
Flux quantization of general higher gauge theories. We explain ([FSS23-Char][SS23a]) how Dirac’s flux
quantization generalizes to any higher gauge theory:

Higher Maxwell-type equations have a characteris-
tic L∞-algebra a: The flux densities are equivalently
a-valued differential forms, and the Gauß law (17) is
equivalently the condition that these be closed (i.e.:
flat, aka “Maurer-Cartan element”; in Italian SuGra
literature: “satisfying an FDA”).
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Also every topological space A (under mild condi-
tions) has a characteristic L∞-algebra: Its R-rational
Whitehead bracket L∞-algebra lA.
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The nonabelian Chern-Dold character map turns
A-valued maps into closed lA-valued differential
forms, generalizing the Chern character for A = KU0.
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The possible flux quantization laws for a given
higher gauge field are those spaces A whose White-
head L∞-algebra is the characteristic one.
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Given a flux quantization law A, the corresponding
higher gauge potentials are deformations of the
flux densities into characters of a A-valued map, wit-
nessing the flux densities as reflecting discrete charges
quantized in A-cohomology.
(It is not obvious that this reduces to the usual notion
of gauge potentials, but it does.)
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These non-perturbatively completed higher gauge
fields form a smooth higher groupoid: the “canonical
differential A-cohomology moduli stack”. Since
these are now the flux-quantized on-shell fields, this
is the phase space of the flux-quantized higher gauge
theory (p. 13).
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The topological sector of the phase space. The flux-quantized phase space hence subsumes the “solitonic”
fields with non-trivial charge sectors χ, and as such is a non-perturbative completion of the traditional phase spaces
(which correspond to a fixed charge sector only, typically to χ = 0).

The shape (topological realization) of this phase
space stack is the space of topological fields,
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which implies that the ordinary homology of the
phase space stack constitutes the topological ob-
servables on the higher gauge theory.
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Hence if we focus only on the solitonic or topological
field-content of the phase space, then we see plain
A-cohomology moduli of the Cauchy surface. and
the full phase space stack only serves to justify this
object.
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Therefore the reader need not be further concernd
with higher stack theory for the present purpose.
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