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Abstract. We combine Sullivan models from rational homotopy the-
ory with Stasheff’s L∞-algebras to describe a duality in string theory.
Namely, what in string theory is known as topological T-duality be-
tween K0-cocycles in type IIA string theory and K1-cocycles in type
IIB string theory, or as Hori’s formula, can be recognized as a Fourier-
Mukai transform between twisted cohomologies when looked through
the lenses of rational homotopy theory. We show this as an example of
topological T-duality in rational homotopy theory, which in turn can be
completely formulated in terms of morphisms of L∞-algebras..

1. Introduction

A connected and simply connected space X has a canonically defined
based loop space ΩX, where the choice of the basepoint is irrelevant pre-
cisely due to the topological properties of X. From the space ΩX one can
reconstruct X up to homotopy, as the classifying space for principal ΩX-
fibrations, so the homotopy type of X is completely known to the ∞-group
ΩX. By analogy with the classical Lie group/Lie algebra correspondence,
it should then be possible to reconstruct at least part of the homotopical
content of X from an infinitesimal version of the ∞-group ΩX. One of
the main result of rational homotopy theory 1 [34] is that this rather vague
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1We are going to provide a very quick review of the basic ideas of rational homotopy

theory in Section 2.2. See e.g. [22, 12, 14, 13, 23] for comprehensive surveys.
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statement can be rigorously formalized, and that a considerable amount of
the homotopy type of X is actually reconstructed: the rational homotopy
type of X is completely and faithfully encoded into a suitable L∞-algebra
([40] [41] [29]) lX which one may think of as being the infinitesimal ver-
sion of the loop group ΩX; see [7, Section 2] for a detailed account of this
approach.

The semifree DG-algebras of rational homotopy theory are then the Chevalley-
Eilenberg algebras of these L∞-algebras. The L∞-algebra lX can always be
chosen to be concentrated in strictly negative degrees and with trivial differ-
ential, and these requirements determine lX up to isomorphism. The corre-
sponding Chevalley-Eilenberg algebras are the Sullivan model DG-algebras
of rational homotopy theory [42]. This can be summarized as follows:

topological space loop ∞-group L∞-algebra Sullivan model
X ΩX lX CE(lX)

The differential graded commutative algebra AX = CE(lX) is then in
turn directly related to the geometry of X via the de Rham complex2

Ω•(X); namely, AX comes equipped with a quasi-isomorphism of DGCAs
AX → Ω•(X). This gives a direct connection to the notion of Lie algebroid
cocycles on smooth manifolds, since, if X is a smooth manifold and A is a
Lie algebroid, a A-valued cocycle on X is by definition a morphism of Lie
algebroids TX → A, and so, equivalently, a morphism of DGCAs

CE(A) −→ Ω•(X).

When A = TY , the tangent Lie algebroid of another manifold Y , by abuse
of notation we call Y -valued cocycles the TY -valued cocycles on X, i.e., the
DGCA morphisms Ω•(Y )→ Ω•(X). In particular, every smooth morphism
between X and Y naturally induces an Y -valued cocycle on X and every
Y -valued cocycle on X is of this form. Indeed, any morphism of DGCAs
ϕ : Ω•(Y ) → Ω•(X) induces in particular a morphism of commutative al-
gebras Ω0(Y ) → Ω0(X) and so at the level of degree zero components the
morphism ϕ is the pullback along a smooth map f : X → Y .3 Since Ω•(Y ) is
generated by Ω0(Y ) as a differetial graded commutative algebra, this implies
that ϕ = f∗ in every degree. In other words we see that if Y is a smooth
manifold, then Y -valued cocycles on X are precisely smooth maps X → Y .

2We will be mostly concerned with smooth manifolds and so we will usually work over
the field R of real numbers; one can more generally work over a characteristic zero field K
by replacing de Rham complex of smooth differential forms with the de Rham complex of
piecewise polynomial differential forms with coefficients in K associated with a simplicial
set whose topological realization is homotopy equivalent to X, see [42].

3This is sometimes known as the Milnor’s exercise; see [28, Lemma 35.8; Corollaries
35.9, 35.10] for a proof.
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This suggests the following immediate generalization: if lY is a Sullivan
model for a smooth manifold Y , a smooth map X → lY is by definition a
DGCA morphism

CE(lY ) −→ Ω•(X).

By definition of Sullivan minimal model, CE(lY ) is a free polynomial algebra
on certain generators {xα1 , . . . xαk}, with a differential which therefore will
have the form

dxαi = Pαi(xα1 , . . . xαk) .

for some polynomial Pαi . Consequently, we see that a smooth map X → lY
is equivalently the datum of a collection of differential forms ωαi on X such
that

(1.1) dωαi = Pαi(ωα1 , . . . ωαk),

where now d is the de Rham differential and the product is the wedge prod-
uct of differential forms. Read the other way round, this says that every
system of differential equations of the form (1.1) can be seen as a smooth
map to a real Sullivan model. In particular, a field theory whose fields are
differential forms obeying equations of the form (1.1) can be interpreted as a
σ-model type field theory, with target space given by a real Sullivan model.
All this immediately generalizes to the case of a smooth supermanifold X.

An interesting example is provided by the fields in M-theory. We will not
need a detailed account for this theory, and the reader not familiar with it
need only consider the following points:

(1) M-theory is considered on eleven-dimensional spaces, usually en-
dowed with extra structures, such as a smooth structure, an ori-
entation, or a Spin structure.

(2) M-theory connects to string theories in ten dimensions by dimen-
sional reduction on a circle, leading to type IIA string theory, or
by taking boundaries (plus involutions), leading to heterotic string
theory.

(3) Other string theories are obtained from these two by dualities. In
our context, the most prominent of these is T-duality, which relates
type IIA string theory on a circle bundle to type IIB string on a dual
circle bundle.

(4) In addition to the gravity field and its partner under supersymmetry
(which we use in Section 3.4), the fields in M-theory are mainly a
4-form G4 and a 7-form G7, satisfying dG4 = 0 and dG7 = G4 ∧G4.
At times G7 is taken to be the Hodge dual of G4 with respect to
some given Riemannian or Minkowskian metric, but generally it is
an independent field.
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(5) The corresponding fields in type IIA string theory are obtained by
integrating the M-theory fields over the fibers of the S1-bundle of
dimensional reduction. Fields in other string theories are then in
turn obtained by applying the relevant dualities to the resulting
type IIA fields.

(6) From various physical considerations, these string theory fields orga-
nize themselves to take values in the K-theory of the corresponding
spacetime, namely in K0 for type IIA and in K1 for type IIB. T-
duality is then a duality that exchanges K0 and K1.

(7) In the presence of what is called the B-field, a cohomological twist
is involved, leading to the twisted versions of (rational) K0 and K1.
We will discuss this in detail in later sections and, in fact, it will
be our goal to make this cohomological description description of
IIA/IIB T-duality in terms of twisted K-theory as structural and
mathematically rigorous as possible, thereby providing a mathemat-
ical setting for otherwise somewhat vague physics statements.

For surveys of M-theory that emphasize the topological aspects see [37][38].
Further details and constructions on the underlying topological and geomet-
ric structures can be found in [15][16]. Details more directly related to our
present context of T-duality can be found in [18][19] and [27][6].

As basic spaces to test the theory for various effects, physicists often use
flat Lorentzian spaces, i.e., analogues of Rn with the (+1,+1, · · · ,+1,−1)
signature 4 for the metric, as appropriate for relativistic spacetime formula-
tions. The most basic example is Minkowski space Rn−1,1, which for n = 4
is the usual spacetime from general relativity. Furthermore, supersymmetry
is a fundamental symmetry in the context of M-theory and string theory
and requires introducing a parity through which say m generators of ‘usual’
spaces are even and which requires introducing a set (say m) of odd nilpo-
tent generators, which together form the generators of the corresponding
superspaces. Doing so to Minkowski space Rn−1,1 leads to superMinkowski
space Rn−1,1|m.

We will focus on the fields in M-theory usually denoted G4 and G7. As
recalled above, such a pair of fields is naturally identified with the datum of
a 4-form and a 7-form on the spacetime X with dG4 = 0 and dG7 = G4∧G4,
see [11]. As emphasized in [38] [37], the Sullivan model of the 4-sphere over
R is the polynomial algebra R[x4, x7] on two generators x4 and x7 in degree
4 and 7, respectively, and with differential given by dx4 = 0 and dx7 = x4

2,
so that the pair (G4, G7) is precisely the datum of a smooth map from the

4There are also conventions in which the + and the − are swapped. See [17][27] for
recent extensive descriptions.
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smooth (super-)manifold X to lS4 and M-theory is consequently seen as a
σ-model with values in lS4.

Remarkably, in the Chevalley-Eilenberg algebra of the superMinkowski
space R10,1|32, one has a degree (4|0) element g4 corresponding to what is
called the C-field in M-theory and a degree (7|0) element g7 (called the dual
of the C-field) which satisfy dg4 = 0 and dg7 = g2

4, so that they define a

map R10,1|32 → lS4. This implies that every worldvolume in the spacetime
R10,1|32 is naturally equipped with a map to lS4, and so with M-theory
fields, by restriction.

The superMinkowski space R10,1|32 behaves, from the point of view of ra-
tional homotopy theory, as a principal U(1)-bundle over the superMinkowski

space R9,1|16+16. The M-theory morphism R10,1|32 → lS4 considered above
then leads to considering the following geometric situation: a principal U(1)-
bundle P → M together with a smooth map P → Y , for some space Y .
The total space P is the homotopy fiber of the classifying map M → BU(1)
for the bundle, and the general reduction in this case is described in [31].
The homotopy fiber functor has a right adjoint, called “cyclification”, map-
ping a space Y to the twisted loop space cyc(Y ) = LY//U(1), given by the
homotopy quotient of the free loop space of Y by the rotation of loops action:

spaces

cyc

''
spaces/BU(1).

hofib

gg

The smooth map P → Y will, therefore, be equivalent to the datum of a
smooth map M → cyc(Y ). This topological construction, capturing what
in the physics literature is known as “double dimensional reduction”, im-
mediately translates to the rational homotopy theory/L∞-algebra setting,
where we find an adjunction

L∞-algebras

cyc

((
L∞-algebras/bu1.

hofib

hh

When applied to the lS4-valued cocycle on R10,1|32, this produces a cyc(lS4)-

valued cocycle on R9,1|16+16, which can be identified with (part of the data
of) a twisted even K-theory cocycle. This corresponds to the double dimen-
sional reduction from M-brane charges in 11d to string and brane charges in
10d type IIA string theory. In particular, one recovers this way the string
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IIA twisted K0-cocycles of [10]. See [19] for details. Note that while we
have chosen to use rational homotopy theory to describe T-duality, at times
using rational spectra is not a choice but rather a condition – see [30] for a
precise and general statement.

The superMinkowski space R9,1|16+16 is in turn, again from the point
of view of rational homotopy theory, a principal U(1)-bundle over the su-

perMinkowski space R8,1|16+16 and, as such, it is classified by a 2-cocycle
cIIA

2 in the (super-)Chevalley-Eilenberg algebra of R8,1|16+16. Quite remark-

ably, CE(R8,1|16+16) carries also another, independent, 2-cocycle cIIB
2 , cor-

responding to the superMinkowski space R9,1|16+16. Moreover, the product
cIIA

2 cIIB
2 is an exact 4-cocycle with an explicit trivializing 3-cochain. Thus,

the pair of superMinkowski spaces (R9,1|16+16,R9,1|16+16) realizes in ratio-
nal homotopy theory the data of a topological T-duality configuration [9].
As a consequence, one can bijectively transfer twisted K0-cocycles in type
IIA string theory to K1-cocycles in type IIB string theory. In particular the
string IIA twisted K0-cocycles of [10] are transformed into the string IIA
twisted K1-cocycles of [36]. This phenomenon, known as rational topolog-
ical T-duality and explicitly expressed by the Hori’s formula [25], can be
formally derived by the properties of the L∞-algebra btfold, providing the
rational homotopy theory description of the universal space for T-duality,
see [20]. Here we emphasize an aspect that remains somehow hidden in
the exposition given in [20]. Namely, that the Hori’s formula is precisely a
Fourier-Mukai transform in the context of twisted L∞-algebra cohomology.
See [26] for general background on Fourier-Mukai transforms and also [5] [1]
[35] for other discussions in the context of T-duality.

The paper is organized as follows . The process of dimensional reduc-
tion by which the fields (and their moduli) in M-theory reduce the fields
(and their moduli) in type IIA string theory is described in 2. To prepare
for the construction in the setting of L∞-algebras, we recall its classical
geometric counterpart, namely the Fourier-Mukai transform in twisted de
Rham cohomology in Sec. 2.1. Basics of rational homotopy theory in the
L∞-theoretic context are then recalled in 2.2. Of particular importance to
us are two constructions: The first is central extensions of L∞-algebras and
the second is twisted L∞-algebra cohomology, which we describe in Sec. 2.3
and Sec. 2.4, respectively. Fiber integration along U(1)-bundles in rational
homotopy theory is described in Section 2.5. To establish the reduction, the
hofiber/cyclification adjunction and cyclification of L∞-algebras are con-
sidered Sec. 2.6, where further geometric properties of the pushforward
morphism are provided. We start our explicit description of T-duality in
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Sec. 3, where we describe rational homotopy theory of T-duality configu-
rations. In particular, the classifying spaces of T-duality configurations are
constructed in Sec. 3.1 and then maps to the proposed classifying space
btfold are described in 3.2. Compositions of Fourier-Mukai transforms are
then established in Sec. 3.3. Finally, generalizing from L∞-algebras to
super-L∞-algebras we we explain an interesting example from the string
theory literature, namely the case of SuperMinkowski space R1,8|16+16 in
Sec. 3.4.

2. Dimensional reduction in rational homotopy theory

2.1. Twisted de Rham cohomology and twisted Fourier-Mukai trans-
forms. In order to prepare for the kind of construction we are going to de-
scribe in the setting of L∞-algebras, let us first recall its classical geometric
counterpart: the Fourier-Mukai transform in twisted de Rham cohomology.
To that end, let X be a smooth manifold. One can twist the de Rham

differential d : Ω•(X;R)
d−→ Ω•(X;R) by a 1-form α, defining the twisted

de Rham operator dα : Ω•(X;R)
d−→ Ω•(X;R) as dαω = dω + α ∧ ω. The

operator dα does not square to zero in general: d2
α is the multiplication by

the exact 2-form dα. This means that precisely when α is a closed 1-form,
the operator dα is a differential, defining an α-twisted de Rham complex
(Ω•(X), dα). The cohomology of this complex is called the α-twisted de
Rham cohomology of X and it will be denoted by the symbol H•dR;α(X).

The operator dα is a connection on the trivial R-bundle over X, which
is flat precisely when α is closed. This means that for a closed 1-form α,
the α-twisted de Rham cohomology of X is actually a particular instance
of flat cohomology or cohomology with local coefficients. This point of view
is discussed extensively in [21]. Having identified dα with a connection, it
is natural to think of gauge transformations as the natural transformations
in twisted de Rham cohomology. More precisely, since we are in an abelian
setting with a trivial R-bundle, two connections dα1 and dα2 will be gauge
equivalent exactly when there exists a smooth function β on X such that
α1 = α2 + dβ, i.e., when the two closed 1-forms α1 and α2 are in the same
cohomology class. When this occurs, the two twisted de Rham complexes
(Ω•(X), dα1) and (Ω•(X), dα2) are isomorphic, with an explicit isomorphism
of complexes given by the multiplication by the smooth function eβ. That
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is, if ω is a differential form on X, we have

dα2(eβ ∧ ω) = d(eβ ∧ ω) + α2 ∧ eβ ∧ ω

= dβ ∧ eβ ∧ ω + eβ ∧ dω + α2 ∧ eβ ∧ ω

= eβ ∧ ((dβ + α2) ∧ ω + dω)

= eβ ∧ (α1 ∧ ω + dω)

= eβ ∧ dα1ω .

In particular, multiplication by eβ induces an isomorphism in twisted coho-
mology

eβ : H•dR;α1
(X)

∼−→ H•dR;α2
(X) .

We now investigate the functorial behavior of twisted cohomology with re-
spect to a smooth map π : Y → X. It is immediate to see that, since
the pullback morphism π∗ : Ω•(X) → Ω•(Y ) is a morphism of DGCAs, it
induces a morphism of complexes

π∗ : (Ω•(X), dα) −→ (Ω•(Y ), dπ∗α) .

In turn this gives a pullback morphism in twisted cohomology

π∗ : H•dR;α(X) −→ H•dR;π∗α(Y ) .

The pushforward morphism is a bit more delicate. To begin with, given a
smooth map π : Y → X we in general have no pushforward morphism of
complexes π∗ : Ω•(Y ) → Ω•(Y ). However we do have such a morphism of
complexes, up to a degree shift, if Y → X is not a general smooth map but it
is an oriented fiber bundle with typical fiber F which is a compact closed ori-
ented manifold. In this case π∗ is given by integration along the fiber and is
a morphism of complexes π∗ :

(
Ω•(Y ), d

)
→
(
Ω•(X)[−dimF ], d[− dimF ]

)
.

Yet, π∗ will not induce a morphism π∗ :
(
Ω•(Y ), dα

)
→
(
Ω•(X)[−dimF ], dπ∗α[−dimF ]

)
,

and actually a minute’s reflection reveals that the symbol dπ∗α just makes no
sense. However, when α is not just a generic 1-form on Y but it is a 1-form
pulled back from X, then everything works fine. Namely, the projection
formula

π∗(π
∗α ∧ ω) = (−1)degα dimFα ∧ π∗ω

precisely says that π∗ is a morphism of chain complexes

π∗ : (Ω•(Y ), dπ∗α) −→
(
Ω•(X)[−dimF ], dα[−dimF ]

)
and so it induces a pushforward morphism in twisted cohomology

π∗ : H•dR;π∗α(Y ) −→ H•−dimF
dR;α (X).
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Fourier-Mukai transforms in twisted de Rham cohomology. All of the above
suggests as to cook up a Fourier-type transform in twisted cohomology.
Assume we are given a span of smooth manifolds

Y
π1

{{
π2

##
X1 X2,

with Y
π2−→ X2 an oriented fiber bundle with compact closed oriented fibers.

Let αi be a closed 1-form on Xi, and assume that the two 1-forms π∗1α1 and
π∗2α2 are cohomologous in Y , with π∗1α1 − π∗2α2 = dβ. Then we have the
sequence of morphisms of chain complexes

(Ω•(X1), dα1)
π∗1−→ (Ω•(Y ), dπ∗1α1)

eβ−→ (Ω•(Y ), dπ∗2α2)
π2∗−−→

(
Ω•(X2)[−dimF2], dα2 [−dimF2]

)
whose composition defines the Fourier-Mukai transform with kernel β in
twisted de Rham cohomology

Φβ : H•dR;α1
(X1) −→ H•−dimF2

dR;α2
(X2) .

Writing “
∫
F ” for π2∗ and writing “·” for the right action of Ω•(X) on Ω•(Y )

given by η · ω = η ∧ π∗1ω makes it evident why this is a kind of Fourier
transform

Φβ : ω 7−→
∫
F2

eβ · ω .

If, moreover, π1 : Y → X1 is an oriented fiber bundle with compact closed
oriented fibers, then we also have a Fourier-Mukai transform in the inverse
direction, with kernel −β. Notice that by evident degree reasons the trans-
forms Φβ and Φ−β are not inverses of one another. A particular way of
obtaining a span of oriented fiber bundles X1 ← Y → X2 with compact
closed oriented fibers is to consider a single oriented fiber bundle Y → Z
with compact closed oriented fiber F1 × F2. Then the manifolds X1 and
X2 are given by the total spaces of the F2-fiber bundle and F1-fiber bun-
dles on Z, respectively, associated with the two factors of F1 × F2 together
with the canonical projections. In particular, an oriented 2-torus bundle
Y → Z produces this way a span X1 ← Y → X2 where both πi : Y → Xi

are S1-bundles. It is precisely a configuration of this kind in which we will
be interested.
From 1-form twists to 3-form twists. Assume now that α is a 3-form on X
instead of a 1-form. Then we can still define the operator dα on differential
forms as dαω = dω+α∧ ω, but this will no more be a homogeneous degree
1 operator. We can heal this by adding a formal variable u with deg(u) = 2
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and with du = 0, and define the degree 1 operator

dα : Ω•(X)[[u−1, u]] −→ Ω•(X)[[u−1, u]]

as the R[[u−1, u]]-linear extension of

dαω = dω + u−1α ∧ ω.

Doing so, the above discussion verbatim applies, with the de Rham com-
plex Ω•(X) replaced by the periodic de Rham complex Ω•(X)[[u−1, u]]. In
particular, if we have a span X1 ← Y → X2 of oriented S1-bundles and if
αi are 3-forms on Xi such that π∗1α1 − π∗2α2 = dβ for some 2-form β on Y ,
then we have Fourier-Mukai transforms

Φβ : H•dR;α1
(X1;u−1, u) −→ H•−1

dR;α2
(X2;u−1, u) ,

Φ−β : H•dR;α2
(X2;u−1, u) −→ H•−1

dR;α1
(X1;u−1, u) .

Having introduced the variable u, our cohomology is now endowed with a
natural shift, given by the multiplication by u, and we may wonder whether
the Fourier-Mukai transforms Φβ and Φ−β may be inverses to one another
up to shift. As we are going to see, this is precisely what happens in rational
T-duality configurations.

The above construction actually works for any closed differential form of
odd degree, so there is apparently no point in considering 3-forms rather
than 1-forms or 5-forms (see e.g. [37]). There is, however, an important ge-
ometrical reason to focus on degree 3 forms: when the coefficients are taken
in a characteristic zero field, periodic de Rham cohomology is isomorphic
(via the Chern character) to K-theory. Under this isomorphism, K-theory
twists (which are topologically given by principal U(1)-gerbes and so are
classified by maps to B2U(1) ' K(Z, 3)) precisely become closed 3-forms.
In other words, for α1 and α2 closed 3-forms as above, the Fourier-Mukai
transform Φβ is to be thought as a morphism (see [5])

Φβ : K•G1(X1)⊗ R −→ K•−1
G2 (X2)⊗ R .

where G1 and G2 are the twisting gerbes (see [4]). This is indeed the ratio-
nalization, with real coefficients, of a topological Fourier-Mukai transform

Φβ : K•G1(X1) −→ K•−1
G2 (X2) .

A particular situation we will be interested in is the case when the span

X1 ← Y → X2 of oriented S1-bundles is induced by a 2-torus bundle Y → Z,
and so by a classifying map Z → B(U(1)× U(1)) ∼= BU(1)×BU(1). More
specifically, we will also require that the canonical U(1)-2-gerbe associated
with the torus bundle Y → Z is trivialized, i.e., we will be considering what
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is known as a topological T-duality configuration [9]. We will be investigat-
ing these from the point of view of rational homotopy theory, realizing the
Fourier-Mukai transform as a morphism in twisted L∞-algebra cohomology
and proving that a pair of L∞-algebras in a rational T-duality configuration
comes equipped with a canonical Fourier-Mukai transform which turns out
to be an isomorphism.

2.2. Basics of rational homotopy theory. The idea at the heart of ra-
tional homotopy theory is that, up to torsion, all of the homotopy type of a
connected and simply connected space5 with finite rank cohomology groups
is encoded in its de Rham algebra with coefficients in a characteristic zero
field, as a differential graded commutative algebra, up to homotopy [34] [42].
Moreover, since one has the freedom to replace the de Rham algebra with
any homotopy equivalent DGCA, one sees that up to torsion the homotopy
type of a simple space X is encoded into its so called minimal model or Sulli-
van algebra: a DGCA AX equipped with a quasi-isomorphism of differential
graded commutative algebras AX → Ω•(X), which is semi-free, i.e., which is
a free graded commutative algebra when one forgets the differential, whose
degree 1 component A1

X is zero, and such that the differential is decompos-
able, i.e., it has no linear component. In other words, AX is a DGCA of the
form (

∧•lX∗, d) = (Sym•(lX[1]∗), d) for a suitable graded vector space lX
concentrated in strictly negative degrees (and finitely dimensional in each
degree) and a suitable degree 1 differential d with d(lX∗) ⊆ ∧>2lX∗. Here
lX∗ denotes the graded linear dual of lX, and the degree shift in the defini-
tion of

∧• is there in order to match the degree coming from geometry: the
de Rham algebra is generated by 1-forms, which are in degree 1.

The semi-freeness property together with the vanishing of A1
X , the datum

of the quasi-isomorphism to the de Rham algebra and the decomposability of
the differential uniquely characterize the minimal model up to isomorphism
and the quasi-isomorphism to the de Rham algebra up to homotopy, so that
one can talk of the minimal model of a space X. The pair (

∧•lX∗, d) is what
is called a minimal L∞-algebra structure on lX in the theory of L∞-algebras.
Equivalently, one says that the DGCA (

∧•lX∗, d) is the Chevalley-Eilenberg
algebra of the L∞-algebra lX (omitting the L∞ brackets of lX from the
notation), and writes

5The theory can be extended to a simple space, i.e., a connected topological space that
has a homotopy type of a CW complex and whose fundamental group is abelian and acts
trivially on the homotopy and homology of the universal covering space.

A classical example is S1, which we are actually going to meet several times in this
note.
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(AX , dX) ∼= (CE(lX), dX)

as the defining equation of the L∞-algebra lX. We say that the L∞-algebra
lX is the rational approximation of X. Geometrically, it can be thought of
as the tangent L∞-algebra to the ∞-group given by the based loop space
of X (as X is connceted and simply connected, the choice of a basepoint is
irrelevant). A smooth map f : Y → X is faithfully encoded into the DGCA
morphism f∗ : Ω•(X) → Ω•(Y ), so that the rational approximation of f is
encoded into a DGCA morphism, which we will continue to denote f∗,

f∗ : AX −→ AY .

In turn, by definition, this is a morphism of L∞-algebras lf : lY → lX. Fi-
nally, up to homotopy, every L∞-algebra is equivalent to a minimal one:
this is the dual statement of the fact that every (well behaved) DGCA is
homotopy equivalent to a minimal DGCA. Therefore we get the fundamen-
tal insight of rational homotopy theory: the category of simply connected
homotopy types over a characteristic zero field K is (equivalent to) the ho-
motopy category of L∞-algebras over K with cohomology concentrated in
strictly negative degrees.

Remark 2.1. For non-simply connected simple spaces, one drops the condi-
tion A1

X = 0 and replaces it with the following nilpotency condition: one
requires lX∗ to be filtered by an increasing series

lX∗(0) ⊆ lX∗(1) ⊆ lX∗(2) ⊆ · · · ⊆ lX∗

of graded subspaces with d(lX∗(0)) = 0 and d(lX∗(n)) ⊆ ∧>2lX∗(n− 1) for
every n > 1. If lX∗ is finite-dimesnsional, this corresponds to requiring that
lX∗ is a nilpotent L∞-algebra. When A1

X = 0 one has in particular that the
degree 1 component of lX[1]∗ vanishes, and so the degree filtration on lX∗

automatically satisfies the nilpotency condition.

The above description of rational homotopy theory may have erroneously
suggested it is a quite abstract construction. So let us make a few examples
to make it concrete.

Example 2.1 (The Sullivan model of BU(1)). Consider the classifying
space BU(1). Its real cohomology is H•(BU(1);R) ∼= R[x2], where x2 is
a degree 2 element, the universal first Chern class. As H•(BU(1);R) is a
free polynomial algebra, we can think of it as a semifree DGCA with trivial
differential. Moreover, choosing a de Rham representative for the first Chern
class defines a quasi-isomorphism

(R[x2], 0) −→ (Ω•(BU(1)), d)
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exhibiting (R[x2], 0) as the Sullivan model of BU(1). The equation

(R[x2], 0) ∼= (CE(lBU(1)), dBU(1))

then characterizes lBU(1)) as the L∞-algebra consisting of the cochain com-
plex R[1] consisting of the vector space R in degree -1 and zero in all other
degrees (with zero differential). We will denote this L∞-algebra by the sym-
bol bu1. A principal U(1)-bundle P → X is classified by a map X → BU(1).
The rational approximation of this map is an L∞-morphism

lX −→ bu1.

Equivalently, by definition, this is a DGCA morphism

(R[x2], 0) −→ (AX , dX),

i.e., it is a degree 2 closed element in AX . By pushing it forward along
the quasi-isomorphism (AX , dX)

∼−→ (Ω•(X), d) we get a closed 2-form ω2

on X associated to the principal U(1)-bundle P → X. Since the quasi-

isomorphism (AX , dX)
∼−→ (Ω•(X), d) is only unique up to homotopy, the

2-form ω2 is only well defined up to an exact term so that it is the cohomology
class [ω2] to be actually canonically associated with P → X. No surprise,
[ω2] is the image in de Rham cohomology of the first Chern class of P → X.

Example 2.2 (compact abelian Lie groups). Another classical example is
the following. Given a compact Lie group G, then the inclusion Ω•(G)G ↪→
Ω• of G-invariant differential forms on G into the de Rham complex of G
is a quasi-isomorphism. As a G-invariant form is completely and freely
determined by its restriction at the identity element of G, we see that as
a graded vector space Ω•(G)G ∼= ∧•g∗, where g denotes the Lie algebra
of G. The de Rham differential on Ω•(G)G corresponds to the Chevalley-
Eilenberg differential on

∧•g∗, i.e., to the differential computing the Lie
algebra cohomology of g with coefficients in R as a trivial g-module. From
this we see that a semifree model for G is CE(g). However, CE(g) is not
a Sullivan model for G, unless g is nilpotent. This happens in particular
for compact abelian Lie groups, so that, for instance CE(u1) is indeed the
Sullivan model of U(1).

Example 2.3 (The Sullivan models of spheres). The real cohomology ring
of the n-sphere Sn is extremely simple: we have

H•(Sn;R) '

{
R[tn] if n is odd

R[tn]/(tn
2) if n is even

as graded commutative rings, where tn is a variable in degree n. Notice
that the difference between the odd and the even case is only apparent:
in the odd case tn

2 = 0 due to the graded commutativity of the product.
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However, we preferred to divide the two cases to stress that in the odd case,
the rational cohomology of Sn is a free graded polynomial algebra, and so
it essentially coincides with its own Sullivan model, we only need to add a
trivial differential to the picture:

CE(lS2k+1) =
(
R[x2k+1]; dx2k+1 = 0

)
.

Namely, if ω2k+1 is a volume form for S2k+1, the map x2k+1 7→ ω2k+1 defines
a morphism of differential graded commutative algebras(

R[x2k+1]; dx2k+1 = 0
)
−→

(
Ω•(S2k+1;R); ddR

)
which is immediately seen to be a quasi-isomorphism, i.e., inducing an
isomorphism in cohomology. For even n = 2k we have to cure the con-
straint t2k

2 = 0. This is done by lifting the cohomology relation t2k
2 = 0

to the equation x2k ∧ x2k = dx4k−1. It is then easy to see that, if we
consider the free polynomial algebra R[x2k, x4k−1] and introduce on it the
differential d by the rule dx2k = 0 and dx4k−1 = x2k

2 then we see that(
R[x2k, x4k−1]; dx2k = 0, dx4k−1 = x2k ∧ x2k

)
is a differential graded com-

mutative algebra and that(
R[x2k, x4k−1]; dx2k = 0, dx4k−1 = x2k ∧ x2k

)
−→

(
Ω•(S2k;R); ddR

)
x2k 7−→ ω2k

x4k−1 7−→ 0

is a quasi-isomorphism of DGCAs. Moreover, R[x2k, x4k−1]1 = 0 and the
differential is decomposable. In other words,

CE(lS2k) =
(
R[x2k, x4k−1]; dx2k = 0, dx4k−1 = x2k ∧ x2k

)
.

Given the identification between simple homotopy types and L∞-algebras
mentioned above, from now on we will mostly work directly with L∞-
algebras, with no reference to the space of which they can be a rationaliza-
tion. Therefore, a span X1 ← Y → X2 as in the discussion of Fourier-Mukai
transforms in twisted de Rham cohomology will become a span

h
π1

{{
π2

##
g1 g2

of L∞-algebras. As we want that the πi’s represent the (rationalization of)
S1-bundles our next step is the characterization of those L∞-morphism that
correspond to principal U(1)-bundles.
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2.3. Central extensions of L∞-algebras. A principal U(1)-bundle over a
smooth manifold X is encoded up to homotopy into a map f : X → BU(1)
from X to the classifying space U(1). The total space P as well as the
projection P → X are recovered by f by taking its homotopy fiber, i.e., by
considering the homotopy pullback

P //

��

∗
��

X
f // BU(1) .

As rationalization commutes with homotopy pullbacks, the rational approx-
imation of the above diagram is

lP //

��

0

��
lX

lf // bu1 .

Dually, this means that we have a homotopy pushout of DGCAs

(R[x2], 0) //

f∗
��

(R, 0)

��
(AX , dX) // (AP , dP ) .

This is easily computed. All we have to do is to replace the DCGA morphism
R[x2] → R with an equivalent cofibration. The easiest way of doing this is
to factor R[x2]→ R as

(R[x2], 0) �
� // (R[y1, x2], dy1 = x2)

∼ // R

Then AP is computed as an ordinary pushout

(R[x2], 0) //

f∗
��

(R[y1, x2], dy1 = x2)

��
(AX , dX) // (AP , dP ) ,

i.e.,

(AP , dP ) = (AX [y1], dPω = dXω for ω ∈ AX , dP y1 = f∗x2).

This immediately generalizes to the case of an arbitrary morphism f : g →
bu1. The homotopy fiber of f will be the L∞-algebra ĝ characterized by

CE(ĝ) = CE(g)[y1],

where y1 ia a variable in degree 1 and where the differential in CE(ĝ) extends
that in CE(g) by the rule dĝy1 = f∗(x2).
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Example 2.4. If g is a Lie algebra (over R), then an L∞-morphism f : g→
bu1 is precisely a Lie algebra 2-cocycle on g with values in R. The L∞-
algebra ĝ is again a Lie algebra in this case, and it is the central extension
of g by R classified by the 2-cocycle f .

The above construction admits an immediate generalization. Instead of
bu1 we can consider the L∞-algebra bnu1 given by the cochain complex R[n]
consisting of R in degree−n and zero in all other degrees. The corresponding
Chevalley-Eilenberg algebra is

(CE(bnu1), dbnu1) = (R[xn+1], 0),

where xn+1 is in degree n + 1. One sees that bnu1 is a rational model
(with coefficients in R) for the classifying space BnU(1) of principal U(1)-n
bundles (or principal U(1)-(n − 1)-gerbes), which is a K(Z, n + 1). If g
is a Lie algebra, then an L∞-morphism g → bnu1 is precisely a Lie algebra
(n+1)-cocycle on g with coefficients in R. More generally, an L∞-morphism
g→ bnu1 with g an L∞-algebra will also be called an (n+ 1)-cocycle. The
dual picture makes this terminology transparent: an (n+ 1)-cocycle on g is
a DGCA morphism

(R[xn+1], 0) −→ (CE(g), dg)

so it is precisely a closed degree n + 1 element in CE(g). The description
of homotopy fibers of 2-cocycles immediately generalizes to higher cocycles:
the homotopy fiber ĝ of an (n+ 1)-cocycle g→ bnu1 is characterized by

CE(ĝ) = CE(g)[yn],

where yn is a variable in degree n and where the differential in CE(ĝ) extends
that in CE(g) by the rule dĝyn = f∗(xn+1). By analogy with the case
of 2-cocycles on Lie algebras, one calls ĝ a higher central extension of g.
Geometrically, ĝ is to be thought as the total space of a rational U(1)-n-
bundle over g.

2.4. Twisted L∞-algebra cohomology. As we explained in Section 2.2, a
(finite dimensional in each degree) L∞-algebra g is encoded into its Chevalley-
Eilenberg algebra (CE(g), dg). As this is a DGCA, we can consider its co-
homology which, by definition, is the L∞-algebra cohomology of g

H•L∞(g;R) = H• (CE(g), dg) .

When g is a Lie algebra this reproduces the Lie algebra cohomology of g.
If g is the L∞-algebra representing the rational homotopy type of a simple
space X, then the L∞-algebra cohomology of g computes the de Rham
cohomology of X. That is,

H•L∞(lX;R) = H• (CE(lX), dX) = H• (AX , dX)) ∼= H• (Ω•(X), d)) = H•dR(X).
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This is more generally true if instead of the Sullivan model CE(lX) one
considers an arbitrary semifree model CE(gX).

Example 2.5. If g is the Lie algebra of a compact Lie group G, then
one recovers the classical statement that the Lie algebra cohomology of g
computes the de Rham cohomology of G:

H•Lie(g;R) ∼= H•dR(G).

This has actually been one of the motivating examples in the definition of
Lie algebra cohomology.

Exactly as we twisted de Rham cohomology in Section 2.1, we can twist
L∞-algebra cohomology: if a is a degree 3 cocycle on g then we can consider
the degree 1 differential dg;a : x 7→ dgx + u−1a x on the algebra of Laurent
series in the variable u with coefficients in the Chevalley-Eilenberg algebra
of g and define

H•L∞;a(g;R[[u−1, u]]) = H•
(
CE(g)[[u−1, u]], dg;a

)
.

As in the de Rham case, if a1 and a2 are cohomologous 3-cocycles with a1−
a2 = db then eu

−1b is a cochain complexes isomorphism between (CE(g)[[u−1, u]], dg;a1)
and (CE(g)[[u−1, u]], dg;a2) and so induces an isomorphism

eu
−1b : H•L∞;a1(g;R[[u−1, u]])

∼−→ H•L∞;a2(g;R[[u−1, u]]) .

If f : h→ g is an L∞ morphism, then by definition f is a DGCA morphism
f∗ : CE(g)→ CE(h) so that f∗a is a 3-cocycle on h for any 3-cocycle a on g,
and f∗ is a morphism of cochain complexes between (CE(g)[[u−1, u]], dg;a)
and (CE(h)[[u−1, u]], dh;f∗a), thus inducing a morphism between the twisted
cohomologies

f∗ : H•L∞;a(g;R[[u−1, u]]) −→ H•L∞;f∗a(h;R[[u−1, u]]).

We, therefore, see that in order to define Fourier-Mukai transforms at the
level of twisted L∞-algebra cohomology the only ingredient we miss is a
pushforward morphism

π∗ : (CE(ĝ), dĝ) −→
(
CE(g)[−1], dg[−1]

)
for any central extension π : ĝ→ g induced by a 2-cocycle g→ bu1, which is
a morphism of cochain complexes and which satisfies the projection formula
identity. We are going to exhibit such a morphism in the next section.

2.5. Fiber integration along U(1)-bundles in rational homotopy the-
ory. Let P → X be a principal U(1)-bundle. Since U(1) is a compact Lie
group, every differential form on P can be averaged so to become invariant
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under the U(1)-action on P . Moreover, taking average is a homotopy inverse
to the inclusion of U(1)-invariant forms into all forms on P so that

Ω•(P )U(1) � � // Ω•(P )

is a quasi-isomorphism of DGCAs. The DGCA Ω•(P )U(1) has a very simple
description in terms of the DGCA Ω•(X). Namely, identifying Ω•(X) with
its image in Ω•(P ) via π∗ one sees that Ω•(X) is actually a subalgebra of

Ω•(P )U(1). The subalgebra Ω•(X) however does not exhaust all of the U(1)-
invariant forms on P : those forms that restrict to a scalar multiple of the
volume form on the fibers (for some choice of a U(1)-invariant metric on
P ) are left out. Picking one such a form ω1 is equivalent to the datum of a
U(1)-connection ∇ on P and

(Ω•(P )U(1), d) = (Ω•(X)[ω1], dω1 = F∇),

where F∇ is the curvature of ∇, so that we have a quasi-isomorphism of
DGCAs

(Ω•(X)[ω1], dω1 = F∇)
∼−−→ (Ω•(P ), d).

This is the geometric counterpart of the isomorphism

(CE(ĝ), dĝ) = (CE(g)[y1], dĝy1 = f∗x2)

we met in Section 3, so that we see that the degree 1 element y1 in the
Chevalley-Eilenberg algebra of the central extension ĝ does indeed rep-
resent a vertical volume form. The fiber integration π∗ : (Ω•(P ), d) →
(Ω•(X)[−1], d[−1]), restricted to U(1)-invariant forms reads

π∗ : (Ω•(X)[ω1], dω1 = F∇) −→ (Ω•(X)[−1], d[−1])

α+ ω1 ∧ β 7−→ β,

so it is natural to define the fiber integration morphism π∗ associated with
the central extension π : ĝ→ g determined by the 2-cocycle f : g→ u1 as

π∗ : (CE(g)[y1], dĝy1 = f∗x2) −→ (CE(g)[−1], dg[−1])

a+ y1 b 7−→ b,

It is immediate to see that π∗ is indeed a morphism of chain complexes:

dg[−1](π∗(a+ y1 b)) = −dgb = π∗(dga+ (f∗x2) b− y1 dgb) = π∗(dĝ(a+ y1 b)).

Next, let us show that the projection formula holds. Since the morphism
π∗ : (CE(g), dg) → (CE(ĝ), dĝ) is the inclusion of CE(g) into CE(g)[y1], we
find:

π∗((π
∗a) (b+ y1 c)) = π∗(a b+ (−1)ay1 ac)) = (−1)aac = (−1)aa π∗(b+ y1 c)

for every b, c ∈ CE(g), i.e.,

(2.1) π∗((π
∗a)ω) = (−1)aa π∗ω,
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for every ω ∈ CE(ĝ). Summing up, we have reproduced at the L∞-algebra/rational
homotopy theory level all of the ingredients we needed to define Fourier-

Mukai transforms. That is, given a span g1
π1←− h

π2−→ g2 of central extensions
(by the abelian Lie algebra R) of L∞-algebras, and given a triple (a1, a2, b)
consisting of 3-cocycles ai on gi and of a degree 2 element b in CE(h) such
that dhb = π∗1a1 − π∗2a2 we have Fourier-Mukai transforms

Φb : H•L∞;a1(g1;R[[u−1, u]]) −→ H•−1
L∞;a2

(g2;R[[u−1, u]])

Φ−b : H•L∞;a2(g2;R[[u−1, u]]) −→ H•−1
L∞;a1

(g1;R[[u−1, u]])

given by the images in cohomology of the morphisms of complexes

ω 7−→ π2∗(e
u−1bπ∗1ω) and ω 7−→ π1∗(e

−u−1bπ∗2ω),

respectively.

2.6. The hofiber/cyclification adjunction and cyclification of L∞-
algebras. We are going to see how to produce a quintuple (π1, π2, a1, a2, b)
inducing a Fourier-Mukai transform in Section 3. But first let us spend a
few more words on the geometric properties of the pushforward morphism
π∗. As π∗ : (CE(ĝ), dĝ) → (CE(g)[−1], dg[−1]) is a morphism of cochain
complexes, it in particular maps degree n+ 1 cocycles in CE(ĝ) to degree n
cocycles in CE(g). But, if h is any L∞-algebra, we have seen that a degree
k cocycle in CE(h) is precisely an L∞-morphism h→ bk−1u1. Therefore we
see that π∗ induces a morphism of sets

HomL∞(ĝ, bnu1) −→ HomL∞(g, bn−1u1).

This is actually part of a much larger picture, to see which we need a di-
gression on free loop spaces. So let again X be our smooth manifold and
let π : P → X be a principal U(1)-bundle over X, and let ϕ : P → Y a
map from P to another smooth manifold Y . Let γ : P × U(1) → Y be the
composition

P × U(1) −→ P
ϕ−→ Y

where the first map is the right U(1)-action on P . By the multiplication by
S1/free loop space adjunction, γ is, equivalently, a morphism from P to the
free loop space LY of Y . More explicitly, a point x ∈ P is mapped to the
loop ϕx : U(1)→ Y defined by ϕx(eiθ) = ϕ(x · eiθ). The map γ : P → LY is
equivariant with respect to the right U(1)-action on P and the right U(1)-
action on LY given by loop rotation: η · eiθ = ρ∗θη, where ρθ : U(1)→ U(1)
is the rotation by angle θ. Namely, one has

((ϕx)·eiθ)(eiθ0) = (ρ∗θϕx)(eiθ0) = ϕx(eiθeiθ0) = ϕ((x·eiθ)·eiθ0) = ϕx·eiθ(e
iθ0).
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Therefore, equivalently, γ is a morphism between the homotopy quotients
P//U(1) and LY//U(1) over BU(1). Moreover, as P is a principal U(1)-
bundle over X, the homotopy quotient P//U(1) is equivalent to the ordi-
nary quotient and so is equivalent to the base X, and the natural map
P//U(1) → BU(1) is identified with the morphism f : X → BU(1) classi-
fying the principal bundle P . In other words, a morphism ϕ : P → Y is,
equivalently, a morphism

X //

f %%

LY//U(1)

ww
BU(1)

from f to the canonical morphism LY//U(1) → BU(1) in the overcate-
gory of spaces over BU(1). Writing cyc(Y ) for the “cyclification” LY//U(1)
and recalling that the total space P is the homotopy fiber of the morphism
f : X → BU(1), we see that the above discussion can be elegantly summa-
rized by saying that cyclification is the right adjoint to homotopy fiber,

spaces

cyc

''
spaces/BU(1).

hofib

gg

Cyclification of L∞-algebras. The above topological construction immedi-
ately translates to the L∞-algebra setting, where we find an adjunction 6

L∞-algebras

cyc

((
L∞-algebras/bu1.

hofib

hh

We have already seen that the homotopy fiber functor from L∞-algebras over
bu1(i.e., L∞-algebras equipped with an R-valued 2-cocycle) to L∞-algebras
consists in forming the R-central extension classified by the 2-cocycle. So we
have now to complete the picture by describing the cyclification functor. As
usual, we start from geometry, and consider an L∞-algebra lX representing
the rational homotopy type of a simple space X. If X is 2-connected (so that
its free loop space is surely simply connected and therefore simple) an L∞-
algebra representing the rational homotopy type of the free loop space LX
is easily deduced from the multiplication by S1/free loop space adjunction.

6A more general statement and proof in∞-toposes can be found in [39] (see Proposition
4.1).
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As a Sullivan model for Y ×S1 is AY×S1 = AY ⊗AS1 = AY [t1] with dt1 = 0,
one sees that if AX = (

∧•lX∗, dX), then

ALX = (
∧•(lX∗ ⊕ slX∗), dLX)

where slX∗ = lX∗[1] is a shifted copy of lX∗, with dLX
∣∣
AX

= dX and

[dLX , s] = 0, where s : ALX → ALX is the shift operator s : lX∗
∼−→ (slX∗)[−1]

extended as a degree -1 differential. See [43] for details. This immediately
suggests the following definition: for an arbitrary L∞-algebra g we write Lg
for the L∞-algebra defined by

(CE(Lg), dLg) =
(∧•(g∗ ⊕ sg∗), dLg∣∣CE(g)

= dg, [dLg, s] = 0]
)
.

Deriving an L∞-algebra model for the cyclification cyc(X) is a bit more
involved, ad has been worked out in [44]. One finds

Acyc(X) =
(∧•(lX∗ ⊕ slX∗ ⊕ bu∗1), dcyc(X)

)
=
(∧•(lX∗ ⊕ slX∗)[x2], dcyc(X)

)
,

where x2 is a degree 2 closed variable and dcyc(X) acts on an element a ∈
lX∗ ⊕ slX∗ as dcycXa = dLga + x2 ∧ sa. From this one has the natural
generalization to an arbitrary L∞-algebra g: its cyclification is the L∞-
algebra cyc(g) defined by

CE(cyc(g)) =
(∧•(g⊕ sg⊕ bu1)∗, dcyc(g)

)
=
(
(
∧•(g⊕ sg)∗)[x2], dcyc(g)

)
,

where x2 is a degree 2 variable with dcyc(g)x2 = 0 and dcyc(g) acts on an
element a ∈ g∗[−1]⊕ g∗ as

dcyc(g)a = dLga+ x2 ∧ sa.

Notice that there is a canonical inclusion of DGCAs R[x2] ↪→ CE(cyc(g)),
giving a canonical 2-cocycle cyc(g) → bu1. It is then not hard to see that,
if f : g→ bu1 is a 2-cocycle classifying a central extenson ĝ, then there is a
natural bijection

HomL∞(hofib(f), h) ∼= HomL∞/bu1(g, cyc(h)),

for any L∞-algebra h, where on the right hand side with a little abuse of
notation we have written the sources in places of the morphisms. Namely,
in the dual Chevalley-Eilenberg picture this amounts to a natural bijection

HomDGCA(CE(h),CE(ĝ)) ∼= HomR[x2]/DGCA(CE(cyc(h)),CE(g)).

As CE(h) is freely generated by h∗[−1] as a polynomial algebra, a morphism
on the left amounts to a graded linear map h∗[−1]→ CE(ĝ) constrained by
the compatibility with the differentials condition. As CE(ĝ) = CE(g)[y1],
where y1 is a variable in degree 1 with dĝy1 = f∗(x2), as a graded vector
space we have

CE(ĝ) = CE(g)⊕ y1 CE(g) = CE(g)⊕ CE(g)[−1],
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so that a graded linear map h∗[−1]→ CE(ĝ) is equivalent to a pair of graded
linear maps from h∗[−1] to CE(g) and to CE(g)[−1], respectively. In turn,
this pair is a graded linear map h∗[−1] ⊕ h∗ → CE(g). We can extend this
to a graded linear map

h∗[−1]⊕ h∗ ⊕ bu∗1[−1] −→ CE(g)

by mapping the linear generator x2 of bu∗1[−1] to the element f∗(x2) of
CE(g). This way we define a graded commutative algebra map

Sym•(h∗[−1]⊕ h∗ ⊕ bu∗1[−1]) −→ CE(g)

which a direct computation shows to be a morphism of DGCAs making the
diagram

R[x2]
f∗

&&vv
CE(cyc(h)) // CE(g)

commute. See [20] for details.

Example 2.6. The Sullivan model for S4 is

CE(lS4) = (R[z4, z7], dz4 = 0, dz7 = z4
2).

Therefore, the Sullivan model for LS4//U(1) is

CE(cyc(lS4)) = (R[x2, y3, z4, y6, z7], dx2 = 0, dy3 = 0, dz4 = y3x2, dy6 = −2y3z4, dz7 = x4
2+x2y6).

Making the change of variables f2 = x2, h3 = y3, f4 = z4, f6 = −1
2y6, and

h7 = z7, this can be rewritten as

CE(cyc(lS4)) = (R[f2, f4, f6, h3, h7], df2 = 0, dh3 = 0, df4 = h3f2, df6 = y3t4, dh7 = f4
2−2t2t6).

Therefore, a smooth cocycle X → cyc(lS4) on a smooth (super)manifold X
will be the datum of a closed 3-form H3 and of 2-, 4- and 6-forms F2, F4

and F6 on X such that

dF2 = 0; dF4 = H3 ∧ F2; dF6 = H3 ∧ F4,

together with a 7-form H7 which is a potential for the closed 8-form F4∧F4−
2F2∧F6. In particular, if Y → X is rationally a principal S1-bundle, then a
lS4 cocycle on Y will induce, by the hofiber/cyclification adjunction, such a
set of differential forms on X. Notice in particular how the above equations
for the differentials of the F2n’s are precisely (a subset of) the equations for
a H3-twisted cocycle

∑∞
n=−∞ F2nu

n in (Ω•(X)[[u−1, u]], dH3) with F0 = 0.

This is the mechanism by which the M-theory cocycle R10,1|32 → lS4 induces

twisted (rational) even K-theory cocycles on on R9,1|16+16; see [19].
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Fiber integration revisited. The L∞ algebras bnu1 have a particularly simple
cyclification. Namely, as CE(bnu1) = (R[xn+1], 0), we see from the explicit
description of cyclification given in the previous section that as a polynomial
algebra CE(cyc(bnu1)) is obtained from R[xn+1] by adding a generator yn =
sxn+1 in degree n and a generator z2 in degree 2. The differential is given
by

dxn+1 = z2 yn; dyn = 0; dz2 = 0.

From this one immediately sees that we have an injection (R[yn], 0) ↪→
(CE(cyc(bnu1)), d) and so dually a fibration

cyc(bnu1) −→ bn−1u1

of L∞-algebras. Then given an R central extension π : ĝ → g we can form
the composition of morphisms of sets

HomL∞(ĝ, bnu1) ∼= HomL∞/bu1(g, cyc(bnu1))→ HomL∞(g, cyc(bnu1))→ HomL∞(g, bn−1u1),

and a direct inspection easily reveals that this coincides with the fiber inte-
gration morphism

π∗ : HomL∞(ĝ, bnu1) −→ HomL∞(g, bn−1u1)

from Section 2.5.

3. Rational homotopy theory of T-duality configurations

3.1. The classifying spaces of T-duality configurations. As we al-
ready noticed, the same way as the classifying space BU(1) of principal
U(1)-bundles is a K(Z, 2), the classifying space B3U(1) of principal U(1)-3-
bundles (or principal U(1)-2-gerbes) is a K(Z; 4). This implies that the cup
product map

∪ : K(Z, 2)×K(Z, 2) −→ K(Z, 4)

is equivalently a map

∪ : BU(1)×BU(1) −→ B3U(1),

i.e., to any pair of principal U(1) bundles P1 and P2 on a manifold X is
canonically associated a U(1)-2-gerbe P1∪P2 on X. By definition, a topolog-
ical T-duality configuration is the datum of two such principal U(1)-bundles
together with a trivialization of their cup product. In other words, a topo-
logical T-duality configuration on a manifold X is a homotopy commutative
diagram

X //

��

∗

��
BU(1)×BU(1)

∪ // B3U(1) .
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By the universal property of the homotopy pullback this is in turn equivalent
to a map from X to the homotopy fiber of the cup product, which will
therefore be the classifying space for topological T-duality configurations.
To fix notations, let us call BTfolds this classifying space, so that BTfold
is defined by the homotopy pullback

BTfold //

��

∗

��
BU(1)×BU(1)

∪ // B3U(1) .

The rationalization of BTfold is obtained as the L∞-algebra btfold given by
the homotopy pullback

btfold //

��

0

��
bu1 × bu1

∪ // b3u1 ,

and in order to get an explicit description of it we only need to give an

explicit description of the 4-cocycle bu1× bu1
∪−→ b3u1. This is easily read in

the dual picture: it is the obvious morphism of CGDAs

(R[x4], 0) −→ (R[x̌2, x̃2], 0) ∼= (R[x2], 0)⊗ (R[x2], 0)

x4 7−→ x̌2 x̃2.

The Chevalley-Eilenberg algebra of btfold is then given by the homotopy
pushout

(R[x4], 0) //

∪∗
��

(R, 0)

��
(R[x̌2, x̃2], 0) // (CE(btfold), d) ,

i.e., by the pushout

(R[x4], 0) //

∪∗
��

(R[y3, x4], dy3 = x4)

��
(R[x̌2, x̃2], 0) // (CE(btfold), d) .

Explicitly, this means that

(CE(btfold), d) = (R[x̌2, x̃2, y3], dx̌2 = 0, dx̃2 = 0, dy3 = x̌2 x̃2),

and so an L∞-morphism g → btfold is precisely what we should have ex-
pected it to be: a pair of 2-cocycles on g together with a trivialization of
their product. Moreover, one manifestly has an isomorphism

(CE(btfold), d) ∼= (CE(cyc(b2u1), d)
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so that the btfold L∞-algebra is isomorphic to the cyclification of b2u1. This
result actually already holds at the topological level, i.e., there is a ho-
motopy equivalence BTfold ∼= cyc(K(Z, 3)) ∼= cyc(B2U(1)). Proving this
equivalence beyond the rational approximation is however harder; see [9] for
a proof.

The L∞-algebra btfold has two independent 2-cocycles f1, f2 : btfold→ bu1

given in the dual picture by f∗1 (x2) = x̌2 and by f∗2 (x2) = x̃2. Let us denote
by p1 and p2 the central extensions of btfold corresponding to f1 and f2,
respectively. They are clearly isomorphic as L∞-algebras; however they are
not equivalent as L∞-algebras over btfold as the two classifying morphisms
f1 and f2 are not homotopy equivalent.

Let us now write R[x3] for the Chevalley-Eilenberg algebra CE(b2u1), so
that in the notation of Section 2.6 we have CE(cyc(b2u1)) = R[x3, y2, z2]
with dx3 = z2y2, dy2 = 0 and dz2 = 0, and with the canonical 2-cocycle
cyc(b2u1)→ bu1 being given dually by

f∗cyc : R[x2] −→ R[x3, y2, z2]

x2 7−→ z2.

The isomorphism of L∞-algebras ϕ1 : btfold → cyc(b2u1) dually given by
x3 7→ y3, y2 7→ x̃2 and z2 7→ x̌2 is such that the diagram of DGCAs

CE(bu1)
f∗1

''

f∗cyc

vv
CE(cyc(b2u1))

ϕ∗1 // CE(btfold)

commutes, i.e., ϕ1 is an isomorphism over bu1. Hence, by the hofiber/cyclification
adjunction, it corresponds to an L∞ morphism from the homotopy fiber of
f1 to b2u1, i.e., to a 3-cocycle a3,1 over p1. Repeating the same reasoning for
f2 we get a canonical 3-cocycle a3,2 over p2. Therefore, we see how some of
the ingredients of a rational T-duality configuration naturally emerge form
the T-fold L∞-algebra. The cocycles a3,1 and a3,2 can be easily given an ex-
plicit description, by unwinding the hofiber/cyclification adjunction in this
case. Let us do this for a1. The homotopy fiber p1 of f1 is defined by the
homotopy pushout of DGCAs

(R[x2], 0) //

f∗1
��

(R, 0)

��
(R[x̌2, x̃2, y3], dx̌2 = dx̃2 = 0, dy3 = x̌2x̃2) // (CE(p1), dp1) ,
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and so it is given by

(CE(p1), dp1) = (R[y̌1, x̌2, x̃2, y3], dy̌1 = x̌2, dx̌2 = dx̃2 = 0, dy3 = x̌2x̃2).

One immediately sees the relation

dy3 = d(y̌1x̃2),

i.e., that y3 − y̌1x̃2 is a 3-cocycle on p1. Under the hofiber/cyclification ad-
junction this 3-cocycle corresponds to the morphism of DGCAs CE(cyc(b2u1))→
CE(btfold) mapping x3 to y3, y2 to x̃2 and z2 to x̌2, i.e., to the morphism
ϕ1. In other words,

a3,1 = y3 − y̌1x̃2.

In a perfectly similar way a3,2 = y3 − x̌2ỹ1. Notice how we have

p1∗(a3,1) = −x̂2, p2∗(a3,2) = −x̃2,

where pi : pi → btfold are the projections. Finally, let us form the homotopy
fiber product t = p1 ×btfold p2. It is described by the Chevalley-Eilenberg
algebra

(CE(t), dt) = (R[y̌1, ỹ1, x̌2, x̃2, y3], dy̌1 = x̌2, dỹ1 = x̃2, dy3 = x̌2x̃2),

with the projections πi : t → pi given in the dual picture by the obvious
inclusions. By construction, π1 and π2 are R-central extensions, classified
by the 2-cocycles x̃2 and x̂2, respectively. One computes

π∗1a3,1−π∗2a3,2 = (y3−y̌1x̃2)−(y3−x̌2ỹ1) = −y̌1x̃2+x̌2ỹ1 = −y̌1(dỹ1)+(dy̌1)ỹ1 = d(y̌1ỹ1),

i.e.,

π∗1a3,1 − π∗2a3,2 = db2,

where b2 ∈ CE(t) is the degree 2 element b2 = y̌1ỹ1. Thus we see that the
L∞-algebra btfold actually contains all the data of a quintuple (π1, π2, a3,1, a3,2, b2)
inducing a Fourier-Mukai transform.

3.2. Maps to btfold. All of the construction of the quintuple (π1, π2, a1, a2, b)
out of the the L∞-algebra btfold can be pulled back along a morphism of
L∞-algebras g → btfold. That is, given such a morphism one has two R-
central extensions g1 and g2 of g together with 3-cocycles a3,1 and a3,2 on
g1 and g2, respectively, and a degree 2 element b2 on the (homotopy) fiber
product L∞-algebra g1×g g2 with π∗1a3,1−π∗2a3,2 = db2. Let us see in detail
how this works.

To begin with, the datum of a morphism g→ btfold is precisely the datum
of two 2-cocycles č2 and c̃2 on g together with a degree 3 element h3 ∈ CE(g)
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such that dh3 = č2c̃2. The two cocycles č2 and c̃2 define the two R-central
extensions g1 and g2 of g defined, respectively, by

(CE(g1), dg1) = (CE(g)[ě1], dě1 = č2) ,

(CE(g2), dg2) = (CE(g)[ẽ1], dẽ1 = c̃2) .

On the L∞-algebra g1 we have the 3-cocycle a3,1 = h3 − ě1c̃2, and on the
L∞-algebra g2 we have the 3-cocycle a3,2 = h3− č2ẽ1. Finally, the homotopy
fiber product g1 ×g g2 is given by(

CE(g1 ×g g2), dg1×gg2

)
=
(
CE(g)[ě1, ẽ1]; dě1 = č2, dẽ1 = c̃2

)
,

and so in CE(g1 ×g g2) we have π∗1a3,1 − π∗2a3,2 = db2, where π∗1 and π∗2
are the obvious inclusions and b2 = ě1ẽ1. Notice that CE(g1 ×g g2) is built
from CE(g1) by adding the additional generator ẽ1 and from CE(g2) by
adding the additional generator ě1. We can now make completely explicit
the Fourier-Mukai transform

Φb2 : H•L∞;a3,1(g1;R[[u−1, u]]) −→ H•−1
L∞;a3,2

(g2;R[[u−1, u]]).

To fix notation, let

g1 ×g g2
π1

vv

π2

((
g1

p1 ((

g2

p2vvg

be the homotopy fiber product defining g1 ×g g2. Notice that the Beck-
Chevalley condition 7

(3.1) p∗2p1∗ = π2∗π
∗
1

holds. Indeed, for any ωk = αk + ě1βk−1 in CE(g1), we have

π2∗π
∗
1ωk = π2∗π

∗
1(αk+ě1βk−1) = π2∗(αk+ě1βk−1) = βk−1 = p1∗ωk = p∗2p1∗ωk .

Let us write ω2n = α2n + ě1β2n−1 for a degree 2n element in CE(g1) and
ω =

∑
n∈Z u

k−nω2n for a degree 2k element in ω ∈ CE(g1)[[u−1, u]]. The

Fourier-Mukai transform Φb2 maps the element ω to π2∗(e
u−1b2π∗1ω). Since

7See [32] for a general discussion of this condition for proper maps of toposes.
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π∗1 is just the inclusion and eu
−1b2 = eu

−1ě1ẽ1 = 1 + u−1ě1ẽ1, we find

Φb2(ω) = π2∗(ω + u−1ě1ẽ1ω)

=
∑
n∈Z

uk−nπ2∗(α2n + ě1β2n−1 + u−1ě1ẽ1(α2n + ě1β2n−1))

=
∑
n∈Z

uk−nπ2∗(α2n + ě1β2n−1 + u−1ě1ẽ1α2n)

=
∑
n∈Z

uk−n(β2n−1 + ẽ1α2n−2) .

Let ω̃2n−1 = β2n−1 + ẽ1α2n−2 and ω̃ =
∑

n∈Z u
k−nω̃2n−1, so that ω̃ is a

degree 2k−1 element in CE(g2)[[u−1, u]] and ω̃ = Φb2(ω). We know from the
general construction of Fourier-Mukai transforms we have been developing
that if ω is an an a3,1-twisted cocycle, then ω̃ is an a3,2-twisted cocycle. We
can directly show this as follows. The degree 2k cochain ω is a a3,1-twisted
degree 2k cocycle precisely when

dg1ω + u−1a3,1 ω = 0.

This equation is in turn equivalent to the system of equations

dg1ω2n + a3,1ω2n−2 = 0, n ∈ Z.
Writing ω2n = α2n+ě1β2n−1 and recalling that a3,1 = h3−ě1c̃2, this becomes

dgα2n + č2β2n−1 − ě1dgβ2n−1 + h3α2n−2 − ě1c̃2α2n−2 − ě1h3β2n−3 = 0,

i.e., {
dgα2n + h3α2n−2 = −č2β2n−1,

dgβ2n−1 + h3β2n−3 = −c̃2α2n−2.

Then we can compute

dg2ω̃2n−1 = dg2(β2n−1 + ẽ1α2n−2)

= dgβ2n−1 + c̃2α2n−2 − ẽ1dgα2n−2

= (−h3β2n−3 − c̃2α2n−2) + c̃2α2n−2 − ẽ1(−h3α2n−4 − č2β2n−3)

= −a3,2β2n−3 + ẽ1a3;2α2n−4

= −a3,2(β2n−3 + ẽ1α2n−4)

= −a3,2ω̃2n−3 ,

which shows that ω̃ is a degree 2k − 1 a3,2-twisted cocycle.

Looking at the explicit formula for Φb2 we have now determined above,
we see that Φb2 acts as∑

n∈Z
uk−n(α2n + ě1β2n−1) 7−→

∑
n∈Z

uk−n(β2n−1 + ẽ1α2n−2) .
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So it is manifestly a linear isomorphism between the space of degree 2k
cochains in CE(g1)[[u−1, u]] and degree 2k − 1 cochains in CE(g2)[[u−1, u]].
Repeating verbatim the above argument one sees that Φb2 is also a linear
isomorphism between degree 2k− 1 cochains in CE(g1)[[u−1, u]] and degree
2k − 2 cochains in CE(g2)[[u−1, u]]. Not surprisingly, the inverse morphism
is uΦ−b2 in both cases. This can be showed directly by repeating once more
the argument above, or specializing to a rational T-duality configuration
the general formula for the composition of two Fourier-Mukai transforms.
We are going to show this in the following section. Either way, as Φb2 is
also a morphism of complexes, it is an isomorphism of complexes and so,
in particular one sees that the Fourier-Mukai transform associated to an
L∞-morphism g→ btfold is an isomorphism

Φb2 : H•L∞;a3,1(g1;R[[u−1, u]])
∼−−→ H•−1

L∞;a3,2
(g2;R[[u−1, u]]) .

3.3. Compositions of Fourier-Mukai transforms. Finally, let us de-
scribe the composition of Fourier-Mukai transforms. To that end, we will
consider a pair of quintuples (π1, π2, a3,1, a3,2, b2) and (π̃1, π̃2, a3,2, a3,3, b̃2),
which induce two corresponding Fourier-Mukai transforms Φb2 : H•L∞;a3,1

(g1;R[[u−1, u]])→
H•−1
L∞;a3,2

(g2;R[[u−1, u]]) and Φb̃2
: H•L∞;a3,2

(g2;R[[u−1, u]])→ H•−1
L∞;a3,3

(g3;R[[u−1, u]]),

respectively. To describe the composition Φb̃2
◦Φb2 , we form the fiber prod-

uct h1 ×g2 h2, where h1 and h2 are the L∞ algebras appearing as “roofs” in
the spans defining Φb̃2

and Φb2 , respectively. Notice that, as π2 : h1 → g2 and
π̃1 : h2 → g2 are fibrations, h1 ×g2 h2 is actually a model for the homotopy
fiber product of h1 and h2 over g2. Then we have the diagram

h1 ×g2 h2

q1

zz

q2

$$

p2

��

p1

��

h1

π1

~~

π2

$$

h2

π̃1

zz

π̃2

!!
g1 g2 g3 ,

where q1 and q2 are the projections, and where p1 = π1q1 and p2 = π̃2q2. By
definition of Fourier-Mukai transform and by the Beck-Chevalley condition
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(equation (3.1)) π̃∗1π2∗ = q2∗q
∗
1, for any ω in CE(g1) we have

(Φb̃2
◦ Φb2)(ω) = π̃2∗(e

u−1b̃2 π̃∗1π2∗(e
u−1b2π∗1ω))

= π̃2∗(e
u−1b̃2q2∗q

∗
1(eu

−1b2π∗1ω))

= π̃2∗(e
u−1b̃2q2∗(q

∗
1e
u−1b2 q∗1π

∗
1ω))

= π̃2∗(e
u−1b̃2q2∗(e

u−1q∗1b2 p∗1ω)).

Now recall the projection formula (equation 2.1), and use the fact that eu
−1b̃2

is a degree zero element to get

q2∗(q
∗
2(eu

−1b̃2) eu
−1q∗1b2 p∗1ω) = eu

−1b̃2 q2∗(e
u−1q∗1b2 p∗1ω).

Therefore,

(Φb̃2
◦ Φb2)(ω) = π̃2∗q2∗(q

∗
2(eu

−1b̃2) eu
−1q∗1b2 p∗1ω)

= p2∗(e
u−1(q∗2 b̃2+q∗1b2) p∗1ω).

By definition of fiber product, the two morphisms q∗2π̃
∗
1 and q∗1π

∗
2 coincide.

Therefore,

dh1×g2h2
(q∗2 b̃2 + q∗1b2) = q∗2dh2 b̃2 + q∗1dh1b2

= q∗2(π̃∗1a3,2 − π̃∗2a3,3) + q∗1(π∗1a3,1 − π∗2a3,2)

= q∗1(π∗1a3,1)− q∗2(π̃∗2a3,3) + (q∗2π̃
∗
1 − q∗1π∗2)a3,2

= p∗1a3,1 − p∗2a3,3.

This shows that Φb̃2
◦Φb2 is indeed the Fourier-Mukai transform associated

with the quintuple (p1, p2, a3,1, a3,3, q
∗
1b2 + q∗2 b̃2). We write this as

Φb̃2
◦ Φb2 = Φq∗1b2+q∗2 b̃2

.

Notice that p1 : h1 ×g2 h2 → g1 and p2 : h1 ×g2 h2 → g3 are not u1-central
extensions but u1 × u1-central extensions, so the Fourier-Mukai transform
Φq∗1b2+q∗2 b̃2

lowers the degree by 2.

It is interesting to specialize this to the case where (π1, π2, a3,1, a3,2, b2) is
the quintuple associated with a rational T-duality configuration g → btfold
and (π̃1, π̃2, a3,2, a3,3, b̃2) = (π2, π1, a3,2, a3,1,−b2). In this case(
CE(h1×g2h2), dh1×g2h2

)
=
(
CE(g)[ě1,1, ẽ1, ě1,2]; dě1,1 = dě1,2 = č2, dẽ1 = c̃2

)
,

and the morphisms q∗i : CE(hi)→ CE(h1×g2h2) are the inclusions of CE(g)[ě1, ẽ1]
into CE(g)[ě1,1, ẽ1, ě1,2] given by ě1 7→ ě1,i. Therefore, we have

q∗1b2 + q∗2(−b2) = (q∗1 − q∗2)(ě1ẽ1) = (ě1,1 − ě1,2)ẽ1 .
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As a consequence, the Fourier-Mukai transform Φq∗1b2+q∗2(−b2) acts on a de-

gree 2k element ω =
∑

n∈Z u
k−n(α2n + ě1β2n−1) in CE(g1)[[u−1, u]] as

Φq∗1b2+q∗2(−b2)(ω) =
∑
n∈Z

uk−np2∗((1 + u−1(ě1,1 − ě1,2)ẽ1)(α2n + ě1,1β2n−1))

=
∑
n∈Z

uk−nπ1∗q2∗(α2n + ě1,1β2n−1 + u−1(ě1,1 − ě1,2)ẽ1α2n − u−1ě1,2ẽ1ě1,1β2n−1)

=
∑
n∈Z

uk−nπ1∗(β2n−1 + u−1ẽ1α2n − u−1ě1ẽ1β2n−1)

=
∑
n∈Z

uk−n−1(α2n + ě1β2n−1)

= u−1ω.

The same holds for odd degree elements, so that Φq∗1b2+q∗2(−b2) = u−1Id and
so uΦ−b2 ◦ Φb2 = Id. The same argument shows that Φb2 ◦ uΦ−b2 = Id, so
that, finally,

Φ−1
b2

= uΦ−b2 ,

i.e., we have shown that the Fourier-Mukai transform associated with a
rational T-fold configuration is indeed invertible, with inverse provided (up
to a shift in degree, given by the multiplication by u) by the Fourier-Mukai
transform with opposite kernel 2-cochain. This completes the proof of the
last statement in Section 3.2.

3.4. The case of SuperMinkowski space R1,8|16+16. All of the above
constructions immediately generalize from L∞-algebras to super-L∞-algebras
(see [17][18] for generalities on extensions to the super case), and it is pre-
cisely in this more general setting that we find an interesting example from
the string theory literature.

Let 16 be the unique irreducible real representation of Spin(8, 1) and let

{γa}d−1
a=0 be the corresponding Dirac representation on C16 of the Lorentzian

d = 9 Clifford algebra. Write 16+16 for the direct sum of two copies of the
representation 16, and write ψ =

(
ψ1

ψ2

)
with ψ1 and ψ2 in 16 for an element

ψ in 16 + 16. Finally, for a = 0, · · · , 8, consider the Dirac matrices

Γa =

(
0 γa

γa 0

)
, ΓIIA

9 =

(
0 I
−I 0

)
, ΓIIB

9 =

(
0 I
I 0

)
, and Γ10 =

(
iI 0
0 −iI

)
,

where I is the identity matrix. The super-Minkowski super Lie algebra
R8,1|16+16 is the super Lie algebra whose dual Chevalley-Eilenberg algebra
is the differential (Z,Z/2)-bigraded commutative algebra generated from el-
ements {ea}8a=0 in bidegree (1, even) and from elements {ψα}32

α=1 in bidegree
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(1, odd) with differential given by

dψα = 0 , dea = ψΓaψ ,

where ψΓaψ = (CΓa)αβ ψ
αψβ, with C the charge conjugation matrix for the

real representation 16 + 16. Since dψα = 0 for any α, both

cIIA
2 = ψΓIIA

9 ψ and cIIB
2 = ψΓIIB

9

are degree (2,even) cocycles on R8,1|16+16. The central extensions they
classify are obtained by adding a new degree (1,even) generator e9

A or e9
B to

CE(R8,1|16+16) with differential

de9
A = ψΓIIA

9 ψ and de9
B = ψΓIIB

9 ψ ,

respectively. These two central extensions are, therefore, themselves super-
Minkowski super Lie algebras. Namely, the extensions classified by cIIA

2 and
cIIB

2 are

R9,1|16+16 and R9,1|16+16,

respectively. Finally, let µIIA
F1 be the degree (3,even) element in CE(R9,1|16+16)

given by

µIIA
F1 = µ8,1

F1 − iψΓIIA
9 Γ10ψe

9
A = −i

8∑
a=0

ψΓaΓ10ψe
a − iψΓIIA

9 Γ10ψe
9
A .

The element µIIA
F1 is actually a cocycle [10], so that

dµ8,1
F1 = (iψΓIIA

9 Γ10ψ)(ψΓIIA
9 ψ) .

A simple direct computation shows ΓIIB
9 = iΓIIA

9 Γ10, so that

dµ8,1
F1 = (ψΓIIB

9 ψ)(ψΓIIA
9 ψ) = cIIA

2 cIIB
2 .

As the element µ8,1
F1, as well as the elements cIIA

2 and cIIB
2 actually belong to

the differential bigraded subalgebra CE(R8,1|16+16) of CE(R9,1|16+16), the
relation

dµ8,1
F1 = cIIA

2 cIIB
2

actually holds in CE(R8,1|16+16), so that the triple (cIIA
2 , cIIB

2 , µ8,1
F1) defines

an L∞-morphism

R8,1|16+16 −→ btfold.

The 3-cocycles on R9,1|16+16 and on R9,1|16+16 associated with this L∞-
morphism are

µ8,1
F1 − e

9
Ac

IIB
2 and µ8,1

F1 − c
IIA
2 e9

B,

respectively. As ΓIIB
9 = iΓIIA

9 Γ10, we see that

µ8,1
F1 − e

9
Ac

IIB
2 = µ8,1

F1 − e
9
AψΓIIB

9 ψ = µ8,1
F1 − iψΓIIA

9 Γ10ψe
9
A = µIIA

F1 .
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We then set µIIB
F1 = µ8,1

F1 − cIIA
2 e9

B. An explicit expression for the (3, even)-

cocycle µIIB
F1 on R9,1|16+16 is

µIIB
F1 = µ8,1

F1 − ψΓIIA
9 ψe9

B = −i
8∑

a=0

ψΓaΓ10ψe
a − iψΓIIB

9 ψe9
B ,

where we used ΓIIA
9 = iΓIIB

9 Γ10. We have therefore an explicit Fourier-Mukai
isomorphism

Φe9Ae
9
B

: H•
L∞;µIIAF1

(R9,1|16+16;R[[u−1, u]])
∼ // H•−1

L∞;µIIBF1

(R9,1|16+16;R[[u−1, u]]) .

This isomorphism is known as Hori’s formula or as the Buscher rules for RR-
fields in the string theory literature [25]. A direct computation shows that

it maps the µIIA
F1 -twisted cocycles of [10] on R9,1|16+16 to the µIIB

F1 -twisted

cocycles of [36] on R9,1|16+16; see [20] for details.
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[43] M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic K-
theory of 1-connected topological spaces, J. Differential Geom. 22 (1985), 243-253.
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