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Recently observed fractional quantum anomalous Hall materials (FQAH) are candidates for topo-
logical quantum hardware, but their required anyon states are elusive. We point out dependence on
monodromy of the fragile band topology in 2-cohomotopy. An algebro-topological theorem of Lar-
more & Thomas (1980) then identifies FQAH anyons over momentum space. Admissible braiding
phases are 2C-th roots of unity, for C the Chern number. This lays the foundation for understanding
symmetry-protected topological order in FQAH systems, reducing the problem to computations in
equivariant cohomotopy.

MOTIVATION AND INTRODUCTION

The holy grail of quantum materials research is ar-
guably (cf. [1]) the understanding and manipulation of:

(i) crystalline topological phases of matter — where
electron Bloch states in gapped valence bands span
topologically non-trivial vector bundles over Bril-
louin tori T̂ d of crystal momenta (cf. [2][3, §2]),

(ii) exhibiting topological order — where the sys-
tem’s ground state is degenerate and gapped,
whence effectively (far above the lattice scale) that
of a topological field theory (cf. [4][5]),

(iii) hosting anyons—whence homotopy classes of adi-
abatic deformations of the material, notably the
braiding of soliton worldlines, act on these ground
states as unitary Berry phases (cf. [6, §3][3, §3]).
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FIG. 1. In an FQH system at unit filling fraction 1/K, each
electron in the effectively 2-dimensional material is “bound”
to K quanta of transverse magnetic flux, as an effective result
of strong interaction. On this backdrop, each surplus flux
quantum is like the lack of 1/Kth of an electron, and as such
called a quasi-hole. Just these quasi-hole surplus flux quanta
are the (abelian) anyons in FQH systems (cf. [7]), in that the
quantum state of the system picks up a braiding phase ζ ∈ C×

(a root of unity) when a pair of these swap positions.
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Among candidates, fractional quantum Hall systems
(FQH, cf. [7] & Fig. 1) stand out in that their (abelian)
anyons are actually being observed in recent years, by in-
dependent groups and across different platforms (starting
with [8], recent pointers in [9]). This makes FQH materi-
als a candidate hardware for much anticipated topologi-
cal quantum computers [4], plausibly necessary for future
quantum computing of utility value.
While the large external magnetic fields required for

typical FQH systems may hinder their practicality as
hardware, it has rather recently been confirmed for
various materials [10][11][12][13] that there also exist
“anomalous” forms of FQH materials (FQAH), where
the role of the external magnetic field is instead played
by magnetic properties intrinsic to crystalline topological
phases of matter called fractional Chern insulators (FCI,
cf. [14][15] and Fig. 2).
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FIG. 2. Fractional Chern insulators (FCI) exhibiting a frac-
tional quantum anomalous Hall effect (FQAH) are typically
realized [16, §II.A] by gapping Dirac cones of 2D 2-band sys-
tems.

Concretely, the hallmark properties of anomalous Hall
systems are all due to the existence of non-vanishing
Berry curvature Ω(k⃗) over the crystal’s Brillouin torus

of Bloch momenta, k⃗ ∈ T̂ 2 (cf. [17][18][19, §III.D][20,
§5.1]), a measure for the electron state’s dependence on
their crystal momenta, which here takes the role oth-
erwise played by the magnetic flux density F (x⃗) in the
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ordinary space of positions x⃗ inside FQH systems.

This analogy is quite strong; we suggest to think of it as
a duality (cf. Fig. 3): The Lorentz force law which under-
lies the ordinary Hall effect and the anomalous velocity
law which underlies the anomalous Hall effect are mirror
images of each other under exchanging position space
with momentum space and magnetic flux density with
Berry curvature (an observation that goes back to [21]
[22][23, §III.B], review in [24][17, (69)][19, §III.A][25][26,
(12-13)]), see Fig. 3. This gives a good understanding of
the anomalous Hall effect as a Hall effect in momentum
space.

Semiclassical
equation of motion
of crystal electrons
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FIG. 3. There is a duality between the FQH effect and its
anomalous FQAH version, under which the ordinary space of
positions inside the 2D material is exchanged for the “recip-
rocal” space of crystal momenta, while the external magnetic
flux density is exchanged for the Berry curvature of the Bloch
bands over this momentum space.

This duality is particularly remarkable for our purpose,
because the full definition of flux in position space is

(i.) [27] known to require choices of flux-quantization
laws which exhibit the total flux – hence dually:
the Chern number (8) – as a “rationalized” shadow
of maps to a classifying space, cf. (8), while

(ii.) [28] exotic (below: fragile) flux-quantization laws
were recently understood to control the existence
and nature of anyonic solitons in FQH systems.

Just this identification of anyonic solitons in the dual
FQAH systems had remained wide open but needs ad-
dressing for these systems to serve as topological quan-
tum hardware.

We now present a resolution by:

(i.) pointing out that the fragile band topology of (frac-
tional) Chern insulators (while often conflated with
the stable band topology) influences the adiabatic
Berry holonomy (11) acting on the ground states,

(ii.) computing the effect, verifying that it exhibits
anyonic topological order over the Brillouin torus
(Thm. 1 below).

We will invoke basics of algebraic topology [29]; for ex-
position in our context see [2][28, §A.3][30, §A][31, §A.2].

METHODS AND RESULTS

First to note that generic fractional Chern insulators
are (cf. [16, §II.A.1]) 2D 2-band systems whose Bloch

Hamiltonian over the Brillouin torus T̂ 2 of crystal mo-
menta may be expanded in Pauli matrices {σi}3i=1 as:

HBlch : T̂ 2 Mat2×2(C)

HBlch(k⃗) = h0(k⃗) +
∑3

i=1hi(k⃗)σi︸ ︷︷ ︸
H(k⃗)

, h
(−)

(−) ∈ R , (1)

where the system is gapped in that the difference of the
two eigenvalues is non-vanishing:

∣∣H(k⃗)
∣∣ :=

√∑3
i=1

(
hi(k⃗)

)2
> 0 , (2)

whence the valence bundle V of lower eigenspaces (cf.

Fig. 2) is the kernel bundle over T̂ 2 of the projectivized
operators:

V ≃ ker
(
id +H/|H|

)
, (3)

which shows that the valence bundle is exactly encoded
in a map h⃗/|H| to the 2-sphere (cf. [2, (8.3-4)]):

T̂ 2 S2 Mat2×2(C) .
h⃗/|H|

H/|H|

σ

x⃗ 7→
∑

i x
iσi

(4)

More concretely, the lower eigenspace bundle of (what
we may identify as the “universal normalized 2-band
Bloch Hamiltonian”, denoted) σ in (4) is the tautolog-
ical complex line bundle on the 2-sphere, the one with
unit Chern class class (this is [32, Lem. 4.5.12]):

ker
(
id + σ

)
= 1 ∈ Z ≃ H2

(
S2; Z

)
, (5)

whence it is the pullback of the universal complex line
bundle on infinite projective space along the canonical
inclusions (cf. [33, §3.8]):

ι : S2 ≃ CP 1 CP 2 CP∞ :=
⋃

N→∞
CPN, (6)

of complex projective Grassmannian moduli spaces of
complex lines (fibers of the valence bundle) inside a fixed
C1+N (the fiber of a trivial ambient Bloch bundle).

The infinite projective space CP∞ (6) is the classi-
fying space for (complex line bundles and) integral 2-
cohomology, meaning that the homotopy classes of maps
into it, hence the connected components π0 of the map-
ping space Map(−,−), are (cf. [34, Ex. 2.1]):

π0 Map
(
−, CP∞)

≃ H2
(
−; Z

)
, (7)
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and the corresponding class of the valence bundle (3), via
(4) and (6), is its (first and only) Chern number C:[

T̂ 2 S2 CP∞
]
= C ∈ Z ≃ H2

(
T̂ 2; Z

)
,

h⃗
|H|

(8)

characterizing the topological phase of the Chern insula-
tor.

Now we come to the crucial subtlety not previously
fully appreciated:

1. The valence bundle arises in (3) as a sub-bundle
of the trivial rank = 2 bundle and as such is classi-
fied by the Grassmannian CP 1 ≃ S2, reflecting equiv-
alence of topological phases under paths of deforma-
tions of the system small enough for the valence bun-
dle not to mix with higher conduction bands. We note
here that also CP 1 ≃ S1 classifies a cohomology theory,
namely an exotic “nonabelian” cohomology theory called
2-cohomotopy π2 [35, §VII][34, Ex. 2.7]:

π0 Map
(
−; S2

)
=: π2(−) . (9)

Therefore, in the language of [36] (following [37], cf.
[38]) 2-cohomotopy classifies the fragile band topology
of generic FCIs: fragile, since its classification may in
principle be broken by more drastic deformations.

2. But the class in (8) is that classified by CP∞ (6)
and thus reflects equivalence under paths of exactly such
more drastic deformations that may involve an arbitrary
number of higher conduction bands, preserving only the
stable band topology.
3. This situation is subtle and prone to be underap-

preciated because, in the present case of 2D materials, it
makes no difference for the topological charge: The clas-
sical Hopf degree theorem (cf. [39, (35)]) says that the
n-cohomotopy of closed n-manifolds coincides with their
integral n-cohomology:

π2
(
T̂ 2

)
H2

(
T̂ 2; Z

)
π0Map

(
T̂ 2, S2

)
Map

(
T̂ 2, CP∞)

,

∼

ι∗

(10)

whence authors may and do routinely address the Chern
number (8) as the winding number of the map h⃗/|H| (4),
thereby tacitly conflating the fragile band topology in
(what we identified as) π2 with the stable band topology
in H2(−;Z) — which is harmless in the study of ordinary
Chern insulators.

4. But as we now turn attention to the fractional situ-
ation of Chern insulators exhibiting an FQAH effect, we
highlight that the whole point of the expected topological
order is (cf. [6, §3][3]) the possibility that — while the
external parameters of a system may adiabatically move
through a closed path γ of deformations, here: returning
the deformation class [V] of the valence bundle back to it-
self — the Hilbert space HC of anyonic quantum ground

states may be transformed by a non-trivial unitary Uγ

sensitive to (the homotopy class [γ] of) the actual path
(cf. [40, §II.A.2][6, §3]).
In other words, the Hilbert spaceHC of anyonic ground

states observable under deformations that allow excur-
sions (of the valence bundle V of Chern number C) into
the first N Bloch bands above the gap must be a unitary
representation ρ of the fundamental group π1 of maps to
the relevant Grassmannian CPN :

π1

(
Map

(
T̂ 2, CPN

)
, C

)
U(HC)

[V] 7−→ H

ρ

γ Uγ

(11)

Thereby, topological order is sensitive not just to the
charge sector in π0 of the mapping space, but also to π1
of its connected components, and for that the distinction
between fragile and stable band topology makes all the
difference, in contrast to (10) — this is our main result
to be communicated here:

Theorem 1. For fragile valence band topology, N = 1
(6), the Hilbert spaces in (11) are modules over this non-
commutative algebra of topological observables:

ObsC := C
[
π1

(
Map

(
T̂ 2, S2

)
, C

)]
(12)

≃
〈
Ŵ[

1
0

], Ŵ[
0
1

], ζ̂
ce
nt
ra
l

∣∣∣ Ŵ[
1
0

] Ŵ[
0
1

] = ζ̂
2
Ŵ[

0
1

] Ŵ[
1
0

], ζ̂2C = 1
〉
,

where in each superselection sector (meaning: on irre-
ducible representations) with C ̸= 0 the operator ζ̂ acts
by multiplication with a 2C-th root of unity:

ζ̂ |ψ⟩ = eπi
p
C |ψ⟩ , p ∈

{
0, 1, · · · , |C| − 1

}
. (13)

On the other hand, for all more stable band topologies,
N ≥ 2 (6), the central generator ζ̂ disappears and the al-
gebra becomes commutative with its two generators iden-
tified with a basis of torus 1-cycles:

C
[
π1

(
Map

(
T̂ 2, CPN>1

)
, C

)]
≃ C

[
H1

(
T̂ 2; Z

)]
(14)

≃
〈
Ŵ[

1
0

], Ŵ[
0
1

] ∣∣∣ Ŵ[
1
0

] Ŵ[
0
1

] = Ŵ[
0
1

] Ŵ[
1
0

]〉 .
Proof. With the identification of (11) it is a question
in pure algebraic topology to compute the fundamental
groups of these mapping spaces. For (14) this is elemen-
tary in the extreme case N = ∞ (cf. [28, (15)]), using
that CP∞ ≃ K(Z, 2) is an Eilenberg-MacLane space.
The computation for (12) is much more intricate: It turns
out to be a theorem of Larmore & Thomas (1980) [41,
Thm. 1] (also [42, Prop. 1.5]), following Hansen (1974)
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[43, Thm. 1] who obtained the result except for fixing

the factor “2” in the exponent of ζ̂
2C

= 1. The remain-
ing case (14) for finite N is due to Kallel (2001) [42,
Lem. 7.5]. That these purely algebro-topological results
pertain to anyonic topological order of quantum Hall sys-
tems we recently observed in [28, §3.3-4].
With this, the statement (13) is a direct consequence

of Schur’s lemma, cf. [28, (201)]. (In the remaining case
C = 0, a variant of (13) may be proven by invoking the
modular equivariance expected of an effective topological
field theory of anyons, see [28, §3.4].)

But now we observe that the algebra (12) is exactly the
characteristic algebra of observables for anyons on a torus
(here: on the Brillouin torus of crystal momenta) with
braiding phase ζ: This is due to [44, (4.9)][45, (4.14)],
reviewed in [46, (4.21)][47, (5.28)], cf. Fig. 4.

T̂ 2

ζ2|ψ⟩
7→
|ψ⟩

Ŵ−1[
0
1

]

Ŵ−1[
1
0

]

Ŵ[
0
1

]

Ŵ[
1
0

]

FIG. 4. The relation in the algebra (12) says that an adi-
abatic parameter loop around a basis of torus cycles induces
transformation of the topological states by multiplication with
the square of a complex phase ζ to be identified [28, Prop.
3.21] with an anyon braiding phase (cf. Fig. 1).

In particular, from this observable algebra (12) a vari-
ant of the Stone-von Neumann theorem theorem implies
[28, §3.4] that the superselection sectors of HC have di-
mension ∝ ord(ζ), thus exhibiting the ground state de-
generacy characteristic of topological order.

CONCLUSION AND OUTLOOK

Highlighting that topological order is sensitive not just
to the connected components π0 of the moduli space of
band topologies, but crucially to its fundamental groups
π1 (where the commonly conflated fragile and stable band
topologies of Chern insulators may differ substantially)
we have invoked mathematical results from algebraic
topology to derive (predict) how, when the fragile topol-
ogy of FQAH systems can be resolved in cohomotopy π2,
then topological order becomes detectable with braiding
phases of anyons localized over the reciprocal space of
crystal momenta. Curiously, this makes FQAH anyons
be momentum-space duals of similarly cohomotopically
classified anyons in FQH systems [28].

But realistic (fractional) Chern insulators of interested
are typically subject to crystalline symmetry, forcing the
Bloch Hamiltonians (1) to transform under certain crys-

tal point group symmetries g ∈ G ↷T̂ 2 as (cf. [4, §4.1])

HBlch(g · k⃗) = Ug(k⃗) ◦HBlch(k⃗) ◦ Ug−1(k⃗) , (15)

for compatible unitary operators

T̂ 2 ×G SU(2)

(k⃗, g) 7−→ Ug(k⃗) .

In view of (4) this means equivalently that the map char-
acterizing the valence bundle is actually G-equivariant

T̂ 2 Ŝ2 .

G⊂Pin(2)

h⃗/|H|

G⊂Spin(3)

(16)

We may observe that if and when the relevant defor-
mations are all constrained to preserve this symmetry
— whence one speaks of the topological phases being
symmetry-protected (cf. [48][3, §2.3]) — the fragile topo-
logical moduli space of the system shrinks to the sub-
space Map(−,−)G ⊂ Map(−,−) of G-equivariant maps
(16), whose connected components CG in G-equivariant
cohomotopy [32, Ex. 4.5.8][49, §6][50]

π0

(
Map

(
T̂ 2, S2

)G)
=: π2

G

(
T̂ 2

)
(17)

measure the fragile symmetry-protected band topology.
These fragile symmetry-protected topological phases

have not been considered before. We highlight that there
is still a stabilization map (cf. [32, Prop. 4.5.17, Rem.
4.5.18]) which coarsens and hence compares them to the
classes in G-equivariant K-theory that did find much at-
tention in this context (cf. [51]).
What is more, in view of Thm. 1 we immediately ob-

tain a precise formula for the algebra of topological Berry
phases to be expected in symmetry-protected FQAH sys-
tems in topological phases CG:

GObsCG
:= C

[
π1

(
Map

(
T̂ 2, S3

)G
, CG

)]
. (18)

This predicts anyonic topologically ordered FQAH
phases whenever the G-symmetry (15) is such that (18)
is non-abelian,
While there do not seem to be results available com-

puting these equivariant cohomotopy algebras (18) for
non-trivial G-actions, in generalization of Thm. 1, it is
already noteworthy that hereby the problem of describ-
ing G-protected topological order in FQAH systems is
reduced to a straightforward question in pure algebraic
topology which may be handed to specialists for further
investigation (cf. the end of [30, §6]).
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