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Abstract

While it has become widely appreciated that (higher) gauge theories need, besides
their variational phase space data, to be equipped with “flux quantization laws” in
generalized differential cohomology, there used to be no general prescription for how
to define and construct the resulting flux-quantized phase space stacks.

In this short note we observe that all higher Maxwell-type equations have solution
spaces given by flux densities on a Cauchy surface subject to a higher Gauß law and
no further constraint: The metric duality-constraint is all absorbed into the evolution
equation away from the Cauchy surface.

Moreover, we observe that the higher Gauß law characterizes the Cauchy data as
flat differential forms valued in a characteristic L∞-algebra. Using the recent construc-
tion of the non-abelian Chern-Dold character map, this implies that compatible flux
quantization laws on phase space have classifying spaces whose rational Whitehead
L∞-algebra is this characteristic one. The flux-quantized higher phase space stack of
the theory is then simply the corresponding (generally non-abelian) differential coho-
mology moduli stack on the Cauchy surface.

We show how this systematic prescription reproduces existing proposals for flux-
quantized phase spaces of vacuum Maxwell theory and of the chiral boson and its higher
siblings, but reveals that there are other choices of (non-abelian) flux quantization laws
even in these basic cases, further discussed in a companion article [SS23c].

Moreover, for the case of NS/RR-fields in type II supergravity/string theory, the
traditional “Hypothesis K” of flux quantization in topological K-theory is naturally
implied, without the need, on phase space, of the notorious further duality constraint.

Finally, as a genuinely non-abelian example we consider flux-quantization of the C-
field in 11d supergravity/M-theory given by unstable differential 4-Cohomotopy (“Hy-
pothesis H”) and emphasize again that, implemented on Cauchy data, this qualifies as
the full phase space without the need for a further duality constraint.
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1 Introduction

The need of flux quantization. It has become widely appreciated that, besides their
equations of motion, (higher) gauge theories are to be subjected to “flux quantization laws”
(we follow [FSS23-Char, Introd.], survey in [SS24b], see also [Fr00]), even on the classical
fields. Here “quantization” is in the sense of “discretization”: For abelian gauge theories
the flux quantization restricts the total fluxes through — and hence the charges inside —
closed submanifolds of spacetime to lie on a lattice (“charge lattice”), hence to be integral
multiples of certain indecomposable units. The archetypical case is the quantization of
electromagnetic flux, which Dirac originally discussed (cf. §3.1, whence one also speaks of
“Dirac charge quantization”) for hypothetical magnetic monopoles, but which also controls
the experimentally observed quantization of magnetic flux through type II superconductors
witnessed by integer numbers of “Abrikosov vortex strings” (cf. [SS24b, §2.1]).

Non-perturbative data in flux quantization. In fact, flux quantization is more than
just a condition on gauge fields, it is also “extra structure” in mathematical jargon, which
physically means: it involves adjoining further fields or at least further field components such
as “torsion” components, which are invisible to traditional perturbation theory. In the basic
example of electromagnetism, Dirac flux quantization promotes the gauge potential 1-form
A to a connection on a principal bundle, equivalently to a cocycle in integral differential
cohomology (cf. Rem. 2.7). The extra data involved in flux quantization encodes non-
perturbative solitonic degrees of freedom (such as Dirac monopoles or Abrikosov vortices).

More generally but in the absence of non-linear self-sourcing of the fluxes, their quanti-
zation is in abelian Whitehead-generalized differential cohomology (review in [Bu12][Sz13]
[ADH21][De24]). If there are non-linear interactions (such as for the C-field in 11d supergrav-
ity, §3.4) the flux qantization must be in a non-abelian differential cohomology [FSS23-Char]1.
Early proposals in the topological case were given in [Sa05][Sa06].

The open problem of flux-quantized phase spaces. However, this extra nonpertur-
bative data involved in the flux quantization of higher gauge theories is largely outside the
scope of traditional recipes for constructing physical theories, certainly beyond what may be
derived by variational calculus from a Lagrangian density. For one, the phase space of a flux-
quantized gauge theory is no longer a manifold, not even a dg-manifold as in BRST-BV for-
malism, but must be a higher stack (a smooth ∞-groupoid [SSS13, §3.1][SS20b][FSS23-Char,
pp. 41], exposition in [FSS14][Sc24]). Therefore, previous discussions of flux-quantized phase
spaces have been rare and somewhat ad-hoc.

A systematic construction: Higher Gauß laws in non-abelian cohomology. Here
we discuss a systematic procedure for arriving at the flux-quantized phase space (∞-stack)
of a given higher gauge theory, with an emphasis on some aspects that have received little
to no attention before: The choices involved in the process, and its generalization to “non-
abelian” gauge theories with non-linear self-interactions, such as exhibited by the C-field in
11d supergravity (§3.4).

1Where below we give equation numbers etc. for [FSS23-Char], we are referring to the published ver-
sion, see ncatlab.org/schreiber/show/The+Character+Map#PublishedVersion, which differs from the
numbering in the arXiv version (otherwise the content is the same).
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Our approach is non-perturbative and does not use any Lagrangian density (in particular
it applies to “non-Lagrangian” field theories for which a Lagrangian density does not or not
naturally exist, such as self-dual higher gauge theories, cf. §3.2 & §3.3); the input instead is
the equations of motion on the flux densities in the form of “higher Maxwell equations” (6):

Covariant and canonical phase spaces of pure higher gauge theories. To ap-
preciate this, recall that the phase space of a field theory is, in generality, really the space
of on-shell field histories, as such also known as the covariant phase space, for emphasis
([Wi86, p. 314][ČW87][HT92, §17.1]; see [Kh14][GiS23] for rigorous discussion). The tradi-
tional discussion of phase spaces by Cauchy data with respect to a given spatial foliation of
spacetime (“canonical” phase spaces), and particularly as cotangent bundles, is just one way
(applicable in good situations) to identify on-shell field histories with suitable initial value
data, in particular with initial field “coordinates” and their “canonical momenta”.

Now in our case of pure higher gauge theories, we may observe that the on-shell field his-
tories are those (flux-quantized) gauge potentials whose flux densities (only) are subjected to
the corresponding higher Maxwell equations (6). Conversely, this means that the phase space
of a higher gauge theory must be the partial extension by all compatible gauge potentials of
the solution space of flux densities satisfying the higher Maxwell equations:

PhaseSpace
Flux densities

ΩdR

(
Xd; lA

)
clsd

×
LRA(Xd)

stacky homotopy
fiber product

Flux quantization law

A(Xd)

Rp SolSpace
(7)

ΩdR

(
Xd; lA

)
clsd

Cauchy data subject to
L∞-algebraic Gauß law

extract fluxes

Def. 2.6

projection

F⃗
Flux densities solving

higher Maxwell equations

A⃗
Flux

-qua
ntiz

ed

gau
ge pot

enti
als

Thm. 2.2

(1)

Indicated in the diagram on the right are our main observations in the following §2:
(i) Thm. 2.2: The solution spaces of flux densities of common higher gauge theories

(such as appearing in higher supergravity theories) are identified with spaces of flat
a-valued differential forms, encoding the higher Gauß law constraint on any Cauchy
surface (3), for a a connective L∞-algebra of finite type (Rem. 2.4).
In particular, this means that the phase space is given by purely cohomological data,
while the metric data (Hodge-duality on fluxes) is all absorbed into the isomorphism
which identifies points in phase space with on-shell field histories.

(ii) Def. 2.6: A natural notion of flux quantization then is a choice of classifying space
A whose rational Whitehead L∞-algebra is lA ≃ a, in which case the corresponding
phase space of on-shell gauge potentials is the moduli stack of (possibly non-abelian)
differential A-cocycles on the Cauchy surface, following [FSS23-Char].

Examples and Applications. In §3 we first note that for basic cases like ordinary Maxwell
theory (§3.1) and the chiral boson (§3.2) this prescription subsumes existing proposals for
flux-quantized phase spaces (but we highlight that there are other consistent non-abelian
flux quantizations even for these abelian theories).

The case of ordinary Maxwell theory may serve to appreciate the general result: Here it
is well-familiar that on a Cauchy surface the magnetic flux density dA is independent from
the electric flux density E; in fact, the latter is the canonical momentum to the canonical
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coordinate A. It is only when extending initial value data (dA,E) uniquely from the Cauchy
surface to an on-shell field history on all of space-time that E becomes identified with the
spacetime-Hodge dual of dA. This Hodge duality relation, instead of being a constraint on
the initial value data, is part of the rule for extending that data to all of spacetime.

Accordingly, in the example of the RR-fields in type II supergravity (§3.3) our prescription
gives flux quantization in topological K-theory for fields on a Cauchy surface and here without
a further self-duality constraint on the K-theory. This matches (and hence justifies) the
general practice of K-theoretic computations of D-brane charges.

In the same vein, it follows (in §3.4) that a flux-quantized phase space of the C-field of 11d
supergravity is given by the moduli stack of differential Cohomotopy on a Cauchy surface,
again without any further duality constraint. We close by highlighting some implications of
this result.

Acknowledgment. We thank Grigorios Giotopoulos for useful discussion and the anony-
mous referees for helpful comments.

2 Flux quantization on Phase space

In §2.1 we prove that the space of on-shell flux densities of any higher gauge theory con-
trolled by “higher Maxwell equations” on a globally hyperbolic spacetime is equivalently
the space of flux densities on a Cauchy surface satisfying a higher Gauß law (and otherwise
unconstrained), which in turn is equivalently a space of flat differential forms on the Cauchy
surface with coefficients in a characteristic L∞-algebra.

In §2.2 we observe that, therefore, a flux-quantized phase space for such a theory is given by
the canonical differentialA-cohomology for any classifying spaceA whose rational Whitehead
L∞-algebra is the characteristic one.

Here, by “phase space”, we mean the underlying space (smooth ∞-stack) while disre-
garding, for this note, its Poisson brackets and their quantization. That also the algebras of
quantum observables on fluxes have an immediate homotopy-theoretic construction, at least
in the topological sector, is the topic of the companion article [SS23c].

2.1 Higher Maxwell equations on Higher flux densities

That the main result we are presenting here (Thm. 2.2 below) has a rather easy proof (Lem.
2.1, cf. appendix A) may be attributed to the well-adapted form (6) into which we cast the
general higher Maxwell equations to start with, known in electromagnetism (cf. §3.1) as the
“premetric” form [HIO16] and in supergravity and string theory as the “duality symmetric”
or “democratic” form (cf. references in §3.3 & §3.4).

In a sense, this duality-symmetric formulation makes all higher gauge theories appear
as self-dual higher gauge theories (with “doubled” field content if they are not self-dual in
the näıve sense, as in the example §3.1); which conversely means that our formulation of
self-dual higher gauge theories (as in Ex. §3.2, §3.3) is no more intricate than the general
case, in stark contrast to traditional approaches.
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Globally hyperbolic spacetime. To set the scene for canonical phase space analysis,
consider the following:
• XD a D-dimensional spacetime manifold,
• with corresponding Hodge star operator on differential forms (eg. [Fr97, §14.1a]):

⋆ : Ωp
dR

(
XD

) ∼
−−! ΩD−p

dR

(
XD

)
, ⋆ ⋆ = −(−1)p(D−1) , (2)

• which is globally hyperbolic (e.g. [MiS08, §3.11]) exhibited by a smooth foliation by
spacelike Cauchy surfaces (cf. [BS05, Thm. 1.1]):

XD ≃ R0,1 ×Xd , (3)

• Xd ↪! XD its d-dimensional Cauchy surface at t = 0;
• ∂t ∈ Γ(TXD) the corresponding timelike vector field,
• with its contraction operation

ι∂t : Ω•
dR(X

D) −! Ω•−1
dR (XD) ,

• whose kernel we denote: Ω•
dR(X

D)ι∂t=0 ≡ ker(ι∂t) .

• This induces a decomposition of differential forms

Ωp
dR(X

D) ≃ Ωp
dR(X

D)ι∂t=0 ⊕ ⋆ΩD−p
dR (XD)ι∂t=0 (4)

into summands that have none or have one wedge factor of dt, respectively.
• The de Rham differential on XD accordingly decomposes into a temporal and a spatial
summand d = dt + ds

Ωp
dR(X

D) Ωp+1
dR (XD)

Ωp
dR(X

D)ι∂t=0 Ωp+1
dR (XD)ι∂t=0

⊕ ⊕
⋆Ωp

dR(X
D)ι∂t=0 ⋆Ωp−1

dR (XD)ι∂t=0

d

ds

dt

ds

making it the total differential of a bicomplex:

dt ◦ dt = 0 , ds ◦ ds = 0 , dt ◦ ds = −ds ◦ dt . (5)

Higher Maxwell equations in duality-symmetric form. By a system of higher flux
densities on XD satisfying higher Maxwell equations of a higher gauge field theory, we mean
here a system of differential equations of this form:

Higher Maxwell equation

d F⃗ = P⃗
(
F⃗
)

⋆ F⃗ = µ⃗
(
F⃗
)

Constitutive equation

index set of
flux species

I ∈ Sets,
degrees(

degi ∈ N≥1

)
i∈I ,

flux densities

F⃗ ≡
(
F (i) ∈ Ω

degi
dR

(
XD

))
i∈I

P⃗ ≡
(
P (i) grd. symm. polynomial

)
i∈I

fluxes sourcing fluxes

, µ⃗ invertbl. matrix
vacuum permittivity

(6)

whose space of solutions we refer to as the solution space of flux densities: 2

SolSpace ≡

F⃗ ≡
(
F (i) ∈ Ω

degi
dR

(
XD

)) ∣∣∣∣∣∣ d F⃗ = P⃗
(
F⃗
)

⋆ F⃗ = µ⃗
(
F⃗
)
. (7)

2In §2.2 we regard the solution space (7) as a 0-truncated smooth stack (a smooth set), but for the moment
the reader may think of it as just a plain set.
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Notice that we do not assume the higher Maxwell equations to be Euler-Lagrange equations
of a Lagrangian density, nor do Lagrangian densities play any role here; cf. Rem. 2.8 below.

Canonical formulation. Under the space/time-decomposition (4), the covariant equations
of motion (6) on the uniquely decomposed flux densities

F⃗ = B⃗ + ⋆ E⃗ , for


Magnetic flux densities

B⃗ ≡
(
B(i) ∈ Ω

degi
dR

(
XD

)
ι∂t=0

)
i∈I

E⃗ ≡
Electric flux densities

(
E(i) ∈ Ω

D−degi
dR

(
XD

)
ι∂t=0

)
i∈I

(8)

become:

d F⃗ = P⃗
(
F⃗
)

⇔


Higher Gauß law

ds B⃗ = P⃗
(
B⃗
)

dt B⃗ = −ds ⋆ E⃗ + (⋆E(i)) ∧ δ
δB(i) P⃗

(
B⃗
)

Higher Faraday-Ampère law

⇓

d P⃗
(
F⃗
)
= 0 ⇔


ds P⃗

(
B⃗
)
= 0

dt P⃗
(
B⃗
)
=

Integrability condition

−ds

((
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

⋆ F⃗ = µ⃗
(
F⃗
)

⇔
{

E⃗ =
Duality relation

(−1)(D−degi)degi µ⃗
(
B⃗
)
.

(9)

Lemma 2.1 (Gauß law is first class constraint). The Gauß law (9) is preserved by time
evolution: If the Faraday-Ampère law holds on XD and the Gauß laws holds on a Cauchy
surface Xd, then the Gauß law also holds on all of XD.

Proof. It is sufficient to observe that the time derivative of the Gauß law vanishes:

dt

(
ds B⃗ − P⃗

(
B⃗
))

= −ds dt B⃗ − dt P⃗
(
B⃗
)

= 0 .

Here the last step is immediate by using the Faraday-Ampère law on the first summand and
its integrability condition on the second. (We have recorded more details in appendix A.)

Theorem 2.2 (Canonical solution space). The solution space to (6) is identified with the

space of B⃗-fields on a Cauchy surface satisfying (just) the Gauß law:

SolSpace ≃
{
B⃗ ≡

(
B(i) ∈ Ω

degi
dR (Xd)

)
i∈I

∣∣∣ d B⃗ = P⃗
(
B⃗
) }

. (10)

Proof. By the duality relation, the E⃗-fields are just different names for B⃗-fields. Inserting
the duality relation into the Faraday-Ampère law makes the latter a first-order differential
equation on the B⃗-fields, with a unique solution on XD for every choice of B⃗-fields on Xd.
For every such solution, Lem. 2.1 says that it is also a solution of the Gauß law iff it is so
on a Cauchy surface.
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Remark 2.3 (Cohomological nature of the canonical solution space). The import of Thm.
2.2 is to exhibit the canonical solution space as a purely cohomological construction – cf. (13)
below – which, at face value, is independent of the pseudo-Riemannian structure encoded
in the Hodge-star operator. The latter is all absorbed into the isomorphism (10) between
cohomologically constrained initial value data on a Cauchy surface and the corresponding
solutions on all of spacetime. This isomorphism is given by the Faraday-Ampére law (9)
which maps points in canonical phase space to actual field histories on spacetime, using the
duality relation to identify the E⃗-fields with B⃗-fields.

This is noteworthy but not surprising. Already in the familiar case of the phase space
of vacuum electromagnetism (recalled in §3.1), it is well-known that the electric flux density
is entirely independent of the magnetic flux density on a Cauchy surface, the former being
the differential dA of the canonical coordinate A and the latter being the corresponding
canonical momentum E.

Remark 2.4 (The moduli problem of solutions). For all theories of interest, the functor
of solution sets (2.2) of their higher Maxwell equations is representable{

B⃗ ∈ Ωd⃗eg
dR (−)

∣∣ dB = P⃗
(
B⃗
)}

≃ HomdgAlg

(
CE(a), Ω•

dR(−)
)

(11)

by a dgc-algebra (cf. [FSS23-Char, §4]) CE(a), which is the quotient of the free dgc-algebra
on the flux species by the abstract Gauß law relation (cf. [FSS23-Char, Ex. 4.15]):

CE(a) ≡ R
[⃗
b ≡

(
b
(i)
degi

)
i∈I

]/(
d b⃗ = P⃗

(⃗
b
))
. (12)

This requires that the integrability condition holds purely algebraically, namely when differ-
ential forms B⃗ are replaced by abstract algebra generators b⃗ of the same degree: d P⃗

(⃗
b
)
= 0 .

If there are finitely many b
(i)
degi

for each degree degi then this means equivalently that CE(a)
is the Chevalley-Eilenberg algebra of an L∞-algebra a (cf. [FSS23-Char, Def. 4.13]), the
characteristic L∞-algebra of the given higher gauge theory.

In this case the right hand side of (11) is a functor of closed a-valued differential forms
(the “Maurer-Cartan elements” in Ω•

dR(−)⊗ g) [FSS23-Char, Def. 6.1]:

SolSpace ≃ ΩdR

(
Xd; a

)
clsd

. (13)

This observation is the key to understanding flux quantization laws via non-abelian dif-
ferential cohomology [FSS23-Char], to which we turn in §2.2

2.2 Flux quantization and Phase Space

We explain how, in view of Thm. 2.2 and Rem. 2.3, the general principle behind flux
quantization on phase space is now almost self-evident: passage to the non-abelian differential
cohomology of [FSS23-Char].

Smooth sets and Smooth groupoids. One wants to understand the solution space (10)
not just as a bare set, but as a differential-geometric space. If Xd is compact then one can
equip it with the structure of an infinite-dimensional Fréchet manifold, but in general not
even that is possible. However, in the incarnation (13) it canonically carries the convenient
structure of a “smooth set” [GiS23][Sc24], which just means to regard the whole system of
solutions in arbitrary smooth families indexed by p-parameter spaces Rp for all p:
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ΩdR

(
Xd; a

)
: Rp 7! ΩdR

(
Xd × Rp; a

)
clsd

. (14)

(Notice that solutions in smooth families do make good sense due to Thm. 2.2, as discussed
in Rem. 2.3.)

Technically this means to regard SolSpace as a “0-truncated object” in the “∞-topos of
smooth ∞-groupoids” (cf. [FSS23-Char, pp. 41][AY23, §1]). While we will invoke some of
this language of stacky differential homotopy theory now, in order to be precise, the reader
unfamiliar with this technology may, without much loss, think of the following Def. 2.5
as a formal machine which adjoins to the solution space of flux densities all the possible
corresponding gauge potentials, while also taking care of gauge redundancy (cf. Rem. 2.9).

Flux quantization. In the language of stacky homotopy theory, we naturally arrive at the
following notions (for more survey see [SS24b]):

Definition 2.5 (Flux quantization law). Given higher flux densities (6) with characteristic
L∞-algebra a (12), a flux quantization law is a choice of (homotopy type of) a classifying
space3 A whose rational Whitehead L∞-algebra [FSS23-Char, Prop. 5.11] is lA ≃ a.

Definition 2.6 (Flux-quantized phase space). Given a flux quantization law A (Def. 2.5),
we say that the Phase space of the higher gauge theory is the moduli stack of differential
A-cohomology [FSS23-Char, Def. 9.3] on Xd:

PhaseSpace ≡ ΩdR

(
Xd; lA

)
clsd

×
LRA(Xd)

A
(
Xd

)
, (15)

where the notation on the right denotes the mapping stack from Xd into the homotopy
pullback of the R-rationalization [FSS23-Char, Def. 5.7] of the homotopy type A, using its
(non-abelian) differential character map [FSS23-Char, Def. 9.2].

Remark 2.7 (Scope of examples).
(i) For A ≃

whe
BnU(1) ≃

whe
Bn+1Z ≡ K(Z, n + 1), the right hand side of (15) reduces

[FSS23-Char, Prop. 9.5] to ordinary integral differential cohomology (Cheeger-Simons char-
acters, cf. [FSS23-Char, §9]) modeled for n = 1 by principal U(1)-bundles with connection
and for n = 2 by U(1)-bundle gerbe connection, etc.; see the examples in §3.1 & §3.2 below.
(ii) More generally, for A = En the nth component in a spectrum (Ω-spectrum) of pointed
topological spaces, the right-hand side of (15) reduces [FSS23-Char, Ex. 9.1] to the cor-

responding Whitehead-generalized “canonical” differential cohomology theory Ê(−). (For
E = KU this is the case of differential K-theory, cf. [FSS23-Char, Ex. 9.2] and §3.3 be-
low). This is the generality in which charge quantization by differential cohomology has been
discussed in most of the literature.
(iii) But as soon as the higher gauge theory has non-linearities where combinations of fluxes
act as sources for other fluxes (as is the case for the 11d SuGra C-field, cf. §3.4), no
Whitehead-generalized cohomology theory is an admissible flux quantization in the sense of
Def. 2.5. Instead, in these cases the flux-quantization law is given by a classifying space

3For our purposes here a “classifying space” is a simply connected topological space with finite-dimensional
rational cohomology in each degree, so that the fundamental theorem of dg-algebra rational homotopy theory
applies to it, as reviewed in [FSS23-Char, §5]. One can relax these assumptions (cf. [FSS23-Char, Rem.
5.1]), and will want to do so, but this goes beyond the intended scope of this note.
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with non-trivial Whitehead L∞-brackets and and by a non-abelian differential cohomology
theory in the sense of [FSS23-Char].

Remark 2.8 (Relation to traditional construction of phase space).
(i) The traditional way to arrive at the phase space of a higher gauge theory is completely
different from Def. 2.6. In particular, our construction does not refer to a Lagrangian density.
(ii) That Def. 2.6 is nevertheless the correct definition of phase spaces of higher gauge theory
follows from Thm. 2.2 and Def. 2.6, saying that choices of gauge potentials for given on-shell
fluxes are lifts of the latter to cocycles in differential cohomology (1).
(iii) Concretely, we see below that Def. 2.6 reproduces the traditional phase space of vacuum
electromagnetism (18).
(iv) What we are not discussing here is the symplectic structure on phase space, hence the
Poisson brackets of gauge fields and eventually their quantization, this is instead the topic
of the companion article [SS23c].

Remark 2.9 (Stacky phase space reduction and integrated BRST).
(i) The construction of the phase space in Def. 2.5 as a mapping stack immediately makes
it the correct “reduced” phase space of the gauge theory, in the refined stacky sense:
(ii) Namely, the Hamiltonian evolutions induced by the (higher) Gauß-law constraints (9) are
(e.g. [HT92, §1.2]) the gauge transformations, translating among (higher) gauge potentials
that correspond to the same flux densities. In traditional approaches, one is tempted to
quotient out these gauge equivalences to arrive at the naive reduced phase space, but refrains
from doing so due to the bad technical behavior of the ordinary quotient space [HT92, §2.2.3].
(iii) Indeed, more properly, gauge transformations should be retained as isomorphisms in
a smooth groupoid structure on phase space, which is instead the correct stacky homotopy
quotient (cf. [SS21b, Ntn. 3.1.41, Prop. 3.2.76]) by the gauge equivalences, locally. This
(higher) groupoid structure may be understood (cf. [AY23, §5.3]) as the Lie integration
(hence the global non-perturbative version) of the corresponding BRST-complex, taking
infinitsimal “ghost” fields to finite (and large) gauge transformations.
(iv) All of this is automatically embodied by the construction in Def. 2.5. For example, for
A = BU(1) the flux quantized phase space is the stack U(1)Bund(Xd)conn of principal circle-
bundles with connection, which locally on a chart Ud ↪! Xd is the homotopy quotient of local
gauge potentials Ω1

dR(U
d) by the smooth group of gauge transformations Map(Ud,U(1)).
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3 Examples and Applications

Two basic examples
§3.1 – The vacuum Maxwell field
§3.2 – The chiral boson

serve to connect the generalized formulas from §2 to traditional expressions and proposals;
but even here the resulting space of choices of flux quantization laws on phase space has not
received attention before (cf. [SS23c]).

The example
§3.3 – The 10d SuGra RR-fields

seems noteworthy in that the discussion in §2 recovers the famous Hypothesis K of charge
quantization in (twisted) topological K-theory, but, by applying this to fields on a Cauchy
surface, without the otherwise notoriously elusive duality constraint.

Finally, the example
§3.4 – The 11d SuGra C-field

is a genuinely non-abelian case, out of reach of previous flux quantization in abelianWhitehead-
generalized cohomology theory. Our main point here is to observe, again, that the Hypothesis
H on its flux quantization in Cohomotopy already produces the full phase space, without
further need of a duality constraint.

3.1 The vacuum Maxwell field

For a recollection of Maxwell’s equations expressed in differential forms see [Fr97, §3.5 &
7.2b]: The traditional electromagnetic field “3-vectors”

(
E1, E2, E3

)
and (B1, B2, B3) with

respect to any coordinate chart R3 ι
↪−! X3 of a spatial Cauchy surface dualize to electromag-

netic flux densities

ι∗B ≡ 1
2
Biϵijk dx

j ∧ dxk , ι∗E ≡ 1
2
Eiϵijk dx

j ∧ dxk ,

which in turn combine into to the Faraday tensor F according to (8):

F = B − ⋆E

⋆F = E + ⋆B
for B,E ∈ Ω2

dR(X
4)ι∂t=0 .

The vacuum Maxwell equations on X4 in the “premetric” form (6) are ([Ca1924, §80],
cf. [Fr00, Ex. 3.8][HIO16][BBSS17, Rem. 2.3][LS22, Def. 1.16][LS23, (3)]):

dF = 0
dG = 0
G = ⋆F

for F, G ∈ Ω2
dR(X

4) . (16)

The solution space (10) to the ordinary Maxwell’s equations is

SolSpaceA-Field =
{
B,E ∈ Ω2

dR(X
3)
∣∣ dB = 0 , dE = 0

}
, (17)

where on the right we have the historical magnetic and electric Gauß laws. The character-
istic L∞-algebra (12) is hence the direct sum of two copies of the shifted line algebra (cf.
[FSS23-Char, Ex. 4.12]):

SolSpace ≃ Ω2
dR(X

3)clsd ⊕ Ω2
dR(X

3)clsd ≃ ΩdR

(
X3; bu(1)⊕ bu(1)

)
clsd

,
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which means that the possible flux quantization laws (Def. 2.5) are given by homotopy types
A whose rationalization is

LQA ≃ B2Q×B2Q .

Now, traditional Dirac flux quantization ([Dirac1931][Al85, §2][Fr00, Ex. 2.12]) corre-
sponds essentially to the choice and A ≡ BU(1)×B2Q and promotes the B-flux density to
a cocycle in integral differential cohomology (cf. Rem. 2.7) while the E-flux density remains
essentially unconstrained, whence the flux-quantized phase space (2.6) in this case becomes

PhaseSpaceDirac
A-Field ≡

Â ∈ Ω2
dR(X

3)clsd ×B2R BU(1)

E ∈ Ω2
dR(X

3)

∣∣∣∣∣∣ dE = 0

 . (18)

Here the expression in the first line is (by [FSS23-Char, Prop. 9.5], cf. e.g. [FSS13,
2.5][FSS14, §2.5]) equivalently the groupoid of U(1)-principal bundles P with connection
∇ over X3, whose morphisms are gauge transformations g:

Ω2
dR

(
X3

)
clsd

×
B2R

BU(1) ≃ U(1)Bundconn(X
3) =

 (P,∇) (P ′,∇′)

g

g′

 , (19)

which is well-known to model the flux-quantized electromagnetic field ([WY75], review in-
cludes [EGH80, §5.5][RS17]). As such, (18) coincides with the standard canonical phase
space of vacuum electromagnetism in temporal gauge (cf. [Co98, §III][BG21, §5]):
• The “canonical coordinate” is Â = (P,∇), typically expressed with respect to a local
trivialization of P over surjective submetion Y ↠ X (such as Y = P ) as a “vector
potential” 1-form A ∈ Ω1

dR(Y ) satisfying further conditions;

• the electric flux density E is4 the canonical momentum to the canonical coordinate Â and
its Gauß law is the constraint condition.

Remark 3.1 (Varying monopole sectors and categorified symmetries). Traditional discus-
sions typically focus attention on a single connected component of the groupoid (19) of
all U(1)-connections, hence fix the gauge equivalence class of one background connection,
or at least fix the class of the underlying U(1)-principal bundle. This is the perspective
of perturbation theory where the global topological structure of the fields is fixed and only
small field perturbations about these backgrounds are considered. In contrast, the phase
spaces obtained here are automatically non-perturbative in that they reflect all topological
“monopole sectors” at once.

This is relevant: For instance there are global symmetries of vacuum electromagnetism
given by “shifting” (namely: tensoring) the global electromagnetic field Â = (P,∇) by flat

bundles Â0 = (P0,∇0), i.e. with F∇0 = 0, which in turn have “higher global symmetries”5

between them, given by tensoring with gauge transformations g : Â0 ! Â′
0, forming a 2-

group of 2-automorphisms (endofunctors and natural transformations, cf. [BL04, §. 8.1]) of
the groupoid (19), as shown in the following diagram:

4We follow [CP17][SS23c, §A.1] in regarding the electric flux density E as a 2-form, as befits a flux
density, whereas many authors regard it as a “3-vector”, the Hodge dual 1-form ⋆E. It is due to this implicit
dualization that the divergence operation in the traditional Gauß law becomes the closure operation dE = 0.

5The 2-group of endofunctors in (20) makes precise the idea of the “higher form symmetry” of vacuum
electromagnetic considered in [GKSW15, §4.1].
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U(1)Bundconn(X
3) U(1)Bundconn(X

3)

(−)⊗Â0

(−)⊗Â′
0

(−)⊗g (20)

In the traditional perspective on the EM-phase space as reflecting only a single topopological
sector of the gauge field, this 2-group of higher symmetries is in general not realizable, since
the group operations (−) ⊗ Â0 in general shift the class of the underlying U(1)-principal
bundle, [P ⊗ P0] = [P ] + [P0] ∈ H2(X3;Z), by a torsion element [P0].

This example serves to amplify the relevance of the full non-perturbative phase space of
a (higher) gauge theory, including all topological field sectors, which is produced by Def.
2.6.

So far, all this pertains to the choice of flux quantization of the electromagnetic field that
used to be the usual one essentially since [Dirac1931], where the magnetic flux is quantized
but the electric flux is left essentially unconstrained. However, one may consider other flux
quantization laws for Maxwell theory on phase space: Symmetry may suggest to subject the
electric flux density E to the same quantization law as the magnetic flux density, hence to
choose A = BU(1)×BU(1). Via Rem. 2.7 ([FSS23-Char, Prop. 9.5]) this is identified with
the choice made in [FMS07a][FMS07b] [BBSS17, Rem. 2.3][LS22, Def. 4.1][LS23, Def. 4.3]:

PhaseSpaceFMS
A-Field ≡

Â ∈ Ω2
dR(X

3)clsd ×B2R BU(1)

Â′ ∈ Ω2
dR(X

3)clsd ×B2R BU(1)

 . (21)

(The focus of [FMS07a][FMS07b] is on a lift of the canonical Poisson bracket from eq. (18)
to (21). Here we disregard Poisson brackets, but see the companion discussion in [SS23c].)

Remark 3.2 (Duality covariance). While the flux-quantization choice (21) is duality-sym-
metric in that it treats magnetic and electric flux in the same way, it is not in itself duality
covariant, so to say, in that it relies on a choice of what counts as magnetic and what
counts as electric flux: More generally this choice could be made locally only, with suitable
transition functions mixing electromagnetic flux densities relating different local choices, a
situation that is discussed in some detail in [LS18][LS22][LS23], there thought of as a special
case of U-duality covariance in supergravity theory.

In terms of the abstract construction of phase spaces in §2.2, such local duality covariance
is described by generalizing the classifying space A in Def. 2.5 to a fiber bundle of classifying
spaces (a “local coefficient bundle”), thereby generalizing the (differential) cohomology the-
ory that it classifies to a twisted (differential) cohomology theory. This is discussed in detail
in [FSS23-Char, §3, §11], whereby our basic argument here straightforwardly generalizes to
this case; but for brevity we will not further dwell on this point here.

Even so, we wish to highlight that there are yet other possible flux quantization laws
[SS23c, §2], whose torsion contributions need not actually respect the apparent electromag-
netic duality. For instance, for a finite group K ! Z2, we may choose

PhaseSpaceSSA-Field ≡
{
ÂEM ∈

(
Ω2

dR(X
3)clsd

)2 ×(B2R)2 B
(
U(1)⋊

(
K × U(1)

))}
.
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which leads to possibly non-trivial commutators between magnetic and “large” electric fluxes.
(This freedom of choosing “global” non-abelian structure even in abelian Yang-Mills

theory has also been observed, from a different angle, in [LS22].)

Which of these flux quantization laws really applies to the observable world is a phe-
nomenological question that has received almost no attention yet. (One exception is [KMW07]
which claimed to discuss a potential tabletop experiment that might check the law (21).)
But analogous choices of flux quantization laws need to be made also for any higher gauge
field in hypothetical fundamental theories such as higher dimensional supergravity (e.g., the
RR-fields §3.3 or the C-field §3.4), where they have more discernible effects, at least in theory.

3.2 Chiral boson in 2d

This example is again elementary but instructive. In usual Lagrangian approaches, these self-
dual fields are a source of seemingly endless complications (see the discussion and pointers
in [Se20]) and yet thought to be of profound relevance (cf., e.g., [Wi97b]).

The higher Maxwell equations (6) for the “chiral boson” [GGR92] on X2 = R0,1 ×S1 (in
this case really: “lower Maxwell equations” for a “right-moving scalar” in 2d) are :

dF = 0

⋆F = F
for F ∈ Ω1

dR(X
2) . (22)

The canonical decomposition (8) of the flux density 1-form is

F = B + ⋆E , E, B ∈ Ω1
dR(X

2)ι∂t=0

⇔ F = b dx+ e dt , e, b ∈ Ω0
dR(X

2) .

For the record, we note that the Faraday-Ampère law (9) is

dt B = −dx E ⇔ ∂t b = ∂x e ⇔
s.d.

(∂t − ∂x)b = 0 ,

(where in the last step we inserted the constitutive equation ⋆F = F ⇔ e = b) exhibiting
the field as purely a “right-mover” (whence: “chiral”).

However, the key point for us is that the solution space (10) is

SolSpaceχBos ≃
{
B = b dx ∈ Ω1

dR(S
1)
}

≃ ΩdR

(
S1; bu(1)

)
clsd

, (23)

identifying (a single copy of) the line Lie algebra as the characteristic L∞-algebra (13), so
that the canonical choice of flux quantization law (Def. 2.5) is A ≡ U(1). By Rem. 2.7
([FSS23-Char, Prop. 9.5]) this makes the flux-quantized phase space (Def. 2.6) of the chiral
boson be the degree=1 integral differential cohomology of the circle (cf. [FMS07b, pp. 13]):

PhaseSpaceFMS
χBos ≡

{
A ∈ Ω1

dR(S
1)×B2R BU(1)

}
.

This coincides with the statement on [FMS07b, p. 32] (notice that there the focus is on the
Poisson brackets on this phase space, which is not our concern here, but cf. [SS23c]).

Remark 3.3. This highlights how in our duality-symmetric formulation every higher gauge
theory (of Maxwell type) is regarded as “generalized self-dual” with the actual self-dual field
theories subsumed as those whose duality-symmetric fields are not doubled, as in (23) and in
contrast to (17).
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3.3 The RR-field and Hypothesis K

On a spacetime of the form X10 = R0,1 ×X9, consider NS-fields and RR-fields with their
canonical decomposition (8):

H3 = Hmag
3 + ⋆Hel

7 , for

{
Hmag

3 ∈ Ω3
dR(X

10)ι∂t=0

H3
el ∈ Ω7

dR(X
10)ι∂t=0

H7 = Hmag
7 + ⋆Hel

3 , for

{
Hmag

7 ∈ Ω7
dR(X

10)ι∂t=0

Hel
3 ∈ Ω7

dR(X
10)ι∂t=0(

F2k+σ = B2k+σ − ⋆B10−2k−σ

)
1≤2k+σ≤9

, for
{
B2k+σ ∈ Ω2k+σ

dR (X10)ι∂t=0 ,

where

σ =

{
0 | type IIA,

1 | type IIB.

The higher Maxwell equations for the NS/RR-fields in the “duality symmetric” or “demo-
cratic” form (6) are ([CJLP98, §3], cf. [GrS22, p. 3][MV23, (6,7)]):

dH3 = 0 , dH7 = 0

dF2k+σ = H3 ∧ F2k+σ−2

⋆H3 = H7

⋆F2k+σ = F10−2k−σ,

where we understand that F2k+σ ≡ 0 if the index is < 1 or > 9.
In our systematics, the now traditional statement [MM97] that this points towards flux

quantization in topological K-theory (rather: twisted K-theory [BM00][MS04]) comes about
because (10) is characterized (in the sense of Rem. 2.4) by the Whitehead L∞-algebra of the
homotopy quotient of the classifying space for complex K-theory in degree σ by the 2-group
BU(1) [FSS17, Def. 4.10][FSS18, Def. 4.6][FSS23-Char, Prop. 10.1]:

SolSpaceNS/RR-Field ≃


Hmag

3 ∈ Ω3
dR(X

9)

Hmag
7 ∈ Ω7

dR(X
9)(

B2k+σ ∈ Ω2k+σ
dR (X9)

)
1≤2k+σ≤9

∣∣∣∣∣∣∣∣
dH3 = 0, dH7 = 0

dB2k+σ = H3 ∧B2k+σ−2


≃ ΩdR

(
X9; l

(
(Ω∞ΣσKU)�BU(1)

)
⊕ lB6U(1)

)
clsd

.

Hence if we apply flux quantization for RR-fields on phase space according to Def. 2.5,
then the flux quantization law may be taken to be (twisted) complex K-theory as in the now
traditional “Hypothesis K” (to use the term from [SS23b, Rem. 4.1] for the flux quantization
hypothesis due to [MW00][FH00][Fr00], for more see [GrS22]) but without further duality
constraint, in higher but otherwise immediate analogy to the transparent case of the chiral
boson (§3.2).

In contrast, in the discussion of flux quantization of RR-fields not on Cauchy surfaces
but on spacetime, a more intricate-looking duality constraint has been considered ([MW00,
§3][DFM11, Def. 6]).
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3.4 The C-field and Hypothesis H

On a spacetime of the form X11 = R0,1×X10 consider the 11d supergravity C-field with its
canonical decomposition (8):

G4 = B4 − ⋆E7, for

{
B4 ∈ Ω4

dR(X
11)ι∂t=0

E7 ∈ Ω7
dR(X

11)ι∂t=0

G7 = B7 − ⋆E4, for

{
B7 ∈ Ω7

dR(X
11)ι∂t=0

E4 ∈ Ω4
dR(X

11)ι∂t=0 .

The higher Maxwell equations of 11d supergravity in their “duality-symmetric” form (6)
[BBS98][CJLP98, §2][BNS04, §2] are:

dG4 = 0 ⇔


magnetic Gauß law

ds B4 = 0

dt B4 = ds ⋆ E7
magnetic evolution

dG7 = −1
2
G4 ∧G4 ⇔


electric Gauß law

dsB7 = −1
2
B4 ∧B4

dt B7 = ds ⋆ E4 +B4 ∧ ⋆E7 .
electric evolution

⋆G4 = G7 ⇔

 E4 = B4

B7 = −E7

duality relation

(24)

It may be instructive to explicitly check Lem. 2.1 in this case:

dt

(
ds B4

)
= −ds

(
dtB4

)
= −ds ds ⋆ E7

= 0 ,

dt

(
ds B7 +

1
2
B4 ∧B4

)
= −ds dt B7 + (dt B4) ∧B4

= −ds

(
B4 ∧ ⋆E7

)
+ (ds ⋆ E7) ∧B4

= 0 .

Remarkably, the solution space (10) of the C-field

SolSpaceC-Field ≃

{
B4 ∈ Ω4

dR(X
10)

B7 ∈ Ω7
dR(X

10)

∣∣∣∣∣ dB4 = 0

dB7 = −1
2
B4 ∧B4

}
≃ ΩdR

(
X10, lS4

)
clsd

(25)

is characterized (in the sense of Rem. 2.4) by the “M-theory gauge algebra” [CJLP98,
(2.5)][Sa10, §4][SV22, §2.2] which happens to be the Whitehead L∞-algebra of the 4-sphere
(cf. [FSS23-Char, Ex. 5.3]), an observation due to [Sa13, §2.5], see also [FSS17, §2]:

lS4 = R⟨v3, v6⟩ with [v3, v3] = v6 .

It follows that the homotopy type of the 4-sphere is the classifying space for an admissible
flux quantization law (Def. 2.5) of the C-field on phase space (without a further duality
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constraint). The non-abelian cohomology theory classified by the 4-sphere is known as 4-
Cohomotopy, i.e., unstable/nonabelian Cohomotopy, as in the original form of Pontrjagin’s
theorem (the origin of the now more famous Pontrjagin-Thom theorem), identifying it with
unstable framed cobordism, cf. [SS23a, §2.1 & 2.2].

The evident hypothesis that this choice is the correct flux quantization law in M-theory is
essentially what we called “Hypothesis H” [FSS19][SS20a][FSS21a][FSS21b][SS21a][FSS22]
[SS23a]. More precisely, Hypothesis H postulates C-field flux quantization by a tangentially
twisted form of 4-Cohomotopy (not further discussed here for the sake of brevity, but see
the survey in [FSS23-Char, §12]), which turns out to capture subtle topological effects such
as the famous “shifted” flux quantization of the C-field from [Wi97a] on spacetimes whose
tangent bundle has a non-trivial fractional Pontrjagin class 1

2
p1 ([FSS19, Prop. 3.13], a

previously enigmatic phenomenon which was the key motivation in [HS05] for introducing
the notion of generalized differential cohomology in the first place).

The point that the present discussion adds to this picture is the observation that the
corresponding moduli of (unstable) differential 4-Cohomotopy [FSS15][FSS23-Char, Ex. 9.3]
of any Cauchy surface X10 is already the phase space (Def. 2.6) of the cohomotopically flux-
quantized C-field, without the need to impose a further duality constraint:

PhaseSpaceFSSC-Field =

{
C ∈

canonical differential 4-cohomotopy

ΩdR

(
X10; lS4

)
clsd

×
LRS4(X10)

S4(X10)

}
. (26)

In fact, in this case, at least, this flux quantization naturaly lifts form the phase space
to all of spacetime, or rather to super-spacetime: This is the content of [GGS24].

Remark 3.4 (Double dimensional reduction of the C-field). Many examples of higher gauge
fields naturally arise via double dimensional KK-reduction (reducing both the spacetime di-
mension as well as higher gauge field degrees) of examples in higher dimensions, and specifi-
cally of the C-field in 11-dimensions (cf. [SS24b, Ex. 2.5]). This is traditionally discussed at
the level of differential forms, but at least if the fiber space F has group structure then dou-
ble dimensional reduction applies also to flux quantization laws A, namely by forming the
“cyclification” CycF (A) := Map(F,A)�F of the classifying space A [BMSS19, §2.2][SS24a].
In this fashion flux quantization laws of all the previous examples are induced by flux quan-
tization laws of the C-field. Since on the underlying flux densities this process produces the
usual U-duality groups [SV22][SV23], it follows that cyclification of flux quantization laws
necessarily yields a form of U-duality covariant flux quantization. This deserves to be further
discussed elsewhere.

Outlook – Fundamental M-branes from cohomotopical C-field flux quantization.
For spacetimes modelling the vicinity of flat solitonic branes of small codimension, the co-
homotopical phase space (26) of the C-field is shape-equivalent6 to a configuration space
manifold of points – namely of the positions of these branes in their transverse space [SS22,
§2], which serves as an atlas for the phase space stack. With topological quantum observables

6A map of smooth ∞-stacks is a shape-equivalence if it induces a weak homotopy equivalence under
passage to topological realizations (cf. [FSS23-Char, Prop. 1.26][SS20b, Def. 3.1]).
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of flux-quantized phase spaces conceived as in the companion article [SS23c], Hypothesis H
hence implies a rich structure of quantum observables on at least certain M-brane config-
urations. In [SS22, §4] these quantum observables are matched to a wealth of structures
expected in the string/M-theory literature, in particular to quantum states of transverse
M2/M5-branes as seen in the BMN matrix model [SS23c, §4.9][CSS23].

A question that had been left open in [SS23c] is whether (or why not) the purely coho-
motopical structures considered there would (not) need to be subjected to a metric duality
constraint in order to become “physical”. We suggest that the result presented here may be
understood as answering this question (cf. also [GGS24]).
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A Appendix: Computations

The proof of Lem. 2.1 is quite elementary and immediate — thanks to the duality-symmetric
form of the higher Maxwell equations (6) — but for the record we spell it out in detail:

The key point is that with the canonical decomposition (8)

F (i) = B(i) + ⋆E(i) , for

 B(i) ∈ Ω
degi
dR

(
XD

)
ι∂t=0

E(i) ∈ Ω
D−degi
dR

(
XD

)
ι∂t=0

the terms ⋆E⃗ have vanishing wedge product with each other since they are all proportional
to the differential dt of the temporal coordinate function globally given by (3).

Therefore, any graded-symmetric polynomial function P⃗ of F⃗ is the sum of that same
polynomial function of B⃗ with the result of iteratively replacing in this polynomial every one
factor of B(i) by ⋆E(i). The latter may be written as the sum of graded partial derivatives

δ
δB(i) of the polynomial times ⋆E(i):

P⃗
(
F⃗
)

= P⃗
(
B⃗
)
+

(
⋆ E(i)

)
∧ δ

δB(i)
P⃗
(
B⃗
)
. (27)

For example, in the situation of §3.4:
1
2
F4 ∧ F4 = 1

2

(
B4 + ⋆E7

)
∧
(
B4 + ⋆E7

)
= 1

2
B4 ∧B4 + (⋆E7) ∧B4 .

Similarly, in the differential of F⃗ we collect terms with and without a factor of dt:

d F⃗ =
(
ds + dt

)(
B⃗ + ⋆E⃗

)
= dsB +

(
dt B + ds ⋆ E

)
. (28)

Now equating (28) with (27) and matching temporal/nontemporal components already yields
the Gauß- and the Faraday-Ampère law in (9). Similarly for their integrability condition:

0 = d P⃗
(
F⃗
)

=
(
ds + dt

)(
P⃗
(
B⃗
)
+

(
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

= ds P⃗
(
B⃗
)
+

(
dt P⃗

(
B⃗
)
+ ds

((
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
)))

.

(29)

With this, we may spell out the derivation in the proof of Lem. 2.1:

dt

(
ds B⃗ − P⃗

(
B⃗
))

= −ds dt B⃗ − dt P⃗
(
B⃗
)

= −ds

(
− ds ⋆ E +

(
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

+ ds

((
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

= ds ds ⋆ E︸ ︷︷ ︸
=0

− ds

((
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

+ ds

((
⋆ E(i)

)
∧ δ

δB(i) P⃗
(
B⃗
))

︸ ︷︷ ︸
=0

= 0 .

(30)

Here the second line uses (5), the third line uses (27), (28), & (29), and in the last line we
use (5) and cancel summands.
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(première partie) (Suite), Ann. Scient. l’ÉNS 3e sér. 41 (1924), 1-25,
[numdam:ASENS 1924 3 41 1 0].

[CP17] A. S. Cattaneo and A. Perez, A note on the Poisson bracket of 2d smeared fluxes, Class.
Quant. Grav. 34 (2017) 107001, [doi:10.1088/1361-6382/aa69b4], [arXiv:1611.08394].

[Co98] A. Corichi, Introduction to the Fock Quantization of the Maxwell Field, Rev. Mex. Fis. 44
(1998) 402-412, [repositorio.unam.mxcontenidos:4107913], [arXiv:physics/9804018]
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