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Abstract
The M5-brane has been argued to potentially provide much-needed theoretical underpinning for various non-

perturbative phenomena in strongly-coupled quantum systems (such as S-duality, confinement, skyrmions and
anyons), and yet the primary non-perturbative effect already in its classical on-shell formulation has received
little attention: The flux& charge-quantization of the higher gauge field on its worldvolume.

This problem appears subtle because of (1a.) the notorious self-duality of the 3-form flux density in the
small field limit, combined with (1b.) its highly non-linear self-duality for strong fields, and (2a.) the twisting
of its Bianchi identity by the pullback of the 11d SuGra C-field flux density, which (2b.) is subject to its own
subtle flux quantization law on the ambient spacetime.

These subtleties call into question the tacit assumption that the M5 brane’s 3-flux is quantized in ordinary
cohomology and hence leaves open the rather fundamental question of what the M5-brane’s worldvolume higher
gauge field really is, globally, controlling in particular which torsion-charged (“fractional”) solitons actually exist
on M5-worldvolumes.

Here we characterize the valid quantization laws of the M5-brane’s 3-flux in (non-abelian) generalized twisted
cohomology. The key step is to pass to super-spacetime and there to combine the rational cohomology of the
C-field-twisted character map with the “super-embedding”-construction of the on-shell M5-brane fields, of which
we give a rigorous and streamlined re-rederivation.

We show that one admissible quantization law of the 3-flux on M5-branes is by 4-Cohomotopy-twisted 3-
Cohomotopy, as predicted by “Hypothesis H”. Besides quantizing the bulk fluxes (G4, G7) and the brane’s
H3-flux themselves, this law also implies the (level-)quantization of the induced Page-charge/Hopf-WZ term on
the M5-brane, necessary for its action functional to be globally well-defined.

Finally, we demonstrate how with this flux quantization imposed, there generically appear skyrmionic solitons
on M5-branes and anyonic topological quantum states on open M5-branes.
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1 Introduction and Overview

The quest for non-perturbative strongly-coupled quantum theory. The key contemporary open question
in the foundations of theoretical physics — which traditionally relied on perturbation theory and mean field theory
for weakly-coupled systems — remains (cf. [BaSh10][HW15, §4.1]) the general analytic understanding of strongly-
coupled quantum systems (such as confined chromodynamics, c.f. [Br14]). With it (cf. [AFFK15][FGSS20]) comes
the closely related issue of strongly-interacting and -correlated (long-range entangled) quantum systems (such as
topologically ordered quantum materials [ZCZW19, §6.3][SS23c], envisioned to provide future hardware for robust
topological quantum computers, e.g. [FKLW03][MySS24]).

The expected M5-brane model for strongly-coupled quantum systems. Meanwhile, the refinement of
quantum field theory by string theory (e.g. [BLT13]) — for whatever else its motivations and aims have been at
any time — has had the remarkable effect of leading to a glimpse of a general non-perturbative formulation of
fundamental quantum physics, famously going by the working title “M-theory” (cf. [Du96][Du99]). Notably for
holographic arguments about strongly-coupled quantum systems [ZLSS15][RZ16, §IV][HLS18] to become realistic
by not passing to their large-N limit requires including M-theoretic corrections in the dual gravitational theory
[AGMOY00, p. 60][SS23c, Fig. 4].

Within M-theory, the object most directly expressing (strongly coupled) quantum field theory in realistic num-
bers of spacetime dimensions is the “Fivebrane” or “M5-brane” (cf. [Du99, §3] and below (1)). Here, apart from
the widely appreciated implications on understanding weak/strong coupling S-dualities [Wi04][Wi09, §3-4], it is
worth highlighting that:

(i) the quantum fields on suitable M5-brane configurations engineer at least an approximation to confined quan-
tum chromodynamics (the Witten-Sakai-Sugimoto model [Wi98, §4] for “holographic QCD” [Re15], including
the realization of hadron bound states [Su16][ILP18]) via skyrmions – cf. §4.2 below;

(ii) co-dimension=2 defects inside M5-branes have been argued [CGK20][SS23b] to carry anyonic quantum ob-
servables (cf. (142) below) as expected in topologically ordered quantum materials [SS23c].

This means that a deep understanding of M5-branes may plausibly go a long way towards resolving outstanding
problems in contemporary strongly-coupled/correlated quantum systems.

At the same time, along with the ambient M-theory also a complete theory of the M-branes has actually been
missing (after all, the term “M-theory” is the “non-committal” abbreviation [HW96, p. 2] of “Membrane Theory”
due to doubts about the nature of the M2-brane theory): The above results are all deduced just from expected
subsectors of a would-be M5-brane theory. This lack of a complete “M5-brane model” is commonplace for the
quantum theory of coincident M5-worldvolumes in its decoupling limit expected to be given by a largely elusive
D = 6 N = (2, 0) superconformal field theory (e.g. [HR18][La19, §3][SäS18]). However, the problem reaches deeper.

The open problem of flux quantization on the M5-brane. Our starting point here is to highlight that an
open question had already remained both at a more fundamental level, namely concerning the full definition of
the classical (or pre-quantum1) on-shell field content on the single M5-brane worldvolume, as well as on a more
universal level, namely concerning the classification of “fractional” (i.e., torsion-charged, see §4.2) solitons on the
M5-worldvolume. This is the open problem of flux quantization (pointers and survey in [SS24b]) on the M5-brane
worldvolume.

The root cause is that alongside the ambient 11d supergravity field (for pointers and review see [MiSc06][GSS24a])
with its 4- and dual 7-form flux densities G4, G7 on 11-dimensional target spacetime X, also the field theory on
the worldvolume Σ of an M5-brane

M5-brane
worldvolume

Σ X 11-dimensional
spacetime

ϕ

“embedding” field

famously carries a 3-form flux density H3, subject to the following Bianchi identity ([HS97b, (36)][So00, (5.75)], we
give a streamlined account below in §3)

dH3 = ϕ∗G4 . (1)

So far this is very well known. However, most if not all authors now consider the corresponding higher gauge field
configuration to be exhibited by a globally defined gauge potential 2-form B2 on Σ (e.g. [APPS97, (27)][HS97b,
(37)][BLNPST97, (4)][CKvP98, (5.3)][SS98, (27)][CKKTvP98, (3.21)][So00, (5.74)][Ba11, (4.44)][BaSo23, (5.78)]).
Furthermore, together with gauge potential 3- and 6-forms C3, C6 on X this is taken to define the 3-form flux

1Flux quantization applies to the classical fields of a higher gauge theory, but it thereby determines the “pre-quantum line bundle”
for sigma-model branes which are charged under (i.e. feel the Lorentz force exerted by) these gauge fields.
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density H3 by the following formulas, which we (re-)derive these below in §4.1 from systematic flux quantization,
cf. Rem. 4.2:

H3 = dB2 + ϕ∗C3 , G4 = dC3 , G7 = dC6 +
1
2C3G4 . (2)

The problem here is that these equations (2) in general only make sense locally, namely on (open covers here to be

incarnated as) surjective submersions X̂ (28) onto X with compatible surjective submersion Σ̃ (41) onto Σ:

submersion
onto...

Σ̃ X̃ submersion
onto...

...M5-brane
worldvolume

Σ X ...11-dimensional
spacetime

ϕ̃

p
Σ

p
X

ϕ

“embedding” field

But this means that the local gauge-potential form fields
C3 ∈ Ω3

dR

(
X̃
)

C6 ∈ Ω6
dR

(
X̃
)

B2 ∈ Ω2
dR

(
Σ̃
)
∣∣∣∣∣∣∣∣
dC3 = G4

dC6 = G7 +
1
2C3G4

dB2 = H3 − ϕ∗G4


by themselves do not represent a complete higher gauge field configuration: Further field content is needed to glue
(C3 and) B2 on all higher intersections (29):

Σ̃×
X
· · · ×

X
Σ̃ X̃ ×

X
· · · ×

X
X̃

ϕ̃×
X
···×

X
ϕ̃

in a coherent manner that we recall in a moment.

The admissible choices of this remaining global field content are the flux quantization laws [SS24b] — these
determine which non-rational torsion brane charges (fractional branes, §4.2) may appear as sources of the field
fluxes; and it is only with this extra choice that even the classical on-shell field content of the higher gauge theory
is actually complete (cf. [SS24a]).

The analog problem of Dirac charge quantization. To appreciate the issue, we quickly compare it to the
analogous traditional situation in vacuum electromagnetism (cf. [SS24b, §2.1][SS24a, §3.1]): Here the flux density

is a 2-form F2 on spacetime X (the Faraday tensor), and the local gauge potential is a 1-form A1 on a submersion X̃
onto spacetime. There are in fact infinitely many admissible flux quantization laws even in this basic situation (cf.
[SS23d, §2]), but the standard one going back to [Dirac1931] says (as maybe first made explicit by [Al85a][Al85b])
that alongside the local gauge potential (

A1 ∈ Ω1
dR

(
X̃
) ∣∣ dA1 = F2

)
an electromagnetic field configuration consists, in addition, of a transition functionA0 ∈ Ω0

dR

(
X̃×X X̃

) ∣∣∣∣∣∣ dA0 = pr∗2A1 − pr∗1A1 ,

pr∗12A0 + pr∗23A0 = pr∗13A0 mod C0
(
X̃×

X
X̃×

X
X̃; Z

)
 . (3)

This data is of course (the Čech-Deligne cocycle presentation, for exposition see [FSS13, §2][FSS15a]) equivalent to a
connection on a U(1)-principal bundle over X. The point here is that this extra field content (3) has experimentally
measurable consequences, as it implies that

(i) there is a smallest unit of electric charge2 (as observed) and

(ii) Dirac-monopoles (hypothetical) but also Abrikosov-vortices (experimentally observed) carry integer multiples
of a unit magnetic charge

(iii) should the cosmos have the non-trivial topology such as that of a lens space with its torsion cohomology group
in degree 2 (for which, incidentally, there is mild observational support [AL12]), then it may carry torsion
magnetic charge (cf. [FMS07, p. 28]) of “fractional monopoles” (cf. §4.2).

These simple examples already show that (determination and understanding of) flux quantization is (or should

2Electric charge quantization is traditionally said to be conditioned on the assumption that magnetic monopoles exist (which re-
mains hypothetical) – but we highlight that the actual logic is slightly different: Magnetic monopoles are (just as the experimentally
observed Abrikosov vortices) compatible with and hence indicative of the assumption of EM-flux quantization in ordinary differen-
tial (Čech-Deligne) cohomology, and this assumption generally implies that the exponentiated Lorentz-(inter)action is the holonomy

“ exp
(
e
∫
S1 A

)
” = hol : Map(S1, X) −! U(1) (for electrically unit charged particles) of the flux-quantized background EM-field A⃗

regarded as a U(1)-principal connection, or at most an integer power “ exp
(
ne

∫
S1 Â

)
” = holn (for particles carrying n units of

fundamental electric charge).
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be) a crucial step in understanding the full phenomenological scope of a higher gauge theory, in particular with
respect to non-perturbative phenomena.

Clearly, it is important to understand flux quantization also for the M5-brane worldvolume theory. We may
approach this problem as follows.

The general rule for flux quantization on phase space. There is a beautiful general definition and rule for
admissible flux quantization laws ([FSS23][SS24a], review in [SS24b]) which applies naturally to all higher gauge
theories of higher Maxwell-type and recovers existing proposals for flux quantization, showing how to systematically
extend these to previously neglected theories:

If spacetime Xd+1 is globally hyperbolic with spatial Cauchy surface Xd

X1+d ≃ R1 ×Xd , (4)

so that the flux densities restricted to Xd constitute Cauchy data for the solution space of on-shell flux densities
on Xd+1, then the simple idea is that flux quantization means to

(i) accompany

flux densities F⃗ ≡
(
F (i) ∈ Ω

degi

dR (Xd)
)
i∈I satisfying Bianchi ids. dF (i) = P (i)

(
F⃗
)

(5)

(ii) with

charges c⃗ defining classes
[
c⃗
]
∈ H1(Xd; ΩA) in a generalized cohomology theory A (6)

(iii) subject to an

identification A⃗ : F⃗ ⇒ c⃗ of the flux densities with the charges in de Rham cohomology,

where the key technical issue is to understand what it means for both the flux densities and the charges to be
regarded as cocycles in a suitable form of de Rham cohomology where they can be compared. This is accomplished
by observing that (cf. [SS24b, §3][GSS24a, §2.1]):
(i) any system of Bianchi identities (5) is equivalently the closure condition on differential forms with coefficients

in a characteristic L∞-algebra a
F⃗ ∈ Ω1

dR(X
d; a)clsd (7)

whose concordance classes constitute the corresponding a-valued de Rham cohomology[
F⃗
]
∈ H1

dR(X
d; a) = Ω1

dR(X
d; a)clsd

/
cncrd , (8)

(ii) any generalized cohomology theory (6) is characterized by its (pointed) classifying space A as

H1(Xd; ΩA) := π0 Maps
(
Xd; A

)
whose character map landing in de Rham cohomology with coefficients (8) in the Whitehead L∞-algebra lA
is classified by the R-rationalization map on A:

A LRA

H1
(
Xd; A

)
H1
(
Xd; LRA

)
H1

dR

(
Xd; lA

)
,

ηR

H1(Xd; ηR) ≃

(iii) the required identification is a homotopy in the deformation ∞-stack of closed a ≃ lA-valued differential
forms

A

LR

Xd Ω1
dR(−; a)clsd SΩ1

dR(−; a)clsd

ηR

ch

∼

F⃗

flux densities

cha
rge

s

c⃗

η
S

A⃗ gauge potentials
(9)

This general prescription notably subsumes:

• traditional Dirac charge quantization of electromagnetism in (differential) ordinary integral 2-cohomology
[SS24a, §3.1][SS23d, §2],

• B-field flux quantization in (differential) ordinary integral 3-cohomology [SS24b, Ex. 3.10],

• flux quantization of self-dual higher gauge fields in (differential) ordinary cohomology [SS24a, §3.2],
• quantization of RR-fluxes in topological K-theory [SS24a, §3.3][SS24b, §4.1],
• a couple of proposed flux quantization laws for the C-field in 11d supergravity [SS24a, §3.4][SS24b, §4.2].

The issue of (self-)duality in flux quantization. What makes the above examples work is – besides the
assumption of globally hyperbolic spacetime (4) – that in all these cases the full equations of motion of the higher
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gauge theories are
(i) the Bianchi identities (5) (7)

dF (i) = P (i)
(
F⃗
)

(ii) and one more linear system of (self-)duality constraints

⋆F (i) = µ(i)
(
F⃗
)
, (10)

because it turns out [SS24a, Thm. 2.2] that for flux densities on a Cauchy surface the linear duality constraint (10)
is entirely absorbed into the isomorphism between the space of such Cauchy data and the solution space of flux
densities over all of spacetime.

However, both the assumption of globally hyperbolic spacetimes (4) and of the linear self-duality constraint (10)
is somewhat restrictive; in particular, the latter is actually violated for the 3-flux density on M5-branes ([HSW97],
cf. Rem. 3.16 below).

Resolution by flux-quantization on super-spaces. Our key move now for solving the problem of flux quan-
tization also on M5-branes is the observation that both of the above problems go away when considering the
M5-brane as immersed in super-spacetime (following [HS97b][So00, §5.2]). The reason is that here the self-duality
condition on the flux forms turns out to be all absorbed into the Bianchi identities on their super-field versions
(re-derived as Prop. 3.15)! Since this result — which in light of the problem of flux quantization is now revealed to
be quite profound — has perhaps remained under-appreciated outside the original specialist literature, our main
contribution in §3.3 below is to give a streamlined and rigorous re-derivation, based on some more mathematically
informed commentary on the proper definition of the underlying concept of “super-embeddings” in §2.

This resolution of the problem of flux quantization on the M5 builds on and extends the super-flux quantization
of the background 11d supergravity fields which we established in [GSS24a]:

Super-flux of 11d Supergravity. Namely, the analogous miracle of on-shell 11d supergravity (going back to
[CF80][BH80][CDF91, §III.8.5]), is that on super-spacetimes X (“curved superspace”, namely super-manifolds of
super-dimension (1, 10) |32 equipped with super-coframe fields (E,Ψ) and super-torsion-free spin connection Ω)
the Bianchi identities

dGs4 = 0 , dGs7 = 1
2G

s
4G

s
4 (11)

on the duality-symmetric super-flux densities

Gs4 ≡ (G4)a1···a4E
a1 · · ·Ea4︸ ︷︷ ︸

G4

+ 1
2

(
ΨΓa1a2 Ψ

)
Ea1 Ea2︸ ︷︷ ︸

G0
4

Gs7 ≡ (G7)a1···a7E
a1 · · ·Ea7︸ ︷︷ ︸

G7

+ 1
5!

(
ΨΓa1···a5 Ψ

)
Ea1 · · ·Ea5︸ ︷︷ ︸

G0
7

(12)

are already equivalent (as brought out in this form in [GSS24a, Thm. 3.1]) to the equations of motion of 11d
SuGra; in particular they imply the Hodge duality relation

G7 = ⋆G4 ∈ Ω7
dR

(
X
⇝)

(13)

on the underlying bosonic spacetime manifold X
⇝
↪−! X.

This is remarkable, because it means ([GSS24a, Claim 1.1]) that the flux quantization (9) applied to the super-
flux densities (12) on (1, 10|32)-dimensional super-spacetime may be regarded the full globally completed field
content of on-shell 11d supergravity, reflecting also all torsion/fractional charges of M-branes (according to that
choice of flux quantization).

Here we are concerned with further refining this result to include the M5-brane worldvolume theory in such a
background.

Super-flux on the M5-brane. Namely, a similar miracle occurs (this goes back to [HS97b][So00, §5.2], re-

derived in §3.3 below) for M5-brane worldvolumes Σ
ϕ
↪−! X understood as “super-embeddings” ([HRS98], or more

precisely 1/2BPS immersions, cf. Defs. 2.19, 3.12 below) of (1, 5 | 2 ·8)-dimensional super-spacetimes (with induced
super-coframe fields (e, ψ) and spin-connection ω) into (1, 10|32)-dimensional super-spacetimes as above. Here the
worldvolume Bianchi identity (1)

dHs
3 = (ϕs)∗Gs4 (14)

is now imposed on the super-flux densities (12) and

Hs
3 ≡ (H3)a1a2a3 e

a1ea2ea3︸ ︷︷ ︸
H3

+ 0︸︷︷︸
H0

3

(15)
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already implies (re-derived as Prop. 3.15 below) the subtle non-linear Hodge self-duality property of H3 (cf. Rem.
3.16), namely that it is expressed as a rational function of a super-3-form which is actually self-dual:

⇒ (H3)abc =
−4

1− 2/3 tr(H̃2
3 · H̃2

3 )

(
δaa′+2 (H̃2

3 )
a′

a

)
(H̃3)a′bc , for

(H̃3) ≡ 1
3! (H̃3)a1a2a3e

a1ea2ea3

(H̃3)a1a2a3 = 1
3!ϵa1a2a3 b1b2b3(H̃3)

b1b2b3 .
(16)

With this result in hand, the admissible flux-quantization laws for completed field content on M5-branes now
follows from general considerations:

Characteristic flux L∞-algebra on the M5. The immediate consequence is that the on-shell flux densities on
the M5 super-worldvolume are entirely characterized by the Bianchi identities (11) on the super-fluxes and (14);
and the first step towards flux-quantizing them is hence to identify their characteristic L∞-algebra (7).

• For the 11d Sugra C-field Bianchi identity (11), this is ([Sa10, §4][SS24b, (24)][GSS24a, Ex. 2.29]) the
“M-theory gauge algebra” [CJLP98, (2.6)]

lS4 ≃ R
〈
v3
v6

〉/(
[v3, v3] = v6

)
⇔ CE

(
lS4
)

≃ R
[
g4
g7

]/(d g4 = 0
d g7 = 1

2g4g4

)
, (17)

• while with the M5’s B-field Bianchi identity (14) adjoined, in addition a non-trivial unary bracket [−] appears:

l
S4S

7 ≃ R

〈
v3
v6
v2

〉/( [v3, v3] = v6
[v3] = v2

)
⇔ CE

(
l
S4S

7
)

≃ R

 g4g7
h3

/d g4 = 0
d g7 = 1

2g4g4
dh3 = g4

 . (18)

Here the notation on the left indicates that these L∞-algebras happen to coincide (by [FSS20b, Prop. 3.20], cf.
[FSS21a, (38)]) with the (relative) R-Whitehead L∞-algebras (cf. [FSS23, Prop. 5.16]) of (the homotopy type of)

the 4-sphere and of the quaternionic Hopf fibration S7 hH−! S4, respectively, corresponding to the L∞-fibration

l
S4S

7 v3 v6 v2

lS4 v3 v6 0 .

lhH

This means that the on-shell flux density content on the M5-brane is concisely embodied by commutative
diagrams of smooth super-spaces (as explained in [GSS24a, §2.1], for background see [GS23][GSS24b]) of the
following form:

super-worldvolume Σ1,5|2·8 Ω1
dR

(
−; lS4S7

)
clsd

11d super-spacetime X1,10|32 Ω1
dR

(
−; lS4

)
clsd

ϕ
M5 super-immersion

(Def. 3.12)

(
ϕ∗Gs

4, ϕ
∗Gs

7, H
s
3

)
worldvolume
B-field flux

(lhH)∗

(Gs
4, G

s
7)

background
C-field flux

⇔


dHs

3 = ϕ∗Gs4

dGs4 = 0

dGs7 = 1
2G

s
4G

s
4.

(19)

Here the bottom map reflects a solution to 11d supergravity (by [GSS24a, Ex. 2.30, Thm. 3.1], following
[CF80][BH80]), the left map reflects a solution to the M5-brane’s equations of motion (discussed in §3, follow-
ing [HS97b][So00, §5.2]) in this background, and the unique top map making the diagram commute extracts the
corresponding worldvolume flux density (re-derived in Prop. 3.15 below).

Super-flux quantization on M5-branes. The upshot of casting the equations of motion of the M5-brane in the
diagrammatic form (19) is that it reveals the admissible flux quantization laws (cf. [SS24b, §3.2]) to be classified
by fibrations p : A −! B (of connected nilpotent spaces of finite rational homotopy type lp, cf. [FSS23, Def. 5.1])
whose rational homotopy type (the target of the twisted character map, cf. [FSS23, §V]) is that of the quaternionic
Hopf fibration hH,

Σ1,5|2·8 A lBA l
S4S

7

X1,10|32 B lB lS4

ϕ

(ϕ∗c3, ϕ
∗c6, b2)

worldvolume
charges

p

!∼

lp lhH7−!

(c3, c6)

background
M-brane charges

!∼

(20)

On the bottom of the diagram this is the situation discussed in [GSS24a]: Given such a choice B for the base

6



classifying space of the cohomology theory in which M-brane charge takes values, the flux-quantized gauge fields
of the 11d supergravity background according to (9) are given by dashed maps as on the bottom of the following
diagram of supergeometric ∞-groupoids, constituting a cocycle in differential B-cohomology [FSS23, Def. 9.3]:

A

Σ1,5|2·8 S
(
Ω1

dR(−; llS4S7)clsd
)

Ω1
dR

(
−; lS4S7

)
clsd

B

X1,10|32 S
(
Ω1

dR(−; lS4)clsd
)

Ω1
dR

(
−; lS4

)
clsd

chB
A

ϕ

(ϕ
∗ c3, ϕ

∗ c6, b2
)

(ϕ∗
Gs

4 , ϕ∗
Gs

7 , Hs
3 )

B̂2

η
S

chB
(c3,c6

)

(Gs
4 ,Gs

7)

(Ĉ3, Ĉ6)

η
S

(21)

Now, the completion of the bottom part to the full diagram via the top dashed maps constitutes the construction
of complete flux-quantized on-shell fields on the M5-brane worldvolume, being cocycles in the twisted differential
A-cohomology [FSS23, Def. 11.2], with the twist here being the pullback of the bulk differential cocycle to the
worldvolume.

It is instructive to re-write this a little (as in [FSS23, (11.4)]): Noticing that in (21) we have homotopy “cones”
over a “cospan” (of supergeometric ∞-groupoids), the diagram factors equivalently through the homotopy fiber
products (of the character maps ch with the flux images ηS):

Σ1,5|2·8 Adiff/B := A ×
ch ηS Ω1

dR(−; lS4S7)clsd

X1,10|32 Bdiff := B ×
ch ηS Ω1

dR(−; lS4)clsd

ϕ

(ϕ∗c3, ϕ
∗c6, b2) ×

ch ηS (ϕ
∗Gs

4, ϕ
∗Gs

7, H
s
3 )

complete flux-quantized
B-field on M5-brane

pdiff p ×
ch ηS lp∗

(c3,c6) ×
ch ηS (G

s
4,G

s
7)

complete flux-quantized
C-field of 11 SuGra background

in refinement of the front square diagram in (21), which expresses in diagrammatic form (19) the super-flux Bianchi
identity (1) that we started with.

This solves the problem of flux-quantization on the M5-brane in generality. In order to say more, we next turn
attention to a particular choice of admissible flux-quantization law.

Hypothesis “H” about Flux quantization on the M5-brane. The admissibility condition (20) on flux-
quantization laws on the M5-brane is a strong constraint, but it still leaves infinitely many in-equivalent choices.
For instance, with every admissible flux quantization law p : A −! B also its Cartesian product with the classifying
space BK of any finite group K is again admissible (because the homotopy groups of such BK are purely torsion,
so that the corresponding charges have vanishing reflection in the flux densities). At the same time, the form of (20)
suggests an evident choice among this infinitude of choices: The condition that p : A −! B be of the same rational
homotopy type as the quaternionic Hopf fibration is of course solved by taking p := hH to be the quaternionic Hopf
fibration itself!

Now the (twisted) generalized cohomology theory classified by the (quaternionic Hopf fibration between) spheres
is called (twisted, unstable) co-Homotopy theory (review and pointers in [FSS23], more on this in section 4.2 below),
denoted as follows:

M-brane charge in
4-Cohomotopy

[c3, c6] ∈ π4(X) := π0 Maps
(
X, S4

)
=

{
X S4(c3,c6)

}/
hmtp.

charges on M5-branes in
twisted 3-Cohomotopy

π3+ϕ∗(c3,c6)(Σ) := π0Maps
(
Σ, S7

)
/S4 =


Σ S7

X S4

ϕ

b2

hH

(c3, c6)

/
rel.hmtp.

(22)

Therefore, the hypothesis that this “evident” choice of flux-quantization is the “correct” one for completing the
theory of the M5-brane in M-theory has been called “Hypothesis H” in [FSS20b][FSS21a][FSS21c][GS21][SS23a],
following [Sa13, §2.5] (the corresponding differential co-Homotopy for the M5-brane fields was first considered in
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[FSS15b]), which may be thought of as an M-theoretic version of the traditional “Hypothesis K” that D-brane
charges are in (twisted) K-theory (cf. [SS23b, Rem. 4.1]).

Hypothesis H is supported by the fact that it implies a series of subtle topological (anomaly cancellation) condi-
tions which are expected to hold in M-theory, notably the following two, which are necessary for the exponentiation
of the usual gauge-coupling action functionals for the M-branes ([PST97, §3]) to even be globally well-defined:3

• [FSS20b, Prop. 3.13] the shifted flux quantization of the flux sourced by M5-branes,

[G4+
1
4p1] ∈ H4(X; Z) −! H4

dR(X) , (23)

which serves as the WZ-term on M2-branes,

• [FSS21a, Thm. 4.8]: the integral flux quantization of the the Page charge[
2̃G7 +H3 (G4+

1
4p1)

]
∈ H7

(
Σ7; Z

)
−! H7

dR(Σ
7) (24)

sourced by M2-branes, which serves as the Hopf-WZ term on M5-branes.

Notice here that the fiber of the quaternionic Hopf fibration is the 3-sphere S3 S7 S4 ,
fib(hH) hH which

implies that the charges on the M5 (22) are locally cocycles in 3-Cohomotopy, globally twisted by the 4-Cohomotopy
of the supergravity background. In [FSS21c] it was explained how, under Hypothesis H, this reveals the H3-flux as
associated with a kind of “non-abelian gerbe field” on the M5-brane not unlike the proposals made in [Wi04, p. 6,
15][Wi09, §3][SäS18][SäS20].

The need for super-flux quantization. However, in these previous discussions of Hypothesis H it had been
left open which effect, if any, the duality-relations on the flux densities have on the flux quantization process (away
from a Cauchy surface, where the issue was solved in [SS24a]). This is the remaining point which we solve here
(in tandem with [GSS24a]), by passing to super-spacetimes and observing that here the duality relations on the
bosonic flux densities are absorbed within the Bianchi identities of their super-flux enhancements, so that flux
quantization on super-space is revealed to already deal with the exact on-shell field content, not requiring any
further constraints. In order to properly bring out this remarkable but subtle point we proceed as follows:

in §2 Revisiting super-embeddings we review the idea of “super-embeddings” of super p-branes with attention
to what we feel have remained loose ends: the global nature of co-frame fields, the relation to the classical theory
of Darboux co-frame fields, and an observation on how to naturally unify/streamline what actually is a list of
traditional “super-embedding” conditions.

in §3 M5-brane super-immersions we systematically re-derive the equations of motion of the 3-flux on M5-
branes using a transparent algebraic description of the all-important reduction and branching of spin represen-
tations on the M5-brane.

Analyzing quantized flux on M5-branes. With these results in hand, we close

in §4 Flux quantization on M5 branes by showing how flux quantization on the M5 reproduces the traditional
local formulas for higher gauge potentials while completing these to global fields that may exhibit skyrmionic
and anyonic topological properties.

3 The gray terms in (23) and (24) arise generally on curved spacetimes by use of tangentially twisted co-Homotopy [FSS20b]. But
from the point of view of super-gravity these are higher-curvature corrections [Ts04b] whose super-space discussion is beyond the scope
of the present article (cf. [GSS24a, p. 35]). On the other hand, for backgrounds like the Freund-Rubin spacetime AdS7 × S4 (cf. §4.1)
the Pontrjagin classes pn and hence these higher curvature corrections vanish anyways, cf. [SS21a, Prop. 22]. Discussion of general
tangentially twisted Cohomotopy on M5-branes is in [FSS21a][FSS21c].
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2 Revisiting “super-embeddings”

Here we give a streamlined and rigorous account of the “super-embedding approach” to super p-brane sigma
models (due to [BPSTV95][HS97a][HRS98][So00], previously reviewed in [Ba11][BaSo23]), providing a precise super-
geometric formulation (which seems previously to have been missed by super-geometers, cf. [Ro07, §13.3]). Besides
setting the scene for the analysis following in §3 and clearing up some fine-print not usually considered in the
literature, the main observation here is (Prop. 2.21) a slick way to unify (Def. 2.19 of “BPS super-immersions”)
the traditional data of “super-embeddings” (Rem. 2.23) by generalizing the classical notion of Darboux coframe
fields for Riemannian immersions (discussed in §2.1); see also Rem. 2.10 for the distinction between immersions
and embeddings.

Conventions. Our conventions are standard, but since the computations in §3 crucially depend on the corre-
sponding prefactors, here to briefly make them explicit:

Notation 2.1 (Tensor conventions).
• The Einstein summation convention applies throughout: Given a product of terms indexed by some i ∈ I, with
the index of one factor in superscript and the other in subscript, then a sum over I is implied: xi y

i :=
∑
i∈I xi y

i.
• Our Minkowski metric is the matrix(

ηab
)d
a,b=0

=
(
ηab
)d
a,b=0

:=
(
diag(−1,+1,+1, · · · ,+1)

)d
a,b=0

(25)

• Shifting position of frame indices always refers to contraction with the Minkowski metric (25):

V a := Vb η
ab , Va = V bηab .

• Skew-symmetrization of indices is denoted by square brackets ((−1)|σ| is sign of the permutation σ):

V[a1···ap] :=
∑

σ∈Sym(n)

(−1)|σ|Vaσ(1)···aσ(p)
.

• We normalize the Levi-Civita symbol to

ϵ012··· := +1 hence ϵ012··· := −1 . (26)

• We normalize the Kronecker symbol to

δ
a1···ap
b1···bp := δ

[a1
[b1

· · · δap]bp]
= δa1[b1 · · · δ

ap
bp]

= δ
[a1
b1

· · · δap]bp

so that
Va1···apδ

a1···ap
b1···bp = V[b1···bp] and ϵc1···cpa1···aq ϵc1···cpb1···bq = − p! · q! δa1···aqb1···bq . (27)

2.1 Darboux co-frame fields

We recall the classical notion of Darboux co-frame fields for (pseudo-)Riemannian immersions (Def. 2.12 below,
which may not to have found due attention in the super-embedding literature before) and re-cast it into an equivalent
form (Prop. 2.16) whose super-geometric generalization turns out to be just that of 1/2BPS super-immersions
(“super-embeddings”) of super p-branes (§2.2 below).

In order to be precise, we begin now by being a little pedantic about some maybe underappreciated global
aspects of local coframe fields (which can be and typically are ignored in local analysis but can no longer be ignored
for global discussions such as of flux quantization) — the impatient reader may want to skip ahead to §2.2 and
come back here only as need be.

Relativistic local co-frame fields. In much of the physics literature, coframe fields E on a spacetime X are
shown on a single tacitly-assumed chart U ↪−! X only, instead of on all of spacetime X, leaving their global definition
to the imagination of the reader. But since global issues cannot be neglected for our purpose of flux quantization,
we introduce a tad of extra notation that allows to elegantly deal with this issue properly.

Open covers. Namely given an open cover of spacetime
{
Uj

ιi
↪−−! X

}
j∈J such that the coframe field E is

naively defined on each of the charts Uj , then we denote smooth manifold which is the disjoint union of all these
charts as follows

open cover{
Uj

ιi
↪−−! X

}
j∈J X̃ :=

corresponding open submersion∐
j∈J

Uj , with
X̃ X

(x, j)︸ ︷︷ ︸
∈Uj

7−! x

p

(28)
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In terms of this, the co-frame field is a map of the form E : TX̃ −! R1+d, namely a J-tuple of map
(
Ej : TUj !

R1+d
)
j∈J , satisfy some conditions which we we summarize in Def. 2.2 below.

To that end, notice that given a pair of open covers
{
Uj

ιj
↪−! X

}
j∈J and

{
U ′
j′

ι′j
↪−! X

}
j′∈J′ (which might be the

same) of the same space spacetime X, the disjoint union of all the intersections Uj ∩U ′
j′ of their charts is their fiber

product with respect to the maps (28):

X̃×
X
X̃ ′ =

∐
j∈J

j′∈J′

Uj ∩ U ′
j′

X̃×
X
X̃ ′

X̃ X̃ ′

X

pr pr′

p p′

with

X̃×
X
X̃ ′ X̃

(x, j, j′)︸ ︷︷ ︸
∈Uj∩U ′

j′

7−! (x, j) .

pr

(29)

Therefore the pullback of the co-frame along pr is the original one restricted from the charts Uj to all their
intersections with the charts U ′

j′ :

pr∗E TX̃×
X
X̃ ′ TX̃ X

(v, j, j′)︸ ︷︷ ︸
∈T (Uj∩U ′

j′ )

7−! (v, j)︸ ︷︷ ︸
∈TUj

7−! Ej(v)

:
pr p

Definition 2.2 (Relativistic local co-frame field). Given a smooth manifoldX of dimension 1+d, a Relativistic
local co-frame field E on X is any one of the following six equivalent structures (given in increasing level of
concreteness):

(1.) a smooth O(1, d)-structure on X;

(2.) a smooth reduction of the structure group of the frame bundle of X through O(1, d) ↪! GL(1 + d);

(3.) a vector bundle isomorphism from the tangent bundle to a Minkowski-space fiber bundle;

(4.) a local trivialization of the tangent bundle whose transition functions take values in O(1, d) ↪! GL(1 + d);

(5.) (i) an open cover X̃ X ,opn

(ii) a fiberwise linear isomorphism TX̃ R1,d×X̃
X̃

∼
t

(iii) whose transition function is Lorentz-valued

g : R1,d×X̃×
X
X̃ T X̃×

X
X̃ R1,d×X̃×X X̃

pr∗1 t
−1 pr∗2 t with g ∈ C∞(X̃×

X
X̃; O(1, d)

)
, (30)

(iv) where a pair of such local trivializations (X̃1, t1) (X̃2, t2) is regarded as equivalent if there is a Lorentz-

group valued function k ∈ C∞(X̃1×X
X̃2; O(1, d)

)
such that

TX̃1×X
X̃2 X̃1×X

TX̃2

R1,d × X̃1×X
X̃2 R1,d × X̃1×X

X̃2

∼

pr∗1t1 pr∗2t2

k

(31)

(6.) (i) a differential 1-form E ∈ Ω1
dR

(
X̃; R1,d

)
(ii) for which there is t as above with

TX̃ R1,d × X̃ R1,dt
∼

E
(32)

which means by (30) that on double overlaps these 1-forms are related by Lorentz transformations given
by the transition functions:

TX̃ ×
X
X̃ T X̃ ×

X
X̃

R1,d×X̃×
X
X̃ T X̃×

X
X̃ R1,d×X̃×

X
X̃

pr∗1t pr∗2t

pr∗1t
−1

g

pr∗2t

(33)

(iii) again subject to the above notion of equivalence (31).
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Remark 2.3 (Čech cocycle data from co-frames). Beware that in the above Def. 2.2 there are no further
conditions imposed on triple overlaps, because we are not constructing a bundle from Čech cocycle data, but instead
are extracting Čech data (in order to impose orthogonality conditions on it) from picking local trivializations (the
co-frames) of an already given bundle (the tangent bundle). Indeed, the transition function (30) induced by a
choice of co-frames necessarily satisfies on triple overlaps

X̃×X X̃×X X̃
X̃×X X̃ X̃×X X̃

X̃×X X̃

pr12 pr13 pr23

its Čech cocycle condition

pr∗23 g · pr∗12 g = pr∗13 g hence ∀
ijk

x∈Uijk

gjk(x) · gij(x) = gik(x)

because the following diagram commutes by construction:

R1+d×X̂

p∗TX

R1+d×X̂ R1+d×X̂

pr ∗
23 g

pr∗23 t

pr∗2 t pr∗3 t

pr
∗
12
g

pr∗13 g

hence ∀
i,j,k

x∈Uijk

R1+d

TxX

R1+d R1+d .

g
jk (x)

Ej(x)

Ei(x) Ek(x)

g i
j
(x
)

gik(x)

This is closely related to the equivalence of co-frame fields to metric tensors, which we come to in Lem. 2.7 and
Rem. 2.8 below.

Notation 2.4 (Co-frame components). With the canonical coordinate projection functions denoted

R1,d ≃ R1 × R1 × · · · × R1 R ,(−)a

a ∈ {0, 1, · · · , d} ,

we have the usual component-expression of a co-frame field (Def. 2.2):

Ea ∈ Ω1
dR

(
X̃
)

for TX̃ R1,10 R .E (−)a

For instance, in these components the transition function (30) and the transformation property (33) reads:

pr∗2(E
a) = gab(pr

∗
1E

b) .

Definition 2.5 (Orthonormal local co-frames). A coframe field (Def. 2.2) induces a metric tensor ds2 on X,
as the tensor square of the associated 1-form E (32) by the formula

ds2 := Ea ⊗ Ea := ηabE
a ⊗ Eb . (34)

By (33) this tensor descends from the cover X̃ to X, making it a pseudo-Riemannian manifold
(
X,ds2

)
.

Conversely, given a (pseudo)-Riemannian metric on X, a local co-frame field E is called orthonormal if it
represents that metric, in that the above relation holds (cf. e.g. [Lee18, p. 14]).

The following Lem. 2.6 is a classical fact, but worth recording as preparation for the construction of Darboux
co-frames in Lem. 2.15, which is needed for “super-embeddings” in Def. 2.19 to be well-defined.

Lemma 2.6 (Existence of orthonormal co-frames). On a (pseudo-)Riemannian manifold (X,ds2) there exists
a (relativistic) orthonormal co-frame (Def. 2.5).

Proof. Since X is a smooth manifold, we may find an open cover X̂ of X by coordinate charts, with associated
coordinate function x : X̃ −! R1,d. This locally induces a canonical co-frame given by the tuple of coordinate
differentials

(
dx0, dx1, · · · ,dxd

)
and a frame given by the tuple of coordinate vector fields

(
∂0, ∂1, · · · , ∂d

)
. While

these will in general not be orthonormal with respect to ds2, the pseudo-Riemannian version of the Gram-Schmidt
algorithm (e.g. [O’N83, Lem. 2.24], here for matrices with coefficients in C∞(X̂)) produces a local frame that is
orthonormal. (

Va := Eµa ∂µ
)d
a=0

, ds2
(
Va, Vb

)
= ηab . (35)

The Gram-Schmidt coefficient matrix is invertible, with inverse to be denoted by shifting its indices, as usual:(
Eaµ
)d
a,µ=0

:=
((
Eµa
)d
a,µ=0

)−1

. (36)
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These inverse coefficients define the desired orthonormal co-frame(
Ea := Eaµdx

µ
)d
a=0

, ηabE
a ⊗ Eb = ds2 (37)

due to the orthonormality (35) and the invertibility (36):

ηabE
a
µ E

b
ν = ds2µν ⇔ ηab = Eµa E

ν
b ds

2
µν . (38)

It just remains to verify that (37) satisfies the global conditions on a co-frame from Def. 2.2, which amounts to

checking that on double overlaps X̃×
X
X̃ the transition matrix is orthogonal(

gaa′ :=
(
pr∗1E

a
µ

)(
pr∗2E

µ
a′

))d
a,a′=0

∈ C∞(X̃; O(1, d)
)
, (39)

which is indeed the case:

ηab g
a
a′ g

b
b′ = ηab

((
pr∗1E

a
µ

)(
pr∗2E

µ
a′

))((
pr∗1E

b
ν

)(
pr∗2E

ν
b′

))
by (39)

= ηab
(
pr∗1E

a
µ

)(
pr∗1E

b
ν

)︸ ︷︷ ︸
ds2µν

(
pr∗2E

µ
a′

)(
pr∗2E

ν
b′

)
by (38)

= ηa′b′ by (38).

(40)

Lemma 2.7 (Essential uniqueness of orthonormal co-frame fields). Any pair of orthonormal frames E, Ẽ
for the same metric ds2 is equivalent by a unique transformation (31).

Proof. We may assume without restriction that the two co-frames are given by differential forms E, Ẽ : TX̃ −! R1+d

with respect to the same cover by coordinate charts x : X̃ −! R1+d (otherwise pull them back to the common

refinement cover X̃1×X
X̃2 and then further to any coordinate atlas X̃ of that). Here, both are expanded in

components of the corresponding coordinate frame

Ea = Eaµ dx
µ , Ẽa = Ẽaµ dx

µ .

By their co-frame property, the coefficient matrices are pointwise invertible with inverses to be denoted by shifting
the indices, as usual:

(Eµa )
d
a,µ=0 :=

(
(Eaµ)

d
a,µ=0

)−1
.

Therefore (
kaa′ := Ẽaµ E

µ
a′

)d
a,a′=0

∈ C∞(X̃, GL(1 + d)
)

is the unique transformation

kaa′E
a′ = Ẽa

R1+d R1+d

TxX

k

E(x) Ẽ(x)

and the fact that this is an orthogonal transformation ηab k
a
a′ k

b
b′ = ηa′b′ , follows as in (40).

Remark 2.8 (Groupoid of co-frame fields equivalent to set of metrics). The pair of Lemmas 2.6 and 2.7
may jointly be understood as saying that the functor from the groupoid of (relativistic) co-frame fields E to the
set of (pseudo-)Riemannian metric tensors ds2 (on a given smooth manifold X) is essentially surjective (in fact
surjective) and fully faithful, hence is an equivalence.

Remark 2.9 (Lifting smooth maps to covers). The notion of equivalence on the data in Def. 2.2 ensures that

the specific choice of open cover X̃ is irrelevant — which justifies our notation suggestive of any one open cover of
X. But to lift a smooth map Σ −! X to a map between chosen covers

Σ̃ X̃

Σ X

ϕ̃

ϕ

(41)

the cover Σ̃ needs to be fine enough, relative to the given X̃. This can always be achieved. Given ϕ, the canonical
choice for the cover of Σ is the pullback Σ̃ := Σ ×X X̃ ∼=

∐
j∈J ϕ

−1(Uj) of the cover on X, hence the case where
(41) is a Cartesian square.

(The general way of dealing with these matters is to work with (model categories of) “smooth ∞-stacks”, where
the issue of passing to covers is reflected in the notion of cofibrant resolutions. The interested reader may find these
methods concisely reviewed in [FSS23, §1], but for the present purpose the above considerations are sufficient.)
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Immersions. The notion of isometric embeddings of Riemannian manifolds into each other is of course a classical
one, with the “isometric embedding problem” – namely the task of finding isometric embeddings of given abstract
Riemannian manifolds into large-dimensional but flat Euclidean spaces – being a seminal problem in the field of
Riemannian geometry (cf. [HL23]). The key observation of the “super-embedding approach” to super p-branes is
that certain immersions of supermanifolds are considerably richer than their bosonic counterpart might suggest,
in that their super-odd component may encode extra data (Rem. 2.15) of differential forms on the embedded
submanifold, playing the role of flux densities of higher gauge fields appearing on these brane worldvolumes.

Remark 2.10 (Immersions vs. embeddings). In developing this here with mathematical precision, we start
by noticing that it is not really embeddings but immersions

TΣ TX

Σ×
X
TX

immersed manifold
(brane worldvolume)

Σ X ambient manifold
(bulk/target space)

dϕ

fiberwise injection

(pb)

ϕ

immersion (colloq.:
“embedding field”)

(42)

that are relevant here — recalling (e.g. [Bo75, §III.4]) that an embedding of smooth manifolds is

(1.) an immersion — namely a smooth map ϕ whose differential dϕ is fiberwise an injection of tangent spaces (42),

(2.) which in addition is a homeomorphism onto its topological image.

These are non-degeneracy conditions on ϕ, locally and globally:

(i) The first condition is local and translates, as we will see, to differential equations on ϕ,

(ii) but the second condition is to rule out global degeneracies of ϕ, such as points in target space where two
distinct points of the embedded manifold touch.

Strikingly, it is the differential equations of (i) which, in the super-geometric situation below, translate to the
equations of motion of super p-branes — this is the phenomenon of interest here. But no global constraints (ii) on
p-brane dynamics are meant to be imposed. Therefore “super-embedding approach” is a little bit of a misnomer –
what the literature is really concerned with is both weaker and stronger than super-embeddings: weaker because
only super-immersions are required, and stronger because these immersions are required to “preserve half of the
local supersymmetry”, hence to be “1/2BPS” (e.g. [DEGKS08]).

Therefore we speak of “1/2BPS super-immersions” (Def. 2.19 below, see Rem. 2.23 for relating back to the
“super-embedding” terminology).

Darboux co-frames for immersions. We observe in §3 that what in the super-p-brane literature came to be
known as the “super-embedding condition” is what in classical differential geometry is known as the characterization
of Darboux coframes adapted to immersions (42). Therefore we here first dwell a little on Darboux coframes over
ordinary manifolds. The following Def. 2.12 of Darboux co-frames may be found in [St64, p. 246 (2.11)][GH79,
(1.13)][Za88, p. 426][MRS12, Def. 1.17][Gi20, §3]; it is the evident higher-dimensional generalization of É. Cartan’s
characterization of embedded surfaces by adapted coframes (cf. [Cartan26, p. 211]) and the evident dualization of
the notion of Darboux frames [St64, p. 244 Def. 2.1][GH79, (1.12)][BBG83, p. 818], which in turn are the evident
higher-dimensional generalization of the original Darboux frames used in the differential geometry of curves and
surfaces embedded into Euclidean 3-space (e.g. [Gu77, p. 210][PB20, p. 107]).

Notation 2.11 (Tangential and transversal components). Given an immersion ϕ : Σ ↪−! X of smooth
manifolds of dimensions 1 + p ≤ 1 + d ∈ N, respectively, we write

P : R1+d R1+p R1,d
tangential projector (43)

for the linear projector onto the first 1 + p coordinate axes in the corresponding local model space, and

P : R1+d Rd−p R1,d
transversal projector (44)

for the complentary projector onto the last d− p coordinate axes.

Given moreover a co-frame field TX̃ R1+dE (Def. 2.2) and a lift ϕ̃ : Σ̃ −! X̃ (Rem. 2.9) we denote by

e := P ◦ E ◦ dϕ̃ the pullback of E along ϕ̃ to Σ̃, post-composed with the projection operator (43)

e := P ◦ E ◦ dϕ̃ : T Σ̃ TX̃ R1+d R1+p R1+d .
dϕ̃ E

P

(45)
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Notationally, this means that e may still be regarded as carrying an index ranging through both tangential and
transverse directions, while it just happens to vanish on all transverse indices:

ea =

{
ϕ∗Ea for tangential a,
0 for transversal a.

This terminology is adapted to the following situation:

Definition 2.12 (Darboux co-frame fields). For (X,ds2) a smooth (pseudo-)Riemannian manifold and ϕ : Σ −!
X an immersion (42) of a smooth manifold Σ, then an orthonormal co-frame field E (Def. 2.5) is called adapted or
Darboux for ϕ if, in the terminology of Ntn. 2.11

ϕ∗Ea = 0 for transversal a ⇔ ϕ∗PE = 0 . (46)

Remark 2.13 (Coframe field implied by Darboux condition). Due to the split short exact sequence of
vector spaces

0 R1+p R1+d Rd−p 0P

P

the Darboux-condition (46) implies that the projected pullback e of E (45) is a co-frame field on Σ (cf. [GH79,
(1.13)]):

∀
σ∈Σ̃

R1+p

TσΣ̃ Tϕ(σ)X̃ R1+d R1+p × Rd−p

Rd−p .

dϕ̃

0 = ϕ∗PE

e = ϕ∗PE

∼

E
∼ ∼

P

P

(47)

Notice that this situation of Darboux co-frames:
(i) is just what was eventually called the “embedding condition” in the “super-embedding”-literature, cf. [Ba11,

(2.6-9)][BaSo23, (5.13-14)] – noticing that this is crucially stronger than just the top part of (47) which was
the original “geometrodynamical condition” of [BPSTV95, (2.23)];

(ii) justifies the terminology “tangential” and “transversal” in Ntn. 2.11, because with a Darboux co-frame given,
the co-frame fields Ea at ϕ(Σ) ⊂ X carrying a tangential or transversal index according to (80) are exactly
those which are tangential or transversal to the immersed manifold Σ, respectively.

Definition 2.14 (Pseudo-Riemannian immersion). We say that an immersion ϕ : Σ ↪−! X into a pseudo-
Riemannian manifold (X,ds2) is itself pseudo-Riemannian if the pullback form ϕ∗ds2 is still a pseudo-Riemannian
metric.

Lemma 2.15 (Existence of Darboux co-frames). Given a pseudo-Riemannian immersion ϕ : Σ ↪−! X (Def.
2.14) into a pseudo-Riemannian manifold (X,ds2), then a Darboux co-frame field (Def. 2.2) exists.

Proof. On the complement of Σ in X the Darboux condition is trivial and we may use the construction of general
orthonormal co-frame fields from Lem. 2.6. By the argument there, what remains is just to construct a Darboux
co-frame locally on open neighborhoods around each point ϕ(σ) for σ ∈ Σ.

Now by classical facts: There exists an open neighborhood Uσ, ϕ(σ) ∈ Uσ ⊂ X, where the immersion ϕ restricts
to an embedding of the manifold ϕ(Σ)∩U (e.g. [Bo75, Thm. 4.12]), and there exists a further open neighborhood
U ′
σ, ϕ(σ) ∈ U ′

σ ⊂ Uσ ⊂ X carrying a “slice chart” xσ : U ′
σ ↪! R1,d for ϕ that identifies ϕ(Σ)∩U ′ with a rectilinear

hyperplane in an open subset of R1,d (e.g. [Lee12, Thm. 5.8]).
This implies that as we apply the Gram-Schmidt process (35) to this slice coordinate frame xσ, the coefficient

matrix
(
Eµa
)d
a,µ∈0

is block-diagonal, and hence so is its inverse
(
Eaµ
)d
a,µ∈0

(36). But this means that the corresponding

E := E•
µ dx

µ (37) satisfies the Darboux property (46), since
(
ϕ∗Ea

)
(∂µ) = Eaµ vanishes when a and µ are not in

the same block, with one being transversal and the other tangential.

Second fundamental form. Now given a pseudo-Riemannian immersion ϕ : Σ ↪−! X into a pseudo-Riemannian
manifold and an adapted choice of Darboux co-frame field E on X (via Lem. 2.15) with respect to some open cover

X̃ ↠ X, let
Ω ∈ Ω1

dR

(
X̃; so(1, d)

)
with components

(
Ωab ≡ −Ωba

)d
a,b=0

∈ Ω1
dR(X̃)

be the unique torsion-free connection for E, in that

dEa − ΩabE
b = 0 . (48)

14



Denote the pullback of the tangential and transversal components of this connection, respectively, by:

ωab := ϕ∗Ωab for tangential a and tangential b

IIab1b2e
b1 := ϕ∗Ωab2 for transversal a and tangential b2

(49)

Then the Darboux-condition on E (47) implies that the pullback of the torsion constraint (48) to Σ is equivalent
to the following two equations:

ϕ∗
(
dEa − ΩabE

b = 0
)

⇔

dea − ωab e
b = 0 for tangential a

IIab1b2e
b1eb2 = 0 for transversal a.

(50)

Here the first line just says that ω is the torsion-free connection for e on Σ, while the second line says that

IIab1b2 = IIab2b1 (51)

is a symmetric tensor on Σ. As such this is called the second fundamental form of the immersion ϕ (e.g., [BBG83,
p. 819][Ch93, (II.2.12)]).

Reformulating the Darboux condition. We now re-formulate the Darboux coframe condition (Def. 2.12) in a
form that generalizes naturally to 1/2BPS super-immersions.

Proposition 2.16 (The Darboux condition reformulated). For (X,ds2) a smooth (pseudo-)Riemannian
manifold of dimension 1 + p, and for ϕ : Σ −! X an immersion (42) of a smooth manifold, then a relativistic local

coframe field E : TX̃ −! R1+d on X (Def. 2.5) is Darboux for ϕ (Def. 2.12) if and only if there exists

Sh ∈ C∞
(
Σ̃; HomVect

(
P (R1+d), P (R1+d)

))
, P, P as in Ntn. 2.11

such that

(i) ϕ∗(PE′) is a relativistic local coframe field on Σ (Def. 2.2),

(ii) ϕ∗
(
PE′) = Sh · ϕ∗(PE′) ,

for all local coframe fields E′ on X that are in the same transversal gauge-orbit as E:

E′ = U · E , for U ∈ C∞(X̃; O
(
PR1+d

) )
.

This is an elementary argument, and yet the implications are somewhat profound (cf. Rem. 2.17 below):

Proof. Noticing that by assumption that

P ◦ U = P and P ◦ U = U ◦ P , (52)

the key point is that the second condition equivalently says that Sh takes values in O
(
P (R1+p)

)
-invariant maps:

ϕ∗
(
PUE

)
= Sh · ϕ∗

(
PUE

)
⇔ ϕ∗

(
UPE

)
= Sh · ϕ∗

(
PE
)

by (52)

⇔ ϕ∗
(
PE
)

= ϕ∗(U)−1 · Sh · ϕ∗
(
PE
)
.

But since the only fixed point of O
(
PR1+p

)
is the origin 0 ∈ PR1+d this implies that

Sh = 0 , (53)

whereby the second condition above is equivalently the Darboux condition ϕ∗
(
PE
)
= 0 (46), whence the first

condition follows by Rem. 2.13.

Remark 2.17 (Outlook on the supergeometric generalization). The formulation of the Darboux condition
in Prop. 2.16 makes immediate sense also for super-immersion (recalled as Def. 2.18 below) but in this generality
the strong implication (53) turns out to be relaxed. It is this extra freedom in choosing a shear map Sh expressing
the pullback of the transversal super-coframe in terms of the tangential super-coframe which becomes the source
of higher gauge fields on super p-branes (discussed in §2.2), in particular of the B-field on M5-branes (discussed in
§3).
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2.2 1/2BPS Super-immersions

Now we pass to super-geometry and specifically to super-spacetimes and their (higher) super Cartan geometry.
Our notation follows [GSS24a, §2] to which we refer the reader for review, references and further discussion.

Supergeometric generalization by internalization. Many differential-geometric concepts generalize straight-
fowardly to supergeometry, by just interpreting their algebraic formulation verbatim in superalgebra (a general
process called “internalization” in category theory). This is the case for instance for the notion of immersions (42):

Definition 2.18 (Super-immersion, e.g. [Va04, above Thm. 4.4.3]). A map of smooth super-manifolds ϕ : Σ −!

X is an immersion if its differential at each point σ ∈ Σ
⇝
↪−! Σ is an injective map of super-vector spaces

TσΣ
dϕ
↪−−! Tϕ(σ)X .

On the general nature of super-Darboux coframe fields. However, the case of Lorentzian (super-)spacetimes
is a little different: The verbatim generalization of co-frame structure (Def. 2.2) to supergeometry modeled on R1,d|N

would ask for a reduction of the structure group to the ortho-symplectic supergroup

OSp
(
1, d |N

)
≡ O

(
R1,d|N) ↪−! GL

(
R1,d|N) .

For this notion, the above discussion of Darboux co-frames would generalize verbatim. But instead, for Lorentzian
super-spacetimes one asks for further reduction to the spin-group

Spin(1, d) ↪−! O
(
R1,d|N) ↪! GL

(
R1,d|N) ,

which means that one is now dealing with co-frames for stronger G-structures. Therefore, the general existence
proof (Prop. 2.15) for Darboux coframe fields does not pass to super-immersions into super-spacetimes.

BPS Super-immersions. Instead, the existence of Darboux coframes now becomes a condition on the super-
immersion. This is essentially the condition known in the literature as “super-embedding” (cf. Rem. f2.23). Since
it is not really about embeddings but about immersions (by Rem. 2.10), and here specifically those that preserve
“half of the local supersymmetry”, and since we will streamline the definition a little, we shall instead speak of
1/2BPS super-immersions.

To that end, consider

(i) X a super-spacetime (cf. [GSS24a, §2.2.2]) locally modeled on a Minkowski super-space R1,d|N for a real

Pin(1, d)-representation N with canonical Clifford generators
(
Γa : N ! N

)d
a=0

,

(ii) p ≤ d such that
P := 1

2

(
1 + Γp+1 · Γp+2 · · ·Γd

)
: R1,d |N −−! R1,d|N (54)

is a projector (P ◦ P = P ) with complementary projector denoted P := 1− P ,

(iii) Σ a super-manifold locally modeled on R1,p |P (N).

and notice that then the action of Spin(d− p) ↪−! Spin(1, p)× Spin(d− p) ↪! Spin(1+ d) on N evidently commutes
with P and with P , which allows to regard

P (N), P (N) ∈ RepR
(
Spin(d− p)

)
. (55)

Definition 2.19 (1⁄2BPS super-immersion). In the above situation, we call a super immersion ϕ : Σ ↪−! X
(Def. 2.18) a 1⁄2BPS immersion if it admits the super-analog of a Darboux co-frame field in the form Prop. 2.16,
namely if there exists an orthonormal super co-frame field (E,Ψ) on X which is super-Darboux for ϕ in that there
is a “super-shear map”

Sh ∈ C∞
(
Σ̃; HomR

(
P (R1,d|N), P (R1,d|N)

))
(56)

such that

(a) (e′, ψ′) := ϕ∗
(
P (E′,Ψ′)

)
is a local super co-frame field on Σ (57)

(b) ϕ∗
(
P (E′,Ψ′)

)
= Sh · ϕ∗

(
P (E′,Ψ′)

)
≡ Sh · (e′, ψ′) . (58)

for all super-coframe fields (E′,Ψ′) in the same transversal gauge orbit as (E,Ψ):

(E′,Ψ′) = U · (E,Ψ) , for U ∈ C∞(X̃; Spin(d− p)
)
. (59)

In a supergeometric generalization of Prop. 2.16, we may re-cast the above super-Darboux condition as follows:

Lemma 2.20 (Reformulation of super-Darboux condition). The condition (58) on a super-shear map Sh
(56) is equivalently its Spin(d− p)-equivariance

ϕ∗
(
P (E′,Ψ′)

)
= Sh · ϕ∗

(
P (E′,Ψ′)

)
⇔ ϕ∗(U) · Sh = Sh · ϕ∗(U) .
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Proof. Noticing that the transversal spin-action (59) commutes with the projection (54)

U ◦ P = P ◦ U, U ◦ P = P ◦ U (60)

as well as with pullback to the worldvolume, in that

ϕ∗
(
U · (−)

)
= ϕ∗(U) · ϕ∗(−) i.e.:

T Σ̃ Σ̃× R1,d|N

TX̃ X̃ × R1,d|N R1,d|N

dϕ̃

(p
T Σ̃

, ϕ∗(E,Ψ))

ϕ×id

ϕ ∗
(U)

(p
TX̃

,(E,Ψ))
U

(61)

we have the following sequence of logical equivalences:

ϕ∗
(
P (E′,Ψ′)

)
= Sh · ϕ∗

(
P (E′,Ψ′)

)
⇔ ϕ∗

(
P U(E,Ψ)

)
= Sh · ϕ∗

(
P U(E,Ψ)

)
by (59)

⇔ ϕ∗
(
UP (E,Ψ)

)
= Sh · ϕ∗

(
UP (E,Ψ)

)
by (60)

⇔ ϕ∗(U) · ϕ∗
(
P (E,Ψ)

)
= Sh · ϕ∗(U) · ϕ∗

(
P (E,Ψ)

)
by (61)

⇔ ϕ∗(U) · Sh · ϕ∗
(
P (E,Ψ)

)
= Sh · ϕ∗(U) · ϕ∗

(
P (E,Ψ)

)
by (59)

⇔ ϕ∗(U) · Sh = Sh · ϕ∗(U) by (57).

It follows that most components of a super-shear map vanish identically – as in the bosonic case (53) – but,
remarkably, the odd-odd component may be non-trivial:

Proposition 2.21 (Components of 1/2BPS immersions). For a 1/2BPS immersion ϕ : Σ1+p −! X1+d (Def.
2.19) the pullback of any super-Darboux coframe field (E,Ψ) is of the form

ϕ∗(PE) = e ϕ∗(PE) = 0

ϕ∗(PΨ) = ψ ϕ∗(PΨ) = Sh11 · ψ

 ⇔

 ϕ∗E = e

ϕ∗Ψ = ψ + Sh11 · ψ
,

for some
Sh11 ∈ C∞(Σ; Hom

RepR(Spin(d−p))
(
PN, PN

))
. (62)

Proof. Since (e, ψ) := ϕ∗(E,Ψ) is a super-coframe field by assumption (57), the pullback of P (E,Ψ) to Σ may
(uniquely) be expanded in (e, ψ):

ϕ∗(PE) = Sh00 · e + Sh01 · ψ

ϕ∗(PΨ) = Sh10 · e + Sh11 · ψ ,
(63)

and by (58) the coefficients are just the components of the super-shear map Sh (56).
Now, by Lem. 2.20, Sh and hence its components are Spin(d − p)-equivariant, and as such they map between

the following Spin(d− p)-representations:

Sh00 : (1 + p) (d− p)

Sh01 : P (N) (d− p)

Sh10 : (1 + p) P (N)

Sh11 : P (N) P (N) .

Here (1+p) = P (R1,d) denotes the trivial Spin(d−p)-representation of dimension 1+p, (d− p) = P (R1,d) denotes
the vectorial irrep (via the defining irrep of SO(d−p)) and P (N), P (N) are regarded as Spin(d−p)-representations
via (55).

But since these maps are Spin(d − p)-equivariant, Schur’s lemma (e.g. [Et11, Prop. 1.16]) says that they
are trivial between non-isomorphic irrep summands. This manifestly implies that Sh00 = 0. Similarly, since the
Spin(d− p)-representations P (N) and P (N) are spinorial (in that their fixed subspace of −1 ∈ Spin(d− p) is zero)
they do not contain a vectorial summand like (d− p) (which is fixed by the central element −1), also Sh01 = 0
and Sh10 = 0.
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Remark 2.22 (Existence of fermionic shear). The noteworthy point in Prop. 2.21 is that, in general, the
one component Sh11 in (63) of the super-shear map need not vanish, since P (N) and P (N) may contain the same
Spin(d− p) irreps. Concretely, we see this below for the example of the M5-brane, where these two representations
are in fact isomorphic, cf. (91) below. Remarkably, this freedom in BPS super-immersions is the origin of the
worldvolume higher gauge fields, discussed for the M5 in §3.3.

Remark 2.23 (The “super-embedding”-condition). In summary, Prop. 2.21 says in particular that a 1/2BPS
immersion (Def. 2.19) comes with the following structure:

brane
worldvolume
supermanifold

Σ X
target

spacetime
supermanifold

0 PE transversal part
of bosonic co-frame

super-Darboux
co-frame field

(E,Ψ)
(
Ẽ, Ψ̃

)
any spacetime
super co-frame

worldvolume
super co-frame

(e, ψ) (PE,PΨ) tangential part
of super-coframe

ϕ

super-immersion

ϕ∗

U

(P,P )

(P,0)

ϕ∗

(64)

This is what is broadly known as the “super-embedding”-condition, in the literature. Specifically:

(0.) The condition ϕ∗PE = e in (64)
is the basic embedding condition of [HS97a, (6)][HRS98, (2)], which earlier was known
as the geometrodynamical condition [BPSTV95, (2.23)];

(1.) With the additional condition ϕ∗PE = 0 in (64)
this is the superembedding condition of [So00, (4.36-37)], see also [Ba11, (2.6-9)][BaSo23, (5.13-14)].

(2.) The further condition ϕ∗PΨ = ψ in (64)
is tacitly introduced in [So00, (4.46)], reviewed in [BaSo23, (5.26)].

In comparing to these references, notice that

(3.) Our expression ϕ∗
(
PU, PU

)
=: u

corresponds to the harmonics in [BPSTV95, §2.1][So00, (4.11)], where U ∈ C∞(X; Spin(1, d)
)
.

In closing this section, we just notice that, in addition to the super co-frame field, a super-immersion also pulls
back the spin-connection Ω on target spacetime:

Notation 2.24 (Super 2nd fundamental form). Given a 1/2BPS super-immersion ϕ (2.19) into a super-
spacetime X with spin connection Ω, then in super-generalization of (49) we may expand:

ωab := ϕ∗Ωab for tangential a and tangential b

IIab1b2e
b1 + IIaβ b2ψ

β := ϕ∗Ωab2 for transversal a and tangential bi, β.
(65)

3 M5-brane super-immersions

Here we give a streamlined account of the specialization of the “super-embedding”-construction (§2) to the case
of the M5-brane (due to [HS97b][So00, §5.2], reviewed in [BaSo23, §5]), focusing on the derivation of the H3-flux
density (cf. Rem. 3.13) and its Bianchi identity and (non/self-duality) equations of motion (Prop. 3.15) which
drive the discussion of flux quantization on the M5 (in §4, as introduced in §1).

Our key move to make the notoriously intricate derivation more transparent is (not to use a matrix representation
for the spinors but) to algebraically carve out (in §3.2) the worldvolume spin representation 2 · 8 by the same
tangential/transversal projection operators that enter the definition of BPS super-immersions (Def. 2.19) in the
first place.

3.1 Self-dual tensors in 6d

For reference and completeness, we first briefly record some properties of self-dual tensors in 6d. In this section
indices run through 0, 1, · · · , 5.
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Notation 3.1 (Tensors in 6d).

• ϵ01···5 = +1 and ϵ01···5 = −1 as in (26).

• H̃3 := 1
3! (H̃3)a1a2a3 e

a1ea2e33 denotes our generic (self-dual) rank-3 tensor
The tilde is in order to distinguish this from the flux density H3 on the M5-brane which is not actually self-dual,
but “non-linearly self-dual”, see below.

• ⋆H̃3 := 1
3!

(
1
3!ϵa1a2a3 b1b2b3(H̃3)

b1b2b3
)
ea1ea2ea3 is the Hodge dual tensor.

Notice that below we consider this on super-spacetimes, where the Hodge duality operation makes sense in this
form (only) for such differential forms with vanishing fermionic frame component (ψ0).
Hence the self-duality condition is

H̃3 = ⋆H̃3 ⇔ (H̃3)a1a2a3 = 1
3!ϵa1a2a3 b1b2b3(H̃)b1b2b33 . (66)

• (H̃2
3 )
b
a := (H̃3)a c1c2(H̃3)

c1c2 b

This “square on two indices” plays the key role in relating the self-dual tensor H̃3 to the actual flux density
H3.
In the following it is often suggestive to regard it as a matrix and write

(H̃2
3 · H̃2

3 )
b
a := (H̃2

3 )
c
a(H̃

2
3 )
a
c , tr

(
H̃2

3

)
:= (H̃2

3 )
a
a , tr

(
H̃2

3 · H̃2
3

)
:= (H̃2

3 )
b
a(H̃

2
3 )
a
b .

Lemma 3.2 (Square of selfdual 3-form vanishes). If H̃3 = ⋆H̃3 then

tr(H̃2
3 ) = 0 in that (H̃3)a1a2a3(H̃3)

a1a2a3 = 0 . (67)

Proof.

(H̃3)a1a2a3(H̃3)
a1a2a3 = 1

3! (H̃3)a1a2a3ϵ
a1a2a3 b1b2b3(H̃3)b1b2b3 by (66)

= − 1
3! (H̃3)b1b2b3ϵ

b1b2b3 a1a2a3(H̃3)a1a2a3

= −(H̃3)a1a2a3(H̃3)
a1a2a3 by (66) .

Lemma 3.3 (Squaring over a single index). If H̃3 = ⋆ H̃3 then (cf. [HSW97, (9)]):

(H̃3)a1a2 c(H̃3)
c b1b2 = + δ

[b1
[a1

(H̃2
3 )
b2]
a2]
. (68)

Proof.

(H̃3)a1a2 c(H̃3)
c b1b2

=
(

1
3!ϵa1a2 c e1e2e3(H̃3)

e1e2e3
)(

1
3!ϵ

c b1b2 d1d2d3(H̃3)d1d2d3

)
by (66)

= −5!
3!·3!δ

b1b2 d1d2d3
a1a2 e1e2e3(H̃3)

e1e2e3(H̃3)d1d2d3 by (27)

= +5!
3!·3!

6·2!·3!
5! δb1b2[a1|e1|δ

d1d2d3
a2]e2e3

(H̃3)
e1e2e3(H̃3)d1d2d3 + −5!

3!·3!
3·2!·3!

5! δb1b2e1e2δ
d1d2d3
a1a2e3 (H̃3)

e1e2e3(H̃3)d1d2d3 by (67)

= 2 δ
[b1
[a1

(H̃3)
b2]e2e3(H̃3)a2]e2e3 − (H̃3)

b1b2e3(H̃3)a1a2e3 .

Lemma 3.4 (Square of square is proportional to identity). If H̃3 = ⋆H̃3 then (cf. [HSW97, (8)]):

H̃2
3 · H̃2

3 = 1
6 tr
(
H̃2

3 · H̃2
3

)
id in that (H̃2

3 )
c
a (H̃

2
3 )
b
c = 1

6 δ
b
a (H̃

2
3 )
c2
c1(H̃

2
3 )
c1
c2 . (69)
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Proof.

(H̃2
3 )
c
a (H̃

2
3 )
b
c = (H̃3)a d1d2(H̃3)

d1d2 c(H̃3)c e1e2(H̃3)
e1e2 b by def.

= (H̃3)a d1d2δ
d1
e1 (H̃

2
3 )
d2
e2 (H̃3)

e1e2 b by (68)

= (H̃3)a d1d2(H̃3)
d1e2 b(H̃2

3 )
d2
e2

= −δ[e2[a (H̃2
3 )
b]
d2]

(H̃2
3 )
d2
e2 by (68)

= − 1
4δ
e2
a (H̃2

3 )
b
d2
(H̃2

3 )
d2
e2 + 1

4δ
b
a(H̃

2
3 )
e2
d2
(H̃2

3 )
d2
e2 + 1

4δ
e2
d2
(H̃2

3 )
b
a(H̃

2
3 )
d2
e2 − 1

4δ
b
d2
(H̃2

3 )
e2
a (H̃2

3 )
d2
e2

= − 1
4 (H̃

2
3 )
c
a (H̃

2
3 )
b
c + 1

4 δ
b
a tr(H̃

2
3 H̃

2
3 ) + 1

4 (H̃
2
3 )
b
a (H̃2

3 )
e2
e2︸ ︷︷ ︸

=
(67)

0

− 1
4 (H̃

2
3 )
c
a(H̃

2
3 )
b
c .

Lemma 3.5 (Inverse of identity minus square). If H̃3 = ⋆ H̃3 then (cf. [HSW97, (10)]) the matrices (id∓2H̃2
3 )

are invertible, with inverse: (
id∓ 2 H̃2

3

)−1
= 1

1−2/3 tr(H̃2
3 ·H̃2

3 )

(
id± 2 H̃2

3

)
(70)

Proof. (
id∓ 2 H̃2

3

)
·
(
id± 2 H̃2

3

)
= id− 4 H̃2

3 · H̃2
3

=
(
1− 2

3 tr(H̃
2
3 · H̃2

3 )
)
id by (69) .

Lemma 3.6 (Anti-Selfduality of cubic form). If H̃3 = ⋆H̃3, then the skew-symmetric part of (H̃2
3 )a1

c(H̃3)c a2a3
is anti-self-dual (cf. [So00, (5.82)]):

(H̃2
3 )[d1

c(H̃3)|c|d2d3] = − 1
3!ϵd1d2d3 a1a2a3(H̃

2
3 )
a1
c(H̃3)

c a2a3 (71)

Proof.
1
3!ϵd1d2d3 a1a2a3(H̃3)

a1 b1b2(H̃3)b1b2 c(H̃3)
c a2a3

= 1
3!ϵd1d2d3 a1a2a3(H̃3)

a1 b1b2(H̃3)b1b2 c

(
1
3!ϵ

c a2a3 e1e2e3(H̃3)e1e2e3

)
by (66)

= −2·4!
3!·3! (H̃3)

a1 b1b2(H̃3)b1b2 c

(
δc e1e2e3d1d2d3 a1

(H̃3)e1e2e3

)
by (27)

= −2·4!
3!·3!

3!
4! (H̃3)

a1 b1b2(H̃3)b1b2 c

(
δe1a1δ

c e2e3
d1d2d2

(H̃3)e1e2e3

)
by (67)

= −2·4!
3!·3!

3!
4!3(H̃3)

a1 b1b2(H̃3)b1b2 c

(
δe1a1δ

c
[d1
δe2e3d2d3]

(H̃3)e1e2e3

)
= −2·4!

3!·3!
3!
4!3(H̃3)

e1 b1b2(H̃3)b1b2 [d1(H̃3)|e1|d2d3] by (27)

= −(H̃3)[d1|b1b2(H̃3)
b1b2 e1(H̃3)e1|d2d3] .

3.2 Spinors in 6d from 11d

Instead of using a matrix representation for the Clifford algebra on the 5-brane, for our proofs in §3.3 it is key to
algebraically characterize the worldvolume spin representation 2 · 8+ ≃

Spin(1, 5)
P (32) ≃

Spin(5)
4 · 4 (91) as the fixed locus P (32)

inside the target spin representation 32 in 11d. Here we spell out how this works.

Spinors in 11d. For reference we begin with briefly recalling the following standard facts (proofs and references
may be found in [GSS24a, §2.2.1][HSS19, §A]):

There exists an R-linear representation 32 of Pin+(1, 10) with generators

Γa : 32 −! 32 (72)

and equipped with a skew-symmetric bilinear form(
(−)(−)

)
: 32⊗ 32 −! R (73)

with the following properties, where as usual we denote skew-symmetrized product of k Clifford generators by

Γa1···ak := 1
k!

∑
σ∈Sym(k)

sgn(σ) Γaσ(1)
· Γaσ(2)

· · ·Γaσ(n)
:
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• the Clifford generators square to plus the Minkowski metric (25)

ΓaΓb + ΓbΓa = +2 ηab id32 , (74)

• the Clifford volume form equals the Levi-Civita symbol (26):

Γa1···a11 = ϵa1···a11 id32 , (75)

• the Clifford generators are skew self-adjoint with respect to the pairing (73)

Γa = −Γa in that ∀
ϕ,ψ∈32

(
(Γaϕ)ψ

)
= −

(
ϕ (Γaψ)

)
,

so that generally
Γa1···ap = (−1)p+p(p−1)/2 Γa1···ap , (76)

• the R-vector space of R-linear endomorphisms of 32 has a linear basis given by the ≤ 5-index Clifford elements

EndR
(
32
)

=
〈
1, Γa1 , Γa1a2 , Γa1,a2,a3 , Γa1,···a4 , Γa1,··· ,a5

〉
ai=0,1,···

, (77)

• the R-vector space space of symmetric bilinear forms on 32 has a linear basis given by the expectation values
with respect to (73) of the 1-, 2-, and 5-index Clifford basis elements:

HomR

(
(32⊗ 32)sym, R

)
≃

〈(
(−)Γa(−)

)
,
(
(−)Γa1a2(−)

)
,
(
(−)Γa1···a5(−)

)〉
ai=0,1,···

(78)

Generally we have the Clifford expansion formula:

Γaj ···a1 Γb1···bk =

min(j,k)∑
l=0

±l!
(
j

l

)(
k

l

)
δ
[a1···al
[b1···bl Γ

aj ···al+1]
bl+1···bk] (79)

Spinors in 6d. In the literature ([So00, pp. 88][BaSo23, §B]) the relevant spinor representations on the M5-brane
are usually discussed by explicit matrix presentations. Here we instead mean to give a transparent algebraic account
by projecting the relevant subrepresentations out of the 11d Majorana representation 32 ∈ RepR

(
Pin+(1, 10)

)
(72):

Algebraic reduction of Majorana 32 in 11d to Majorana-Weyl 2 · 8 in 6d. Consider an ortho-transversal
linear basis of R1,10, decomposed as follows (where we declare the last line in a moment):

“tangential directions”︷ ︸︸ ︷ “transversal directions”︷ ︸︸ ︷
0 1 2 3 4 5 5′ 6 7 8 9

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ5′ Γ6 Γ7 Γ8 Γ9 ∈ Pin+(1, 10) ⊂ EndR(32)

γ0 γ1 γ2 γ3 γ4 γ5 ∈ Pin+(1, 5) ⊂ EndR
(
2 · 8+ + 2 · 8−

) (80)

Observing that
(
Γ5′6789

)2
= (−1)5(5−1)/2 = +1 we obtain a projection operator

P := 1
2 (1 + Γ5′6789) ∈ EndR(32) . (81)

Since the Dirac adjoint of Γ012345 is (76)

Γ5′6789 = (−1)5+ 5(5−1)/2︸ ︷︷ ︸
−1

Γ5′6789 ,

the Dirac adjoint of the projector (81) is its complementary projector

P = 1
2

(
1− Γ5′6789

)
∈ EndR(32) , (82)

which is related to P by the following simple but crucial relations:

PP = P , PP = 0 ,

PP = P , PP = 0
and

 ΓaP = P Γa for tangential a

ΓaP = P Γa for transversal a.
(83)

Therefore these projection operators (81) (82) carve out a pair of chiral representations of Spin(1, 5) ↪!
Pin+(1, 10) inside 32 ∈ RepR

(
Spin(1, 10)

)
.

But since also
(
Γ6789

)2
= (−1)4(4−1)/2 = +1 and

(
Γ5′
)2

= +1 there are two further pairs of projectors
1
2

(
1± Γ6789

)
, and 1

2

(
1± Γ5′

)
which commute with these Spin(1, 5)-actions on P (32) and on P (32), thus decomposing them according to

P = 1
2

(
1 + Γ6789

)
1
2

(
1 + Γ5′

)
+ 1

2

(
1− Γ6789

)
1
2

(
1− Γ5′

)
P = 1

2

(
1− Γ6789

)
1
2

(
1 + Γ5′

)
+ 1

2

(
1 + Γ6789

)
1
2

(
1− Γ5′

)
,

21



each into a pair of isomorphic summands, whose isomorphism is given by acting for instance with Γ6:

Γ6
1
2

(
1 + Γ6789

)
1
2

(
1 + Γ5′

)
= 1

2

(
1− Γ6789

)
1
2

(
1− Γ5′

)
Γ6

Γ6
1
2

(
1− Γ6789

)
1
2

(
1 + Γ5′

)
= 1

2

(
1 + Γ6789

)
1
2

(
1− Γ5′

)
Γ6 .

In conclusion this exhibits (cf. e.g. [HSS19, Lem. 4.12]) the irrep decomposition

P (32) ≃
Spin(1, 5)

2 · 8+ , P (32) ≃
Spin(1, 5)

2 · 8− ∈ RepR
(
Spin(1, 5)

)
(84)

with respect to the tangential Clifford generators Γ0, Γ1, · · ·Γ5 ∈ Pin+(1, 10), which as such we denote γ0, · · · , γ5:

γa :

2 · 8+ ≃
Spin(1, 5)

P (32) P (32) ≃
Spin(1, 5)

2 · 8+

⊕ ⊕ ⊕ ⊕

2 · 8− ≃
Spin(1, 5)

P (32) P (32) ≃
Spin(1, 5)

2 · 8−

Γa for tangential a. (85)

With (83) this implies that the projection operators (81) (82) also serve to project out these tangential Clifford
generators:

P Γa P =

{
γa|2·8+

for tangential a

0 for transversal a ,
P Γa P =

{
γa|2·8−

for tangential a

0 for transversal a.
(86)

Therefore we may think of P as also acting on R1,10 by projection to R1,5, hence as acting on all of the super-vector
space R1,10|32

R1,10|32 R1,5|2·8 R1,10|32 .

P

(87)

Below we make much use of this super-projector (87) for streamlined definitions and computations.
A simple example that will be useful below:

Example 3.7. It follows immediately from (78) that P (32) inherits symmetric bilinear spinor pairings such as(
(2 · 8+)⊗ (2 · 8+)

)
sym

(
32⊗ 32

)
sym

R

(
(−) γaΓb (−)

)
for

tangential a
transversal b,

so that, notably, the polarization identity implies that

∀
ψ∈P (32)

(
ψ γa Γb ψ

)
(H1)a = 0 ⇔ H1 = 0 , (88)

which we need below in (107).
On the other hand, the corresponding symmetric pairing with two tangential indices vanishes identically

ψ1, ψ2 ∈ P (32) ⇒
(
ψ1 γa1a2 ψ2

)
= 0 , (89)

because (
ψ1 γa1a2 ψ2

)
=
(
Pψ1 γa1a2 Pψ2

)
=
(
ψ1 P γa1a2 Pψ2

)
=
(
ψ1 γa1a2 PP ψ2

)
= 0 .

Residual Spin(5)-action. Moreover, the fact that the transverse Clifford elements commute with P and P
(83) immediately implies that P (32) and P (32) also inherit an action of the transverse Spin(5) ↪−! Pin+(1, 10)
with respect to the direct product subgroup inclusion Spin(1, 5) × Spin(5) ↪−! Pin+(1, 10) , in fact as Spin(5)-
representations they are isomorphic, for instance via multiplication by Γ0 (or any other of the tangential Γa≤5)

P (32) P (32)

PΨ Pγ0Ψ

Spin(5)

∼

Spin(5)

Γ0·(−)

Moreover, as a Spin(5)-representation, P (32) now decomposes into representations in the images of the four mu-
tually orthogonal projectors

Pσ1,σ2
:= 1

2

(
1 + σ1Γ01

)
1
2

(
1 + σ2Γ2345

)
, σi ∈ {±1} .

These are all isomorphic to each other, for instance via

Γ1 Pσ1,σ2
= P−σ1,σ2

Γ1 ,

Γ2 Pσ1,σ2
= Pσ1,−σ2

Γ2 ,
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and thus to be denoted 4 ∈ RepR
(
Spin(5)

)
:

P (32) ≃R

(
P++ + P+− + P−+ + P−−

)
P (32) ≃

Spin(5)
4 · 4 .

Consequently, we have

Γa :

4 · 4 ≃
Spin(5)

P (32) P (32) ≃
Spin(5)

4 · 4
⊕ ⊕ ⊕ ⊕

4 · 4 ≃
Spin(5)

P (32) P (32) ≃
Spin(5)

2 · 4

Γa

Γa

for transverse a. (90)

In summary this identifies the Spin(1, 5)× Spin(5)-action on P (32) and P (32) as:

2 · 8+ ≃
Spin(1, 5)

P (32) ≃
Spin(5)

4 · 4 ≃
Spin(5)

P (32) ≃
Spin(1, 5)

2 · 8− . (91)

Hodge duality in 6d. From the relation Γ0123455′6789 = 1 ∈ EndR(32) (75) it follows analogously for the
tangential Clifford algebra (85) that

γ012345 = 1 ∈ EndR(2 · 8) , (92)

because

ϕ ∈ 2 · 8 ⊂ 32 ⇒
Γ012345 ϕ = Γ012345 Γ5′6789 ϕ by (84)

= ϕ by (75).

in fact
Γ012345 = Γ012345Γ0123455′6789 = Γ5′6789 ∈ EndR(32) .

By (92) the Hodge duality relations on the 6d Clifford basis elements are as follows:

γa1a2a3a4a5a6 = + ϵa1a2a3a4a5a61

γa1a2a3a4a5 = + ϵa1a2a3a4a5 b γb

γa1a2a3a4 = − 1
2ϵ
a1a2a3a4 b1b2 γb1b2

γa1a2a3 = − 1
3!ϵ

a1a2a3 b1b2b3 γb1b2b3

γa1a2 = + 1
4!ϵ

a1a2 b1b2b3b4 γb1b2b3b4

γa1 = + 1
5!ϵ

a1 b1b2b3b4b5 γb1b2b3b4b5

1 = − 1
6!ϵ

b1b2b3b4b5b6 γb1b2b3b4b5b6

(93)

Special Clifford relations in 6d. From (93) the following Lem. 3.8 and Lem. 3.9 are immediate but of key
importance:

Lemma 3.8. The coefficients of γa1a2a3 are being projected onto their self-dual part:

(H̃3)a1a2a3γ
a1a2a3 = 1

2

(
(H̃3)a1a2a3 + (⋆H̃3)a1a2a3

)
γa1a2a3 (94)

Proof.

(H̃3)a1a2a3γ
a1a2a3 = (H̃3)a1a2a3

(
−1
3! ϵ

a1a2a3 b1b2b3γb1b2b3

)
by (93)

=
(

+1
3! ϵ

b1b2b3 a1a2a3(H̃3)a1a2a3

)
γb1b2b3

= (⋆H̃3)
b1b2b3γb1b2b3 .

Lemma 3.9 (Expanding anti-chiral operators into 6+5d Clifford elements). The R-vector space of linear
maps 2 · 8± −! 2 · 8∓ is spanned by products with any transverse Clifford elements in Spin(5) of the tangential
1-index and the self-dual combination of tangential 3-index Clifford elements (85):

HomR
(
2 · 8±, 2 · 8∓

)
≃

〈
γa1 ,

1
2

(
γa1a2a3 +

1
3!ϵa1a2a3 b1b2b3γ

b1b2b3
)〉

ai∈{0,1,··· ,6}
· Spin(5) . (95)

Proof. By (77) any such linear map is the linear combination of Pin+(1, 10)-elements Γa1···a≤5
, and among these

appear precisely only those with an odd number of tangential indices, by (85) and (90), where by 6d Hodge duality
(93) those with 5 tangential indices and those with anti self-dual combinations of 3-indices may be omitted.

The following claim (96) is implicit in [HS97b, p. 2] and explicit in [So00, (5.67)][BaSo23, (5.77)] (stated there
for a specific matrix representation); we spell out a proof.
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Lemma 3.10 (Conjugating γ with H3). If H̃3 = ⋆H̃3 then(
1
3! (H̃3)b1b2b3γ

b1b2b3
)
γa

(
1
3! (H̃3)c1c2c3γ

c1c2c3
)

= −2 (H̃3)a b1b2(H̃3)
a′ b1b2 γa′ . (96)

Proof. First, Gamma-expansion gives(
1
3! (H̃3)b1b2b3γ

b1b2b3
)
γa

(
1
3! (H̃3)c1c2c3γ

c1c2c3
)

= −(H̃3)a c1c2(H̃3)
b c1c2 γb + 1

6 (H̃3)c1c2c3(H̃3)
c1c2c3︸ ︷︷ ︸

=
(67)

0

γa

+ 1
6 (H̃3)c1c2c3(H̃3)ac4c5 γ

c1···c5 − 1
4 (H̃3)

b c1c2(H̃3)b
c3c4 γa c1···c4

− 1
2 (H̃3)

b1c1c2(H̃3)
b2
c1c2 γa b1b2 ,︸ ︷︷ ︸

=0

where over the braces we noticed terms that vanish for symmetry reasons. Applying (97) to the remaining 5-index
terms and then simplifying the coefficients of the only remaining 1-index term yields the claimed result.
(A computer algebra check is available in [Anc].)

Lemma 3.11 (Contraction with γ). If H̃3 = ⋆H̃3 then

(H̃3)a c4c5γ
c1···c5 = 4!·2!

3! (H̃3)
b1b2b3 δc1c2c3 a

′

b1b2b3 a
γa′ (97)

Proof.

(H̃3)a c4c5γ
c1···c5 =

(
1
3! (H̃3)

b1b2b3ϵa c4c5 b1b2b3

)(
ϵc1c2c3c4c5a

′
γa′
)

by (93)

= − 4!·2!
3! (H̃3)

b1b2b3 δc1c2c3 a
′

a b1b2b3
γa′ by (27) .

3.3 Super-flux on M5 immersions

With the above preliminaries in hand we are now ready to work out the characterization of those 1/2BPS super-
immersions that correspond to M5-branes.

Definition 3.12 (M5-brane super-immersion). Given a super-spacetime
(
X, (E,Ψ,Ω)

)
of super-dimension

(1, 10) |32, we say that an M5-brane super-immersion into X is a 1/2BPS super-immersion (“super-embedding”,
Def. 2.19) of a super-manifold Σ of bosonic dimension 1 + 5, hence (85) of super-dimension 1 + 5 | 2 · 8.

M5 brane
super-worldvolume

Σ1,5|2·8 X1,10|32 11d supergravity
super-spacetime

ϕ

1/2BPS
super-immersion

Remark 3.13 (Transversal fermionic shear of M5 super-immersions). Given an M5 super-immersion ϕ
(Def. 3.12) the assumption (64) that (e, ψ) is a co-frame field on Σ implies (cf. [BaSo23, (5.69)]) that there exist

unique components fields /̃H and τa on Σ which parametrize the transversal shear of ϕ in the fermionic directions:

ϕ∗Ψ− ψ = ϕ∗(PΨ) = /̃Hψ + τa e
a . (98)

These components pointwise map the fermionic tangent space T odd
σ Σ ∼= 2 ·8+ of Σ into the transverse target space

copy of 2 · 8−:
32︷ ︸︸ ︷

2 · 8+ ⊕ 2 · 8−

TσΣ 2 · 8+

ϕ
∗Ψ = (ψ,

odd shear︷ ︸︸ ︷
/̃Hψ+ τae

a )

ψ

odd co-frame

(99)

Notice that as such we may act on ψ also with transversal Clifford generators, and have with (84):

ψ = P (ψ) , τa = P (τa) . (100)

Of course, here /̃H ≡ Sh11 and τ ≡ Sh01 are components (63) of the super-shear map (56), and the BPS
immersion condition of Def. 2.19 implies (Prop. 2.21) that τ = 0. However, we keep this component around, just
to show where it would appear, cf. Rem. 3.17 below.

This remaining freedom in (99) of M5 super-immersions ϕ to “shear” along the odd directions by a component
/̃H turns out to reflect the degrees of freedom of the flux density H3 on the brane’s worldvolume (cf. (112) in Prop.
3.15 below).
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The torsion-constraint on M5 super-immersions. Given a super-immersion ϕ : Σ −! X, the pullback of the
bulk torsion constraint to the worldvolume Σ has equivalently the following tangential and transverse components:

ϕ∗
((

ΨΓaΨ
)

= dEa − ΩabE
b
)

⇔
(64)


(
(ϕ∗Ψ) γa (ϕ∗Ψ)

)
= d ea − ωab e

b for tangential a(
(ϕ∗Ψ)Γa (ϕ∗Ψ)

)
= − IIab1b2 e

b1eb2 − IIaβ b ψ
βeb for transversal a

(101)

where in the second line we made explicit the super 2nd fundamental form II from (65).
This (101) is hence a condition to be satisfied by any 1/2BPS super-immersion, as such we may refer it to the

worldvolume torsion constraint.

Lemma 3.14 (The worldvolume torsion constraint in components). The transversal torsion constraint
(101) is equivalent to the following set of conditions:

(i) The bosonic component of the 2nd fundamental form II (65) of ϕ is symmetric in its tangential indices, as in
the classical case (51):

(Ωb1)
a
b2 = (Ωb2)

a
b1

for transversal a
and tangential bi;

(102)

(ii) the fermionic shear component τb (98) is (over-)determined by the equations:

(τb)α = 1
2 (Γ5′II)

5′

α b = 1
2 (Γ6II)

6
α b = 1

2 (Γ7II)
7
α b = 1

2 (Γ8II)
8
α b = 1

2 (Γ9II)
9
α b ; (103)

(iii) the fermionic shear component /̃H (98) takes the form

/̃H = /̃H3 := 1
3! (H̃3)a1a2a3γ

a1a2a3 for any H̃3 = ⋆H̃3 , (104)

with which the tangential part of (101) equivalently says that

(iv) the induced worldvolume torsion is:

d ea − ωab e
b =

(
τb1γ

aτb2
)
eb1eb2 − 2

(
τb γ

a /̃H3 ψ
)
eb +

(
δaa′ − 2(H̃2

3 )
a
a′
)(
ψ γa

′
ψ
)
. (105)

Proof. The fermionic co-frame components of the transversal torsion constraint are, at face value:(
(ϕ∗Ψ)Γa (ϕ∗Ψ)

)
− IIab1b2e

b1eb2 − IIaβ bψ
βeb = 0

⇔


(ψ0)

((
τb1 Γ

a τb2
)
− IIab1b2

)
eb1eb2 = 0

(ψ1)

(
2
(
(ψ + /̃Hψ) Γa τb

)
− ψα IIaα b

)
eb = 0

(ψ2)
(
(ψ + /̃Hψ) Γa (ψ + /̃Hψ)

)
= 0

(106)

We analyze these components in turn:

The transversal torsion constraint at ψ0 Observing that for transversal a we have(
τb1 Γ

a τb2
)

=
(
(Pτb1) Γ

a Pτb2
)

by (100)

=
(
τb1P Γa Pτb2

)
(83)

= 0 ,

the (ψ0)-component in (106) says equivalently that (cf. [So00, (4.59)]) the 2nd fundamental form is symmetric in
its tangential indices,

(Ω[b1)
a
b2] = 0 ,

as in the classical situation (51).

The transversal torsion constraint at ψ1 Observing that the first summand of the (ψ1)-component in (106)

is (
(ψ + /̃H3ψ) Γ

a τb
)

=
(
ψ P (1 + /̃H3) Γ

a P τb
)

by (100) & (76)

=
(
ψ P Γa P τb

)
by (83)

=
(
ψ Γa τb

)
by (100),

the condition says equivalently that (cf. [So00, (5.63)])

2
(
ψ Γa τb

)
= ψα II aα b hence equivalently

(
Γaτb

)
α

= 1
2 II

a
α b .
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Finally, by acting on this equation with either of the transverse Γa, this is equivalent to the claimed equations
(103).

The transversal torsion constraint at ψ2 By (95) and the required Spin(5)-equivariance (62), the most

general form of /̃H is
/̃H = (H̃1)aγ

a︸ ︷︷ ︸
/̃H1

+ 1
3! (H̃3)a1a2a3γ

a1a2a3︸ ︷︷ ︸
/̃H3

.

With that, the (ψ2)-component in (106) equals( (
ψ + /̃H1ψ + /̃H3ψ

)
Γa
(
ψ + /̃H1ψ + /̃H3ψ

))
by (98)

=
(
ψ
(
(1− /H1 + /̃H3) Γ

a (1 + /H1 + /̃H3)
)
ψ
)

by (76)

=
(
ψ P (1− /H1 + /̃H3) Γ

a (1 + /H1 + /̃H3)P ψ
)

by (100).

Now multiplying out, we obtain:

P
(
1− /̃H1 + /̃H3

)
Γa
(
1 + /̃H1 + /̃H3

)
P

= P
(
1 + /̃H3

)
Γa
(
1 + /̃H3

)
P

− P /̃H1 Γ
a
(
1 + /̃H1 + /̃H3

)
P + P

(
1 + /̃H1 + /̃H3

)
Γa /̃H1P

= P
(
Γa + {Γa, /̃H3}+ /̃H3Γ

a /̃H3

)
P

+ P
(
[ /̃H1,Γ

a] − /̃H1Γ
a /̃H3 + /̃H3Γ

a /̃H1

)
P

=

 P
(
γa + (H̃3)a b1b2γ

a1a2 + /̃H3γ
a /̃H3

)
P +O( /H1) for tangential a

2P /H1P Γa for transversal a
by (83) .

(107)

The last line makes it manifest, cf. (88), that the transversal component vanishes iff /H1 = 0 (cf. the argument via
matrix representations in [HS97b, (15)][So00, (5.66)]) — which proves (104), remembering (94) — in which case
the terms denoted O( /H1) in (107) vanish.

The worldvolume torsion. The remaining tangential component in (107) is the (ψ2)-component of the world-
volume torsion as claimed in (105) (cf. [So00, (5.71)]):

P
(
γa + (H̃3)a b1b2γ

a1a2 + /̃H3γ
a /̃H3

)
P = P

(
γa + /̃H3γ

a /̃H3

)
P by (83)

= P
((
δaa′ − 2(H̃2

3 )
a
a′

)
γa

′
)
P by (96).

It just remains to check the other summands of the worldvolume torsion (105): Recalling ϕ∗Ψ = ψ+ /̃H3ψ+ τa e
a,

the (e2)-term is immediate, and the (e1 ψ1)-component is obtained as follows:(
(1 + /̃H3)ψ γ

a τb
)
eb −

(
τb γ

a (1 + /̃H3)ψ
)
eb = −2

(
τb γ

a (1 + /̃H3)ψ
)
eb by (78)

= −2
(
(Pτb) γ

a (1 + /̃H3)Pψ
)
eb by (100)

= −2
(
τb P γ

a (1 + /̃H3)Pψ
)
eb by (82)

= −2
(
τb γ

a /̃H3ψ
)
eb by (82) .

This completes the proof.

The super flux densities. Given an M5 super-immersion ϕ : Σ −! X (Def. 3.12) with induced super co-frame
field (e, ψ) on Σ (64), consider a differential 3-form with only bosonic co-frame components on Σ:

Hs
3 := H3 := 1

3! (H3)a1a2a3 e
a1a2a3 ∈ Ω1

dR

(
Σ; b2R

)
. (108)

Here the super-script (−)s is to indicate that this is the super 3-flux density in analogy with the super 4-flux density
on the target spacetime X with its target co-frame field (E,Ψ), which is of the form

Gs4 := 1
4! (G4)a1···a4E

a1 · · ·Ea4︸ ︷︷ ︸
G4

+ 1
2

(
ΨΓa1a2Ψ

)
Ea1Ea2︸ ︷︷ ︸

G0
4

∈ Ω1
dR

(
X; b3R

)
. (109)
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Hence there is vanishing component H0
3 analogous to G0

4 (cf. [So00, p. 91]). (Notice that a candidate for non-
vanishing H0

3 does appear on “exceptional-geometric” super-spacetime [FSS20a], we further discuss this elsewhere).

Proposition 3.15 (Flux Bianchi identity on M5-brane in components). Given a 1/2BPS-immersion of an
M5-brane worldvolume (Def. 3.12), the Bianchi identity

dHs
3 = ϕ∗Gs4

for super flux-densities of the form (108) and (109) is equivalent to the following set of conditions:

(i) the ordinary but torsion-ful Bianchi identity
1
3!∇[a1(H3)a2a3a4] +

1
2! (H3)[a1a2|b|

(
τa3 γ

a τa4]
)

= 1
4! (ϕ

∗G4)[a1···a4] (110)

(ii) a rheonomy equation4 for H3:
1
3!ψ

α∇α(H3)a1a2a3 = (H3)[a1a2|b|
(
τa3] γ

b(1 + /̃H3)ψ
)
+
(
τ[a1 γa2a3](ψ + /̃H3ψ)

)
(111)

(iii) the 3-flux density H3 is the following function of the transverse fermionic immersion component H̃3 (104):

(H3)abc = −4

1−2/3 tr(H̃2
3 ·H̃2

3 )

(
δaa′ + 2 (H̃2

3 )
a′

a

)
(H̃3)a′bc . (112)

Proof. The fermionic co-frame components of the Bianchi identity are

d
(
1
3! (H3)a1a2a3 e

a1 ea2 ea3
)
− 1

4! (ϕ
∗G4)a1···a4e

a1 · · · ea4 − 1
2

(
(ϕ∗Ψ)γa1a2(ϕ

∗Ψ)
)
ea1 ea2 = 0

⇔


(ψ0)

(
1
3!∇a1(H3)a2a3a4 + 1

2 (H3)a1a2b
(
τa3 γ

b τa4
)
− 1

4! (ϕ
∗G4)a1···a4

)
ea1 · · · ea4 = 0

(ψ1)

(
1
3!ψ

α∇α(H3)a1a2a3 − (H3)a1a2b
(
τa3 γ

b(1 + /̃H3)ψ
)
−
(
τa1 γa2a3(ψ + /̃H3ψ)

))
ea1 ea2 ea3 = 0

(ψ2)

(
1
2 (H3)a1a2a3

(
δa3a′3

− 2(H̃3)a′3 b1b2(H̃3)
a3 b1b2

)(
ψ γa

′
3 ψ
)
−
(
(ψ + /̃H3ψ) γa1a2 (ψ + /̃H3ψ)

))
ea1ea2 = 0

where we used the expression (105) for the worldvolume torsion tensor,
• with which the (ψ0)-component is obvious,

• while in the (ψ1)-component we also used (98),

• and in the (ψ2)-component we in addition used (105).
Hence it just remains to further unwind the (ψ2)-component – for which we crucially use that H̃3 is self-dual (104):

For the summand on the right notice that

1
2

(
(ψ + /̃H3) γa1a2 (ψ + /̃H3)

)
ea1ea2 = 1

2

((
ψ /̃H3 γa1a2 ψ

)
+
(
ψ γa1a2 /̃H3 ψ

))
ea1ea2 by (89)

= 1
2

(
ψ
(
− 2(H̃3)a1a2 bγ

b + 1
3 (H̃3)

b1b2b3γa1a2 b1b2b3
)
ψ
)
ea1ea2 by (79)

= −4(H̃3)a1a2 b
1
2

(
ψ γb ψ

)
ea1ea2 ,

(113)

where in the last step we used

(H̃3)
b1b2b3Γa1a2 b1b2b3 = (H̃3)

b1b2b3ϵa1a2 b1b2b3 cγ
c by (93)

= −3!(H̃3)a1a2 c γ
c by (94).

Therefore the Bianchi identity at (ψ2) is equivalent to (cf. [HSW97, (7)][So00, (5.80-81)])(
δa

′

a − 2 (H̃2
3 )
a′

a

)
(H3)a′bc = −4 (H̃3)abc by (113)

⇔ (H3)abc = −4

1−2/3 tr(H̃2
3 ·H̃2

3 )

(
δaa′ + 2 (H̃2

3 )
a′

a

)
(H̃3)a′bc by (70),

(114)

as claimed in (112).

Remark 3.16 (Non/Self-duality of the 3-flux density). Given an M5 super-immersion ϕ (3.12), then the
decomposition of its 3-flux density H3 (112) into a self dual and an anti self-dual summand is (cf. [HSW97, (18-19)])

(H3)abc =
−4

1− 2/3 tr(H̃2
3 · H̃2

3 )

(
H̃abc︸︷︷︸

self-dual

+ 2 (H̃2
3 )
a′

a H̃abc︸ ︷︷ ︸
anti self-dual

)
.

4Solving equation (111) determines the values of the super-flux H3 on the super-manifold Σ from its value on the bosonic body Σ
⇝
,

hence its “flow” across superspace (whence “rheonomy” as in [CDF91, §III.3.3]).
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Namely, we already know of course (104) that the first summand is self-dual, but with (112) it follows that the
second summand is skew-symmetric in its indices, whence its anti self-duality follows by (71). In summary this
means that (cf. [HS97b, p. 6][HSW97][So00, p. 92]):
The 3-flux density H3 on the M5-brane:

• is in general not self-dual,

• albeit determined by its self-dual part,

• with its anti self-dual part a higher order (≥ cubic) function of the self-dual part,

• so that H3 is asymptotically self-dual as its absolute value goes to zero (i.e. in the small field limit).

Remark 3.17 (Recovering the ordinary worldvolume Bianchi identity). We see from (110) that the

expected Bianchi identity dH3 = ϕ∗G4 (1) on the ordinary bosonic worldvolume Σ
⇝
↪−! Σ is recovered (only) if

τ = 0, which is indeed implied by the 1/2BPS immersion condition, cf. Rem. 3.13 above (more implicitly assumed
for instance in [HLW98, p. 4]).

With the previous two remarks we have arrived at the desired conclusion that the M5’s worldvolume Bianchi
identity when promoted to super-space subsumes both the ordinary Bianchi identity on H3 as well as its (non/self-
duality) equation of motion. As explained in §1, this suggests that to obtain the completed field content on the
M5-brane we are to flux-quantize this super-flux Hs

3 on the super-worldvolume.
In the following §4 we discuss some consequences of such flux-quantization.

4 Flux quantization on M5-branes

Having established (with the result in §3) that the flux quantization (21) of the super-worldvolume super-flux on
the M5-brane provides a full global completion of the M5’s on-shell field content, here discuss some properties of
the resulting flux quantized fields.

– §4.1 establishes the backwards-compatibility of the flux quantized fields, locally, to the traditional formulas for
gauge potentials

– §4.2 analyzes the resulting worldvolume charges of singular strings and solitonic membranes inside the M5, under
the assumption that flux quantization is in co-Homotopy theory.

4.1 Gauge potentials on the M5-brane

The construction of flux-quantized fields in (9) not only constrains the flux densities to reflect quantized charges,
but does so by constructing the gauge potentials that exhibit the corresponding higher gauge field. Globally the
nature of the gauge potentials crucially depends on the chosen flux quantization law A; but locally, on a good

open cover X̃ by contractible charts Ui
ιi
↪−! X, the charges necessarily vanish (due to the assumption that the

classifying space A is connected, hence with an essentially unique basepoint 0A : ∗ −! A) and the nature of the
gauge potentials becomes independent of the choice of A, as it should be:

∗

contractible
chart

Ui A

domain super-space
(worldvolume)

Σ Ω1
dR

(
−; a

)
clsd

SΩ1
dR

(
−; a

)
clsd

0A

ιi

vanish
ing charge ∼

hmtp

chA

F⃗

flux density

η
S

A⃗ local gauge potentials

(115)

By definition of the moduli object on the bottom right (see [SS24b, p. 26][GSS24a, Ex. 2.55] following [FSS23,
Def. 9.1]), the homotopy filling the diagram (115) is a concordance (deformation) of closed a-valued differential

forms from zero to the given flux densities F⃗ :

A⃗ ∈ Ω1
dR

(
Ui × [0, 1]; a

)
clsd

s.t.

 ι∗0(A⃗) = 0

ι∗1(A⃗) = F⃗
∈ Ω1

dR

(
Ui; a

)
clsd

. (116)

This is just the notion of coboundary in a-valued de Rham cohomology ([FSS23, Def. 6.3]), in fact it reduces to
ordinary de Rham coboundaries in the abelian case where a is the L∞-algebra which is R concentrated in some
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degree ([FSS23, Prop. 6.4]). When a is not abelian, as in the case of interest where a = l
S4S

7 (18), then a little
work is needed to extract more concise coboundary data underlying the concordances (116). This is what we do
now for the worldvolume fields on the M5-brane (Prop. 4.1 below), showing how it reproduces the traditional local
formulas and thereby providing these with a rule for their global completion.

Deriving form of local gauge potentials on the M5-brane. For the case of 11d supergravity we had shown in
[GSS24a, Props. 1.1, 2.28] how the traditional formulas for the local C-field gauge potentials are indeed reproduced
by the homotopy theory in (115) and as such become amenable to global completion. Here we extend this analysis
to include the B-field on M5-brane worldvolumes, showing how it reproduces the traditional formulas (2).
To this end:
(i) Recall the fiberwise Stokes Theorem (e.g. [FSS23, Lem. 6.1][FSS23, Lem. 6.1]) for differential forms F̂ on a
cylinder manifold:

d

∫
[0,1]

F̂ = ι∗1F̂ − ι∗0F̂ −
∫
[0,1]

dF̂ , on X X × [0, 1] .
ι0

ι1
(117)

(ii) Recall from (19) that closed lS4S7-valued differential forms are given by

Ω1
dR

(
−; l

S4S
7
)
clsd


H3 ∈ Ω1

dR(−; b2R)
G7 ∈ Ω1

dR(−; b6R)
G4 ∈ Ω1

dR(−; b3R)

∣∣∣∣∣∣∣
dH3 = G4

dG7 = 1
2G4G4

dG4 = 0



Ω1
dR

(
−; lS4

)
clsd

{
G7 ∈ Ω1

dR(−; b6R)
G4 ∈ Ω1

dR(−; b3R)

∣∣∣∣∣ dG7 = 1
2G4G4

dG4 = 0

}
(118)

(iii) Observe that a null-concordance (116) of such data, hence a closed ls4S
7-valued differential form on the

cylinder manifold Ui × [0, 1] which on one boundary pulls back to the given form data and on the other boundary
to zero, is:

(
Ĝ4, Ĝ7, Ĥ3

)
∈ Ω1

dR

(
Ui × [0, 1]; lS4S7

)
clsd

s.t.

 ι∗0
(
Ĝ4, Ĝ7, Ĥ3

)
= 0

ι∗1
(
Ĝ4, Ĝ7, Ĥ3

)
= (G4, G7, H3) .

(119)

Similarly, given a pair
(
Ĝ4, Ĝ7, Ĥ3

)
,
(
Ĝ′

4, Ĝ
′
7, Ĥ

′
3

)
of such null-concordances for the same (G4, G7, H3), a

concordance-of-concordances between them is

( ̂̂G4,
̂̂G7,

̂̂H3

)
∈ Ω1

dR

(
Ui × [0, 1]t × [0, 1]s; lS4S7

)
clsd

s.t.



ι∗s=0

( ̂̂G4,
̂̂G7,

̂̂H3

)
=
(
Ĝ4, Ĝ7, Ĥ3

)
ι∗s=1

( ̂̂G4,
̂̂G7,

̂̂H3

)
=
(
Ĝ′

4, Ĝ
′
7, Ĥ

′
3

)
ι∗t=0

( ̂̂G4,
̂̂G7,

̂̂H3

)
= 0

ι∗t=1

( ̂̂G4,
̂̂G7,

̂̂H3

)
= pr∗Ui

(
G4, G7, H3

)
,

(120)

where in the last line prUi
: Ui × [0, 1]s ↠ Ui is the canonical projection.

Proposition 4.1 (B- & C-field gauge potentials are local l
S4S

7-valued de Rham null coboundaries).

Given flux densities (G4, G7, H3) ∈ Ω1
dR

(
Ui; lS4S

7
)
clsd

(118),
(i) there is a natural surjection from their null concordances (119) to triples of gauge potentials as shown here:

∗

Ui Ω1
dR

(
−; l

S4S
7
)
clsd

S
(
Ω1

dR

(
−; l

S4S
7
)
clsd

)
(G4, G7, H3)

(Ĝ4,Ĝ7,Ĥ3)

η
S

 ↠


C3 ∈Ω3

dR(Ui)

C6 ∈Ω3
dR(Ui)

B2 ∈Ω2
dR(Ui)

∣∣∣∣∣∣∣∣
dC3 =G4

dC6 =G7 − 1
2C3G4

dB2 =H3 − C3

 (121)

(ii) This surjection takes concordances-of-concordances (120) to gauge equivalences of gauge potentials of the fol-
lowing form

(C3, C6, B2) ∼ (C ′
3, C

′
6, B

′
2) ⇔ ∃

C2 ∈ Ω2
dR(Ui)

C5 ∈ Ω5
dR(Ui)

B1 ∈ Ω1
dR(Ui)

 such that


dC2 = C ′

3 − C3

dC5 = C ′
6 − C6 − 1

2C
′
3 C3

dB1 = B′
2 −B2 + C2

(122)
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Proof. We take the map
(
Ĝ4, Ĝ7, Ĥ3

)
7!
(
C3, C6, B2

)
to be given on the C-field flux densities as in [GSS24a, (70)]

C3 :=

∫
[0,1]

Ĝ4, C6 :=

∫
[0,1]

(
Ĝ7 − 1

2

(∫
[0,−]

Ĝ4

)
︸ ︷︷ ︸

Ĉ3

Ĝ4

)
(123)

and analogously on the B-field flux density to be:

B2 :=

∫
[0,1]

Ĥ3 . (124)

To see that this satisfies the relations on the right of (121): For the first two lines this is [GSS24a, (70)], while for
the last line we compute as follows:

dB2 = d
∫
[0,1]

Ĥ3 by (124)

= ι∗1Ĥ3 −
∫
[0,1]

dĤ3 by (117)

= H3 −
∫
[0,1]

Ĝ4 by (119)

= H3 − C3 by (123).

To see that this map is indeed a surjection, we exhibit a section
(
C3, C6, B2

)
7!
(
Ĝ4, Ĝ7, Ĥ3

)
extending the lifts of

(C3, C6) from [GSS24a, (72)] to H3 as follows:

Ĝ4 := tG4 + dt C3

Ĝ7 := t2G7 + 2tdt C6

Ĥ3 := tH3 + dtB2


which indeed

satisfies


d
(
tG4 + dt C3

)
= 0

d
(
t2G7 + 2tdt C6

)
= 1

2

(
tG4 + dt C3

)(
tG4 + dt C3

)
d
(
tH3 + dtB2

)
=

(
tG4 + dt C3

)
.

Finally, to see that the map respects equivalences, consider a pair of null-concordances
(
Ĝ4, Ĝ7, Ĥ3

)
,
(
Ĝ′

4, Ĝ
′
7, Ĥ

′
3

)
with a concordance-of-concordances

( ̂̂G4,
̂̂G7,

̂̂H3

)
between them, and produce a gauge equivalence as in (122) from

this by taking, as in [GSS24a, (73)],

C2 :=

∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4 , C5 :=

∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

(∫
t′∈[0,−]

̂̂G4

) ̂̂G4

)
− 1

2C2 C3 . (125)

and now in addition

B1 :=

∫
s∈[0,1]

∫
t∈[0,1]

̂̂H3 . (126)

That this indeed satisfies the required relations follows for C2 and C5 by [GSS24a, (74)] and for B1 by the following
computation:

dB1 ≡ d
∫
s∈[0,1]

∫
t∈[0,1]

̂̂H3 by (126)

= ι∗s=1

∫
t∈[0,1]

̂̂H3 − ι∗s=0

∫
t∈[0,1]

̂̂H3 −
∫
s∈[0,1]

d
∫
t∈[0,1]

̂̂H3 by (117)

=
∫
t∈[0,1]

ι∗s=1
̂̂H3 −

∫
t∈[0,1]

ι∗s=0
̂̂H3 −

∫
s∈[0,1]

H3 +
∫
s∈[0,1]

∫
t∈[0,1]

d ̂̂H3 by (117)

=
∫
t∈[0,1]

Ĥ ′
3 −

∫
t∈[0,1]

Ĥ3 +
∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4 by (120)

= B̂′
2 − B̂2 + C2 by (124) & (125).

Remark 4.2 (Reproducing the traditional local gauge potential). Equation (121) in Prop. 4.1 says in
particular that the traditional formula (2) for the gauge potential on the M5-brane is reproduced locally.

4.2 Skyrmions and Anyons on M5

We spell out some key consequences of quantizing the H3-flux density on M5-branes in co-Homotopy cohomology
theory, according to (22), highlighting how this leads to quantum observables of skyrmions and of anyonic quantum
states (142), thus supporting the idea that the completed field content on the M5-brane generically reflects properties
of strongly coupled/correlated quantum systems.
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The method of non-perturbative quantization of the topological charge sector which we use here is that of
[SS23d], and the approach to anyonic quantum states is broadly that of [SS22][SS23b], but where in these previous
discussions we focused on intersecting brane configurations, here we give an alternative construction with single
M5-branes that is supported by the above super-space analysis.

M5-branes near the horizon of their own black brane solution. In doing so, we focus on the special but
important case where the pullback of the background M-brane charge to the M5-brane worldvolume trivializes,
ϕ∗(c3, c6) ≃ 0. This may happen if the background charge vanishes by itself in the first place, for instance if the
target spacetime is flat Minkowski space R1,10, or else if the M5-worldvolume does not wrap cycles on which the
background charge is supported; for instance if it stretches along the asymptotic boundary of the near horizon
geometry AdS7 ×S4 of its own “black” brane background (as discussed in [CKvP98][PST99][CKKTvP98, §3.3], in
microscopic resolution of AdS/CFT duality).

Since this pullback charge serves as the twist of the twisted 3-co-Homotopy on the worldvolume, under Hy-
pothesis H (22), it follows that in this case the M5 worldvolume B-field is quantized in plain 3-co-Homotopy
(recalling from ftn. 3 that for the purpose of the present discussion we are disregarding further tangential twists of
Cohomotopy):

If background charge
vanishes on worldvolume

then
the charge-twisted
3-Cohomotopy

reduces
to

plain
3-Cohomotopy

ϕ∗(c3, c6) ≃ 0 ⇒ π3+ϕ∗(c3+c6)(Σ) = π3(Σ)
S7

Σ X S4

hH

ϕ

b2

(c3,c6)

/
rel.hmtp.



S3 S7

Σ ∗ S4

X

(pb) hH

ϕ

b2

0

(c3
,c6

)

/
rel.hmtp.

(127)

Self-dual string charge quantization. With this and in direct generalization of traditional Dirac monopole
charge quantization

charges of Dirac monopole
by trad. flux quantization

H2
(
R1,3 \ R0,1︸ ︷︷ ︸

spacetime around
magnetic monopole

; Z
)

≃ H2
(
R0,1 × R>0︸ ︷︷ ︸
contactible

×S2; Z
)

≃ H2
(
S2; Z

)
≃ Z integer number of

magnetic monopoles

the archetypical charge quantization situation on an M5-brane is that for its monopole string solution (the self-dual
string soliton [HLW98, §3]), hence with M5-worldvolume topology of the form (using [HLW98, (3.16)])

Σ ≃ R1,5 \ R1,1 ≃ R1,1 × R>0 × S3 . (128)

The corresponding charge quantization law implied by Hypothesis H, via (127), gives string charges in the 3-
Cohomotopy of the 3-sphere. Via the Hopf degree theorem this is canonically identified with the ordinary integral
cohomology of the 3-sphere (cf. [FSS20b, (35)])

M3 a closed orientable 3-fold ⇒ π3
(
M3
)

≃ H3(M3; Z) (129)

and thereby given by the group of integers:

Charges of self-dual string
according to Hypothesis H

π3
(
Σ
)

≡ π3
(
R1,1 × R>0︸ ︷︷ ︸
contractible

×S3
)

≃
Hopf degree
theorem (129)

π3
(
S3
)

≃ H3(S3) ≃ Z coincide with the traditional
charges in ordinary cohomology.

Hence in this case the charges in co-Homotopy coincide with those seen in ordinary cohomology and the traditionally
(and often tacitly) expected charge quantization law of the self-dual string is recovered.

But even in this situation, the cohomotopical perspective provides further insight:

Pixelated flux. The authors of [HLLSZ19] suggest (cf. their Fig. 2) to think of the N units of flux through the
3-sphere surrounding an integer-charged brane as being witnessed by a distribution of N points (“pixels”) on the
sphere. While this perspective is suggested by the physical picture, it is not really supported by the mathematics
of charge quantization in ordinary cohomology.

However, for charge quantization in co-Homotopy, the original Pontrjagin theorem establishes a natural
bijection between (cohomotopical) charges and actual branes in the guise of (cobordism classes of) submanifolds
of the domain space, which in this situation reproduces much the picture of pixelation:

Concretely (see [SS23a, Prop. 3.24 & pp. 13][SS20a, §2.1]), for S ↪−!M a smooth submanifold of co-dimension
3 inside a closed smooth manifold M , then a normal framing of S (namely a trivialization of its normal bundle)
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canonically induces a map M −! S3 (given by accordingly projecting a tubular neighbourhood of S onto R3 ≃
S3\{s0} and mapping its complement to s0), which under Hypothesis H we understand as assigning the Cohomotopy
charge carried by the brane S.

Now Pontrjagin’s theorem means that two such branes S, S′ carry the same Cohomotopy charge iff they are
(normally framed-)cobordant, namely that assigning Cohomotopy charge gives a bijection:

cobordism classes of
normally framed submanifolds

of co-dimension 3
Cob3Fr

(
Σ
)

π3(Σ) 3-Cohomotopy
assign brane charge

∼ (130)

thus accurately identifying branes by their charges, and vice versa.

But if we apply this correspondence to the above situation, then
it identifies (a) integer flux N ∈ Z through the S3 around the self-
dual string soliton with (b) |N | points on S3 (the co-dimension
3 submanifold) each carrying charge sgn(N) (one of two distinct
normal framings, reflecting branes and anti-branes, respectively,
cf. [SS23a, p. 12][SS20a, p. 12]). This Cohomotopy theory sub-
stantiates the picture of [HLLSZ19, Fig. 2] (adapted on the right).

π3
(
S3
)

Cob3Fr
(
S3
)

N 7−!




∼

(131)

Skyrmions on M5. Alongside singular branes like the self-dual string (128) (the flux field it sources would be
singular if the actual locus of the singular string were not removed from the M5-worldvolume), flux quantization
allows to discuss genuine solitonic branes which source a flux density that is non-singular everywhere and is instead
topologically stabilized by the constraint that it vanishes at infinity ([SS24b, §2.2]). For example, in ordinary
electromagnetism there are (recalled in [SS24b, §2.1]) besides the singular branes being the Dirac monopoles (which
remain hypothetical) also solitonic branes being Abrikosov vortices (which are experimentally well observed).

Another example of solitonic objects in this sense are Skyrmions (cf. [ANW93][RZ16][Mant22]), which are
solitons in the SU(2)-valued pion field (possibly including higher vector meson field contributions), that at least
approximate baryon bound states in confined quantum chromodynamics (and which in the Witten-Sakai-Sugimoto
model are essentially identified with wrapped D4-branes, cf. [Su16]).

Concretely, the solitonic nature of Skyrmions requires that the spatial pion field f : R3 −! SU(2) takes the
trivial value 1 ∈ SU(2) “at infinity”. This may neatly be formalized (cf. [SS23a, Rem. 2.3 & p. 14]) by “adjoining
the point at infinity” to R3 via passage to its Alexandroff one-point compactification R3

∪{∞} ≃ S3 and requiring f
to extend to a map on this compactification such that there it takes the literal point ∞ to 1:

Euclidean space with
point at infinity adjoined

R3
∪{∞} SU(2)

∞ 7−! 1

f

pion field

The baryon number of such as Skyrmion configuration (e.g. [BMS10, (4.26)][Mant22, (4.26)]) is then the homotopy
class of this map, under the Hopf degree theorem (129), noticing that SU(2) ≃

homeo
S3:

baryon number
of Skyrmion

[f ] ∈ π0

(
Maps∗/

(
R3

∪{∞}, SU(2)
))

≃ π3
(
R3

∪{∞}
)

≃ π3
(
S3
)

≃ H3(S3; Z) ≃ Z . (132)

This makes explicit that baryon number in Skyrmion theory is equivalently the Cohomotopy charge embodied by
the pion field, of just the same form as the solitonic B-field charge on an M5-brane worldvolume domain of the
form

Σ ≡ R1,2 × R3
∪{∞} , (133)

in that:
π3(Σ) ≡ π3

(
R1,2︸︷︷︸

contractible

×R3
∪{∞}

)
≃ π3

(
R3

∪{∞}
)

≃ π3
(
S3
)

≃ H3(S3; Z) ≃ Z .

Beyond these sets of charges, flux quantization provides us with their moduli spaces:

Moduli spaces of Skyrmions. Flux quantized fields in the form (9) do not just form a set, but naturally
a (supergeometric) higher groupoid (a “space”, review includes [FSS23, §1]) whose (higher) morphisms are the
(higher) gauge transformations (hence which is the finite version of the on-shell BRST complex of the higher gauge
theory). Concretely, this is the homotopy fiber product of smooth super-set of on-shell flux densities with the
moduli space of charges, which in our situation (127) is the pointed mapping space

moduli space of
co-Homotopy charges

π̃π3(Σ) := Maps∗/
(
Σ, S3

)
π̃3
(
Σ
)

set of
co-Homotopy charges

π0 (134)

where from now on we understand Σ as being pointed by a “point at infinity”, and its co-Homotopy to be the
corresponding “reduced” co-Homotopy π̃3 (classes of point-preserving maps) such as to implement any constraints
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of charges vanishing at infinity.5

This entails that for (X,∞
X
) and (Y,∞

Y
) a pair of spaces with designated points at infinity, their appropriate

product space is the “smash product”

X ∧ Y :=
X × Y

X×{∞
Y
} ∪ {∞

X
}×Y

pointed by (∞
X
,∞

Y
)

in terms of which our Minkowskian M5 worldvolume (133) properly reads as follows:6

Σ ≡ R1,2
⊔{∞} ∧ R3

∪{∞}

⇒ π̃3(Σ) ≃ π̃3
(
R3

∪{∞}
)

≃ Z
R1,1× R3 × R1

(135)

where the “brane diagram” on the right indicates the extension of the Skyrmion as seen via its Cohomotopy charges.

Remarkably, the charged points that, so far, appeared only through their net number in Z now “come to life” as
we pass to their co-Homotopy moduli space (134), in that this happens to equivalently be (the group completion G
of) the configuration space of points in space, Conf(R3), whose elements are finite subsets of R3 and whose paths
are continuous motions of these (by [Se73, Thm. 1]):

co-Homotopy moduli
space of Skyrmions

π̃π3(R3
∪{∞}

)
≃

hmtp
G
(
Conf

(
R3
))

configuration space of
points and anti-points

. (136)

Here the group completion
G
(
Conf(R3)

)
:= Ω

(
B⊔Conf(R3)

)
is with respect to the topological monoid structure on Conf(R3) via (suitably adjusted) disjoint union of configu-
rations, hence by adjoining “anti-points” (carrying negative unit charge) to the ordinary points (carrying positive
unit charge) in the configurations.

Remark 4.3 (Torsion contribution in flux quantization). While the classifying spaces S3 (for co-Homotopy)
and B3Z (for ordinary cohomology) have the same rational homotopy type

lS3 ≃ lB3Z ,
so that both would qualify as valid charge quantization laws on the M5-brane if its coupling to the background
C-field were ignored, they differ drastically in torsion contributions. It is the unbounded torsion in the homotopy
groups of S3, hence in the higher homotopy groups of spheres, which conspires to make 3-co-Homotopy reflect these
configuration spaces (136) of solitonic branes.

Of course, with the plain Minkowskian worldvolume topology used so far (135), the worldvolume Skyrmions
actually live in 1+5 dimensions and are themselves 2-branes instead of vortex-like: It remains to pass to a suitable
double dimensional reduction in the remaining two spatial directions in order to model anyonic defects.

Topological quantum observables on Skyrmions. To that end, first consider KK-compactifying the back-
ground spacetime, and jointly the M5-brane worldvolume, on a circle S1

A,

Σ ≡ R1,1
⊔{∞} ∧ R3

∪{∞} ∧ (S1
A)⊔{∞}

R1,1× R3 × S1
A (137)

which we think of as the “M-theory circle” fiber in M/IIA duality. Now π̃π3(Σ) being a moduli space (instead of
just a set) of charges implies (by “closed smash monoidal structure”, cf. [SS23d, §A.2]) that the moduli on this
KK-compactified worldvolume are equivalently the free loop space L of the (group completed) configuration space:

π̃π3(Σ) ≃ Maps∗/
(
(S1
A)⊔{∞} ∧ R3

∪{∞}, S
3
)

≃ Maps
(
S1
A, Maps∗/

(
R3

∪{∞}, S
3
))

≡ L
(
π̃π3(R3

∪{∞})
)

≃ L
(
GConf(R3)

)
.

However, in the strongly-coupled regime that we are after, the circle S1
A ≃ (R1

A)∪{∞} is meant to “decompactify”,
which must mean that we are to fix the asymptotic charges c∞ at∞ ∈ (R1

A)∪∞, hence to consider as the (topological)
non-perturbative moduli space of Skyrmions on M5 the space of (not free) loops of configurations (but) based at
c∞:

Ωc∞

(
π̃π3(R3

∪{∞}
))

≃ Ωc∞G
(
Conf(R)

)
.

5Notice that the point at infinity may be disjoint, denoted Σ⊔{∞}, whereby reduced co-Homotopy subsumes plain co-Homotopy:

π̃3
(
Σ⊔{∞}

)
= π3(Σ) (similarly for any other generalized cohomology theory).

6Recall that this yoga of pointed spaces just serves to neatly encode fall-off conditions on the fields under consideration.
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With this charge moduli space understood as the topological sector of the integrated BRST-complex of the field
theory, the topological quantum observables should correspond to compactly supported complex functions on this
space, and hence higher observables should be given by the homology groups of this space [SS23d, §3]:

Obs• := H•

(
Ωc∞GConf(R3); C

)
∈ HopfAlgZC . (138)

In fact, under concatenation of loops this graded group forms a non-commutative graded Pontrjagin-Hopf algebra,
and by comparison with the case of Yang-Mills theory [SS23d, Thm. 3.1] we may regard this as the algebra of
topological quantum observables on our higher gauge theory, regarded as the topological sector of discrete light
cone quantization of the system [SS23d, §4].

This turns out to be particularly interesting for “open” M5-branes:

Open M5-branes. To complete the desired dimensional reduction of the M5-worldvolume to 1+3 dimensions,
consider now Z2-orbifolding one of the dimensions transverse to the Skyrmions, via the reflection action (the sign
representation of Z2) as in heterotic M-theory (Hořava-Witten theory [HW96]), so that the M5 worldvolume (137)
now becomes the orbifold

Σ ≡ R1,1
⊔{∞} ∧

(
R2 × R1

H�Z2

)
∪{∞} ∧ (S1

A)⊔{∞}
R1,1× R2 × S1

H × S1
A (139)

where the orbifold of the torus S1
H×S1

A appearing now is that from [HW96, Fig. 2].
Such M5-brane configurations wrapping S1

H are known as “open M5-branes” [BGT06, Fig. 3]7 (denoted “M5
worldvolume” in [FSS20a, (52)], and by a gray bar in [FSS21b, p. 2]), whose orbi-singularity may be identified
with a non-supersymmetric 4-brane [KOTY23], hence here with a 3-brane as we think of the S1

A-factor shrunk
away – cf. the figure below (142). This process of obtaining a non-supersymmetric 3-brane by wrapping the M5
on a supersymmetry-breaking torus is similar to the construction in the WSS model for holographic QCD [Wi98,
§4] which instead of the Z2-orbifold of the torus S1

H×S1
A envisions compactification on a plain torus but equipped

with supersymmetry-breaking spin structure.

Charge moduli on open M5-branes. The proper way to measure charges on such orbifolds is in proper orbifold
cohomology [SS20b] (familiar for D-brane charges measured in orbifold/equivariant K-theory [SV10][SS21b, Ex.
4.5.4]), which for the case of flux quantization in co-Homotopy means ([SS20a, §3][SS20b, §5.2][SS20c]) to measure
in orbifold/equivariant co-Homotopy, namely with the moduli space (134) in the case (135) replaced by the pointed
equivariant mapping space:

equivariant
co-Homotopy moduli

π̃π2,1
Z2

(
(R2 × R1

H)∪{∞}
)

:= Maps
∗/
Z2

(
(R2 × R1

H)∪{∞}, (R2 × R1
H)∪{∞}

)
equivariant pointed

mapping space

Now the equivariant generalization of Segal’s theorem (136) says ([RS00, Thm. 2]) that these orbifold moduli
are equivalent to (group completed) equivariant configurations of points, namely to Z2-invariant finite subsets of
R2 × R1

H :
π̃π2,1

((
R2 × R1

H

)
∪{∞}

)
≃

hmtp
G
(
Conf

(
R2 × R1

H

)Z2
)
.

But this means that any one of the points (branes) in a configuration

• either moves freely in the Hořava-Witten bulk R2 × R>0 ≃ R3

(exactly mirrored by a point in R2 × R<0)

• or is stuck on the heterotic plane R2 × {0} ≃ R2,

hence it means that the moduli space is now the product of spaces of configurations in the Hov̌ava-Witten bulk
and on the heterotic plane (cf. also [Xi06, (1.2), Thm. 4.1]):

heterotic co-Homotopy
charge moduli space

π̃π2,1
((

R2 × R1
H

)
∪{∞}

)
≃

hmtp
GConf(R3)︸ ︷︷ ︸

brane configurations
in HW-bulk ≃ (136)

×

brane configurations
on heterotic plane︷ ︸︸ ︷
GConf(R2) . (140)

This is most curious, because:

Vortex braiding on open M5 branes. The configuration space of points in R2 that has appeared on the right
in (136) is the classifying space of the Artin braid groups Br(n) ([FN62, §7], cf. [Wi20, pp. 9]), whose loop space

7Strictly speaking, the discussion in [BGT06] is for solitonic/singular M5-branes, while here we are concerned with the analogous
situation for the sigma-model incarnation of the open M5-brane, hence without backreaction.
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at given c∞ = N is the braid group itself:

Conf(R2) ≃
∐
n∈N

BBr(N) , ΩNConf(R2) ≃ Br(N) .

Therefore the algebra of topological light cone quantum observables (138) on our open M5-brane fields now contains
the group algebra of the braid group:

C
[
Br(N)

]
= H0

(
ΩNConf(R2)

)
H•

(
Ωc∞ π̃π

2,1((R2 × R1
H)∪{∞}

))
. (141)

Looking back through the construction, we see that the braiding happening here is that of the Skyrmions in
1+5 dimensions (solitonic 2-branes) which have been dimensionally reduced to solitonic 1-branes in 1+3 dimensions
(akin to Abrikosov vortices).

At this point one expects these objects to be anyonic. Indeed, we may now derive that this is the case:

Anyonic quantum states on open M5. Given a quantum (star-)algebra of observables as in (141) the corre-
sponding quantum states are identified with the positive linear functions ρ on the vector space of observables (these
assigning the expectation values ρ(A) of any observable A in the given quantum state, cf. [CSS23, §2.2] in our
context):

QStatesvrtx :=

{
Obs Cρ

linear

∣∣∣ ∀
A∈Obs

ρ
(
A∗A

)
≥ 0 ∈ R ⊂ C

}
.

Hence the quantum states of those vortex charges on the compactified M5-brane are the positive linear functionals
on the braid group algebra C

[
Br(N)

]
(141).

Now the Gelfand-Raikov theorem [Gr43, (2)][Dix77, Thm. 13.4.5(ii)] says that the positive linear functionals on
a group algebra are exactly the expectation values with respect to a cyclic state |ψ⟩ of unitary representations U
of that group on some Hilbert space:

braid group representations
topological quantum states

of vortex solitons
on open M5-branes

H
Br(N)

U
−! U(H)

|ψ⟩ ∈ H

Hilbert space

unitary rep

cyclic vector

/
∼

{
C
[
Br(N)

] ρ
−! C pos. lin. func.

}
= Statesvrtx

(
H, U, |ψ⟩

)
7−!

(
ρ :

∑
g∈Br(N)

cg · g 7!
∑

g∈Br(N)

cg ⟨ψ|U(g) |ψ⟩
)

are identified with

∼ (142)

But here U is a braid group representation which hence exhibits H as a space of anyon quantum states |ψ⟩ (cf. e.g.
[NSS+08][Ro22] and in our context [SS23b][SS23c][MySS24, §3]).

In summary, we have found that flux quantization on M5-branes (under
Hypothesis H) makes the topological quantum states of the vortex solitons
(140) on the boundary of the open M5-brane (139) (wrapped over S1

A) be
anyonic, as expected in strongly-correlated (topologically ordered) quantum
systems.

open M5-brane
wrapped on S1

A

n
on

-s
u
sy

3-
b
ra
n
e

anyonic
vortices

S1
H�Z2

5 Conclusion

We have established that and how the on-shell field content on M5-branes is to be completed by a choice of flux
quantization law for the higher gauge field on super-space (where the flux Bianchi identity already implies the
duality equation of motion, Prop. 3.15).

In doing so, we relied on a rigorous and streamlined re-derivation (in §3) of the flux sector of the “super-
embedding”-construction of the M5-brane sigma-model. We suggest that our concise natural geometric re-formulation
of the “super-embedding”-conditions (Def. 2.19 in §2, cf. Rem. 2.23) helps with understanding the phase spaces
of super p-brane sigma-models — in the present case but also in its generalizations such as to “super-exceptional”
geometry (to which we turn in [GSS24c]).
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With this in hand, we used previous results to find that among the admissible flux quantization laws on the
M5-brane is a form of twisted co-Homotopy theory (21), thereby showing that this yields exact global field content
on the M5, without the need of further constraints (which had previously remained open).

Assuming this choice (“Hypothesis H”), we have discussed, in §4, some key examples of the resulting moduli
spaces and quantum states of topological charges, highlighting that Skyrmion-like solitonic charges appear quite
generically on M5-branes, and that on “open” M5-branes the quantum states of the resulting vortex-like solitons
in 1+3 dimensions are anyonic (142). (This complements previous results [SS23b][SS23c] where anyonic quantum
statistics was argued for intersecting M5-brane configurations, which however are not as readily connected to a full
on-shell superspace model as considered here. Notice that previously the realization of anyonic brane states had
remained conjectural, cf. [dBS13, p. 65].)

This result supports the general idea that the M5-brane may serve as a much needed general model for otherwise
elusive quantum phenomena in the strongly coupled/correlated non-perturbative regime and may point the way to
a more microscopically detailed form of holography in high-energy and solid-state physics.

We plan to discuss further exceptional-geometric refinement of the resulting M5-brane model in [GSS24c] and
its impact on concrete experimental phenomenology in [BSSS24].
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[SäS18] C. Saemann and L. Schmidt, Towards an M5-Brane Model I: A 6d Superconformal Field Theory, J. Math.
Phys. 59 (2018) 043502 [arXiv:1712.06623] [doi:10.1063/1.5026545]
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