Flux quantization of general higher gauge theories. quantization generalizes to any higher gauge theory:

Higher Maxwell-type equations have a **characteris**tic L_{∞} -algebra \mathfrak{a} : The flux densities are equivalently \mathfrak{a} -valued differential forms, and the Gauß law (17) is equivalently the condition that these be *closed* (i.e.: flat, aka "Maurer-Cartan element"; in Italian SuGra literature: "satisfying an FDA").

Also every topological space \mathcal{A} (under mild conditions) has a characteristic L_{∞} -algebra: Its \mathbb{R} -rational Whitehead bracket L_{∞} -algebra $\mathcal{I}\mathcal{A}$.

The nonabelian Chern-Dold character map turns \mathcal{A} -valued maps into closed $\mathcal{I}\mathcal{A}$ -valued differential forms, generalizing the Chern character for $\mathcal{A} = \mathrm{KU}_0$.

The **possible flux quantization laws** for a given higher gauge field are those spaces \mathcal{A} whose Whitehead L_{∞} -algebra is the characteristic one.

Given a flux quantization law \mathcal{A} , the corresponding **higher gauge potentials** are deformations of the flux densities into characters of a \mathcal{A} -valued map, witnessing the flux densities as reflecting discrete charges quantized in \mathcal{A} -cohomology.

(It is not obvious that this reduces to the usual notion of gauge potentials, but it does.)

These non-perturbatively completed higher gauge fields form a *smooth higher groupoid*: the "canonical **differential** \mathcal{A} -cohomology moduli stack". Since these are now the flux-quantized on-shell fields, this is the **phase space** of the flux-quantized higher gauge theory (p. 13).

The topological sector of the phase space. The flux-quantized phase space hence subsumes the "solitonic" fields with non-trivial charge sectors χ , and as such is a non-perturbative completion of the traditional phase spaces (which correspond to a fixed charge sector only, typically to $\chi = 0$).

The shape (topological realization) of this phase space stack is the **space of topological fields**,

which implies that the ordinary homology of the phase space stack constitutes the **topological observables** on the higher gauge theory.

Hence if we focus only on the solitonic or *topological* field-content of the phase space, then we see plain \mathcal{A} -cohomology moduli of the Cauchy surface. and the full phase space stack only serves to justify this object.

Therefore the reader need not be further concernd with higher stack theory for the present purpose. We explain ([FSS23-Char][SS23a]) how Dirac's flux

