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Abstract

In search of a microscopic theory for strongly-coupled quantum phenomena like anyonic topological order –
relevant such as for future fault-tolerant quantum computation – the success of AdS/CFT-inspired holography
in the qualitative description of quantum materials suggests that fundamental brane dynamics may serve as the
missing non-perturbative model. Here it is remarkable that over a decade before modern AdS/CFT duality was
formulated, Duff et al. found a candidate microscopic explanation by identifying the CFT fields with fluctuations
of probe p-branes stretched out in parallel near the horizon of their own black brane incarnation.

Here we revisit this form of microscopic holography for the case of M5-branes, by establishing an explicit
super-embedding of M5 probe branes into their own near-horizon geometry exactly at the throat radius. Follow-
ing our recent discussion of flux quantization on M5-branes, this allows us to globally complete the traditional
local field content on the brane by flux quantization laws necessary for capturing fractional (torsion) charges.
Choosing flux quantization in co-Homotopy theory (“Hypothesis H”) we find and characterize anyonic quantum
states on “open” holographic M5-branes.

We close with an outlook on applications to quantum materials and quantum computation.
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1 Introduction and Overview

The open problem of strongly-coupled quantum physics. The key open problem of contemporary funda-
mental physics is the general understanding of strongly-coupled quantum systems, be it hadronic bound states at
room temperature (the problem of confinement, cf. [RS20][Ro21]) or anyonic topologically ordered ground states
of quantum materials (cf. [ZCZW19, §III][SS23c], thought to be relevant, if not necessary, for future fault-tolerant
quantum computation, cf. [RW18][MySS24]). The traditional toolbox of perturbation- and mean field-theory is
largely useless for such systems (cf. [BaSh10]), but general non-perturbative quantum field theory has been missing.

Figure P. To appreciate the scope of the problem of general strongly-
coupled quantum physics, it is worth recalling that common pertur-
bative quantum field theory (pQFT), despite its notorious richness,
describes only an infinitesimal (“formal”) neighborhood around the
classical free fields in the space of all quantum systems. Away from
this familiar but tiny neighborhood the vast range of non-perturbative
quantum physics remains to be mapped.

Whatever else string/M-theory has been motivated by at any point in
time, its remarkable outcome is the perspective of non-perturbative
QFT realized on branes, holographically reflected in their ambient
gravitational backgrounds.
While exceedingly promising, holographic brane physics has its own
open problems. A key one of these – flux quantization – we address
here. classical
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Existing approaches to this problem include (besides brute-force computer simulation, i.e., lattice gauge theory)
notably the “holographic principle”.

The holographic principle. The general success of the holographic principle in the guise of AdS/CFT duality —
illuminating otherwise elusive strongly-coupled quantum systems by understanding them as “boundary theories”
of a higher-dimensional theory of gravity — has been so encompassing that it cannot and need not be reviewed
here (see instead e.g. [AGMOO00][Nat15]). The principle works remarkably well also for confined hadrodynamics
(cf. [Ah][BdT09], review in [Er14][DBLM21]) and for aspects of strongly coupled quantum materials [HKSS07],
review in [Pi14][ZLSS15][HLS18]. However, a microscopic explanation for this success has been lacking, and with
it any understanding of how to apply the principle to more realistic situations, such as beyond the notorious
unrealistic large-N limit, which requires (e.g. [IMSY98, Figs. 1-6]) understanding effects of M-theory branes (cf.
[Du96][Du99a]) in D = 11 supergravity (cf. [MiSc06][GSS24a, §3]) on the gravity side of the duality.

Microscopic holography via probe p-brane. Possibly less widely appreciated is the fact that, well before
the modern formulation of AdS/CFT duality, a candidate microscopic description had been found by Duff et al.,
first discussed for the M2-brane [BDPS87][BD88][DFFFTT99] then generalized to include also M5-branes and D-
branes [CKvP98][CKKTvP98][PST99][GM00][NP02], review in [Duff99a][Duff99b] (more recent variations include
[DGTZ20][Gu21][Gu24]):

In this microscopic p-brane holography – as we shall call it here for lack of an established name – one considers
probe p-branes (i.e. light branes described by sigma-models not back-reacting onto the ambient spacetime, cf.
[Si12]) embedded in parallel near the (asymptotically AdS) horizon of their own black-brane incarnation (their
heavy back-reacted version described by singular solutions of supergravity, cf. [DL94][Du99a, §5]) and finds that
their fluctuations about this configuration are described by the conformal field theory (CFT) known from AdS/CFT
duality.

In this picture the otherwise somewhat mysterious holographic duality between (i) quantum systems and (ii)
gravity reflects but two perspectives on the expected nature of branes:

(i) as dynamical (fluctuating) physical objects in themselves, and
(ii) as sources of gravitational (and higher gauge-) fields propagating away from the black brane. 1

Figure B. Schematics of a probe brane worldvolume immersed (em-
bedded) near the horizon of its own black brane incarnation, parallel
to it at some coordinate distance rprb. (Precise details on the black
M5-brane background are in §2.3 and on the probe M5 in §2.4.)
The curvy line indicates (quantum-)fluctuations about this parallel
configuration, thought to incarnate the strongly coupled quantum sys-
tem holographically encoded in the ambient gravitational field.

probe brane


spacetime X

immersion Σ

black branehorizon
rprb

1For the case of 0-branes, namely for particles, the investigation of these dual perspectives — (1.) as quanta and (2.) as black hole
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Global completion and torsion charges by flux quantization. However, as we pointed out in [GSS24b, p. 2],
all previous discussions of p-brane sigma-models — and hence in particular of microscopic p-brane holography —
have considered only the local field content on the brane’s worldvolume, that which can be detected and described
on a single coordinate chart. This is insufficient (as is well-known already from Dirac charge quantization, cf.
[Al85a][Al85a][SS24b, Ex. 3.10]) for capturing global topological charges of the (higher) gauge fields on these branes,
such as fractional (torsion) charges relevant notably for modelling anyonic topological order [GSS24b][SS23b][SS23c].
A global completion of the field content requires a choice of flux quantization law [SS24b].

We have previously shown [GSS24a] that and how globally completed (flux-quantized) on-shell fields of higher
gauge theories, such as on worldvolumes of M5-branes [GSS24b], may be obtained for supergravity and branes de-
fined “on superspace” namely on supergeometric enhancements of spacetime and brane worldvolumes (cf. [CDF91]
[GSS24c]). This is because:

(i) the process of flux quantization takes care of and only of equations of motion that have the form of Bianchi
identities ([SS24b, §3] following [FSS23]), but not for instance of Hodge-duality relations, while

(ii) gravitational fields and branes described on super-space miraculously have all their equations of motion indeed
given by Bianchi identities: the Hodge duality constraints on ordinary bosonic flux densities become but one
super-field component of the Bianchi identities on their super-flux enhancement ([GSS24a, Thm. 3.1][GSS24b,
Prop. 3.17], following [CF80][BH80] and [HS97b][So00]).

We show that this can reveal and capture anyonic topological order in holographic quantum materials.

Outline. Our plan is to:

§2: give a precise and explicit supergeometric form of the super-immersion of probe M5-branes near the horizon
of their black brane incarnation;

§3: use this to obtain the globally completed on-shell field content on these holographic M5-brane configurations;

§4: show that and how this implies anyonic quantum states arising on the holographic M5-worldvolume.

In concluding, we:

§5: discuss some potential implications for the understanding of topological quantum materials.

2 Holographic M5 super-immersions

Since we need to exhibit the immersions of M5-brane worldvolumes into spacetime as M5 super-immersions
([GSS24b, Def. 3.12], essentially the “super-embeddings” of [HS97b][So00]) in order to guarantee that the world-
volume flux quantization (discussed below in §3) is accurate, we give here an explicit constructions of M5 super-
immersions into super-AdS7×S4, to be called holographic M5-immersions, for short:

super-worldvolume

Σ1,5|2·8

AdS super-spacetime

X1,10|32 ≡ OSp(6, 2 | 4)
Spin(6, 1)×O(4)

its bosonic body

AdS7×S4.
ϕ

M5 super-immersion
(1)

Remark 2.1 (Need for explicit M5 super-immersions).
(i) The traditional literature [BPSTV95][HS97a][HRS98] [HS97b][So00] (recent review in [BaSo23]) contains argu-
ments that “super-embeddings” (i.e. 1/2BPS super-immersions, [GSS24b, Def. 2.19]) of super p-brane worldvolumes
imply the equations of motion of the corresponding super p-brane σ-model. However, the converse conclusion —
that no further contraints than these equations of motion are implied — is far from obvious and has only partially
been addressed (e.g. for some aspects of the M2-brane in [BPSTV95, (2.50-52)]). Related to this may be the
absence of previously published examples of non-trivial super-embeddings.

(ii) The analogous issue in the derivation of 11d supergravity (from the superspace torsion constraint) had simi-
larly remained unaddressed in published literature. In this case, we had settled the reverse implication with the
substantial help of mechanized computer algebra [GSS24a, Thm. 3.1]. The humongous cancellations that happen
to make this work seem no less short of a miracle, quite reinforcing the idea that 11d supergravity occupies a special
point in the space of all field theories.

(iii) A similar miracle may be needed to guarantee that for constructing an M5 super-immersion it is sufficient to
solve its equations of motion, plausible as this may otherwise sound, cf. Rem. 2.20 below. In lack of a complete
argument to this extent, but to still have the desired implication of the super-flux Bianchi identity ([GSS24b, Prop.
3.17], needed for the flux quantization argument in §3), we have to construct M5 super-immersions explicitly.

solutions — goes back all the way to [EIH38], and has fascinated authors since, see for instance [AP04][Bu08].
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This is what we do now for the case of holographic M5 immersions. Apart from its implications to flux
quantization in §3, we highlight that this is of interest in its own right as a rare explicit example of a non-trivial
1/2BPS super-immersion (“super-embedding”).

Tensor conventions. Our tensor conventions are standard, but since the computations below crucially depend
on the corresponding prefactors, here to briefly make them explicit:
• The Einstein summation convention applies throughout: Given a product of terms indexed by some i ∈ I, with
the index of one factor in superscript and the other in subscript, then a sum over I is implied: xi y

i :=
∑
i∈I xi y

i.
• Our Minkowski metric is the matrix(

ηab
)d
a,b=0

=
(
ηab

)d
a,b=0

:=
(
diag(−1,+1,+1, · · · ,+1)

)d
a,b=0

. (2)

• Shifting position of frame indices always refers to contraction with the Minkowski metric (2):

V a := Vb η
ab , Va = V bηab .

• Skew-symmetrization of indices is denoted by square brackets ((−1)|σ| is sign of the permutation σ):

V[a1···ap] := 1
p!

∑
σ∈Sym(n)

(−1)|σ|Vaσ(1)···aσ(p)
.

• We normalize the Levi-Civita symbol to

ϵ012··· := +1 hence ϵ012··· := −1 . (3)

• We normalize the Kronecker symbol to

δ
a1···ap
b1···bp := δ

[a1
[b1

· · · δap]bp]
= δa1[b1 · · · δ

ap
bp]

= δ
[a1
b1

· · · δap]bp

so that
Va1···apδ

a1···ap
b1···bp = V[b1···bp] and ϵc1···cpa1···aq ϵc1···cpb1···bq = − p! · q! δa1···aqb1···bq . (4)

Spinors in 11d. We briefly recall the following standard facts (proofs and references are given in [GSS24a, §2.2.1]):
There exists an R-linear representation 32 of Pin+(1, 10) with generators

Γa : 32 −! 32 (5)

and equipped with a skew-symmetric bilinear form(
(−)(−)

)
: 32⊗ 32 −−! R (6)

with the following properties, where as usual we denote skew-symmetrized product of k Clifford generators by

Γa1···ak := 1
k!

∑
σ∈Sym(k)

sgn(σ) Γaσ(1)
· Γaσ(2)

· · ·Γaσ(n)
: (7)

• The Clifford generators square to plus the Minkowski metric (2)

ΓaΓb + ΓbΓa = +2 ηab id32 . (8)

• The Clifford product is given on the basis elements (7) as

Γaj ···a1 Γb1···bk =

min(j,k)∑
l=0

±l!
(
j

l

)(
k

l

)
δ
[a1···al
[b1···bl Γ

aj ···al+1]
bl+1···bk] . (9)

• The Clifford volume form equals the Levi-Civita symbol (3):

Γa1···a11 = ϵa1···a11 id32 . (10)

• The Clifford generators are skew self-adjoint with respect to the pairing (6)

Γa = −Γa in that ∀
ϕ,ψ∈32

(
(Γaϕ)ψ

)
= −

(
ϕ (Γaψ)

)
, (11)

so that generally
Γa1···ap = (−1)p+p(p−1)/2 Γa1···ap . (12)

• The R-vector space of R-linear endomorphisms of 32 has a linear basis given by the ≤ 5-index Clifford elements

EndR
(
32

)
=

〈
1, Γa1 , Γa1a2 , Γa1,a2,a3 , Γa1,···a4 , Γa1,··· ,a5

〉
ai=0,1,··· . (13)

• The R-vector space space of symmetric bilinear forms on 32 has a linear basis given by the expectation values
with respect to (6) of the 1-, 2-, and 5-index Clifford basis elements:

HomR

(
(32⊗ 32)sym, R

)
≃

〈(
(−)Γa(−)

)
,

(
(−)Γa1a2(−)

)
,
(
(−)Γa1···a5(−)

)〉
ai=0,1,··· ,

(14)

while a basis for the skew-symmetric bilinear forms is given by

HomR

(
(32⊗ 32)skew, R

)
≃

〈(
(−)(−)

)
,
(
(−)Γa1a2a3(−)

)
,

(
(−)Γa1···a4(−)

)〉
ai=0,1,··· .

(15)
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• Any linear endomorphism ϕ ∈ EndR(32) is uniquely a linear combination of Clifford elements as:

ϕ = 1
32

5∑
p=0

(−1)p(p−1)/2

p! Tr
(
ϕ ◦ Γa1···ap

)
Γa1···ap , ai ∈ {0,· · ·, 5′, 6, 7, 8, 9} . (16)

Background formulas for 11d Supergravity. Our notation and conventions for super-geometry and for on-shell
11d supergravity on super-space follow [GSS24a, §2.2 & §3], to which we refer for further details and exhaustive
referencing.

We denote the local data of a super-Cartan connection on (a surjective submersion X̃ of) (super-)spacetime X,
representing a super-gravitational field configuration, as2

Graviton
(
Ea

)D−1

a=0
∈ Ω1

dR

(
X̃; R1,D−1

)
Gravitino

(
Ψα

)N
α=1

∈ Ω1
dR

(
X̃; Nodd

)
Spin-

connection

(
Ωab = −Ωba

)D−1

a,b=0
∈ Ω1

dR

(
X̃; so(1, D − 1)

) (17)

and the corresponding Cartan structural equations (cf. [GSS24a, Def. 2.78]) for the supergravity field strengths as

Super-
Torsion

(
T a := dEa − ΩabE

b − (ΨΓaΨ)
)D−1

a=0

Gravitino
field strength

(
ρ := dΨ − 1

4Ω
ab Γabψ

)N
α=1

Curvature
(
Rab := dΩab − Ωac Ω

cb
)D−1

a,b=0
.

(18)

Finally, we denote the corresponding components in the given local super-coframe (E,Ψ) by [GSS24a, (127-8)]:

T a ≡ 0

ρ =: 1
2ρabE

aEb + HaΨEa

Ra1a2 =: 1
2R

a1a2
b1b2 E

a1 Ea2 +
(
J
a1a2

bΨ
)
Eb +

(
ΨKa1a2 Ψ

)
,

(19)

where all components not explicitly appearing vanish identically by the superspace torsion constraints [GSS24a,
(121), (137)]. In addition, shortly we will assume that also ρab = 0 (28) whence also Ja1a2b = 0 (29).

2.1 Explicit rheonomy

Here we present explicit formulas for extending solutions of 11d supergravity from ordinary spacetime to super-
spacetime, in those cases where the (Ψ0)-component of the gravitino field strength vanishes (28) – which are of
course essentially all cases of interest (cf. [FvP12, §12.6]).

This extension process (or the property that it exists) has been called rheonomy [CDF91, §III.3.3], alluding
to the idea that the ordinary fields “flow” in the odd coordinate directions from the bosonic submanifold over
the full supermanifold, to become super-fields. Explicit such formulas have been claimed for the special case of
coset-spacetimes (like AdSp+2×SD−p+2) by [dWPPS98, p. 156][Cl99] (following [KRR98][CK99]), and a derivation
in full generality has been given by [Ts04].

We closely follow the latter but find that the specialization (28) to vanishing gravitino field strength (which
still subsumes all the former examples) gives a substantial improvement in transparency and usability, which may
be of interest in its own right. Additionally, we provide full details in order to secure the relative prefactors in the
formulas.

The strategy of the construction is to expand the super-fields and their structural equations in a suitable gauge
on a suitable super-coordinate chart in order to obtain explicit differential equations for the flow along the odd
coordinate directions. Therefore we start by considering:

Coordinate-components of superfields. On a super-chart
with coordinates (X,Θ) we have the expansion of the super-
gravitational fields (17) first into their coefficients of the
coordinate-differentials and then further their super-field expan-
sion as polynomials in the odd coordinates (with index convention
as shown on the right),

Even Odd

Frame a ∈ {0, · · · , 10} α ∈ {1, · · · , 32}
Coord. r ∈ {0, · · · , 10} ρ ∈ {1, · · · , 32}

2Our use of different letters for the even and odd components of a super co-frame follows e.g. [CDF91]. Other authors write Eα for
what we denote Ψα, e.g. [BaSo23]. While it is of course part of the magic of supergravity that Ea and Eα/Ψα are unified into a single
object, we find that for reading and interpreting formulas it is helpful to use different symbols.
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Ea =: Ear dX
r + Eaρ dΘ

ρ

Ψα =: Ψαr dX
r + Ψαρ dΘ

ρ

Ωab = Ωabr dXr + Ωabρ dΘρ

Ear/ρ =:
∑32
n=0

(
E(n)

)a
r/ρ

=:
∑32
n=0

1
n! Θ

ρ1 · · ·Θρn
(
E

(n)
ρ1···ρn

)a
r/ρ

Ψαr/ρ =:
∑32
n=0

(
Ψ(n)

)α
r/ρ

=:
∑32
n=0

1
n! Θ

ρ1 · · ·Θρn
(
Ψ

(n)
ρ1···ρn

)α
r/ρ

Ωabr/ρ =:
∑32
n=0

(
Ω(n)

)ab
r/ρ

=:
∑32
n=0

1
n! Θ

ρ1 · · ·Θρn
(
Ω

(n)
ρ1···ρn

)ab
r/ρ

,

(20)

whose coefficients are functions on the underlying bosonic manifold which are skew-symmetric in their indices:
E

(n)
ρ1···ρn

Ψ
(n)
ρ1···ρn

Ω
(n)
ρ1···ρn

 : X
⇝
−−! iso

(
R1,10|32),

E
(n)
ρ1···ρn = E

(n)
[ρ1···ρn]

Ψ
(n)
ρ1···ρn = Ψ

(n)
[ρ1···ρn]

Ω
(n)
ρ1···ρn = Ω

(n)
[ρ1···ρn] .

(21)

Notice that this implies: (
E

(n)
[ρ′ ρ2···ρn

)a
ρ]

= 1
n+1

(
n
(
E

(n)
ρ′ [ρ2···ρn

)a
ρ]
−

(
E

(n)
ρ ρ2···ρn

)a
ρ′

)
. (22)

Also notice the N×Z2 bi-degrees (cf. [GSS24a, §2.1.1]) of the Ψ-components,

Ψα = Ψαr dXr + Ψαρ dΘρ

deg: (1, 1) (0, 1) (1, 0) (0, 0) (1, 1) ,
(23)

which implies in particular that the component functions Ψαρ commute with all other terms.

Wess-Zumino-Tsimpis gauge. On these components, we may impose the following gauge conditions ([Ts04,
(39-42)], following [McA84, (A.3-4)][AD87, (17-18)]):

Definition 2.2 (Wess-Zumino-Tsimpis gauge 3). The WZT gauge is given by the following conditions:(
E(0)

)a
ρ

≡ 0(
Ψ(0)

)α
ρ

≡ δαρ(
Ω(0)

)ab
ρ

≡ 0

and ∀
n∈{1,··· ,32}


(
E

(n)
[ρ1···ρn

)a
ρ]

≡ 0(
Ψ

(n)
[ρ1···ρn

)α
ρ]

≡ 0(
Ω

(n)
[ρ1···ρn

)ab
ρ]

≡ 0 .

(24)

Lemma 2.3 (Direct implications of WZT gauge). The WZT gauge conditions (24) imply:

ΘρEaρ = 0

ΘρΨαρ = Θρ δαρ =: Θα

Θρ Ωρ
ab = 0

and ∀
n∈{1,··· ,32}


Θρ ∂ρ′

(
E(n)

)a
ρ

=
(
E(n)

)a
ρ′

Θρ ∂ρ′
(
Ψ(n)

)α
ρ

=
(
Ψ(n)

)α
ρ′

Θρ ∂ρ′
(
Ω(n)

)ab
ρ

=
(
Ω(n)

)ab
ρ′
.

(25)

Proof. The implications on the left of (25) are immediate (cf. [Ts04, (43-44)]). To see the equations on the right
of (25) we may proceed as follows:

Θρ ∂ρ′
(
E(n+1)

)a
ρ

= 1
n! Θ

ρΘρ2 · · ·Θρn+1
(
E

(n+1)
ρ′ [ρ2···ρn+1

)a
ρ]

by (20)

= 1
(n+1)! Θ

ρΘρ2 · · ·Θρn+1
(
E

(n+1)
ρ ρ2···ρn+1

)a
ρ′

by (22) & (24)

=
(
E

(n+1)
ρ ρ2···ρn+1

)a
ρ′

by (20) ,

(26)

and verbatim so also for E replaced by Ψ or Ω.

Remark 2.4 (Fermionic normal coordinates and Rheonomy). The WZT gauge of Def. 2.2 may be un-
derstood as a fermionic form of Riemann normal coordinates [McA84, (A.3-4)][AD87, (17-18)]. In particular the
implication Θρ Ωρ

ab = 0 (25) has the further consequence that for translations along the odd coordinate direction
(“rheonomy” [CDF91, §III.3.3]) the covariant derivative reduces to the plain coordinate derivative:

Θρ∇ρ = Θρ ∂ρ . (27)

3Recall (e.g. [BK95, §3.4.3]) that the Wess-Zumino gauge on chiral superfields constrains their dependence on the super-coordinates,
hence their auxiliary super-components, but not the physical fields. The suggestion to think of this, in the context of curved super-
space/supergravity, as a special case of fermionic Riemann normal coordinates may be due to [AD87], and the higher component
generalization (24) is due to [Ts04].

6



Gravitino-flat supergravity solutions on super-space. For our purpose here we focus on solutions to 11d
supergravity for which the ordinary component of the gravitino field strength (19) vanishes,

ρab ≡ 0 (28)

(which is the case for essentially all supergravity solutions of interest, cf. [FvP12, §12.6]).
With ρab also the super-curvature component Ja1a2b vanishes (cf. [GSS24a, (161)]) so that on gravitino-flat

solutions the super-field strengths (19) have the form

T a = 0

ρ = HaΨEa

Ra1a2 = 1
2R

a1a2
b1b2 E

a1 Ea2 +
(
ΨKa1a2 Ψ

)
.

(29)

Lemma 2.5 (Θ-independence of field components). For gravitino-flat (28) super-space solutions of 11d
SuGra in WZT gauge (Def. 2.2) the following super-field strength components (29) are all independent of the odd
coordinates Θρ:

The flux densities ∂ρ
(
(G4)a1···a4

)
= 0 , ∂ρ

(
(G7)a1···a7

)
= 0 ,

Odd co-frame component of
the gravitino field strength

∂ρ
(
Ha

)
= 0 ,

Odd co-frame components
of the super-curvature

∂ρ
(
Ka1a2

)
= 0 .

(30)

Proof. This follows by use of the well-known super-space constraints, which we quote from [GSS24a] (where full
derivation and referencing is given). First, the Θ-independence of G4 follows by

Θρ ∂ρ
(
(G4)a1···a4

)
= Θρ∇ρ

(
(G4)a1···a4

)
by (27)

= 12
(
ΘΓ[a1a2 ρa2a3]

)
by [GSS24a, (136)]

= 0 by (28).

But the remaining components in (30) are linear functions of (G4)a1···a4 :

Ha = 1
6

1
3! (G4)a b1b2b3 Γ

b1b2b3 − 1
12

1
4! (G4)

b1···b4 Γa b1···b4 [GSS24a, (135)]

= 1
6

1
3! (G4)a b1b2b3 Γ

b1b2b3 + 1
12

1
6! (G7)a c1···c6 Γ

c1···c6 [GSS24a, (148)]

Ka1a2 = − 1
6

(
(G4)

a1a2 b1b2Γb1b2 + 1
4! (G4)b1···b4Γ

a1a2 b1···b4
)

[GSS24a, (162)]

= − 1
6

(
(G4)

a1a2 b1b2Γb1b2 + 1
5! (G7)

a1a2 b1···b5Γb1···b5

)
(31)

and hence their Θ-dependence vanishes with that of G4 and G7.

Supergravity field extension to super-space. We now consider solutions to the rheonomy equations for
extending on-shell 11d supergravity fields to superspace, cast into recursion relations in the polynomial order of
their odd coordinate field dependence as in [Ts04] (similar to [dWPPS98, (3.9)]), but specialized to the case of
gravitino-flat spacetimes (28).

Lemma 2.6 (Rheonomy for the graviton). In WZT gauge (24) the following recursion relations hold for the
bosonic coframe field components (20), recursing in their odd coordinate degree n+ 1 ∈ {1, · · · , 32}:

(E(n+1))aρ = 2
n+2

(
ΘΓaΨ

(n)
ρ

)
,

(E(n+1))ar = 2
n+1

(
ΘΓaΨ

(n)
r

)
.

(32)

(cf. [Ts04, (58, 59)].4

4 The factor of “i/2” by which our (32) differs from [Ts04, (58, 59)] is absorbed by our convention for the spacetime signature,
the Clifford algebra and the Majorana spinor: Our Γ-matrices are i times the Gamma matrices there (which makes all expressions in
Majorana spinors manifestly real, cf. [GSS24a, Rem. 1.7])), and we do not include a factor of 1/2 multiplying the (Ψ2)-term in the
definition of the super-torsion (18).
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Proof. The dΘρ-component of (32) follows as:

dEa = ΩabE
b +

(
ΨΓaΨ

)
from (18)

⇒ Θρ ∂(ρE
a
ρ′) = Θρ

(
Ωab

)
(ρ
Ebρ′) + ΘρΨα(ρΨ

α′

ρ′)Γ
a
αα′ by (20)

⇔ Θρ∂(ρE
a
ρ′) = Θρδαρ Ψα

′

ρ′ Γ
a
αα′ by (25) & (23)

⇒ Θρ∂(ρ
(
E(n+1)

)a
ρ′)︸ ︷︷ ︸

(n+2)
2

(
E(n+1)

)a
ρ′

= Θα(Ψ(n))α
′

ρ′ Γ
a
αα′︸ ︷︷ ︸(

ΘΓaΨ(n)
) by (20) & (25),

and the dXr-component as:

dEa = ΩabE
b +

(
ΨΓaΨ

)
from (18)

⇒ Θρ ∂ρE
a
r = Θρ

(
Ωab

)
ρE

b
r − Θρ

(
Ωab

)
r
Ebρ + 2ΘρΨαρ Ψ

α′

r Γaαα′ by (20)

⇔ Θρ∂ρE
a
r = 2Θρδαρ Ψα

′

r Γaαα′ by (25)

⇒ Θρ∂ρ
(
E(n+1)

)a
r︸ ︷︷ ︸

(n+ 1)
(
E(n+1)

)a
r

= 2
(
ΘΓaΨ

(n)
r

)
by (20) & (25).

Lemma 2.7 (Rheonomy for the spin-connection). On gravitino-flat (28) super-spacetimes in WZT gauge
(24) we have the following recursion relations for the spin connection (20), recursing in the odd coordinate degree
n+ 1 ∈ {1, · · · , 32}: (

Ω(n+1)
)a1a2
ρ

= 2
n+2

(
ΘKa1a2 Ψ

(n)
ρ

)
(
Ω(n+1)

)a1a2
r

= 2
n+1

(
ΘKa1a2 Ψ

(n)
r

) (33)

(cf. [Ts04, (61, 64)]5 noticing our (30)).

Proof. In (33) the dΘρ-component follows by:

dΩa1a2 = Ωa1bΩ
ba2 +Ra1a2 from (18)

⇒ Θρ
′
∂(ρ′ (Ω

a1a2)ρ) = Θρ
′
δα

′

ρ′ Ψ
α
ρ K

a1a2
α′α by (29), (20) & (25)

⇒ Θρ
′
∂(ρ′

(
Ω(n+1)

)a1a2
ρ)︸ ︷︷ ︸

(n+2)
2

(
Ω(n+1)

)a1a2
ρ

=
(
ΘKa1a2 Ψ

(n)
ρ

)
by (20), (25) & (30),

and the dXr-component by:

dΩa1a2 = Ωa1bΩ
ba2 +Ra1a2 from (18)

⇒ Θρ ∂ρ(Ω
a1a2)r = 2ΘρΨαρ Ψ

α′

r Ka1a2
αα′ by (29), (20), & (25)

⇒ Θρ ∂ρ
(
Ω(n+1)

)a1a2
r︸ ︷︷ ︸

(n+ 1)
(
Ω(n+1)

)a1a2
r

= 2
(
ΘKa1a2 Ψ(n)

)
by (20), (25) & (30).

Lemma 2.8 (Rheonomy for the gravitino). On gravitino-flat (28) super-spacetimes in WZT gauge (24) the
following recursion relations hold for the odd coordinate dependence of the gravitino field (20):(

Ψ(n+1)
)α
ρ

= + 1
n+2

1
4

(
ΓabΘ

)α(
Ω(n)

)ab
ρ

+ 1
n+2 (HaΘ)α

(
E(n)

)a
ρ(

Ψ(n+1)
)α
r

= − 1
n+1

1
4 (ΓabΘ)α

(
Ω(n)

)ab
r

+ 1
n+1 (HaΘ)α

(
E(n)

)a
r
.

(34)

5As in footnote 4, the difference of [Ts04, (61, 64)] from (33) by a factor of i/2 is due to our spinor convention.
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Proof. In (34) the dΘρ-component follows by:

dΨα = 1
4Ω

ab (ΓabΨ)α + ρα from (18)

⇒ Θρ
′
∂(ρ′ Ψ

α
ρ) = 1

4Θ
ρ′(Ωab)(ρ′(ΓabΨρ))

α + Θρ
′
(HaΨ(ρ′)

αEaρ) by (29), (20), & (25)

⇒ Θρ
′
∂(ρ′

(
Ψ(n+1)

)
α
ρ)︸ ︷︷ ︸

n+2
2

(
Ψ(n+1)

)α
ρ

= 1
2
1
4

(
ΓabΘ

)α(
Ω(n)

)ab
ρ

+ 1
2 (HaΘ)α

(
E(n)

)a
ρ

by (20), (25) & (30),

and the dXa-component by:

dΨα = 1
4Ω

ab(ΓabΨ)α + ρα from (18)

⇒ Θρ ∂ρΨ
α
r = −Θρ 1

4Ω
ab
r (ΓabΨρ) + Θρ(HaΨρ)

αEar by (29), (20), & (25)

⇒ Θρ∂ρ
(
Ψ(n+1)

)α
r︸ ︷︷ ︸

(n+1)
(
Ψ(n+1)

)α

r

= − 1
4 (ΓabΘ)

(
Ω(n)

)ab
r

+ (HaΘ)α
(
E(n)

)a
r

by (20), (25) & (30).

Notice here how the sign in the second line appears since only the coefficient of dXr dΘρ contributes in the first
term, which picks up a sign dXr dΘρ = −dΘρ dXr in comparison to the left hand side.

By inserting these recursion relations into each other we may decouple them (resulting in a formulation similar
to [dWPPS98, (3.9)]):

Lemma 2.9 (Decoupled rheonomy recursion relations). On gravitino-flat (28) super-spacetimes in WZT
gauge (24) the following decoupled recursion relations hold for the odd coordinate dependence of the super-fields:(

Ψ(n+2)
)α
ρ

= + 1
n+4

2
n+3

1
4

(
Γa1a2Θ

)α(
ΘKa1a2 Ψ

(n)
ρ

)
+ 1

n+4
2

n+3 (HaΘ)α
(
ΘΓaΨ

(n)
ρ

)
(
Ψ(n+2)

)α
r

= − 1
n+2

1
n+1

1
4 (Γa1a2Θ)α

(
ΘKa1a2 Ψ

(n)
r

)
+ 1

n+2
1

n+1 (HaΘ)α
(
ΘΓaΨ

(n)
r

) by inserting
(33) & (32)
into (34)

(35)

2.2 Spinors on M5-branes

We briefly recall and record some properties of spinors in 6d among spinors in 11d, following [GSS24b, §3.2], which
we will need below. In particular, we establish a Fierz identity (in Lem. 2.10 below), which is crucial in the proof
of the M5-immersion in §2.4 below. In contrast to existing literature, we do not use a matrix representation of
the 6d Clifford algebra but instead use projection operators (36) to algebraically carve it out of the 11d Clifford
algebra. We find that this helps considerably with providing proofs in the following sections.

Spinors in 6d form 11d. Following [GSS24b, §3.2] we conveniently identify the chiral Spin(1, 5)-representations
2 · 8± ∈ RepR

(
Spin(1, 5)

)
with the linear subspaces of the Spin(1, 10)-representation 32 (5) which are the images

of the projection operators ([GSS24b, (92)])

P := 1
2

(
1 + Γ5′6789

)
P := 1

2

(
1− Γ5′6789

) : 32 −! 32 , (36)

respectively, satisfying the following evident but consequential relations (cf. [GSS24b, (89)]):

P P = P
P P = P
P P = 0
P P = 0

Γa P = P Γa

Γa P = P Γa
a ∈ {0, 1, 2, 3, 4, 5}

Γ5′P = P Γ5′

Γi P = P Γi i ∈ {6, 7, 8, 9}

Γ5′6789 P = +P

Γ5′6789 P = −P

Γ6789P = Γ5′P ,

(37)

where we suggestively denote the 11d Clifford generators as follows:

tangential︷ ︸︸ ︷ radial︷︸︸︷ transversal︷ ︸︸ ︷
Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ5′ Γ6 Γ7 Γ8 Γ9 ∈ Pin+(1, 0) ⊂ EndR(32)

γ0 γ1 γ2 γ3 γ4 γ5 ∈ Pin+(1, 5) ⊂ EndR
(
2 · 8+ ⊕ 2 · 8−

)
,

P (−)P

+P (−)P

(38)

in that under the corresponding inclusion

Spin(1, 5) ↪−! Spin(1, 10)
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there are isomorphisms [GSS24b, (86-90)]

2 · 8 := 2 · 8+ ≃ P (32)

2 · 8− ≃ P (32) .
(39)

Combined with the vector representation of Spin(1, 10) and Spin(1, 5) on R1,10 and R1,5, respectively, we may
regard P (36) as a projector of super-vector spaces

R1,10 | 32 R1,5 | 2·8 R1,10 | 32

P P := 1
2

(
1 + Γ5′6789

)
P := 1

2

(
1− Γ5′6789

)
,

(40)

which is convenient for unifying the conditions on tangential and transversal super-coframe components in a 1/2BPS
super-immersion (Def. 2.14 below).

Lemma 2.10 (A Fierz identity in 6d). Elements θ ∈ (2 · 8)odd satisfy

γaθ θγ
a = 0 . (41)

Proof. Recall from (39) that we may and do regard θ = Pθ ∈ 2 · 8 ⊂ 32 as an 11d spinor but constrained to be in
the image of the projector P := 1

2

(
1 + Γ5′6789

)
, see (36). With this, we may use the formula for Clifford expansion

(16) of general endomorphisms ϕ ∈ EndR(32) in the case where

ϕ ≡ θ θ 32 32

Φ 7−! θ
(
θΦ

)
,

:

with the spinor pairing (6) on the right.
But since θ (as opposed to dθ, cf. [GSS24a, Rem. 2.62]) is a skew-commuting variable, it is only the skew-

symmetric Clifford basis elements among Γa1···ap (p ≤ 5) which are non-vanishing when evaluated in ( θ − θ), and
these are precisely those with 0, 3 or 4 indices (15). Hence (16) specializes to:

θ θ = − 1
32

((
θ θ

)
− 1

3!

(
θ Γa1a2a3 θ

)
Γa1a2a3

)
+ 1

4!

(
θ Γa1···a4 θ

)
Γa1···a4

)
, ai ∈ {0,· · ·,5′, 6, 7, 8, 9} .

Moreover, since the only Clifford elements which remain non-vanishing when sandwiched in P−P are those carrying
an odd number of tangential (6d) indices, by (37), this reduces further to

θ θ = 1
32

(
1
3!

(
θ γa1a2a3 θ

)
γa1a2a3 − 1

3!

(
θ γa1a2a3Γi θ

)
γa1a2a3Γi

+ 1
2

(
θ γaΓi1i2 θ

)
γaΓi1i2 − 1

3!

(
θ γaΓi1i2i3 θ

)
γaΓi1i2i3

) ai ∈ {0,· · ·,5}
ii ∈ {5′, 6, 7, 8, 9} .

(42)

But finally, by Hodge duality in the transverse directions

Γi1i2i3P =
(37)

Γi1i2i3Γ5′6789P = ± 1
2ϵi1i2i3 i4i5Γ

i4i5P ii ∈ {5, 6, 7, 8, 9} , (43)

we have for the last summand in (42):

1
3!

(
θγaΓi1i2i3θ

)
γaΓi1i2i3

= 1
3!

1
2·2ϵi1i2i3 i4i5ϵ

i1i2i3 j4j5
(
θγaΓ

i4i5θ
)
γaΓj4j5 by (43)

= 1
3!

3!·2!
2·2 δ

j4j5
i4i4

(
θγaΓ

i4i5θ
)
γaΓj4j5 by (4)

= 1
2

(
θγaΓ

i4i5θ
)
γaΓi4i5 by (4),

whereby that the last two summands in (42) cancel each other, and we are left with:

θ θ = 1
32

(
1
3!

(
θ γa1a2a3 θ

)
γa1a2a3 − 1

3!

(
θ γa1a2a3Γi θ

)
γa1a2a3Γi

)
,

ai ∈ {0,· · ·,5}
ii ∈ {5′, 6, 7, 8, 9} .

(44)

Now observing (by decomposing the sum and making a simple case analysis) that

γb γa1a2a3γ
b = 0 , ai, b ∈ {0,· · ·,5} , (45)

the claim (41) follows:

γaθ θγ
a

= 1
32

(
1
3!

(
θ γb1b2b3 θ

)
γaγ

b1b2b3γa︸ ︷︷ ︸
=0

+ 1
3!

(
θ γb1b2b3Γi θ

)
γaγ

b1b2b3γa︸ ︷︷ ︸
=0

Γi
)

by (44)

= 0 by (45).
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2.3 Super AdS7-spacetime

With the result of §2.1 in hand we may give explicit formulas for super AdS7×S4-spacetime by first recalling the
ordinary bosonic AdS-geometry and then rheonomically extending to super-spacetime.

Near-horizon geometry of black M5-branes. The bosonic near-horizon geometry of N black M5-brane is (cf.
[CKvP98, (6.6)][AFHS00, §2.1.2], following [GT93][DGT94]) represented on a chart of the form

R1,10 \ R1,5 ≃
diff

R1,5 ×
(
R5 \ {0}

)
≃
diff

R1,5 × R>0 × S4 (46)

with its canonical coordinate functions

Xa : R1,5 R for a ∈ {0, 1, · · · , 5}
r : R>0 R

(47)

the AdS7-metric (cf. [Bl22, §39.3.7]) plus the metric on the round S4:

ds2NM5 = r2

N2/3 ds
2
R1,5 + N2/3

r2 dr2 + N2/3

4 ds2S4 (48)

(where RNM5/2 := N1/3/2 is the radius of the 4-sphere in Planck units ℓP π
1/3, cf. (61) below). So the singular

brane locus6 ≃ R1,5 is (or would be) at r = 0. The C-field flux density G4 supporting this is a multiple of the
volume form on S4 pulled back the chart along the projection map:

G4 = cdvolS4 ∈ Ω4
dR

(
S4

)
↪−−! Ω4

dR

(
R1,5 × R>0 × S4

)
, (49)

for some prefactor c which is uniquely determined up to its sign by the Einstein equations, see (62) below, and
determined including its sign by the existence of 1/2BPS M5-immersions, see (81) below.

Asymptotic structure. For the near-horizon geometry (47) one says that:
• r ! 0 is the horizon, cf. footnote 6,
• r !∞ is the conformal boundary, at which

lim
r!∞

(
1
r2 ds

2
NM5

)
= ds2R1,5

is the Minkowski metric on R1,5 (and collapses to zero on the remaining R>0 × S4).
This makes it natural to identify the R1,5-factor at finite r with the worldvolume of a probe M5-brane, to be called
a holographic M5-brane (cf. [Gu21][Gu24]):

Chart around an immersed holographic M5-brane. We pick a point sprb ∈ S4 ⊂ R5 \ {0} to designate the
direction in which we wish to consider a probe M5-brane worldvolume immersed into this background, at some
coordinate distance rprb from the M5 singularity (cf. [CKvP98, (5.22)][GM00, §8] and Figure B):

probe M5
worldvolume

R1,5 R1,5 × R>0 × S4

x 7−!
(
x, rprb, sprb

)ϕ

embedding (50)

Around this point we may pick a coordinate chart for S4

{0} {sprb}

D4 S4

∼

ι

on which we find globally defined co-frame forms (Ei)4i=1 which are orthonormal for the round metric ds2S4 on S4

and torsion-free with respect to the corresponding Levi-Civita connection:(
Ei ∈ Ω1

dR(D4)
)4
i=1

, such that dEi =
(
ι∗ΩijS4

)
Ej and ι∗ds2S4 =

9∑
i=6

Ei ⊗ Ei , (51)

and such that
ι∗dvolS4 = 1

4! ϵi1···i4 E
i1 · · ·Ei4 . (52)

Using this, we obtain a contractible coordinate chart of the near horizon geometry (46):

R1,5 × R>0 × D4 R1,5 × R>0 × S4 .
id×ι

(53)

Since this is a neighborhood of the worldvolume submanifold (50), for the purpose of establishing its super-
embedding it is sufficient to consider this chart.

6 The locus r = 0 is not actually a curvature singularity of the near horizon geometry – as essentially first highlighted by [GHT95]
and manifest below in (57) – just a coordinate singularity of the Poincaré chart (48) — but it is a singularity of the C-field flux
cdvolS4 (49) per unit metric 4-volume r4 dvolS4 , witnessing r = 0 as the necessarily singular source of this flux.
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Cartan geometry around the holographic M5. On the chart (53), we evidently have the following coframe
forms

Ea := r
N1/3 dXa tangential a ∈ {0, 1, 2, 3, 4, 5}

AdS

E5′ := N1/3

r dr radial a ∈ {5′}

S Ea = N1/3

2 δai E
i transversal a ∈ {6, 7, 8, 9} via (51) .

(54)

These are orthonormal for the metric (48) in that ds2NM5 = ηabE
a ⊗ Eb , and make the C-field flux density (49)

appear as
G4 = c

4! ϵi1···i4E
i1 · · ·Ei4 , (55)

for some constant c, determined in a moment in (62) below.

For the following formulas, we may focus on the AdS-factor in (54). Hence we let the indices ai, bi run only
through {0, 1, 2, 3, 4, 5}, to be called the tangential index values – namely tangential to the worldvolume (50) – with
the further radial index 5′ carried along separately.

The torsion-free spin connection on the AdS-factor of (54), characterized by

dEa = ΩabE
b +Ωa5′ E

5′ , dE5′ = Ω5′
aE

a ,

is readily seen to have as only non-vanishing component:

Ωa5
′
= −Ω5′a = − r

N2/3 dX
a

tangential a. (56)

Therefore its curvature 2-form has non-vanishing components

Ra5
′

= dΩa5
′
= − 1

N2/3 dr dX
a = − 1

N2/3 E
5′ Ea

= + 1
N2/3E

aE5′

Ra1a2 = −Ωa15′ Ω
5′a2 = + r2

N4/3 dX
a1 dXa2

= + 1
N2/3 E

a1 Ea1 .

(57)

Hence the Riemann tensor has non-vanishing components

Ra5
′
b5′ = + 1

N2/3 δ
a
b

Ra1a2b1b2 = + 2
N2/3 δ

a1a2
b1b2 ,

(58)

and the Ricci tensor is proportional to the metric tensor, as befits an Einstein manifold:

Rica1a2 = Ra1
b
ba2 +Ra1

5′
5′a2

= − 5
N2/3 ηa1a2 − 1

N2/3 ηa1a2
= − 6

N2/3 ηa1a2

Ric5′5′ = R5′a
a5′

= − 6
N2/3 ,

(59)

in analogy with the Ricci tensor of the 4-sphere factor:

Rici1i2 = + 3
N2/3/4

δi1i2 . (60)

Therefore the Einstein equation with source the C-field flux density (55) has non-vanishing components (cf.
[GSS24a, (174-5)])

Rica1a2 = − 1
12

1
12 (G4)i1···i4(G4)

i1···i4 ηa1a2

⇔ − 6
N2/3 ηa1a2 = − 1

6c
2 ηa1a2

Ric5′5′ = − 1
12

1
12 (G4)i1···i4(G4)

i1···i4 η5′5′

⇔ − 6
N2/3 = − 1

6c
2

Rici1i2 = 1
12 (G4)i1 j1j2j3(G4)i2

j1j2j3 − 1
12

1
12 (G4)i1···i4(G4)

i1···i4 δi1i2

⇔ + 3
N2/3/4

δi1i2 = 1
2c

2 δi1i2 − 1
6c

2 δi1i2

= + 1
3c

2 δi1i2

(61)

hence is solved (NB: the last line is the reason that the radius of S4 has to be half that of AdS7 in (48)) by

c = ± 6

N1/3
, hence

(49)
G4 = ± 6

N1/3 dvolS4 . (62)
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At this point both of the signs in (62) are equally admissible, but we see below in Rem. 2.20 that the + sign is
singled out by the existence of holographic 1/2BPS super-immersions.

Super-Cartan geometry near M5 horizons. In now passing to the super-spacetime enhancement of AdS7×S4,
we use the notation and conventions for 6d spinors among 11d spinors form [GSS24b, §3.2], recalled in §2.2.

In particular, we denote the Minkowski frame of Clifford generators adapted to the 1+5+1+4 dimensional split
of the tangent space to AdS7 × S4 in Poincaré coordinates (46) by [GSS24b, (85)]

R1,5︷ ︸︸ ︷ R>0︷︸︸︷ D4︷ ︸︸ ︷
Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ5′ Γ6 Γ7 Γ8 Γ9 ∈ Pin+(1, 0) ⊂ EndR(32)

γ0 γ1 γ2 γ3 γ4 γ5 ∈ Pin+(1, 5) ⊂ EndR
(
2 · 8+ ⊕ 2 · 8−

)
,

P (−)P

+P (−)P

(63)

where [GSS24b, (86-90)]

PΨ := 1
2

(
1 + Γ5′6789

)
Ψ

PΨ := 1
2

(
1− Γ5′6789

)
Ψ ,

P (32) ≃ 2 · 8+ ∈ RepR
(
Spin(1, 5)

)
P (32) ≃ 2 · 8− ∈ RepR

(
Spin(1, 5)

)
.

(64)

Super-Cartan geometry around holographic M5s. We now obtain the super-extension of the above Cartan
geometry (54). Inserting the bosonic AdS Cartan geometry (54) (56) into the initial conditions for WZT gauge
(24) means that (

E(0)
)a

= r
N1/3 dX

a ⇔
((
E(0)

)a
r
= r

N1/3 ,
(
E(0)

)a
ρ
= 0

)
(
E(0)

)5′
= N2/3

r dX5′ ⇔
((
E(0)

)5′
r

= N2/3

r ,
(
E(0)

)5′
ρ

= 0
)

(
Ψ(0)

)α
= dΘα ⇔

((
Ψ(0)

)α
r

= 0,
(
Ψ(0)

)α
ρ

= δαρ

)
(
Ω(0)

)5′a
= r

N2/3 dX
a ⇔

((
Ω(0)

)5′a
r

= r
N2/3 ,

(
Ω(0)

)5′a
ρ

= 0
)
.

(65)

Moreover, inserting the flux density (55) into the super-field strength components (31) yields

Ha = − c
12Γa Γ6789

H5′ = − c
12 Γ5′6789

Hi = c
6

1
3! ϵi i1i2i3Γ

i1i2i3

Ka1a2 = − c
6Γ

a1a2Γ6789

K5′a = + c
6 Γ

aΓ5′6789

Ki1i2 = − c
6ϵ
i1i2 i3i4Γi3i4

Kia = 0

K5′i = 0 .

for
ai ∈ {0, 1, 2, 3, 4, 5}
ii ∈ {6, 7, 8, 9}

(66)

From this we now obtain the super-field extension of the supergravity fields on AdS7 × S4.

Example 2.11 (Spacetime super-fields to first Θ-order). Based on the 0th order expressions (65) we obtain
to first order in Θ (similar to [dWPPS98, (3.11)]):

Ea = r
N1/3 dX

a +
(
ΘΓa dΘ

)
+ O

(
Θ2

)
by (32)

E5′ = N/13

r dX5′ +
(
ΘΓ5′ dΘ

)
+ O

(
Θ2

)
by (32)

Ω5′a = r
N2/3 dX

a + c
6

(
ΘΓa Γ5′6789 dΘ

)
+ O

(
Θ2

)
by (33), (66) & (24)

Ψα = dΘα +
(
− 1

2
r

N2/3 (Γ5′aΘ)α − c
12 (ΓaΓ6789Θ)α

)
dXa

+ − c
12 (Γ5′6789Θ)α dX5′

+ c
6

1
3!ϵi i1i2i3(Γ

i1i2i3Θ)α dXi + O
(
Θ2

)
by (34) & (66),

(67)

where a ∈ {0,· · ·,5}.
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Some components can readily be deduced to all orders in Θ. For instance:

Lemma 2.12 (Mixed spin connection vanishes in all Θ-orders). Ωia = 0 to all orders in Θ:

Ωia = 0 for

{
a ∈ {0, 1, 2, 3, 4, 5}
i ∈ {6, 7, 8, 9}.

(68)

Proof. It clearly vanishes in O
(
Θ0

)
(by the Riemannian product nature of AdS7×S4) and is in each positive order

O
(
Θn+1

)
proportional to Kia, by (33), which however vanishes by (66).

2.4 Holographic M5 immersion

With the background super-spacetime in hand, we inspect the BPS super-immersions of holographic M5-branes

Our main result here is Prop. 2.21, which says that the evident super-immersion of an M5-brane worldvolume
into the Minkowski-part of the Poincaré chart of the near-horizon super-geometry of N black M5-branes is 1/2BPS
(hence is a “super-embedding”) if its radial distance from the horizon equals the black M5’s throat diameter:
rprb = RNM5.

1/2BPS super-immersions. Recall (e.g. [Va04, p. 27], cf. [GSS24b, Rem. 2.10, Def. 2.18]) that:

Definition 2.13 (Super-immersions). A map of supermanifolds (e.g. [GSS24a, Ex. 2.13])

super-
worldvolume Σ1,p |n X1,d |N super-

spacetime

ϕ

immersion
(69)

is a super-immersion if it induces injections on all super-tangent spaces

∀
σ ∈ Σ

⇝

R1,p|n R1,d|N

TσΣ
1,p |n Tϕ(σ)X

1,d |N .

∼ ∼

dϕσ

We say ([GSS24b, §2.2]) that:

Definition 2.14 (1/2BPS super-immersion). A super-immersion ϕ (69) is 1/2BPS if for a linear projection
operator P from the target super-space onto the “tangential” worldvolume super-dimensions (with P := 1−P the
“transversal” projection), projecting onto thw fixed locus of a Pin+(1, d)-element (a p-brane involution [HSS19,
Def. 4.4])

R1,d |N R1,p |n R1,d |N ,

P

(70)

there exists an orthonormal local co-frame field (E,Ψ) (17) on X which is super-Darboux with respect to ϕ in that:

(i) the tangential coframe pulls back to a local coframe field on Σ:

(e, ψ) := ϕ∗
(
PE, PΨ

)
is a coframe field (71)

(ii) the transversal bosonic coframe field pulls back to zero

ϕ∗PE = 0 (72)

(iii) the transversal fermionic coframe field pulls back to

ϕ∗PΨ = Sh · ψ (73)

for some fermionic shear field Sh on Σ, i.e. pointwise valued in Spin(d− p)-equivariant linear maps

∀
σ ∈ Σ

⇝
Shσ : n ≃ PN −−! PN . (74)

Example 2.15 (M5 super-immersions). If the projection operator (70) is that from (40) then we have the case
of M5-brane super-immersions ([GSS24b, §3], going back to [HS97b]).

Remarkably (cf. Rem. 2.23 below), the shear map (74) turns out to encode the flux density any higher gauge
field on the worldvolume Σ. If this vanishes (as it does in the example holographic M5-branes presented in a
moment) the definition simplifies to:

Definition 2.16 (Fluxless 1/2BPS super-immersion). A 1/2BPS super-immersion (Def. 2.14) is fluxless if its
super-Darboux coframes (E,Ψ) are characterized more simply by

Tangential condition: (e, ψ) := ϕ∗
(
PE, PΨ

)
is a coframe field

Transversal condition: 0 = ϕ∗
(
PE, PΨ

)
.

(75)
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This is manifestly super-analogous to classical Darboux coframe theory (recalled in [GSS24b, §2.1]) and this is
what we establish for holographic M5-branes in Prop. 2.21 below.

Remark 2.17 (Relation to the literature).
(i) The conditions (71) and (72) on a 1/2BPS super-immersion are (for more details see [GSS24b, Rem. 2.23]) a slight
strengthening of the “super-embedding” condition used by [So00], following [BPSTV95][HS97a][HS97b][HRS98].

(ii) In particular, (e, ψ) being a super-coframe field (71) entails that ϕ∗PE =: e has no component along ψ, which
is the “basic super-embedding condition” of [HS97a, (6)][HRS98, (2)], earlier known as the “geometrodynamical
condition” [BPSTV95, (2.23)].

(iii) The difference is that more generally one may allow the pullback of the transversal gravitino to have also a
bosonic component τ (cf. [GSS24b, Rem. 3.13]), generalizing (73) to

ϕ∗PΨ = Sh · ψ + τae
a . (76)

However, it seems suggestive that without this component the definition has a pleasantly slick reformulation
[GSS24b, pp. 17]. In any case, for the example of holographic M5-branes obtained in Prop. 2.21 below, this
component does not appear (and no other explicit examples seem to have been discussed in the literature before).

The holographic M5 super-immersion. We may now define and analyze the super-geometric enhancement of
the immersion of M5-worldvolumes parallel and near to the horizon of their own black brane incarnation (cf. again
Figure B):

Definition 2.18 (Holographic super-immersion). We extend the holographic immersion (50) to a super-
immersion (Def. 2.13) in the evident way:

R1,5 | 2·8 R1,5 × R>0 × D4 × R0|2·8+ × R0|2·8− ⊂ R1,10 | 32

xa
ϕ∗

 − [ Xa

rprb
ϕ∗

 − [ r

siprb
ϕ∗

 − [ Xi

θα
ϕ∗

 − [
(
PΘ

)α
0

ϕ∗

 − [
(
PΘ

)α
,

ϕ

(77)

where P = 1
2

(
1 + Γ5′6789

)
(see (36)), which defines the super-coordinates on the worldvolume to be the projected

pullbacks of those of target space, and where

rprb, s
i
prb ∈ R ↪−! C∞(R1,5) ↪−! C∞(R1,5 | 2·8) for i ∈ {6, 7, 8, 9}

are the chosen constants parametrizing the transverse position of the immersion.

Lemma 2.19 (Worldvolume super-fields to first θ-order).
(i) Under the holographic super-immersion (77), the first-order super-fields (67) pull back to

ea := ϕ∗Ea =
rprb
N1/3 dx

a +
(
θ γa dθ

)
+ O

(
θ2
)

ϕ∗E5′ = O
(
θ2
)

ψα := ϕ∗(PΨ)α = dθα + O
(
θ2
)

ϕ∗
(
PΨ

)α
=

(
1
2
rprb
N2/3 − c

12

)
(Γa5′θ)

α dxa + O
(
θ2
)

eb1II5
′

b1b2 + ψβII5
′

β b2 := ϕ∗Ω5′
b2 =

rprb
N2/3 δb1b2 dx

b1 + 1
6

(
θ γa dθ

)
+ O

(
θ2
)
.

(78)

(ii) The 2nd fundamental super-form II5
′
(cf. [GSS24b, (67)]) has the following components:

II5
′

b1b2 = 1
N1/3 δb1b2 + O

(
θ2
)

II5
′

β b2 =
(

1
N1/3 − c

6

)(
θ γb1

)
β

+ O
(
θ2
)
.

(79)

15



Proof. The first line in (78) is evident. For the second line just notice that
(
θ Γ5′ dθ

)
= 0 by (37). For the third

line notice similarly that

ϕ∗(PΨ)α = dθα +
(
− 1

2
rprb
N2/3 (P Γ5′aθ)

α︸ ︷︷ ︸
=0

− c
12 (P ΓaΓ6789θ)

α︸ ︷︷ ︸
=0

)
dxa ,

where the terms over the braces vanish by (37):

PΓ5′aθ = Γ5′aPθ = = Γ5′aPPθ = 0 and PΓaΓ6789θ = ΓaΓ6789Pθ = ΓaΓ6789PPθ = 0 .

The fourth line works analogously but complementarily:

ϕ∗
(
PΨ

)α
=

(
− 1

2
rprb
N2/3

(
P Γ5′aθ

)α︸ ︷︷ ︸
−Γa5′θ

− c
12

(
P ΓaΓ6789θ

)α︸ ︷︷ ︸
Γa5′θ

)
dxa ,

(80)

where under the braces we again used (37):

P Γ5′aθ = Γ5′aPθ = Γ5′aθ = −Γa5′θ and P ΓaΓ6789θ = ΓaΓ6789Pθ = Γa5′θ .

Finally, the fifth line follows again similarly, now using that Γ5′6789P = P , again by (37). From this, the last
statement (79) is checked by expanding out:

eb1 II5
′

b1b2 + ψβ II5
′

βb2 =
(
rprb

N1/3 dx
b1 +

(
θ γb1 dθ

))
1

N1/3 δb1b2 + dθβ
(

1
N1/3 − c

6

)(
θ γb2

)
β

+ O
(
θ2
)

by (78) & (79)

=
rprb

N1/3 δb1b2dx
b2 + c

6

(
θ γb2 dθ

)
+ O

(
θ2
)

= ϕ∗ Ω5′
b2 +O

(
θ2
)

by (78) .

Remark 2.20 (Critical distance of holographic M5-brane probe from black M5 horizon). Since c =
±6/N1/3 (62), Lem. 2.19 implies that the holographic super-immersion (77) is (fluxless) 1/2BPS (Def. 2.16) to first
order in θ iff

(i) the background C-field flux density (62) is positive and
(ii) the M5-brane probe sits at the throat radius rprb = N1/3:

in that, by (78) (80):

ϕ∗
(
PΨ

)
= O

(
θ2
)

⇔

 c > 0, i.e. G4 = + 6
N1/3 dvolS4

rprb = RNM5 := N1/3 .
(81)

Away from this critical radius, the super-immersion picks up exactly a contribution of the parameter called τ = τae
a

in (76), whose presence would at least complicate the induction argument in Prop. 2.21 below, see footnote 8 there.
On the other hand, Prop. 2.21 shows that the characterization (81) of the critical radius holds in fact to all orders
of θ.

Notice that in the analogous situation of an M2-brane probe embedded in parallel near its own black M2-brane
horizon, the original claim of [BDPS87, (15)] is that this only exists at rprb = ∞. On the one hand it is interesting
to see that for the M5-brane this value become finite, on the other hand it is noteworthy that in both cases there is
only a single viable radius — a situation which for the M5-brane seems not to have been noticed in the literature
before, cf. Rem. 2.1.

Next, from the first-order formulas (78), we now proceed by induction to the full computation of the worldvolume
fields. For this, let now

(E,Ψ) ∈ Ω1
dR

(
R1,5×R>0×D4×R0|32; R1,10 | 32) (82)

denote the super coframe fields (54) on the Poincaré neighborhood (53) of AdS7×S4 uniquely extended to super-
space via WZT gauge (Def. 2.2), to all orders in Θ.

Now we are ready for the main statement of this section:

Proposition 2.21 (Existence of fluxless 1/2BPS holographic M5-brane probes). The holographic super-
immersion (77) of an M5-brane probe near the horizon of N coincident black M5-branes is (fluxless) 1/2BPS (Def.
2.16) if 7 the radial position of the M5-probe from the horizon equals the throat radius

rprb = RNM5 ≡ N1/3 ⇒ ϕ is 1/2BPS . (83)

7 The proof of Prop. 2.21 shows also the converse implication, but only for the chosen super-coframe (82). In order to have a
logical equivalence in (83) (instead of just an implication) one would have to show that for rprb ̸= RNM5 there is no other choice of
super-coframe – e.g. not using the WZT gauge (24) – with respect to which such ϕ is 1/2BPS. While this seems likely, we do not
attempt to prove it here. See also footnote 8.
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Proof. By Lem. 2.19 with Rem. 2.20 the statement holds to first order in the odd worldvolume coordinates. Hence
it is sufficient to check that all higher contributions actually vanish.

First, the vanishing of the higher orders of the transversal gravitino,

ϕ∗PΨ = 0 , equivalently ϕ∗Ψ = Pϕ∗Ψ (84)

(using throughout that ϕ∗ ◦ P = P ◦ ϕ∗ and similarly for P ) follows via the decoupled recursion relations from
Lem. 2.9 by induction on the θ-order:

• For the even component by

ϕ∗
(
P Ψ

(n+2)
r

)α · (n+ 2)(n+ 1)

= − 1
4

(
PΓa1a2θ

)α(
θKa1a2 ϕ∗Ψ

(n)
r

)
+

(
PHaθ

)α(
θ Γa ϕ∗Ψ

(n)
r

)
ai ∈ {0,· · ·,5, 5′, 6,· · ·,9} by (35) & (77)

= − 1
4

(
PΓa1a2θ

)α(
θKa1a2 Pϕ∗Ψ

(n)
r

)
+

(
PHaθ

)α(
θ Γa Pϕ∗Ψ

(n)
r

)
ai ∈ {0,· · ·,5, 5′, 6,· · ·,9} by induction

assumption

= − 1
2

(
P Γ5′aθ

)α(
θK5′a Pϕ∗Ψ

(n)
r

)
+

(
P Haθ

)α(
θ Γa Pϕ∗Ψ

(n)
r

)
a ∈ {0,· · ·,5} by (37)

= − 1
2
c
6

(
P Γ5′a︸︷︷︸

−Γa5′

θ
)α(

θ Γa Pϕ∗Ψ
(n)
r

)
− c

12

(
P Γa5′θ

)α(
θ Γa Pϕ∗Ψ

(n)
r

)
a ∈ {0,· · ·,5} by (66) & (37)

= 0 .

• For the odd component by use of the Fierz identity from Lem. 2.10:

ϕ∗
(
P Ψ

(n+2)
ρ

)α · (n+ 4)(n+ 3) 12

= 1
4

(
P Γa1a2θ

)α(
θKa1a2 ϕ∗Ψ

(n)
ρ

)
+

(
P Haθ

)α(
θ Γa ϕ∗Ψ

(n)
ρ

)
ai ∈ {0,· · ·,5, 5′, 6,· · ·,9} by (35) & (77)

= 1
4

(
P Γa1a2θ

)α(
θKa1a2 Pϕ∗Ψ

(n)
ρ

)
+

(
P Haθ

)α(
θ Γa Pϕ∗Ψ

(n)
ρ

)
ai ∈ {0,· · ·,5, 5′, 6,· · ·,9} by induction

assumption

= 1
2

(
P Γ5′aθ

)α(
θK5′a Pϕ∗Ψ

(n)
ρ

)
+

(
P Haθ

)α(
θ Γa Pϕ∗Ψ

(n)
ρ

)
a ∈ {0,· · ·,5} by (37)

= 1
2
c
6

(
P Γ5′aθ

)α(
θ Γa Pϕ∗Ψ

(n)
ρ

)
− c

12

(
P Γa5′θ

)α(
θ Γa Pϕ∗Ψ

(n)
ρ

)
a ∈ {0,· · ·,5} by (66) & (37)

= c
6

(
P Γ5′ γaθ

)α(
θ γa︸ ︷︷ ︸

=0

Pϕ∗Ψ
(n)
ρ

)
= 0 by (41) .

From this it then follows that:

• The pullback of the radial & transversal vielbein vanishes to all orders:

ϕ∗PE = 0 (85)

because we now have for E5′ that

ϕ∗
(
E(n+1)

)5′
r

= 2
n+1

(
θ Γ5′ϕ∗Ψ

(n)
r

)
by (32) & (77)

= 2
n+1

(
θ Γ5′Pϕ∗Ψ

(n)
r

)
by (84)

= 0 by (37),

ϕ∗
(
E(n+1)

)5′
ρ

= 2
n+2

(
θ Γ5′ϕ∗Ψ

(n)
ρ

)
by (32) & (77)

= 2
n+2

(
θ Γ5′Pϕ∗Ψ

(n)
ρ

)
by (84)

= 0 by (37).

and verbatim so for Ei.

• The fermionic component of the tangential coframe field equals

ψ = dθ (86)

to all orders in θ, because it does so to first order by (78) and all higher orders vanish (now ai ∈ {0,· · ·, 9}):(
ψ(n+2)

)α
r

:= ϕ∗
(
P Ψ(n+2)

)α
r

= − 1
n+2

1
n+1

1
4

(
P Γa1a2θ

)α(
θKa1a2 ϕ∗Ψ

(n)
r

)
+ 1

n+2
1

n+1

(
P Haθ

)α(
θ Γa ϕ∗Ψ

(n)
r

)
by (35) & (77)

= − 1
n+2

1
n+1

1
4

(
P Γa1a2θ

)α(
θKa1a2Pϕ∗Ψ

(n)
r

)
+ 1

n+2
1

n+1

(
P Haθ

)α(
θ ΓaPϕ∗Ψ

(n)
r

)
by (84) 8

= 0 by (66) & (37)

(87)

8 The second step in (87) fails if one were to go away from the critical radius, rprb ̸= N1/3 (81), where ψ
(0)
r ̸= 0 (78), in which case

the analogue of (87) instead says that there are potentially contributions to ψr in every even order of θ. It would remain to be checked
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and (
ψ(n+2)

)α
ρ

:= ϕ∗
(
P Ψ(n+2)

)α
ρ

= − 1
n+4

1
n+3

1
4

(
P Γa1a2θ

)α(
θKa1a2 ϕ∗Ψ

(n)
ρ

)
+ 1

n+4
1

n+3

(
P Haθ

)α(
θ Γa ϕ∗Ψ

(n)
ρ

)
by (35) & (77)

= − 1
n+4

1
n+3

1
4

(
P Γa1a2θ

)α(
θKa1a2Pϕ∗Ψ

(n)
ρ

)
+ 1

n+4
1

n+3

(
P Haθ

)α(
θ ΓaPϕ∗Ψ

(n)
ρ

)
by (84)

= 0 by (66) & (37) .

Note that in the last step, in both cases, we observe from (66) that Ka1a1 and Ha have for all index values
the same parity (with respect to the projectors P , P ) as Γa1a2 and Γa, respectively, so that the two terms
P Γa1a2P and PKa1a2P can never both be non-vanishing, and similarly for PHaP and P ΓaP .

• The bosonic component of the tangential coframe field equals

ea = dxa +
(
θ γa dθ

)
(88)

to all orders in θ, because it does so to first order by (78) and by assumption (83), and since all higher orders
vanish, as follows:(
e(n+1)

)a
r

:= ϕ∗
(
E(n+1)

)a
r

= 2
n+1

(
θ γa ϕ

∗Ψ
(n)
r

)
by (32) & (77)

= 0 by (84) & (78) ,

(
e(n+2)

)a
ρ

:= ϕ∗
(
E(n+2)

)a
ρ

= 2
n+3

(
θ γa ϕ

∗Ψ
(n+1)
ρ

)
by (32) & (77)

= 0 by (84) & (78) .

To conclude:
• the statements (85) and (84) establish the transversal condition in (75) that was to be shown, namely that
ϕ∗

(
PE, PΨ

)
= 0.

• The statements (86) and (88) establish the tangential condition in (75) that was to be shown, namely that
(e, ψ) is a coframe field, manifestly so by expanding the coordinate differentials in their (e, ψ)-components as

dxa = N1/3

rprb
ea −

(
θ γa ψ

)
dθα = ψα.

This completes the check that ϕ (in (77)) is a (fluxless) 1/2BPS super-immersion (Def. 2.16), hence that the
holographic probe M5-brane really exists – at the critical radius rprb = RNM5 ≡ N1/3 (Rem. 2.20).

Remark 2.22 (Bianchi identity and vanishing H3-flux density). For the purpose of §3, the key point of
establishing the 1/2BPS property of the holographic M5-brane immersion, via Prop. 2.21, is that this establishes
a solution to the equations of motion of the H3-flux density on the worldvolume ([GSS24b, Prop. 3.17]), namely
the appropriate self-duality, the Bianchi identity and rheonomy. In the present case of vanishing flux density this
may look fairly trivial, but it is still crucial to establish it unambiguously as a solution, because (only) then is
flux quantization guaranteed to produce the exact completed field content which may still be non-trivial (namely
torsion-charged), as discussed in §3.

In any case it is immediate to check the conclusions of [GSS24b, Prop. 3.17] in the present case: In particular,
with (55) and (77) we have

ϕ∗G4 = 0 (89)

so that the general worldvolume Bianchi identity dH3 = ϕ∗G4 (cf. [GSS24b, (1)]) is un-twisted and becomes

dH3 = 0 ,

which is clearly satisfied by H3 = 0.

Remark 2.23 (Absence of fluxed 1/2BPS holographic M5-branes). The proof of Prop. 2.21 also readily
shows that it is impossible to have non-vanishing worldvolume flux density H3 ̸= 0 on a holographic M5-brane (77),
while keeping its 1/2BPS- (“super-embedding”-) property (at least with respect to the given coframe field (82), cf.
ftn. 7). Namely, by [HS97b, (40)][HSW97, (7)][So00, p. 91] (re-derived in [GSS24b, (126)]) such non-trivial flux

corresponds to modifying the super-immersion (77) by a summand /̃H3

ϕ∗PΘ = θ + /̃H3θ , for /̃H3 ≡ 1
3! (H̃3)a1a2a3γ

a1a2a3 ,

if (e, ψ) is still a coframe field in this case, hence (Rem. 2.17) if the “basic super-embedding condition” would still hold away from the
critical radius. (This is tacitly claimed around [GM00, (8.2)], but any higher θ-corrections to ψ seem to be ignored there.)

18



which vanishes iff the actual flux density H3 vanishes (cf. [GSS24b, Rem. 3.18]) – but non-vanishing such H̃3

immediately fails the Darboux condition (85), by the computation shown right below there. (This is in contrast
notably to the case of the rectilinear embedding of the M5-brane into flat Minkowski superspacetime, which allows
any constant H3-flux to be switched on, see [GSS24b, Ex. 3.14]).

This phenomenon naturally leads over to the discussion of flux-quantization on holographic M5-branes in the
next section §3. Namely a constraint of vanishing flux density

H3 = 0

trivializes the higher gauge field on holographic M5-branes only locally, on any (contractible) coordinate chart,
while the globally completed higher gauge field, controlled by a flux quantization law, may still attain non-trivial
configurations carrying non-trivial torsion charges.

In other words, while flux quantization completes general gauge field configurations by torsion-charged sectors,
this is particularly relevant for configurations with vanishing flux, as found here on holographic M5-branes, in which
case the non-trivial higher gauge field content is invisible by traditional local field analysis and is all contained in
the subtleties of the flux quantization law. This is what we discuss next.

3 Flux quantization on holographic M5-branes

Flux quantization on M5-branes. The point here of having established the holographic M5 super-immersion in
§2 is that (by the result of [GSS24b]) it allows to determine the admissible global completions of the worldvolume
higher gauge field (the “B-field” with flux density H3) by a choice of flux quantization law (exposition in [SS24b]).

This is relevant in particular for the resulting “torsion charges”, i.e. for non-trivial charges encoded in solitonic
field configurations which are not reflected in the flux density H3, hence which may exist even in the fluxless case
H3 = 0 (as encountered in Prop. 2.21).

Such a situation is familiar in the classical example of vacuum electromagnetism, whose flux-quantization
law (going back to Dirac) makes the globally completed electromagnetic field have an underlying charge class
in the integral cohomology H2(X;Z) of spacetime, which may take non-trivial torsion-group values (even) if the
electromagnetic flux density vanishes, F2 = 0, such as may happen on cosmological scales if 3-space were a lens
space (for which, amusingly there are some mild indications from observational cosmology, cf. [AL12].)

However, away from this familiar special case where flux-quantization is in ordinary cohomology, torsion charges
in flux-quantized higher gauge fields are rather the rule than the exception, since their flux quantization laws
typically need to be given by generalized (and non-abelian) cohomology theories (exposition in [SS24b, §3], details
in [FSS23]), which generically induce richer charge structure.

In particular, the admissible flux quantization laws for the B-field on M5-branes are (by [GSS24b, p. 6] following
[FSS20b, §3.7][FSS21c], see [FSS23, §12]) those whose rational (∼ non-torsion) shadow looks like a certain twisted
form of the generalized cohomology theory known as 3-Cohomotopy, denoted π3(X) (in dual analogy with the 3rd
homotopy groups, denoted π3(X)).

Hypothesis H. Among the infinite set of admissible such laws, one clearly stands out: namely (the suitably twisted
form of) 3-Cohomotopy theory itself. The hypothesis that this special choice of flux-quantization is the “correct”
one to globally complete the theory of M5-branes has been called “Hypothesis H” in [FSS20b][FSS21a][GS21][SS20a]
[SS23a], following [Sa13, §2.5]. As discussed in these articles, this hypothesis finds justification in how it implies a
list of subtle topological (anomaly cancellation-)conditions that are thought need to hold in M-theory and hence
for M5-brane physics.

Under this Hypothesis H, the result of [GSS24b] with its specialization to holographic embeddings in §2 implies
that the global completion of the field content on holographic M5-branes Σ involves a previously neglected field
component which on gauge-equivalence classes is manifested by a class χ in the 3-Cohomotopy of the worldvolume
Σ (un-twisted, by (89)):

χ ∈ π3(Σ) ≃ π0Maps
(
Σ , S3

)
. (90)

whose image in de Rham cohomology under the 3-cohomotopical character map chπ (essentially the pullback of the
volume form on S3, see [FSS20b, §3.7][FSS21a, §3][FSS23, §12]) coincides with the de Rham class of the H3-flux:

Total flux [H3] = chπ(χ)
R-rationalization
of total charge

i.e. the following
diagram commutes

π3(Σ)

∗ Ω3
dR(Σ) H3

dR(Σ)

chπ

H3

χ

[−]

(91)
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(The complete field content is given by a homotopy-theoretic enhancement of the diagram on the right, which
encodes how the flux density H3 is related to the global charge χ by local gauge potentials B2, see [GSS24b, §4.1]
and see [SS24b, §3.3] for background).

Notice that on holographic M5-branes where the H3-flux density vanishes (Rem. 2.23) this means that the
available charges are the pure torsion charges, namely those whose cohomotopical character vanishes.

Charges on holographic M5-branes under Hypothesis H. Here Σ is generally to be understood as including
the “point at infinity” — in fact this is mandatory if we want to identify the topology of Σ with that of the
conformal boundary of AdS7. Therefore, for plain holographic M5-branes the worldvolume domain Σ on which to
compute torsion charges has the homotopy type of the 5-sphere (cf., e.g., [SS23a, Rem. 2.3])

R0,1 × R5
∪{∞} ≃

hmtp
R0,1 × S5.

Now on this domain 3-Cohomotopy allows – and hence Hypothesis H predicts – the existence of a non-trivial
torsion charge potentially present in all M5-brane physics, namely the one corresponding to the non-trivial 5th
homotopy group of the 3-sphere (the second stable stem, e.g. [Ki21], cf. [SS23a]):

Cohomotopy charges of B-field
vanishing at spatial infinity

on plain holographic M5-branes
π3(Σ) ≡ π3

(
R1 × R5

∪{∞}
)

≃ π0Maps(S5, S3) ≃ π5(S
3) ≃ Z2 . (92)

Notice that Z2 being a pure torsion group, its image under the cohomotopical character map is necessarily zero, so
that the non-trivial element in (92) indeed has vanishing character, matching the vanishing flux density{

0 = [H3]
}

≃ chπ
(
π3(S5)

)
.

This non-trivial torsion charge potentially appearing on holographic M5-branes is a universal twist whose impact
on AdS7/CFT6-duality remains to be determined.

Notice that similar torsion effects have previously been discussed in the case of AdS4/CFT3-duality for M2-
branes at A-type orbifold singularities, where already the ordinary cohomology group for the ambient C-field charge
is pure torsion

H4
(
R1,2 × R>0 × S7/Zk; Z

)
≃ H4

(
S7/Zk; Z

)
≃ Zk ,

interpreted as the charge carried by “fractional M2-branes” and controlling the level of the Chern-Simons field on
the worldvolume [ABJ08].

Instead of further dwelling on this interesting point here, we focus now on a related but more intricate effect of
flux quantization on holographic M5-branes which is manifestly relevant for modeling strongly-coupled quantum
materials.

4 Anyonic quantum states on holographic M5s

Topological moduli of quantized charges. Beyond the plain charge sectors discussed above, any choice of flux
quantization law A gives rise to the full moduli stack of on-shell fields [SS24b, §3.3], of which the charge sectors are
only the connected components. This moduli stack is the (higher) Lie-integrated incarnation of the BRST-complex
of the theory (in generalization of how a Lie group is the integration of its Lie algebra) and as such the correct
phase space of the higher gauge theory [SS24a] on which to discuss its (quantum) observables.

Then focusing on the topological quantum observables means [SS23d] to pass (via “topological realization”)
from this moduli stack to the underlying moduli space of topological charges, of which the charge sectors are still
the connected components:

Moduli space
of A-charges

H1
(
Σ, ΩA

)
≡ Maps∗/

(
Σ; A

)
Cocycle space

Set of
charge sectors

H1
(
Σ, ΩA

)
≡ π0Maps∗/

(
Σ; A

)
A-cohomology

quotienting by
coboundaries

In the case of flux quantization in Cohomotopy, where the classifying spaceA ≡ Sn is the homotopy type of the
n-sphere, these moduli are (pointed) maps from a (worldvolume) manifold (with a point at infinity adjoined) to
Sn, whose study was initiated long ago by Pontrjagin [Pon38]:

Moduli space of
Cohomotopy charges

ππn(Σ) ≡ Maps∗/
(
Σ; Sn

)
Cohomotopy
cocycle space

Set of
Cohomotopy charges

πn(Σ) ≡ π0Maps∗/
(
Σ; Sn

)
n-Cohomotopy

quotienting by
coboundaries
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Cohomotopy of open M5-branes. In order to realize anyonic quantum observables on M5-branes, following
[GSS24b, §4.2], we assume that their worldvolume flux H3 is quantized in 3-Cohomotopy — Hypothesis H (90)
— and consider wrapping the M5-branes (both the probes and their black brane incarnation) on a Hořava-Witten
orbifold torus S1

A × S1
H�Z2, by imposing the corresponding cyclic identifications and Z2-action on the Poincaré

chart (46). The resulting worldvolume domain space appropriate for measuring charges of anyonic solitons on the
M5 is thus the following orbifold with a point at infinity included [GSS24b, (153)]:

Σ ≡ R1,1
⊔{∞} ∧

(
R2 × R1

H�Z2

)
∪{∞} ∧ (S1

A)⊔{∞}
M5-worldvolume

soliton inside

R1,1× R2 × S1
H × S1

A (93)

(Since after passing to the naive quotient space S1
H/Z2 ≃ [0, 1] this looks like M5-brane stretched along an interval,

these configurations are known as open M5-branes [BGT06, Fig. 3], here further wrapped on the M/IIA circle fiber
S1
A.) In fact, via Hořava-Witten theory this is to be regarded as an orientifold which means that its Cohomotopy

charge is to be measured in Z2-equivariant 3-Cohomotopy ([SS20a][SS20b, Def. 5.28]) with respect to a reflection
action also on one coordinate of the classifying sphere S3.

The result of [GSS24b, (154)] was that the resulting moduli space of charges is the product space of two group-
completions GConf of configuration spaces of points, one in dimension 3 (being the solitons that move into the
HW-bulk) and one of dimension 2 (being the solitons stuck on the Hořava-Witten O-plane):

Moduli space of solitonic charges
on open holographic M5-branes

before wrapping on S1
A

ππ2,1
(
(R2 × R1

H)∪{∞}

)
≃ GConf(R3)

group-completed config space
of solitons in HW-bulk

×

group-completed config space
of solitons stuck on HW O-plane

GConf(R2) . (94)

This moduli space is quite rich, even in the sector of vanishing total charge that we are dealing with for holographic
M5-branes. To bring this out, we now give a more explicit description of this space. For definiteness we now focus
on the factor GConf(R2), since this is where the anyon dynamics emerges, but otherwise the discussion applies
generally.

Group-completed configuration spaces. Näıvely one might expect GConf(R2) to be the configuration space
of signed points in R2, where each point carries a charge in {±1}, with the topology of the configuration space
such that oppositely-charge points may undergo pair annihilation/creation. While this is the correct picture on the
level of connected components, it turns out not to correctly capture the homotopy type of this space, as observed
in [McD75, p. 6]. However, something close is true and interesting with respect to our physics interpretation: To
get the correct moduli space, the points (hence the worldvolume solitons) need to be regarded as carrying a finite
thickness [CW81] at least in one direction [Ok05], so that the points (which, recall, for us are the positions of
worldvolume solitons in their transversal space) are resolved to “strings” carrying charges at their ends.

Figure Conf. Indicated on the left is the equivalence re-
lation controlling the configuration space of charged points
in some Rn (discussed in [McD75]), where configurations in-
volving a positively and a negatively charged point are con-
nected by a continuous path to the corresponding configura-
tion where both of these points are absent (have mutually an-
nihilated). This configuration space is close to but not (weak-
homotopy) equivalent to the the group-completed configura-
tion space GConf(R2) (by [McD75, p. 6]).

Indicated on the right are the analogous relations in the con-
figuration space of charged “strings” (discussed in [Ok05]),
where charged points are replaced by line segments of finite
length whose endpoints are carrying charges. This config-
uration space is (weak-homotopy) equivalent to the group-
completed configuration space GConf(R2) (by [Ok05, Thm.
1.1]).
(In both cases, the curvy lines indicate continuous paths in
these configuration spaces, here realizing the pair-annihiliation
processes. Running along these paths in the opposite direction
reflects the corresponding pair-creation processes.)

Configurations of charged

points strings

∅ ∅

This is curious because it means that what naively looks like (non-supersymmetric) solitonic 2-branes inside
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the M5-brane worldvolume — indicated by the bars in (93) — is resolved via flux quantization in Cohomotopy to
a kind of open 3-branes stretching along finite intervals in one of the näıve three transverse directions:

Figure. The brane-diagram of the solitons on M5-branes
which carry anyonic quantum observables under Hypothesis
H. Here, from right to left:

(i) both the M5 and its worldvolume soliton are wrapped
on the M/IIA circle S1

A in order to admit topological
lightcone quantization (...)

(ii) the M5-brane itself is moreover wrapped over the
M/HET circle S1

H , but their worldvolume solitons that
we focus on are those (94) that are stuck at an O-plane,
i.e. at one of the fixed points in S1

H (the others escape
into the HW bulk and thuse will no longer be anyonic).

(iii) due to a subtle effect of flux quantization in Cohomo-
topy, these solitons have finite extension along one of
their would-be transverse directions inside the M5, as
explained with Figure Conf.

(iv) otherwise, after the compactification the solitons look
like strings that may move around each other in the
transverse plane (much like Abrikosov vortex strings
in a slab of type II superconducting material).

M5-worldvolume

soliton inside

R1,1× R1 × R1 × S1
H × S1

A

m
anifest

vortex
string

finite
extension

due
flux

quantization

stuck
at
O
-plane

w
rapping

M
/IIA

circle

braiding happens in
this transv. plane︷ ︸︸ ︷

soliton

transverse plane

Anyon braiding on holographic M5-branes. Since on holographic M5-branes we are (as shown above) neces-
sarily in the zero-charge sector, it follows that the dynamics of the above solitons is of the peculiar nature where
there are non-trivial braiding processes that however all start and end in the vacuum.

Remarkably, this is just the situation envisioned in many texts on computational processes based on anyon
braiding (e.g. [Kau02, Fig. 17][FKLW03, Fig. 2][Pa12, Fig. 4.10][Ro16, Fig. 2][RW18, Fig. 3][Ro22, Fig. 1]).

Figure. A based loop in the configuration space of charged points/strings
is an evolution that begins in the vacuum configuration ∅, then proceeds
by pair-creation into a configuration where a number of positively charged
points/strings and the same number of negatively-charged such objects have
appeared; then proceeds by braiding these and finally ends, via pairwise an-
nihilation of all the points/strings, again in the vacuum state ∅. Or rather,
along the way any number of further such vacuum diagrams may appear,
braid, disappear — not shown in the simple example on the right.

Just such processes are traditionally envisioned as computational processes in
texts of topological quantum computation, for the braids regarded as world-
lines of anyons.

Notice that this means to assume the sector of zero total charge.
∅ ∅

∅ ∅

(...)

5 Conclusion

(...)
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