(2πi

∫
Σn

[Σn, cconn]) takes every morphism in the moduli stack of field configurations to the

identity. But these morphisms are the gauge transformations, and so this says that exp(2πi
∫

Σn
[Σn, cconn])

is gauge invariant, as befits a gauge theory action functional. To make this more explicit, notice that

H(Σn,BGconn) ' [Σn,BGconn](∗)

is the evaluation of the moduli stack on the point, hence the ∞-groupoid of smooth families of field config-
urations which are trivially parameterized. Moreover

H1
conn(Σn, G) := π0H(Σn,BGconn)

is the set of gauge equivalent such field configurations. Then the statement that the action functional is both
gauge invariant and smooth is the statement that it can be extended from H1

conn(Σn, G) (supposing that it
were given there as a function exp(iS(−)) by other means) via H(Σn,BGconn) to [Σn,BGconn]

H1
conn(Σn, G)

��

exp(iS(−)) // U(1)

H(Σn,BGconn)

��

gauge invariance

[Σn,BGconn]

exp(2πi
∫
Σn

[Σn,cconn])

;;

smoothness .

Remark 2.4.3 (Definition on instanton sectors). Ordinary 3-dimensional Chern-Simons theory is often
discussed for the special case only when the gauge group G is connected and simply connected. This yields
a drastic simplification compared to the general case; since for every Lie group the second homotopy group
π2(G) is trivial, and since the homotopy groups of the classifying space BG are those of G shifted up in
degree by one, this implies that BG is 3-connected and hence that every continuous map Σ3 → BG out
of a 3-manifold is homotopic to the trivial map. This implies that every G-principal bundle over Σ3 is
trivializable. As a result, the moduli stack of G-gauge fields on Σ3, which a priori is [Σ3,BGconn], becomes
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in this case equivalent to just the moduli stack of trivial G-bundles with (non-trivial) connection on Σ3,
which is identified with the groupoid of just g-valued 1-forms on Σ3, and gauge transformations between
these, which is indeed the familiar configurations space for 3-dimensional G-Chern-Simons theory.

One should compare this to the case of 4-dimensional G-gauge theory on a 4-dimensional manifold Σ4,
such as G-Yang-Mills theory. By the same argument as before, in this case G-principal bundles may be
nontrivial, but are classified enirely by the second Chern class (or first Pontrjagin class) [c2] ∈ H4(Σ4, π(G)).
In Yang-Mills theory with G = SU(n), this class is known as the instanton number of the gauge field.

The simplest case where non-trivial classes occur already in dimension 3 is the non-simply connected
gauge group G = U(1), discussed in section 3.2.2 below. Here the moduli stack of fields [Σ3,BU(1)conn]
contains configurations which are not given by globally defined 1-forms, but by connections on non-trivial
circle bundles. By analogy with the case of SU(n)-Yang-Mills theory, we will loosely refer to such field
configurations as instanton field congurations, too. In this case it is the first Chern class [c1] ∈ H2(X,Z)
that measures the non-triviality of the bundle. If the first Chern-class of a U(1)-gauge field configurations
happens to vanish, then the gauge field is again given by just a 1-form A ∈ Ω1(Σ3), the familiar gauge
potential of electromagnetism. The value of the 3d Chern-Simons action functional on such a non-instanton
configuration is simply the familiar expression

exp(iS(A)) = exp(2πi

∫
Σ3

A ∧ ddRA) ,

where on the right we have the ordinary integration of the 3-form A ∧ dA over Σ3.

In the general case, however, when the configuration in [Σ3,BU(1)conn] has non-trivial first Chern class,
the expression for the value of the action functional on this configuration is more complicated. If we pick a
good open cover {Ui → Σ3}, then we can arrange that locally on each patch Ui the gauge field is given by
a 1-form Ai and the contribution of the action functional over Ui by exp(2πi

∫
Σ3
Ai ∧ dAi) as above. But

in such a decomposition there are further terms to be included to get the correct action functional. This is
what the construction in Prop. 2.4.1 achieves.

Remark 2.4.4 (Level quantization). Traditionally, Chern-Simons theory in 3-dimensions with gauge group
a connected and simply connected group G comes in a family parameterized by a level k ∈ Z. This level is
secretly the cohomology class of the differential characteristic map

cconn : BGconn → B3U(1)conn

(constructed in [FSS10]) in
H3

smooth(BG,U(1)) ' H4(BG,Z) ' Z .

So the traditional level is a cohomological shadow of the differential characteristic map that we interpret
as the off-shell prequantum n-bundle in full codimension n (down on the point). Notice that for a general
smooth ∞-group G the cohomology group Hn+1(BG,Z) need not be equivalent to Z and so in general
the level need not be an integer. For for every smooth ∞-group G, and given a morphism of moduli
stacks cconn : BGconn → BnU(1)conn, also every integral multiple kcconn gives an n-dimensional Chern-
Simons theory, “at k-fold level”. The converse is in general hard to establish: whether a given cconn can be
divided by an integer. For instance for 3-dimensional Chern-Simons theory division by 2 may be possible
for Spin-structure. For 7-dimensional Chern-Simons theory division by 6 may be possible in the presence of
String-structure [FSS12a].

Remark 2.4.5. Ordinary 3-dimensional Chern-Simons theory is often defined on bounding 3-manifolds Σ3

by

exp(iS(∇)) = exp(2πik

∫
Σ4

〈F∇̂ ∧ F∇̂〉) ,
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where Σ4 is any 4-manifold with Σ3 = ∂Σ4 and where ∇̂ is any extension of the gauge field configuration
from Σ3 to Σ4. Similar expressions exist for higher dimensional Chern-Simons theories. If one takes these
expressions to be the actual definition of Chern-Simons action functional, then one needs extra discussion for
which manifolds (with desired structure) are bounding, hence which vanish in the respective cobordism ring,
and, more seriously, one needs to include those which are not bounding from the discussion. For example, in
type IIB string theory one encounters the cobordism group ΩSpin

11 (K(Z, 6)) [Wi96], which is proven to vanish
in [KS05], meaning that all the desired manifolds happen to be bounding.

We emphasize that our formula in Prop. 2.4.1 applies generally, whether or not a manifold is bounding.
Moreover, it is guaranteed that if Σn happens to be bounding after all, then the action functional is
equivalently given by integrating a higher curvature invariant over a bounding (n+ 1)-dimensional manifold.
At the level of differential cohomology classes Hn

conn(−, U(1)) this is the well-known property (a review and
further pointers are given in [HS05]) which is an explicit axiom in the equivalent formulation by Cheeger-
Simons differential characters: a Cheeger-Simons differential character of degree (n + 1) is by definition
a group homomorphism from closed n-manifolds to U(1) such that whenever the n-manifold happens to
be bounding, the value in U(1) is given by the exponentiated integral of a smooth (n + 1)-form over any
bounding manifold.

With reference to such differential characters Chern-Simons action functions have been formulated for
instance in [Wi96, Wi98b]. The sheaf hypercohomology classes of the Deligne complex that we are concerned
with here are well known to be equivalent to these differential characters, and Čech-Deligne cohoomology
has the advantage that with results such as [GT1] invoked in Prop. 2.4.1 above, it yields explict formulas
for the action functional on non-bounding manifolds in terms of local differential form data.

3 Examples and applications

Here we list and discuss examples of higher extended cup-product Chern-Simons theories constructed by the
general procedure introduced above in section 2. Some of the examples below are known in low codimension,
notably from constructions in string theory and M-theory, in that their action functional (codimension 0)
and hence their prequantum line bundles (codimension 1) are well known, while others have maybe not been
considered before. Already in the known cases our discussion provides the refinement of the action functional

1. to the full higher moduli stacks of fields;

2. to arbitrary codimension.

The titles of the following subsections follow the pattern

XYZ Chern-Simons theory and ABC theory

where “ABC theory” is an incarnation of the extended Chern-Simons theory XYZ in higher codimension.

Before we proceed to section 3.1, the following list gives an overview of the various types of examples
that we consider, and how they conceptually relate to each other as specializations and/or combinations of
other classes of examples.

List of classes of examples.

1. Fully general∞-Chern-Simons theory. In full generality, an “∞-Chern-Simons theory” is specified
by a smooth gauge ∞-group G and a differential characteristic map of moduli stacks

cconn : BGconn → BnU(1)conn .
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This is such that for Σk a k-dimensional smooth manifold, the object [Σk,BGconn] discussed in section
2.4, is the moduli stack of G-gauge fields on Σk, and [Σk,B

nU(1)conn] is the moduli stack of n-form
connections. Then if 0 ≤ k ≤ n and Σk is closed and oriented, we obtain a morphism

exp(2πi

∫
Σk

[Σk, cconn]) : [Σk,BGconn]→ Bn−kU(1)conn

as in section 2.4, which gives the off-shell prequantum (n−k)-bundle of an n-dimensional Chern-Simons
theory. In particular, for k = n this is the action functional of the higher extended Chern-Simons theory
specified by cconn.

2. Inhomogeneous U(1) cup-product theories. In this general context, the cup product

∪conn : BpU(1)conn ×BqU(1)conn → Bp+q+1U(1)conn

from section 2.2 for p, q ≥ 1, is itself a differential characteristic map, since we may regard it as
defining an ∞-Chern-Simons theory with gauge ∞-group the product map(p, q)-group (Bp−1U(1)) ×
(Bq−1U(1)), hence by reading ∪conn as

∪conn : B
(
Bp−1U(1)×Bq−1U(1))conn

)
→ Bp+q+1U(1)conn .

A class of examples of this form that does appear in the physics literature is the electric-magnetic
coupling term in higher abelian gauge theory. This is a section of the prequantum 1-bundle of this
Chern-Simons theory, and the class of that bundle is the electric-magnetic quantum anomaly.

Two variants of this theory are important.

(a) U(1) cup-square theories. In the case that p = q we may restrict to the diagonal of the cup
pairing, hence taking the two p-form fields to be two copies of one single field. Formally this
means that we are considering the differential characteristic map which is the composite

(−)∪
2
conn : BpU(1)conn

∆ // BpU(1)conn ×BpU(1)conn
∪conn // Bp+q+1U(1)conn .

For p = 1, this yields (the higher codimension-extended version of) traditional 3-dimensional
U(1)-Chern-Simons theory. For p = 2k+ 1 it yields the (4k+ 3)-dimensional U(1)-Chern-Simons
theory which is the holographic dual of self-dual 2k-form theory in dimension 4k + 2.

(b) Cup product of two nonabelian theories. Given two possibly nonabelian gauge ∞-groups
G1 and G2 equipped with two differential characteristic maps (c1)conn and (c1)conn, we may form
the “cup product of two nonabelian Chern-Simons theories”

(c1)conn∪conn(c2)conn : B(G1 ×G2)conn
((c1)conn,(c2)conn)// BpU(1)conn ×BqU(1)conn

∪conn // Bp+q+1U(1)conn .

This appears for instance in the electric-magnetic anomaly of the heterotic string.

3. Cup-square of one non-abelian theory. The two variants above may be combined to yield the
cup product of a non-abelian Chern-Simons theory with itself.

4. Multiple-factor cup-product theories. Finally, all of this can be considered with three cup factors
(“cubic theories”) or more cup-factors, instead of just two of them (“quadratic theories”). Examples
of cubic Chern-Simons theories appear in 11-dimensional supergravity, for instance.

3.1 Unary examples

Before discussing genuine cup-product higher Chern-Simons theories we consider here some indecomposable
theories – unary cup-product theories, if one wishes – that serve as building blocks for the cup product
theories.
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3.1.1 Higher differential Dixmier-Douady class and higher dimensional U(1)-holonomy

The degenerate or rather tautological case of extended∞-Chern-Simons theories nevertheless deserves special
attention, since it appears universally in all other examples: that where the extended action functional is
the identity morphism

(DDn)conn : BnU(1)conn
id // BnU(1)conn ,

for some n ∈ N. Trivial as this may seem, this is the differential refinement of what is called the (higher)
universal Dixmier-Douady class the higher universal first Chern class – of circle n-bundles / bundle (n− 1)-
gerbes, which on the topological classifying space BnU(1) is the weak homotopy equivalence

DDn : BnU(1)
' // K(Z, n+ 1) .

Therefore, we are entitled to consider (DDn)conn as the extended action functional of an n-dimensional ∞-
Chern-Simons theory. Over an n-dimensional manifold Σn the moduli n-stack of field configurations is that
of circle n-bundles with connection on Σn. In generalization to how a circle 1-bundle with connection has a
holonomy over closed 1-dimensional manifolds, we note that a circle n-connection has a n-volume holonomy
over the n-dimensional manifold Σn. This is the ordinary (codimension-0) action functional associated to
(DDn)conn regarded as an extended action functional:

hol := exp(2πi

∫
Σn

[Σn, (DDn)conn]) : [Σn,B
nU(1)conn]→ U(1) .

This formulation makes it manifest that, for G any smooth ∞-group and cconn : BGconn → BnU(1)conn any
extended ∞-Chern-Simons action functional in codimension n, the induced action functional is indeed the
n-volume holonomy of a family of “Chern-Simons circle n-connections”, in that we have

exp(2πi

∫
Σn

[Σn, cconn]) ' holcconn
.

This is most familiar in the case where the moduli ∞-stack BGconn is replaced with an ordinary smooth
oriented manifold X (of any dimension and not necessarily compact). In this case cconn : X → BnU(1)conn

modulates a circle n-bundle with connection ∇ on this smooth manifold. Now regarding this as an extended
Chern-Simons action function in codimension n means to

1. take the moduli stack of fields over a given closed oriented manifold Σn to be [Σn, X], which is simply
the space of maps between these manifolds, equipped with its natural (“diffeological”) smooth structure
(for instance the smooth loop space LX when n = 1 and Σn = S1);

2. take the value of the action functional on a field configuration φ : Σn → X to be the n-volume holonomy
of ∇

hol∇(φ) = exp(2πi

∫
Σn

[Σn, cconn]) : [Σn, X]
[Σn,cconn] // [Σn,BnU(1)conn]

exp(2π
∫
Σn

(−))
// U(1) .

Using the proof of Prop. 2.4.1 to unwind this in terms of local differential form data, this reproduces the
familiar formulas for (higher) U(1)-holonomy.

3.1.2 Ordinary 3d Spin-Chern-Simons theory and String-2-connections

For G any connected and simply connected compact simple Lie group we have H4(BG,Z) ' Z. In the case
that G = Spin is the spin group (in dimension ≥ 3), the generator (unique up to sign) of this group is called
the first fractional Pontrjagin class, represented by a map

1
2p1 : BSpin→ B3U(1) ' K(Z, 4) .
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In [Sc12] it is shown that this has a unique (up to equivalence) smooth refinement to a morphism of higher
smooth moduli stacks of the form

1
2p1 : BSpin→ B3U(1) .

Moreover, in [FSS10] we construct the further differential refinement

1
2 (p1)conn : BSpinconn → B3U(1)conn

from the moduli stack of Spin-principal bundles with connection to the smooth moduli 3-stack of smooth
circle 3-bundles (bundle 2-gerbes) with connection. Regarding this as an extended action functional for an
∞-Chern-Simons theory, it is not hard to see that the corresponding action functional

exp(2πi

∫
Σ3

) : [Σ3,BSpinconn]→ U(1)

is that of ordinary 3d Spin-Chern-Simons theory, as discussed in the Introduction, section 1, (an observation
on cohomology classes was first highlighted in [CJMSW05]).

In addition to the comments on ordinary Chern-Simons theory regarded as an extended prequantized
theory already made in the Introduction, we here observe the following. The total space 2-stack is of the
prequantum circle 3-bundle of this theory, regarded as an 0-1-2-3 extended prequantum Chern-Simons theory,
is, by prop. 2.3.2, the homotopy pullback of the form

BStringconn′
//

��

Ω1≤•≤3 //

��

∗

��
BSpinconn 1

2 (p1)conn

// B3U(1)conn χ
// B3U(1) .

Comparison with [FSS12b] shows that this total space is the moduli 2-stack BStringconn′ of String-principal
2-connections, as indicated. (See the appendix of [FSS12a] for a discussion of how these are nonabelian 2-

form connections). If one further restricts along the inclusion Ω3(−) // Ω1≤•≤3(−) , then these restrict

to the structures discussed in [Wal09]. If, on the other hand, one replaces the twist by 3-forms with the twist
of the differential second Chern-class of E8 × E8-principal bundles

a : BE8 × E8 → B3U(1)

then one obtains the moduli 2-stack of Stringa-connections that control the anomaly-free field content,
including the twisted B-field, of the heterotic Green-Schwarz mechanism as discussed in [SSS09b].

Note that there are other effectively unary theories which fall under our formulation; notably, those
whose action functional takes the form

∫
Ω ∧ CS, where CS is a Chern-Simons term, not necessarily three-

dimensional, and Ω is an auxiliary form on the underlying manifold, independent of the first term. Since Ω
is a fixed form it does not enter into the dynamics and so the whole system is governed by the Chern-Simons
term. Examples include

1. Kähler-Chern-Simons theories (see [NS, IKU, LMNS]) where Ω is a Kähler form,

2. holomorphic Chern-Simons theories (see [Wi92, FT]) where Ω is a middle form on a Calabi-Yau man-
ifold, as well as

3. theories that lift M-theory via terms of the form
∫
M27 Ω16 ∧ CS11 [Sa09], where CS11 is the Chern-

Simons term in M-theory (3.3.3), and Ω16 is a composite form on the octonionic projective plane.
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3.1.3 7d String-Chern-Simons theory and Fivebrane 6-connections

The construction of the total space of the fully extended prequantum n-bundle in section 3.1.2 above is just
the first step in a whole tower of higher Spin structure and (extended) higher Spin-Chern-Simons theories
that are obtained by a smooth and differential refinement of the Whitehead tower of BO. This is the tower
of homotopy types on the left vertical axis of the following diagram.

...

BFivebrane

��

// · · · // ∗

��
BString

��

· · ·
1
6p2

// B8Z //// ∗

��
BSpin

��

· · ·
1
2p1

// B4Z // ∗

��
BSO

��

· · · w2 //

�� ��

B2Z2
//

��

∗

��
BO //

��

w1

11· · · // τ≤8BO // τ≤4BO // τ≤2BO // τ≤1BO ' BZ2

BGL

.

Here the bottom horizontal tower is the Postnikov tower of BO and all rectangles are homotopy pullbacks
(see section 4 of [Sc12] for more details).

For X a smooth manifold, there is a canonically given map X → BGL, which classifies the tangent
bundle TX. The lifts of this classifying map through the above Whitehead tower correspond to structures
on X as indicated in the following diagram:

BFivebrane

��
BString

��

1
6p2

// B7U(1) ' K(Z, 8) second fractional Pontrjagin class

BSpin

��

1
2p1

// B3U(1) ' K(Z, 4) first fractional Pontrjagin class

BSO

��

w2 // B2Z2 ' K(Z2, 2) second Stiefel-Whitney class

BO

��

w1 //

'
��

BZ2 ' K(Z2, 1) first Stiefel-Whitney class

X TX //

44orientation structure

99
spin structure

<<

string structure

;;

fivebrane structure

88

BGL

.
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Here the horizontal morphisms denote representatives of universal characteristic classes, such that each
sub-diagram of the shape

BĜ

��
BG

c // BnK

is a homotopy fiber sequence. Several variations and twists on the above structures are considered in
[Sa11c, Sa11d, Sa12c].

In [FSS10] we gave an explicit construction of the smooth refinement of the second fractional Pontrjagin
class to a morphism of smooth moduli stacks

1
6 (p2)conn : BStringconn → B7U(1)con

from that of String 2-connections to that of circle 7-bundles with connection. When regarding this as the
fully extended action functional of an ∞-Chern-Simons theory it produces a 7-dimensional theory which
in [FSS12a] we argued is part of the holographic dual of the M5-brane theory, see section 3.2.3 below. As
before, it is of interest to compute the total space of the prequantum circle 7-bundle on the moduli 2-stack
of String-connections. By Prop. 2.3.2 and after comparison with [SSS09b] is the moduli 6-stack of (twisted)
Fivebrane-6-form connections.

BFivebraneconn′
//

��

Ω1≤•≤7 //

��

∗

��
BStringconn 1

6 (p2)conn

// B7U(1)conn χ
// B7U(1) .

Another important example is the Whitehead tower of U(n): the k-connected cover U(n)〈2k − 1〉 '
U(n)〈2k〉 is the natural home for the differential refinement (ck+1)conn : BU(n)〈2k〉conn → B2k+1U(1)conn of
the (k+ 1)st Chern class ck+1 ∈ H2k+2(BU(n);Z). Constructions analogous to those of the orthogonal case
follow similarly.

3.1.4 (2n+ 1)d Chern-Simons (super)gravity and WZW2n-models

The literature contains various proposals of higher-dimensional (super-)Chern-Simons-type theories, all unary
in our sense here, that are argued to be possible candidates for a theory related to actual (super)gravity
[BTZ96, TZ98], see [Za05] for a review. In codimension 1 these theories are known to be related to higher
dimensional analogs of the 2d WZW-model in dimension 2n [BGH96, GK00]. In the case of M-theory, with
n = 5, there are candidates that propose to describe the theory based on holography and Chern-Simons
theory [Hor, Na, IR].

These unary nonabelian higher dimensional Chern-Simons theories are interesting candidates for extended
prequantization as considered here, but whether or in which cases their fully extended prequantizations exist
has not been worked out yet.

3.2 Quadratic examples

We now consider examples of extended∞-Chern-Simons theories that are formed of a differential cup-product
of two factors.
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3.2.1 3d U(1)-theory with two species and differential T-duality

Consider the extended ∞-Chern-Simons action functional given simply by the differential cup product of
def. 2.3.2 in the first non-trivial degree:

(−)∪conn(−) : BU(1)conn ×BU(1)conn
// B3U(1) .

Its moduli stack of fields [Σ3,BU(1)conn ×BU(1)conn] consists of pairs of two different U(1)-gauge fields on
Σ3. On those field configurations that have trivial underlying integral classes and are hence given by globally
defined 1-forms A1, A2, the action functional in dimension 3 takes these to

exp(2πi

∫
Σ3

[Σ3, (−) ∪conn (−)]) : (A1, A2) 7→ exp(2πi

∫
Σ3

A1 ∧ ddRA2) = exp(2πi

∫
Σ3

A2 ∧ ddRA1) .

The “diagonal of this theory”, namely the extended action functional obtained by precomposition with the
diagonal map ∆ : BU(1)conn → BU(1)conn ×BU(1)conn is the ordinary 3d U(1)-Chern-Simons theory of a
single gauge field species discussed below in section 3.2.2.

By Prop. 2.3.2 the total space object P of the prequantum circle 3-bundle of the above extended action
functional is the homotopy pullback

P //

��

Ω1≤•≤3(−) //

��

∗

��
BU(1)conn ×BU(1)conn

∪conn // B3U(1)conn
// B3U(1) .

By the universal property of the homotopy pullback this means that P is the moduli 2-stack for pairs
(∇1,∇2) of circle bundles with connection – hence pairs of 1-torus bundles with connection – equipped with
a smooth trivialization of the cup product

c1(∇1) ∪ c(∇2) = χ(∇1) ∪ χ(∇2)

of their Chern classes. This is the structure called a differential T-duality pair in Def. 2.1 of [KV09], express-
ing the necessary differential geometric structure for an action of T-duality between two torus fibrations on
the differential K-theory of the underlying spaces, hence on the charge-quantized RR-fields in type II string
theory.

3.2.2 Ordinary 3d U(1)-Chern-Simons theory and generalized Bn-geometry

Ordinary 3-dimensional U(1)-Chern-Simons theory on a closed oriented manifold Σ3 contains field configu-
rations which are given by globally defined 1-forms A ∈ Ω1(Σ3) and on which the action functional is given
by the familiar expression

exp(iS(A)) = exp(2πik

∫
Σ3

A ∧ ddRA) .

More generally, though, a field configuration of the theory is a connection ∇ on a U(1)-principal bundle
P → Σ3 and this simple formula is modified, from being the exponential of the ordinary integral of the
wedge product of two differential forms, to the fiber integration in differential cohomology, Def. 2.4.1, of the
differential cup-product, Def. 2.3.2:

exp(iS(∇)) = exp(2πik

∫
Σ3

∇∪conn ∇) .

This defines the action functional on the set H1
conn(Σ3, U(1)) of equivalence classes of U(1)-principal bundles

with connection
exp(iS(−)) : H1

conn(Σ3)→ U(1) .
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That the action functional is gauge invariant means that it extends from a function on gauge equivalence
classes to a functor on the groupoid H1

conn(Σ3, U(1)), whose objects are actual U(1)-principal connections,
and whose morphsims are smooth gauge transformations between these:

exp(iS(−)) : H1
conn(Σ3)→ U(1) .

Finally, that the action functional depends smoothly on the connections means that it extends further to the
moduli stack of fields to a morphism of stacks

exp(iS(−)) : [Σ3,BU(1)conn]→ U(1) .

The fully extended prequantum circle 3-bundle of this extended 3d Chern-Simons theory is that of the
two-species theory in section 3.2.1, restricted along the diagonal ∆ : BU(1)conn → BU(1)conn ×BU(1)conn.
This is the homotopy fiber of the smooth cup square in these degrees.

According to [Hi12] aspects of the differential geometry of the homotopy fiber of a differential refinement
of this cup square are captured by the “generalized geometry of Bn-type” that was suggested in section
2.4 of [Ba11]. In view of the relation of the same structure to differential T-duality discussed above in
section 3.2.1 one is led to expect that “generalized geometric of Bn-type” captures aspects of the differential
cohomology on fiber products of torus bundles that exhibit auto T-duality on differential K-theory. Indeed,
such a relation is pointed out in [Bo11]2.

3.2.3 (4k + 3)d U(1)-Chern-Simons theory and self-dual (2k + 1)-form field theory

The differential cup square in general degree

(−)∪
2
conn : B2k+1U(1)conn → B4k+3U(1)conn

for any k ∈ N reduces in codimension 0 and on cohomology classes to the action functional

exp(2πi

∫
Σ4k+3

[Σ4k+3, (−)∪
2
conn ]) : H2k+2

conn (Σ4k+3)→ U(1)

on differential cohomology that exhibits (4k + 3)-dimensional U(1)-Chern-Simobs theory, that is considered
generally for instance in [FP89, HS05]. For k = 0 this is the 3-dimensional system from section 3.2.2.
Generally, its spaces of quantum states in codimension 1 produces the conformal blocks of self-dual (2k+ 1)-
form gauge theory on Σ4k+2 – this is higher Chern-Simons holography, as discussed generally in [BM06] and
for the case of k = 1 famously in [Wi96, Wi98b].

We briefly recall the self-dual theories as k varies.

k = 0: the self-dual scalar in 3 dimensions. The action for the scalar field φ in two dimensions is
dφ∧∗dφ. The partition function of this field can be described via 3-dimensional Chern-Simons theory, which
takes the form

i

∫
Y 3

CS1(A) ∪ dCS1(A) = i

∫
Y 3

tr(A) ∧ FA, (3.2.1)

where the curvature 2-form FA is a representative for the first Chern of a complex line bundle.

2Thanks, once more, to Alexander Kahle, for discussion of this point, at String-Math 2012.
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k = 1: the 6d self-dual theory on the M5-brane. The action functional of classical 11-dimensional
supergravity contains a cubic abelian Chern-Simons, recalled below in section 3.3.2. After compactification
on a four-sphere S4 this becomes an abelian 7-dimensional quadratic Chern-Simons term, an example of
the above system for k = 1. In [Wi96, Wi98b] it is argued that this topological term alone in the full
supergravity action functional determines the conformal blocks of the (0, 2)-superconformal field theory on
a single M5-brane under AdS7/CFT6-duality. But if the 11-dimensional quantum corrections are taken into
account, the 11-dimensional Chern-Simons term is accompanied by further terms which after reduction to
7 dimensions involve a cup product of a nonabelian 3d Chern-Simons theory as in section 3.1.2 with itself,
whose action thus locally reads [Wi98b]

−i N4π
∫
Y 7

CS3(A) ∪ dCS3(A) = −i N4π
∫
Y 7

(
〈A, dA〉+ 1

3 〈A, [A,A]〉
)
∧ 〈FA, FA〉 . (3.2.2)

as well as an indecomposable 7-dimensional term. In [FSS12a, FSS12b] we argued that if furthermore the flux
quantization of the supergravity C-field is taken into account, then the quantum-corrected 7d Chern-Simons
action that is holographically dual to the M5-brane theory is defined on String 2-form fields as in section
3.1.

k = 2: Ramond-Ramond fields in type IIB string theory. Type II RR fields are self-dual. The
relation between the RR partition function to the Chern-Simons theory in eleven dimensions is explained
in [BM06] (see also [Sa10]). The action is of the form

∫
Y 11 F5 ∧ dF5 and the quantization condition of

the Ramond-Ramond fields implies that these fields are given essentially by the Chern character: F5 =
ch(E)

√
A(X), where E is the Chan-Paton bundle [MW]. The way the Chern character is to be interpreted is

by extending by a circle to one dimension higher. Alternatively, one can view F5 as a “composite connection”
for a degree six field strength [Wi96]. Identifying F5 with the Chern-Simons 5-form CS5, shows that the
Chern-Simons action is indeed of the form

∫
Y 11 CS5 ∧ dCS5.

k = 3: Fivebrane structures and 15-dimensional theories. One could continue this pattern in the
obvious way. For example, one could consider CS7(A) ∪ dCS7(A) with dCS7(A) an 8-form representative
for the second Pontrjagin class of a String bundle [SSS08, SSS09a]. With the right normalization constant
κ, one associates this 15-dimensional action to the Fivebrane structure [SSS08]. A lift of this to sixteen
dimensions would take the form x8 ∪ x8, an instance of which is studied in [Sa09] in the lift of M-theory to
higher dimensions.

3.2.4 The cup-product of two extended CS theories and the higher charge anomaly

We have already discussed in the introduction section 1 the interpretation of regarding the differential cup
product from def. 2.3.2 as an extended action functional

(−) ∪conn (−) : BpU(1)conn ×B1U(1)conn → Bp+q+1U(1)conn .

By itself this encodes higher Maxwell charge anomalies in terms of extended Chern-Simons theory. We
briefly recall what this looks like in heterotic string theory, which in the counting of the previous section
coresponds to the pair of degrees (k1, k2) = (1, 3). See the third section of [Sc12a] for more exposition in the
present context.

The local anomaly term (the curvature of the fully extended action functional on the moduli stack of
fields) is here a 12-form I4(F,R) ∧ I8(F,R), where I4(F,R) and I8(F,R) are the Green-Schwarz anomaly
polynomials in degree 4 and 8, respectively, in terms of the curvature R of the tangent bundle and the
curvature F of the gauge bundle. These terms are given essentially by a difference of first Pontrjagin classes
and a difference of second Pontrjagin classes, respectively. Thus, in eleven dimensions, this is a cup product
Chern-Simons theory, which can be written as

∫
Y

CS3(∇) ∪ dCS7(A) or, dually as
∫
Y

CS7(A) ∪ dCS3(∇),
where A is the connection of the curvature F on the gauge bundle and ∇ is the Spin connection; see [SSS09a].
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Notice that, since both the gauge bundle and the tangent bundle are involved, the Chern-Simons action term
is of the mixed type. Such a Chern-Simons theory can be reduced by one dimension, as is the case in the
above systems. The reduction to the boundary of Y should be done in the context of manifolds of corners of
codimension 2, as explained in [Sa11a]. On the boundary one then has a term of the form CS3(∇)∪CS7(A);
see [Sa12b] for more details.

3.3 Cubic and higher order examples

We have seen so far examples that are the cup products of two copies of the same or different Chern-Simons
theories. One might wonder whether more than two terms can naturally occur. There are at least two
remarkable examples of abelian Chern-Simons theories where there are three terms in the action.

3.3.1 5d supergravity

The topological part of pure five-dimensional N = 2 supergravity resembles that of M-theory, except that a
connection 1-form A1 replaces the C-field. That term is locally given by∫

Y 5

A1 ∧ F2 ∧ F2 , (3.3.1)

where F2 = dA1 is the curvature of the U(1)-connection A1. Considering the refinement to differential
cohomology, we interpret this as the three-term cup-product∫

Y 5

CS1 ∪ dCS1 ∪ dCS1 , (3.3.2)

i.e. a 3-fold Chern-Simons theory. Thus this falls under our formulation and hence admits a refinement to
the corresponding moduli stacks of supergravity fields.

3.3.2 11d supergravity

The topological aspects of this supergravity theory allows for a glimpse at the elusive M-theory. An ingredient
which allows for this is the Chern-Simons term for the C-field given by

1
6

∫
Y 11

C3 ∧G4 ∧G4 , (3.3.3)

where G4 is the field strength of the C-field 3-form C3. Geometrically, this can be seen as the curvature
4-form of a connection on a U(1)-2-gerbe. Therefore, refined to differential cohomology, the above action
takes the form of a three-term cup-product of the type (2.3.1) for k = 2. Note that the C-field is essentially
a Chern-Simons 3-form CS3(A) for a connection 1-form A which admits a refinement to moduli 3-stacks
(see [FSS12b]). The total term (3.3.3) thus admits a refinement in the our sense of higher cup-product
Chern-Simons theories.

3.3.3 Higher order examples

We now consider the situation when we have four or more terms in the cup product. We will describe a
pattern that emerges. Consider a generalization of the heterotic anomaly cancellation discussed above, where
the anomaly takes the form of the wedge product of two Chern characters chn1 and chn2 , to more terms,
that is to

SZ =

∫
Zn1+n2+···nk

chn1 ∧ chn2 ∧ · · · ∧ chnk
. (3.3.4)

With the local formula chni
= dCS2ni+1 and passing to differential cohomology, we can write each of the

factors in (3.3.4) in terms of CS2ni+1, for i = 1, · · · , k. This involves using a type of Stokes formula. With
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k such operations, we are considering using a Stokes formula for various faces in codimension k, in the
setting advocated in [Sa11a, Sa12a, Sa12b]. That is, we take Zn1+n2+···+nk to admit a codimension-k corner
Xn1+n2+···+nk−k, on which the action takes the form

SX =

∫
Xn1+n2+···+nk−k

CS2n1+1(A1) ∪ CS2n2+1(A2) ∪ · · · ∪ CS2nk+1(Ak) . (3.3.5)

This is a nk-fold Chern-Simons theory.

We express this again, now for extended action functionals on higher moduli stacks. Let G be a compact
and simply connected simple Lie group and let c the characteristic class given by the canonical generator
of H4(BG;Z). Then we have the (k + 1)-fold cup product of c with itself defining a degree 4k + 4 integral
cohomology class c ∪ · · · ∪ c. In terms of characteristic maps, this corresponds to the composition

c ∪ · · · ∪ c : BG
(c,c) // K(Z, 4)×K(Z, 4)× · · · ×K(Z, 4)

∪ // K(Z, 4k + 4) . (3.3.6)

Since G is simply connected, the characteristic map c is induced by the canonical Lie algebra 3-cocycle on
G. Then it has, by [FSS10], a differential refinement to a morphism of stacks

cconn : BGconn → B3U(1)conn . (3.3.7)

By itself, this induces ordinary 3d Chern-Simons theory. Then the (k + 1)-fold differential cup product of
cconn with itself induces a (4k + 3)-dimensional theory. Namely, we have a differential refinement of the
ordinary integral cup product c ∪ c ∪ · · · ∪ c to a morphism of smooth (4k + 3)-stacks

ĉ ∪̂ ĉ ∪̂ · · · ∪̂ ĉ : BGconn

(ĉ,...,ĉ) // B3U(1)conn ×B3U(1)conn × · · · ×B3U(1)conn
∪̂ // B4k+3U(1)conn .

Thus if Σ4k+3 is a closed oriented smooth manifold of dimension 4k+3, we have a cup product Chern-Simons
theory induced by c: its Chern-Simons functional is

exp(iSc∪···∪c) : H(Σ4k+3,BGconn)
ĉ ∪̂ ··· ∪̂ ĉ // H(Σ,B4k+3U(1)conn)

exp(2πi
∫
Σ4k+3

(−))
// U(1) . (3.3.8)

On those gauge field configurations for which the underlying G-principal bundle on Σ4k+3 is topologically
trivial, this action has a particularly simple expression: if g denotes the Lie algebra of G, then the datum of a
g-connection on G is the datum of a g-valued 1-form A on Σ, and the Chern-Simons functional exp(iSc∪···∪c)
is

exp

(
2πi

∫
Σ

CS3(A) ∧ 〈FA, FA〉 ∧ · · · ∧ 〈FA, FA〉
)
, (3.3.9)

where 〈 , 〉 is the Killing form of g, FA is the curvature 2-form of A and CS3(A) is the Chern-Simons 3-form
of A

CS3(A) := 〈A, dA〉+ 1
3 〈A, [A,A]〉.

One can consider more generally a compact connected Lie group G with π1(G) ' Z and the lift

ĉ : BGconn → BU(1)conn (3.3.10)

of the generator c of H2(BG,Z) to a morphism of stacks. For instance if G = U(N) then c = c1 is the first
Chern class, and the lift ĉ1 is induced by the group homomorphism det : U(N)→ U(1). The Chern-Simons
1-form CS1(A) is just the trace of the connection form A in this case, while dCS1(A) = FA. Hence the first
Chern class induces (2k+ 1)-dimensional (k+ 1)-fold product Chern-Simons theories, whose action – in the
particular case of a topologically trivial U(1)-bundle – reads

exp

(
κi

∫
Σ

tr(A) ∧ FA ∧ · · · ∧ FA
)
. (3.3.11)
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Remark on classification of abelian Spin n-fold Chern-Simons theories. Classification of general
Chern-Simons theories is a formidable task. Three-dimensional abelian Spin Chern-Simons theories with
structure group U(1)N have been classified by Belov and Moore [BM05]. This classification of quantum
theories involves three invariants, one of which is a quadratic form. It is natural to ask what the corresponding
classification for cup product of such theories would be. We do not attempt a complete answer to this
question, but merely point out that that such an extension should involve a correspondence with higher
forms, that is beyond quadratic forms. The 2-fold theories, as in [BM05], require an extension to a bounding
manifold. On the other hand, the n-fold theories will require an extension to a bounding manifold in the
sense of manifolds with corners, such that the original manifold is a manifold with corners of codimension-n.
The corresponding forms will have degree n, that is cubic for n = 3, quartic for n = 4, etc.
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