
Lecture 1: Introduction

Overview

Vector bundles arise in many parts of geometry, topology, and physics. The tangent bundle

TM Ñ M of a smooth manifold M is the first example one usually encounters. The tangent

space TpM is the linearization of the nonlinear space M at the point p P M . Similarly, a nonlinear

map between smooth manifolds has a linearization which is a map of their tangent bundles. Vector

bundles needn’t be tied to the intrinsic geometry of their base space. In quantum field theory, for

example, extrinsic vector bundles are used to model subatomic particles. Sections of vector bundles

are generalized vector-valued functions. For example, sections of the tangent bundle TM Ñ M are

vector fields on the manifold M .

The set VectpXq of isomorphism classes of complex vector bundles on a topological space X is a

homotopy invariant of X. It is a commutative monoid: a set with a commutative associative com-

position law with unit, represented by the zero vector bundle. The universal abelian group formed

out of this monoid is KpXq, the K-theory group of X. It is a homotopy invariant of X. Topological

K-theory was introduced in the late 1950s by Atiyah-Hirzebruch [AH], following Grothendieck’s

ideas [BS] in the sheaf theory context related to the Riemann-Roch problem (which in turn was

solved in 1954 by Hirzebruch [Hi]). The abelian group KpXq “ K0pXq is part of a generalized

cohomology theory, and standard computational techniques in algebraic topology can be brought

to bear. K-theory, which is constructed directly from linear algebra, is in many ways more natural

than ordinary cohomology and turns out to be more powerful in many situations. Also, because

of its direct connection to linear algebra it appears often in geometry and physics. One of the first

notable sightings is in the 1963 Atiyah-Singer index theorem for elliptic operators [AS1].

Over the past few decades there has been renewed interest in K-theory, in large part due to its

appearance in quantum field theory and string theory. For example, K-theory is the generalized

cohomology theory which quantizes D-brane charges in superstring theory [MM], [W1]. (A trun-

cation of real K-theory plays the same role for the B-field [DFM1], [DFM2].) The Atiyah-Singer

index theorem, refined to include differential-geometric data, expresses the anomaly in the partition

function of fermionic fields [AS2]. These two occurrences of K-theory combine [F1] to refine the

original Green-Schwarz anomaly cancellation [GS], which catalyzed the first superstring revolution.

In a different direction, K-theory enters into “geometric quantization in codimension two”. These

ideas are surveyed in [F2]. Modern applications often involve twistings of complex K-theory,1 and

fleshing out the theory of twisted K-theory has been one focus of recent mathematical activity.

Twistings date from the 1960s in work of Donovan-Karoubi [DK], and from an operator point

of view somewhat later in work of Rosenberg [Ro]. There are many modern treatments which

develop a wide variety of models, ranging from the operator-theoretic to the geometric to the ab-

stract homotopy-theoretic. In geometry twisted K-theory appears in the representation theory of

loop groups [FHT1, FHT2, FHT3]: the fusion ring of positive energy representations of the loop

group LG “ MappS1, Gq of a compact Lie group G at a fixed level is a twisted version of KGpGq,

K-Theory (M392C, Fall ’15), Dan Freed, August 28, 2015
1Real K-theory can be viewed as a particular twisting of complex K-theory, for example.
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the equivariant K-theory of G acting on itself by conjugation. Recently K-theory has appeared in

condensed matter physics as part of the classification of phases of matter [Ho, Ki, FM].

The course may cover a bit of this recent activity, but we will begin for awhile with basics and

some classical results, especially Bott periodicity.

Vector spaces and linear representations

(1.1) The “trivial” vector space C
n. Let n be a nonnegative integer. As a set Cn “ tpξ1, . . . , ξnq :

ξi P Cu. The vector space C
n has a canonical basis p1, 0, 0, . . . , 0q, p0, 1, 0, . . . , 0q, . . . If we view

the basis as part of the structure, then C
n is rigid : the only linear symmetry of Cn which fixes the

canonical basis is the identity map idCn .

(1.2) Abstract finite dimensional vector spaces. In general vector spaces are not equipped with

canonical bases, and so have nontrivial linear symmetries. Let E be a complex vector space, assumed

finite dimensional. Its group of linear symmetries is denoted AutpEq “ GLpEq. The automorphism

group AutpCnq of Cn (without necessarily fixing the canonical basis) is identified with the group

of invertible n ˆ n matrices. A basis of E is an isomorphism b : Cn Ñ E, where n “ dimE. The

set BpEq of bases of E is a right torsor2 for AutpCnq. There is a unique Hausdorff topology on E

for which vector addition ` : E ˆ E Ñ E is continuous. A basis determines a homeomorphism

to the standard topology on C
n. The vector space EndpEq of all linear operators on E is finite

dimensional, so also has a unique vector topology. The subset AutpEq of invertible endomorphisms

is open and is a topological group in the induced topology. In a natural way E can be given the

structure of a smooth manifold and AutpEq the structure of a Lie group.

A geometric structure on E cuts down the group AutpEq of symmetries to a subgroup G. The

Kleinian3 point of view is that the subgroup G defines the geometric structure. We take a slightly

more general point of view and take a geometric structure on E to be a homomorphism G Ñ AutpEq

from a Lie group G, which then acts linearly on E.

Example 1.4. The most familiar examples occur for real vector spaces E. For example, an inner

product x´,´y on E has the orthogonal group OpEq Ă AutpEq as its group of symmetries. A

symplectic form on E determines the symplectic subgroup of symmetries. On the other hand,

a spin structure on E has a group of symmetries which does not act effectively on E: the map

SpinpEq Ñ AutpEq is a 2:1 covering of a subgroup of AutpEq.

Remark 1.5 (Infinite dimensional vector spaces). There is not a unique vector topology in infinite

dimensions, but rather very different sorts of topological vector spaces: Hilbert spaces, Banach

spaces, Fréchet spaces, . . . In this course we mostly deal with Hilbert spaces. Recall that a Hilbert

space H is a complex vector spaces equipped with a complete Hermitian inner product; it can

be finite or infinite dimensional. There are many possible topologies on its group AutpHq of

2The map

(1.3)
BpEq ˆ AutpCnq ÝÑ B ˆ B

pb, gq ÞÝÑ pb, b ˝ gq

is an isomorphism, which is to say that AutpCnq acts simply transitively on BpEq.
3Felix, that is: Erlanger Programm.
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automorphisms (and also on the subgroup UpHq of unitary automorphisms—automorphisms which

fix the inner product). The natural topology for us is the compact-open topology, on which we

comment more in subsequent lectures.

Families of vector spaces; vector bundles

(1.6) Spaces and smooth manifolds. In this course we move back and forth between topological

spacesX,Y, . . . and smooth manifoldsM,N, . . . It is important in both cases that partitions of unity

exist. Thus we assume all topological spaces are paracompact, and Hausdorff. In particular, we

assume all smooth manifolds are paracompact and Hausdorff. These assumptions hold throughout.

Definition 1.7. Let X be a space. A family of vector spaces parametrized by X is a space E, a con-

tinuous surjection π : E Ñ X, and a finite dimensional vector space structure on each fiber π´1pxq,

x P X compatible with the topology of E.

To spell out what this compatibility is, recall that the data4 for a single vector space consists of

a set E, a distinguished element 0 P E, the operation of vector addition ` : E ˆ E Ñ E, and the

operation of scalar multiplication m : C ˆ E Ñ E. (For definiteness we consider complex vector

spaces; an analogous discussion holds in the real case.) The data for the family is a zero section

z : X Ñ E, vector addition5 ` : E ˆX E Ñ E, and scalar multiplication m : CˆE Ñ E. The maps

are required to be compatible with π: they preserve fibers. The compatibility in Definition 1.7 is

that z,`,m are all continuous maps.

Definition 1.8. Let π : E Ñ X be a family of vector spaces parametrized by X. Its rank is the

function rankE : X Ñ Z
ě0 defined by prankEqpxq “ dimπ´1pxq.

Heuristically (for the moment), we can imagine a parameter space V of all vector spaces, the

components of V labeled by the dimension of the vector space. Then a family of vector spaces

parametrized by X is a map X Ñ V.

Example 1.9 (constant vector bundle). Let E be a finite dimensional vector space. The constant

(trivial) bundle with fiber E is p1 : X ˆ E Ñ X, projection onto the first factor, with the constant

vector space structure on fibers. We use the notation E Ñ X for the trivial bundle with fiber E.

Example 1.10 (tangent bundle). The tangent bundle π : TS2 Ñ S2 is a non-constant family: the

tangent spaces to the sphere at different points are not naturally identified with each other. In fact,

the hairy ball theorem asserts that there does not exist a global nonzero section of π; every vector

field on S2 has a zero. A manifold whose tangent bundle admits a global basis of sections is termed

parallelizable and such a basis is a global parallelism. The circle S1 and 3-sphere S3 are examples of

parallelizable manifolds. (The 0-sphere S0 is also parallelizable, trivially.) A theorem of Kervaire,

Bott, and Milnor (independently) states that the only other parallelizable sphere is S7. These

four parallelizable spheres correspond to the four division algebras (reals, complexes, quaternions,

octonions).

4As opposed to conditions, or axioms, of which there are many.
5Here E ˆ

X
E “

 
pe1, e2q : πpe1q “ πpe2q

(
denotes the fiber product of π with itself: pairs of points in a fiber.
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Example 1.11 (family associated to a linear operator). Let T : E Ñ E be a linear operator on a

finite dimensional vector space. Define the family of vector spaces parametrized by C whose fiber

at x P C is kerpxI´T qn, where I “ idE and n “ dimE. The support of the family—the set of x P X

where the fiber is not the zero vector space—consists of the eigenvalues of T and the corresponding

fiber is the generalized eigenspace. The direct sum of the fibers is canonically isomorphic to E. In

this example the rank is not a continuous function.

If π : E Ñ X and π1 : E1 Ñ X are two families of vector spaces parametrized by X, then a

morphism of the families is a continuous map T : E Ñ E1 such that π1 ˝ T “ π and T is linear on

each fiber. It is an isomorphism if it is bijective with continuous inverse.

Definition 1.12. A family of vector spaces π : E Ñ X parametrized by X is a vector bundle if

it is locally trivial, i.e., if for each x P X there exists an open set U Ă X containing x and an

isomorphism of π
ˇ̌
π´1pUq

: π´1pUq Ñ U ˆ E with a constant vector bundle with fiber some vector

space E.

For a vector bundle rankE : X Ñ Z
ě0 is a locally constant function.

Remark 1.13. We emphasize that local triviality is a condition, not data: the local trivializations

are not part of the structure of a vector bundle. Local triviality is a key property of vector bundles,

and more generally of fiber bundles, as exposed in the influential book of Norman Steenrod [St].

One of the earliest appearances in the literature is perhaps a 1935 paper of Whitney [Wh]. We will

see in the next lecture that local triviality leads to homotopy invariance, consequently to topological

invariants.

Example 1.10 is a vector bundle whereas Example 1.11 is not. The latter can be given the

structure of a sheaf.

Remark 1.14. We will consider infinite rank vector bundles as well. The definition is the same, but

we need to be careful about the topology on the vector spaces (Remark 1.5).

Definition 1.15. Let M be a smooth manifold. A vector bundle π : E Ñ M is smooth if E is a

smooth manifold, π is a smooth map, and the structure maps z,`,m are smooth.

See the text following Definition 1.7 for the structure maps of a family of vector spaces. The tangent

bundle of a smooth manifold (Example 1.10) is a smooth real vector bundle.

Clutching construction of vector bundles

(1.16) Clutching on S2. The homotopy invariance we prove in the next lecture implies that any

vector bundle over a contractible space is trivializable. Write the 2-sphere S2 as the union S2 “

B` YB´ of two balls B` “ S2ztp`u, B´ “ S2ztp´u, where p` ­“ p´ are distinct points on S2. Any

smooth complex line6 bundle L Ñ S2 can be trivialized over B˘. Fix isomorphisms L
ˇ̌
B˘

–
ÝÝÑ B˘ ˆ

C, for example by stereographic projection as illustrated in Figure 3. The ratio of the isomorphisms

over B` X B´ is a smooth map to C
ˆ, the nonzero complex numbers. Fix a diffeomorphism

6A line is a vector space of dimension 1, so a line bundle is a vector bundle of constant rank 1.
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B` X B´ – C
ˆ, so that overlap data is identified with a smooth function φ : Cˆ Ñ C

ˆ. Another

consequence of homotopy invariance is that the isomorphism class of the line bundle L Ñ S2

depends only on the homotopy class of φ. The homotopy class is determined by the winding

number of φ, and so isomorphism classes of complex line bundles L Ñ S2 correspond to Z; the

integer invariant is called the degree of the line bundle. The tangent bundle has degree 2.

Remark 1.17. This generalizes to higher dimensional spheres and higher rank bundles. Rank N

bundles on Sn are classified by homotopy classes of maps Sn´1 Ñ GLNC. So the topology of this

Lie group is fundamental for K-theory, and we will see shortly that it is the stable topology—

the topology as N Ñ 8—which is relevant. The Bott periodicity theorem determines the stable

homotopy groups; see Theorem 1.31 below. It is the cornerstone of topological K-theory, and so

we may end up giving 3 independent proofs in the course.

(1.18) More general clutching; groupoids. This gluing construction has a vast generalization.

First, if X is a space and tUiuiPI an open cover, then we can imagine X as constructed from

the disjoint union
š
iPI

Ui by identifying pi P Ui and pj P Uj if they correspond to the same point

of X. The situation is depicted in Figure 1. Double-headed arrows connect points which are glued.

The clutching data for a vector bundle on X, then, is a vector bundle on the disjoint union together

with isomorphisms of the fibers for each double-headed arrow. Furthermore, the isomorphisms must

satisfy a consistency condition for pairs of arrows which share a vertex, as in the figure.

 

Figure 1. The groupoid of an open cover

The geometric structure of points with arrows is a groupoid, and it is a more general notion of

space which we will use. Above we used a groupoid to present a topological space, but not every

groupoid represents a space. At another extreme we can consider a groupoid with a single point

equipped with a group G of self-arrows, as in Figure 2. A vector bundle over that groupoid is a single

vector space E over the point, and an automorphism of E for each g P E. These automorphisms

compose according to the group law (which is the “consistency condition” of the previous paragraph

in this context), and so we simply have a linear representation of G on E. There is a groupoid
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representing the action of a group G on a space X, and a vector bundle over it is a G-equivariant

vector bundle over X. More general groupoids need not come from actions.
 

Figure 2. A vector bundle over a groupoid with one point

Variations

(1.19) Families of linear maps. The tangent space TpM of a smooth manifold is the best linear

approximation at p to the nonlinear spaceM . Similarly, if f : M Ñ N is a smooth map of manifolds,

at each p its differential

(1.20) dfp : TpM ÝÑ TfppqN

is the best linear approximation at p to the nonlinear map f . The differential df is a family of

linear maps parametrized by X, mapping between the families of vector spaces in the domain and

codomain of (1.20). As a map of vector bundles

(1.21) df : TM ÝÑ f˚TN,

where f˚TN is the pullback of the vector bundle TN Ñ N via the map f : M Ñ N .

The infinite dimensional case is particularly interesting. It happens in interesting circumstances

that the differential (1.20), which is say a linear map between infinite dimensional Hilbert spaces,

is almost an isomorphism in the sense that the kernel and cokernel have finite dimension. Such

an operator is termed Fredholm, and in that case the differential (1.21) is a family of Fredholm

operators. Families of Fredholms, which may or may not arise as linear approximations to a

nonlinear Fredholm map, carry interesting topological information which is measured in K-theory.

Example 1.22. Nonlinear Fredholm maps are a key ingredient in Donaldson’s gauge-theoretic

approach to the topology of 4-manifolds [Do] and in the various flavors of Floer theory. A specific

example of the latter is the Chern-Simons-Dirac functional [KM, §4.1].

Example 1.23. Let Σ denote a closed7 oriented 2-manifold and M the space of conformal struc-

tures on Σ. Each conformal structure defines a linear operator

(1.24) B̄ : Ω0,0pΣq ÝÑ Ω0,1pΣq

7A manifold is closed if it is compact without boundary.
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on complex functions. It is a first-order elliptic differential operator and as such extends to a

Fredholm operator on various Hilbert space completions.

 

Figure 3. Overlap of two coordinate charts on the 2-sphere

(1.25) Z-gradings and complexes. Another variation of the notion of a vector space is a complex

of vector spaces. If we use cohomological grading conventions, then it is a sequence of linear maps

(1.26) ¨ ¨ ¨ ÝÑ E´2 d
ÝÝÑ E´1 d

ÝÝÑ E0 d
ÝÝÑ E1 d

ÝÝÑ E2 ÝÑ ¨ ¨ ¨

such that d ˝ d “ 0. Such complexes arise naturally in geometry. Examples include the de Rham

complex of a smooth manifold and the Dolbeault complex of a complex manifold, a particular

example of which is (1.24).8 If the differential d vanishes, then the complex is a Z-graded vector

space.

Remark 1.27. The marriage of complexes of vector bundles and Fredholm operators gives Fredholm

complexes [Se1].

Example 1.28. We have already seen a family of operators on a finite dimensional vector space

in Example 1.11, namely the family x ÞÑ xI ´ T parametrized by x P C. The kernels jump in

dimension as x varies, and they do not form a vector bundle. However, the family of operators,

which can be viewed as a family of complexes (1.26) of vector spaces with En “ 0, n ­“ 0, 1, does

represent an element of K-theory.

K-theory

Let X be a compact9 space. Denote by Vect–pXq the set of equivalence classes of finite rank

complex vector bundles over X. The operation of direct sum passes to Vect–pXq, where it is a

commutative, associative composition law with identity element represented by the zero vector

bundle. In short, Vect–pXq is a commutative monoid. The universal abelian group associated

to Vect–pXq is the K-theory group KpXq, the eponym of this course. It is a homotopy invariant

of the space X, which is one face of a cohomological invariant. The other is invariance under

suspension, after shifting degree, and for that we will proceed formally at first, roughly defining

8In that example Ei “ 0 for i ­“ 0, 1.
9We will give more general constructions later, which include noncompact spaces.
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K´qpXq as the K-theory of the qth suspension of X. In this way we will construct a generalized

cohomology theory. All the apparatuses of algebraic topology—Mayer-Vietoris, spectral sequences,

etc.—can be brought to bear on computations.

(1.29) Variant geometric models. The geometric variants of vector bundles listed above—Fredholm

operators, complexes of vector bundles, Fredholm complexes—define K-theory classes. It is very

important to have flexible geometric models for topological objects, since this is how they appear

in geometry and physics.

(1.30) Bott periodicity. The basic theorem in the subject is the periodicity of theK-theory groups.

Theorem 1.31 (Bott). There is a natural isomorphism Kq`2pXq – KqpXq.

The theorem Bott actually proved is that the stable homotopy groups of the unitary groups are

periodic, which is related to Theorem 1.31 by the clutching construction (1.16), extended to spheres

of arbitrary dimension as in Remark 1.17. We will prove Theorem 1.31 in a few different ways,

for example using Fredholm operators and the periodicity of Clifford algebras, following Atiyah-

Singer [AS3].

Twistings and twisted vector bundles (Bonus material)

The modern incarnations of K-theory often occur in twisted form, as mentioned at the beginning

of the lecture. We briefly catalog twisted notions of a complex vector space and linear representation

of a group; there are corresponding twistings over a space (or groupoid) and twisted vector bundles.

They are all “1-dimensional” in the sense that ordinary vector spaces and linear representations act

by tensor product and, in some vague sense, the twisted versions for a fixed twisting are generated

by a single object. From these twisted geometric objects we will extract twisted K-theory groups.

(1.32) Z{2Z-gradings. A Z{2Z-graded vector space E “ E
0‘E

1 is simply a direct sum of two vector

spaces. Homogeneous elements of E0 are termed even, homogeneous elements of E1 are termed odd.

The word ‘super’ is used synonymously with ‘Z{2Z-graded’, an inheritance from supersymmetry

in quantum field theory. While the replacement the Z-gradings of (1.25) by Z{2Z-gradings is not

strictly a twisting, it does open the way for more twistings than are possible in the Z-graded world.

In the super situation the differential in a complex (1.26) is replaced by an odd endomorphism

(1.33) T “

ˆ
0 T 2

T 1 0

˙

of the vector space E. We do not require T 2 “ 0, so this is already a twisted version of a differential.10

10It is called a curved differential in the context of A8 modules; T 2 is the curving.
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(1.34) Z{2Z-graded groups. Let G be a Lie group or topological group. A continuous homomor-

phism ǫ : G Ñ t˘1u is a Z{2Z-grading of the group G. It twists the notion of a linear representation

on a super vector space E “ E
0 ‘E

1. Namely, in an ǫ-twisted representation an element g P G with

ǫpgq “ `1 acts by an even automorphism and an element g P G with ǫpgq “ ´1 acts by an odd

automorphism.

(1.35) Central extensions and projective representations. Let G be a Lie group and suppose

(1.36) 1 ÝÑ T ÝÑ Gτ ÝÑ G ÝÑ 1

is a group extension with T “ tλ P C : |λ| “ 1u central. A τ -twisted representation of G is a

representation of Gτ on a complex vector space E such that λ P T acts as scalar multiplication

by λ. This induces an action of G on the projective space PE of lines (1-dimensional subspaces)

in E, a projective representation.

Two examples: Let G “ SOn be the special orthogonal group, and set Gτ “ Spincn with its spin

representation. This occurs in Riemannian geometry. The second example is typically infinite-

dimensional and occurs in quantum physics. Namely, the space of pure states of a quantum system

is the projective space PH of a complex Hilbert space, so the symmetries of a quantum system

are projective. A fundamental theorem of Wigner asserts that they lift to be linear or antilinear

symmetries of H, determined up to multiplication by a phase, so a group of quantum symmetries

gives rise to an extension11 (1.36).

(1.37) Antilinearity. Let G be a Lie group and φ : G Ñ t˘1u a Z{2Z-grading. Then a twisted

form of a linear action on a (super) vector space E has elements g P G with φpgq “ `1 acting

linearly and elements g P G with φpgq “ ´1 acting antilinearly. A particular example is G “ Z{2Z

with the nontrivial grading, in which case a twisted representation on E is a real structure. In this

way real vector spaces appear as “twisted” forms of complex vector spaces. Combining with (1.35)

we can similarly fit a quaternionic structure on a vector space in this framework.

We remark that time-reversing symmetries of a spacetime typically act antilinearly on a quantum

mechanical system.

(1.38) Central simple algebras. A vector space is a module over the algebra C of complex numbers,

and another form of twisting is to replace C with a more elaborate algebra A. To obtain a “1-

dimensional” notion we require that the algebra A be invertible in the Morita sense. This is

equivalent to requiring that A be central simple, and in our current context we use Z{2Z-graded

algebras. These were studied by Wall [Wa]. Each Morita class is represented by a Clifford algebra.

We will see that this sort of twisting induces a degree shift in K-theory.

In geometry Clifford modules [ABS] occur in connection with the spin representation and Dirac

operator. For example, on an n-dimensional Riemannian spin manifold the natural Dirac opera-

tor [LM] has the form (1.33) and acts on a module over the Clifford algebra with n generators. In

quantum physics there are algebras of observables, and the quantum Hilbert space is naturally a

module over that algebra. In systems with fermions this leads to Clifford modules.

11It is not necessarily central due to possible antilinear symmetries. Antilinearity as a twist is discussed next.
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(1.39) Twistings over groupoids. Each form of twisting can be defined on a groupoid, not just on

a group, and they can appear in combination. We will develop a general model of twistings which

is sufficiently flexible to develop a general theory and which covers most appearances in geometry

and physics. We end this lecture with a specific example related to (1.34).

(1.40) The twisting of a double cover. Let X be a space and rX Ñ X a double cover with deck

transformation σ : rX Ñ rX. Descent data for a vector bundle E Ñ rX is an isomorphism σ˚E Ñ E

which squares to the identity. Let ΠE “ E1‘E0 denote the oppositely graded bundle; it represents

the negative of E in K-theory.12 Then one form of twisted bundle on X is a Z{2Z-graded bundle

E Ñ rX together with an isomorphism σ˚E Ñ ΠE which squares to the identity.

Remark 1.41. Double covers twist any cohomology theory since ´1 always acts as an automorphism.

Here is its incarnation in de Rham cohomology. Let ĂM Ñ M be a double cover of a smooth

manifold with deck transformation σ. Differential forms ω P Ω‚pĂMq which satisfy σ˚ω “ ω descend

to differential forms onM . On the other hand differential forms ω P Ω‚pĂMq which satisfy σ˚ω “ ´ω

are twisted differential forms on M . If ĂM Ñ M is the orientation double cover, and ω has top

degree, then a twisted form is a density on M , the natural objects one can integrate.
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Lecture 2: Homotopy invariance

We give two proofs of the following basic fact, which allows us to do topology with vector bundles.

The basic input is local triviality of vector bundles (Definition 1.12).

Theorem 2.1. Let E Ñ r0, 1s ˆX be a vector bundle. Denote by jt : X Ñ r0, 1s ˆX the inclusion

jtpxq “ pt, xq. Then there exists an isomorphism

(2.2) j˚
0E

–
ÝÝÑ j˚

1E.

The idea of both proofs is to construct parametrized trivializations along the axes r0, 1s ˆ txu, x P

X, of the cylinder r0, 1s ˆ X. For the first proof we assume that X is a smooth manifold and

that the vector bundle is smooth. Then we write a differential equation (parallel transport via

a covariant derivative) which gives infinitesimal trivializations. The solution to the differential

equation gives the global isomorphism. For the second proof we only assume continuity, so X is

a (paracompact, Hausdorff) space, and use the local triviality of vector bundles in place of an

(infinitesimal) differential equation. Then a patching argument constructs the global isomorphism.

Partitions of unity are used as a technical tool in both situations.

Differential equations are used throughout differential geometry to prove global theorems. In this

case we use an ordinary differential equation, for which there is a robust general theory. For partial

differential equations the global questions are more delicate. (Think, for example, of the Ricci

flow equations which “straighten out” the metric on a Riemannian 3-manifold to one of constant

curvature.)

(2.3) Partitions of unity. The definition of ‘paracompact’ varies in the literature. Sometimes it

includes the Hausdorff condition. The usual definition is that that every open cover of X has

a locally finite refinement, or one can take the following theorem as a definition. Recall that a

partition of unity is a set A of continuous functions ρα : X Ñ r0, 1s, α P A, with locally finite

supports such that
ř

α

ρα “ 1. It is subordinate to an open cover tUiuiPI if there exists a map

i : A Ñ I such that supp ρα Ă Uipαq.

Theorem 2.4. Let X be a paracompact Hausdorff space and tUiuiPI an open cover.

(i) There exists a partition of unity tρiuiPI subordinate to tUiuiPI such that at most countably

many ρi are not identically zero.

(ii) There exists a partition of unity tσαuαPA subordinate to tUiuiPI such that each σα is compactly

supported.

(iii) If X is a smooth manifold, then we can take the functions ρi, σα to be smooth.

For a proof, see [War, §1].
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Covariant derivatives

(2.5) Differentiation of vector-valued functions. Let M be a smooth manifold and E a complex1

vector space. The differential of smooth E-valued functions is a linear map

(2.6) d : Ω0
M pEq ÝÑ Ω1

M pEq

which satisfies the Leibniz rule

(2.7) dpf ¨ eq “ df ¨ e` f ¨ de, f P Ω0
M pCq, e P Ω0

M pEq,

where ‘¨’ is pointwise scalar multiplication. However, it is not the unique map with those properties.

Any other has the form

(2.8) d`A, A P Ω1
M pEndEq.

It acts as the first order differential operator

(2.9)
d`A : Ω0

M pEq ÝÑ Ω1
M pEq

e ÞÝÑ de`Apeq

The last evaluation is the pairing EndEbE Ñ E. The directional derivative in a direction ξ P TpM

at some point p P M is

(2.10) deppξq `Appξqpeq.

Observe that the space of differentiations of E-valued functions is the infinite dimensional vector

space Ω1
M pEndEq.

(2.11) Differentiation of vector bundle-valued functions. Let π : E Ñ M be a smooth vector bun-

dle. The local triviality (Definition 1.12) implies the existence of an open cover tUiuiPI of M

and vector bundle isomorphisms ϕi : Ui ˆ Ei Ñ π´1pUiq for some vector spaces Ei. Using ϕi we

identify sections of E over Ui with Ei-valued functions on Ui, and so transport the differentiation

operator (2.6) to a differentiation operator2

(2.12) ∇i : Ω
0
Ui

pEq ÝÑ Ω1
Ui

pEq,

that is, a linear map satisfying the Leibniz rule (2.7), where now e P Ω0
Ui

pEq. Let tρiuiPI be a

partition of unity satisfying Theorem 2.4(i,iii). Let ji : Ui ãÑ M denote the inclusion. Then

(2.13)

∇ : Ω0
M pEq ÝÑ Ω1

M pEq

e ÞÝÑ
ÿ

i

ρi∇ipj
˚
i eq

1The discussion applies without change to real vector spaces and, below, real vector bundles.
2‘∇’ is pronounced ‘nabla’.
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defines a global differentiation on sections of E. The first-order differential operator (2.13) is called

a covariant derivative, and the argument given proves their existence on any smooth vector bundle.

If ∇,∇1 are covariant derivatives on E, then the difference ∇1 ´ ∇ is linear over functions, as

follows immediately from the difference of their Leibniz rules, and so is a tensor A P Ω1
M pEndEq.

Therefore, the set of covariant derivatives is an affine space over the vector space Ω1
M pEndEq.

Remark 2.14. The averaging argument with partitions of unity works to average geometric objects

which live in a convex space, or better sections of a bundle whose fibers are convex subsets of

affine spaces. For example, it is used to prove the existence of hermitian metrics on complex vector

bundles, and also the existence of splittings of short exact sequences of vector bundles (2.28).

(2.15) Parallel transport. Let γ : r0, 1s Ñ M be a smooth parametrized path. The covariant

derivative pulls back to a covariant derivative on the pullback bundle F :“ γ˚E Ñ r0, 1s. We use

the covariant derivative to construct an isomorphism

(2.16) ρ : F0 ÝÑ F1

from the fiber over 0 to the fiber over 1, called parallel transport. A section s : r0, 1s Ñ F of

F Ñ r0, 1s is parallel if ∇B{Bts “ 0.

Lemma 2.17. Let P denote the vector space of parallel sections. Then the restriction map P Ñ F0

which evaluates a parallel section at 0 P r0, 1s is an isomorphism.

Proof. Assume first that F Ñ r0, 1s is trivializable and fix a basis of sections e1, . . . , en, where

n “ rankF . Define functions Ai
j : r0, 1s Ñ C by

(2.18) ∇
d{dtej “ Ai

jei.

(Here and forever we use the summation convention to sum over indices repeated once upstairs and

once downstairs.) Then the section f jej is parallel if and only if

(2.19)
df i

dt
`Ai

jf
j “ 0, i “ 1, . . . , n.

The fundamental theorem of ordinary differential equations asserts that there is a unique solution f j

with given initial values f jp0q, which is equivalent to the assertion in the lemma.

In general, by the local triviality of vector bundles and the compactness of r0, 1s, we can find

0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ ă tN´1 ă tN “ 1 such that F
ˇ

ˇ

rti´1,tis
Ñ rti´1, tis is trivializable. Make the

argument in the preceding paragraph on each interval and compose the resulting parallel transports

to construct (2.16). �

(2.20) Parametrized parallel transport. We turn now to Theorem 2.1.

Proof of Theorem 2.1—smooth case. Let ∇ be a covariant derivative on E Ñ r0, 1s ˆ M . Use

parallel transport along the family of paths r0, 1s ˆ txu, x P M, to construct an isomorphism (2.2).

�
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The ordinary differential equation of parallel transport (2.19) is now a family of equations: the

coefficient functions Ai
j vary smoothly with x. Therefore, we need a parametrized version of the

fundamental theorem of ODEs: we need to know that the solution varies smoothly with parameters.

One reference for a proof is [La, §IV.1].

Proof for continuous bundles

Now we turn to the case when X is a space, and we follow [Ha, §1.2] closely; we defer to that

reference for details. Choices of local trivializations replace choices of local covariant derivatives in

this proof.

Proof of Theorem 2.1—continuous case. Observe first that if ϕ : U ˆ E
–

ÝÝÑ E is a trivialization of

a vector bundle E Ñ U , then for any p, q P U the trivialization gives an isomorphism Ep Ñ Eq of

the fibers which varies continuously in p, q. Thus a trivialization of a vector bundle E Ñ ra, bs over

an interval in R gives an isomorphism Ea Ñ Eb.

Now if E Ñ r0, 1s ˆX is a vector bundle, we can find an open cover of r0, 1s ˆX such that the

bundle is trivializable on each open set; then by compactness of r0, 1s an open cover tUiuiPI of X

such that the bundle is trivializable on each r0, 1s ˆ Ui; and, choosing trivializations, continuous

isomorphism E
ˇ

ˇ

tauˆUi

Ñ E
ˇ

ˇ

tbuˆUi

for any 0 ď a ď b ď 1. (We use the observation in the previous

paragraph.) Choose a partition of unity tρiuiPI subordinate to tUiuiPI , and order the countable set

of functions which are not identically zero: ρ1, ρ2, . . . . Define ψn “ ρ1 ` ¨ ¨ ¨ ` ρn, n “ 1, 2, . . . ,

and set ψ0 ” 0. Let Γn Ă r0, 1s ˆ X be the graph of ψn. The trivialization on r0, 1s ˆ Un gives

an isomorphism ψ̃n : E
ˇ

ˇ

Γn´1

–
ÝÝÑ E

ˇ

ˇ

Γn

. The composition ¨ ¨ ¨ ˝ ψ̃2 ˝ ψ̃1 is well-defined by the local

finiteness of tρiu and gives the desired isomorphism (2.2). �

Remark 2.21. If X is a smooth manifold, then we choose ρi to be smooth and this proof produces

a smooth isomorphism.

Consequences

We prove some standard corollaries of Theorem 2.1.

Corollary 2.22. Let f : r0, 1sˆX Ñ Y be a continuous map between topological spaces, ft : X Ñ Y

its restriction to ttu ˆX, and let E Ñ Y be a vector bundle. Then f˚
0E – f˚

1E.

Proof. Apply Theorem 2.1 to f˚E Ñ r0, 1s ˆX. �

Corollary 2.23. Let X be a contractible space and E Ñ X a vector bundle. Then E Ñ X is

trivializable.

Proof. The identity map idX is homotopic to a constant map c : X Ñ X, and the pullback c˚E Ñ X

is a constant vector bundle with fiber Ec. Now apply Corollary 2.22. �

Corollary 2.24. Let X “ U1 Y U2 be the union of two open sets, Ei Ñ Ui vector bundles, and

α : r0, 1s ˆ U1 Y U2 Ñ Iso
`

E1

ˇ

ˇ

U1XU2

, E2

ˇ

ˇ

U1XU2

˘

a homotopy of clutching data. Then the vector

bundles E0 Ñ X and E1 Ñ X obtained by clutching with α0, α1 are isomorphic.
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Here Isop´,´q is the set of isomorphisms between the indicated vector bundles.

Proof. Clutch over r0, 1s ˆX and apply Theorem 2.1. �

Let Vect–pXq denote the set of isomorphism classes of vector bundles over X. It is a commutative

monoid : the sum operation is defined by direct sum

(2.25) rEs ` rE1s “ rE ‘ E1s

and the zero element is represented by the constant vector bundle with fiber the zero vector space.

In fact, Vect–pXq is a semiring, with multiplication defined by

(2.26) rEs ˆ rE1s “ rE b E1s

Corollary 2.27. Let f : X Ñ Y be a continuous map. Then the induced pullback f˚ : Vect–pY q Ñ

Vect–pXq depends only on the homotopy class of f .

We write Vect
–
R

pXq and Vect
–
C

pXq to indicate the ground field explicitly.

Further applications of partitions of unity

(2.28) Short exact sequences of vector bundles. Let

(2.29) 0 ÝÑ E1 i
ÝÝÑ E

j
ÝÝÑ E2 ÝÑ 0

be a short exact sequence of vector bundles over a space X.3 A splitting of (2.29) is a linear map

E2 s
ÝÑ E such that j ˝ s “ idE2 . A splitting determines an isomorphism

(2.30) E2 ‘ E1 s‘i
ÝÝÝÑ E.

Lemma 2.31. The space of splittings is a nonempty affine space over the vector space HompE2, E1q.

Let’s deconstruct that statement, and in the process prove parts of it. First, if s0, s1 are splittings,

then the difference φ “ s1 ´ s0 is a linear map E2 Ñ E such that j ˝φ “ 0. The exactness of (2.29)

implies that φ factors through a map φ̃ : E2 Ñ E1: in other words, φ “ i ˝ φ̃. This, then, is the

affine structure. But we must prove that the space of splittings is nonempty. First, we observe

that any short exact sequence of vector spaces splits, and so using local trivializations we deduce

that splittings of (2.29) exist locally on X. Now we use a partition of unity argument. Remember

that partitions of unity can be used to average sections of a fiber bundle whose fibers are convex

subsets of affine spaces. Of course, an affine space is a convex subset of itself. I leave the details to

the reader.

3These can be real, complex, or quaternionic.
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(2.32) Inner products on vector bundles. Recall that if E is a complex vector space, then an inner

product is a bilinear map

(2.33) x´,´y : E ˆ E ÝÑ C

which satisfies

xξ̄1, ξ2y “ xξ̄2, ξ1y, ξ1, ξ2 P E,(2.34)

xξ, ξy P R
ą0, ξ P E, ξ ­“ 0 .(2.35)

Here E denotes the conjugate vector space, which is the same abelian group as E but with scalar

multiplication conjugated. The space of inner products on E is a subset of the vector space of

bilinear maps (2.33) which are symmetric in the sense of (2.34); it is the convex cone of elements

which satisfy the positivity condition (2.35).

Lemma 2.36. A complex vector bundle E Ñ X admits a positive definite hermitian inner product.

The space of inner products is contractible.

The proof is similar to that of Lemma 2.31 and is left to the reader. We emphasize the importance

of the convexity of the set of inner products on a single vector space.
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Lecture 3: Group completion and the definition of K-theory

The goal of this lecture is to give the basic definition of K-theory. The process of group comple-

tion, which “completes” a commutative monoid M to an abelian group KpMq, loses information

in general. In our topological setting what is retained is the stable equivalence class of a vector

bundle. The notion of stability occurs in many guises, and they are all different facets of K-theory.

We begin with a basic proposition which allows us to replace the noncompact general linear

groups with compact groups of isometries. This is convenient in many arguments. After describing

group completion, we define K-theory and prove one of the basic theorems about the existence of

inverses (Proposition 3.15). The basic building blocks of any cohomology theory is the value of that

theory on spheres, and we prove in Proposition 3.26 that for K-theory those values are homotopy

groups of the stable unitary group (stable orthogonal group in the real case).

A deformation retraction from Gram-Schmidt

Proposition 3.1. There are deformation retractions

(3.2)
GLnC ÝÑ Un

GLnR ÝÑ On

Here Un Ă GLnC is the subgroup of unitary matrices and On Ă GLnR is the subgroup of orthogonal

matrices. The reader should supply pictures for the case n “ 1; the deformation retractions in that

case is the first step in the general proof.

Proof. The proof is the same in both cases; for convenience, we use the notation of the complex

version. Identify GLnC with the space of bases of Cn: the columns of an invertible nˆnmatrix form

a basis. Then Un is the subspace of orthonormal bases. The Gram-Schmidt process, which converts

an arbitrary basis into an orthonormal basis, is a composition of deformation retractions. The first

takes a basis e1, . . . , en and constructs one in which |e1| “ 1. The deformation fixes e2, . . . , en and

at time t P r0, 1s has first vector
`
p1 ´ tq ` t{|e1|

˘
e1. The second step we move e2 only and make it

orthogonal to e1 via the path e2 ´ txe2, e1ye1. Now repeat. Move e2 to have unit norm and then

move e3 to be orthogonal to both e1 and e2. After 2n ´ 1 steps we are done. �

Group completion and universal properties

(3.3) The group completion of a commutative monoid. Recall that a commutative monoid M is

a set with a commutative, associative composition law M ˆ M Ñ M and a unit 0 P M .

Definition 3.4. Let M be a commutative monoid. A group completion pA, iq of M is an abelian

group A and a homomorphism i : M Ñ A of commutative monoids which satisfies the following
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universal property: If B is an abelian group and f : M Ñ B a homomorphism of commutative

monoids, then there exists a unique group homomorphism f̃ : A Ñ B which makes the diagram

(3.5) M
i

f

A

f̃

B

commute.

The definition does not prove the existence of the group completion—we must provide a proof—

but the universal property does imply a strong uniqueness property. Namely, if pA, iq and pA1, i1q are

group completions of M , then there is a unique isomorphism φ : A Ñ A1 of groups which makes

the diagram

(3.6) M
i

i1

A

φ

A1

commute. The proof uses four applications of the universal property (to f “ i and f “ i1 to

construct the isomorphism and its inverse, and then two more to prove the compositions are identity

maps). To construct an explicit group completion, define A as the quotient of M ˆ M in which

pm1,m2q is identified with pm1 ` n,m2 ` nq for all m1,m2, n P M . Addition in A is defined

component-wise in M ˆ M , the unit is r0, 0s, and ´rm1,m2s “ rm2,m1s. (The square brackets

denote the equivalence class.)

Example 3.7. If M “ Zě0 under addition, then the group completion is Z under addition. If

M “ Zą0 under multiplication, then the group completion is Qą0 under multiplication.

Example 3.8. If M “ Zě0 under multiplication, then the group completion pKpMq, iq is the trivial

group. For there exists x P KpMq such that x ¨ ip0q “ 1, and so for any n P M we have

(3.9) ipnq “
`
x ¨ ip0q

˘
¨ ipnq “ x ¨

`
ip0q ¨ ipnq

˘
“ x ¨ ip0 ¨ nq “ x ¨ ip0q “ 1.

Now apply uniqueness of the factorization.

This example is the first illustration of how information may be lost in passing to the group

completion.

The abelian group KpXq for X compact

Let X be a compact1 Hausdorff space. Let Vect–pXq denote the set of isomorphism classes of

complex vector bundles E Ñ X. Then the operation of direct sum on vector bundles induces a

commutative, associative composition law on Vect–pXq; the equivalence class of the zero vector

bundle is a unit.

1The definitions work for any paracompact Hausdorff X, but for noncompact spaces may give the “wrong” group.
We give a more general definition later.
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Definition 3.10. KpXq is the group completion of the commutative monoid Vect–pXq.

Remark 3.11. For the empty set we have Vect–pHq “ KpHq “ 0, since there is a unique vector

bundle over H.

(3.12) Functorial property. Let Topc denote the category of compact Hausdorff spaces and con-

tinuous maps. Then X ÞÑ KpXq is a contravariant functor from Topc to the category of abelian

groups. For a continuous map f : X Ñ X 1 induces a pullback on bundles. Furthermore, it follows

immediately from Corollary 2.22 that K is a homotopy functor: homotopic maps f0 » f1 induce

equal maps on K-groups.

Remark 3.13. The functor X ÞÑ Vect–pXq to commutative monoids is also a homotopy functor.

However, it is more difficult to compute, which is why we pass to the group completion. The group

completion loses information in principle, but experience shows that the trade-off for increased

computability is a good deal.

(3.14) Real K-theory. The proofs work equally for real vector bundles. The group completion of

Vect
–

R pXq, the commutative monoid of real vector bundles, is denoted KOpXq.

Proposition 3.15. Let X be a compact Hausdorff space and π : E Ñ X a vector bundle. Then

there exists a vector bundle E1 Ñ X such that E ‘ E1 Ñ X is trivializable.

Observe that if X ­“ H, then Z ãÑ KpXq as the group completion of the trivial bundles. Prove this

by choosing applying K to the unique map X Ñ pt and a section pt Ñ X obtained by choosing

a point of X. Proposition 3.15 implies that for any α P KpXq there exists α1 P KpXq such that

α ` α1 “ N for some N P Z.

Proof. Let tU1, . . . , UKu be a finite cover for which the restriction of E to each Ui is trivializable.

Let tρ1, . . . , ρKu be a partition of unity subordinate to tU1, . . . , UKu. For each open set Uj choose

a basis of sections e1j , . . . , e
n
j of E˚

ˇ̌
Ui

Ñ Ui. Then S “ tρ1e
1
1, ρ1e

2
1, . . . , ρ1e

n
1 , ρ2e

1
2, ρ2e

2
2, . . . u is a set

of nK sections of E˚ Ñ X. Let V “ pCSq˚ be dual to the vector space with basis S. Evaluation

defines a map of vector bundles E Ñ V of E to the bundle with constant fiber V , and this is an

injective map of vector bundles. Let E1 “ V {E be the quotient bundle, so that we have a short

exact sequence

(3.16) 0 ÝÑ E ÝÑ V ÝÑ E1 ÝÑ 0

of vector bundles over X. Any short exact sequence of vector bundles splits (2.28), and a splitting

determines a trivialization of E ‘ E1. �

(3.17) Reduced K-theory. Any space X has a unique map X Ñ pt to the 1-point space, and the

induced map Z “ Kpptq Ñ KpXq is injective if X is nonempty, in which case it is the injection

mentioned after the statement of Proposition 3.15. (If X is nonempty the map X Ñ pt admits

sections.)

Definition 3.18. The reduced K-theory group is the quotient rKpXq “ KpXq{Kpptq.
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Proposition 3.19. Let X be a compact Hausdorff space, E,E1 Ñ X vector bundles. Then rEs “

rE1s P rKpXq if and only if E ‘ Cr – E1 ‘ Cr1

for some r, r1.

Proof. If rEs “ rE1s then there exists s P Zě0 and a vector bundle F Ñ X such that E ‘ F –

E1 ‘ F ‘ Cs. By Proposition 3.15 there exists F 1 Ñ X such that F ‘ F 1 – Cr. The forward

implication follows; the backward implication is immediate from Definition 3.18. �

Bundles E,E1 which satisfy the hypothesis of Proposition 3.19 are said to be stably equivalent,

and the reduced K-theory is the group of stable equivalence classes of vector bundles.

Fiber bundles

The definition of a fiber bundle is simpler than that (Definition 1.12) of a vector bundle: the

fibers of a fiber bundle are topological spaces with no additional structure. Thus a vector bundle

is a special case of a fiber bundle.

Definition 3.20. A fiber bundle is a surjective continuous map π : E Ñ X of topological spaces

which admits local trivializations: every point x P X has an open neighborhood U containing x

and a topological space F such that there exists a homeomorphism ϕ : U ˆ F Ñ E
ˇ̌
U
which makes

the diagram

(3.21)

U ˆ F
ϕ

pr1

E
ˇ̌
U

π

U

commute.

Example 3.22. Let π : E Ñ X be a complex vector bundle. There are many associated fiber

bundles; we indicate the total space. PE is a fiber bundle whose fibers are the projectivizations

of the fibers of E. More generally, for k ě 0 we have the bundle of Grassmannians GrkE; the

projectivization is k “ 1. If E has a metric then we can form the sphere bundle SpEq. There is a

bundle of groups AutpEq. If rank: E Ñ Z is the constant function r, then IsopCn, Eq is the bundle

of frames (bases) of E. It is a principal fiber bundle, or principal bundle for short: its fibers are

right torsors over the group GLnC.

Fiber bundles satisfy the homotopy lifting property—they are fibrations. Assume that E, X are

pointed spaces with basepoints e, πpeq “ b. A fibration is characterized by the homotopy lifting

property.

Definition 3.23. p : E Ñ X is a fibration if for every pointed space S, continuous map f : r0, 1s ˆ

S Ñ X and lift f̃0 : S Ñ E of f0 there exists an extension f̃ : r0, 1s ˆ S Ñ E lifting f .

The lift is encoded in the diagram

(3.24)

t0u ˆ S
f̃0

E

p

r0, 1s ˆ S
f

f̃

X
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For a proof that fiber bundles are fibrations, see [Ha2, p. 375].

Recall that a topological space F is m-connected if every continuous map φ : S Ñ F with domain

a CW complex S of dimension ď m is null homotopic.

Proposition 3.25. Let X be a CW complex of dimension ď n, π : E Ñ X be a fiber bundle, and

suppose the fibers of π are pn ´ 1q-connected. Then π admits a section.

Proof. We give the proof for a finite CW complex by inducting over the skeleta Xk Ă X. Since

X0 is a discrete set of points, there is a section of E
ˇ̌
X0

Ñ X0. Now suppose we have a section

over the pk ´ 1q-skeleton and consider a k-cell with characteristic map Φ: Dk Ñ Xk. Since Dk is

contractible there is a trivialization2 F
–

ÝÝÑ Φ˚
E. The section on the pk ´ 1q-skeleton then pulls

back via BΦ to a map Sk´1 Ñ F . By hypothesis this map is null homotopic, so extends over Dk

and, unwinding with the trivialization and Φ, extends the section over this k-cell. �

Bott periodicity

We express the reduced K-theory of spheres as homotopy groups of unitary groups.

Proposition 3.26. Let n be a nonnegative integer and N ě n{2. Then there is an isomorphism

(3.27) πn´1UN ÝÑ rKpSnq.

Proof. We construct (3.27) as a composition of isomorphisms of sets

(3.28) πn´1UN
i

ÝÝÑ rSn´1, UN s
j

ÝÝÑ Vect
–

N pSnq
k

ÝÝÑ rKpSnq

Here Vect
–

N pSnq is the set of isomorphism classes of complex vector bundles of rank N over Sn.

The homotopy group is the set of homotopy classes of pointed maps Sn´1 Ñ UN which send a

basepoint ˚ P Sn´1 to the identity e P UN . The first map i forgets basepoints; its inverse sends a

map f : Sn´1 Ñ UN to fp˚q´1f .

The second map j is the clutching construction (1.16), where we write the sphere as the union

Sn “ DnYSn´1Dn of two closed hemispheres along the equator. The proof that j is an isomorphism

has three ingredients. First, any vector bundle admits a hermitian metric, so the clutching map

can be assumed an isometry. Second, to show j is well-defined we apply Corollary 2.24. We need to

prove that homotopic clutching maps lead to isomorphic bundles. A homotopy of clutching maps

leads to a bundle over r0, 1s ˆ Sn, and then Theorem 2.1 applies. Third, distinct homotopy classes

of clutching maps construct non-isomorphic bundles, which follows from the fact that there is a

unique homotopy class of trivializations on Dn.

To show that k is an isomorphism we need to show that a complex vector bundle E Ñ Sn of

rank ą N is stably equivalent to a bundle of rank N (surjectivity of k) and that stably isomorphic

bundles of rank N are isomorphic (injectivity of k). To prove the first statement it suffices to

construct a nonzero section of E Ñ Sn. For such a section spans a trivial line subbundle L Ă E,

2The homotopy invariance arguments in Lecture 2 apply to general fiber bundles, not just vector bundles.
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and by splitting the short exact sequence 0 Ñ L Ñ E Ñ E{L Ñ 0 we see that E is stably

equivalent to E{L, which has rank one less and we can iterate. To construct a nonzero section, fix

a hermitian metric on E Ñ Sn and consider the sphere bundle SpEq Ñ Sn, a fiber bundle with

fiber S2N´1. If 2N ´ 1 ě n it follows from Proposition 3.25 that SpEq Ñ Sn admits a section.

For the second statement suppose E0, E1 Ñ Sn have rank N and for some r ą 0 there exists

an isomorphism ϕ : E0 ‘ Cr –
ÝÝÑ E1 ‘ Cr. Choose metrics (Lemma 2.36) and homotop ϕ to an

isometry (Proposition 3.1). Consider the fiber bundle3

(3.29) p : IsompE0 ‘ Cr, E1 ‘ Crq ÝÑ SpE1 ‘ Crq

where p maps an isometry to the image of p0, . . . , 0, 1q P Cr, which lies in the unit sphere bundle.

The isometry ϕ defines a section of the bundle IsompE0‘Cr, E1‘Crq Ñ Sn; its composition with p

is a section s of the bundle

(3.30) SpE1 ‘ Crq Ñ Sn.

Now we apply a relative version of Proposition 3.25 to homotop s to a constant section with value

p0, . . . , 0, 1q P Cr: pull (3.30) back over r0, 1s ˆ Sn and extend the section which at t0u ˆ Sn is ϕ

and at t1u ˆ Sn is the constant. Here the base is pn ` 1q-dimensional and the fiber p2pN ` rq ´ 2q-

connected. Finally, use the homotopy lifting property of (3.29) (see (3.24)) to construct a homotopy

of ϕ to a family of isomorphisms which is the identity on the last copy of C, and so restricts to an

isomorphism E0 ‘ Cr´1 –
ÝÝÑ E1 ‘ Cr´1. �

Corollary 3.31. The inclusion UN ãÑ UN`1 induces an isomorphism πn´1UN
–

ÝÝÑ πn´1UN`1 if

N ě n{2.

Remark 3.32. The common value of πn´1UN for N large is the stable homotopy group of the unitary

group. It is the homotopy group of a topological group U “ U8 which can be constructed as the

colimit of U1 ãÑ U2 ãÑ U3 ãÑ ¨ ¨ ¨ . There are prettier geometric models for the same homotopy

type, even Banach Lie group models.

Theorem 3.33 (Bott). There are isomorphisms

(3.34) πn´1U – rKpSnq –

#
Z, n even;

0, n odd.

We will give several proofs of Theorem 3.33 as well as stronger forms of Bott periodicity.

For complex vector bundles and unitary groups the periodicity has period 2. There is an anal-

ogous 8-periodic statement in the real case; the stable unitary group U is replaced by the stable

orthogonal group O.

3The map p is also a map of fiber bundles over Sn.
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Theorem 3.35 (Bott). There are isomorphisms

(3.36) πn´1O – ĄKOpSnq –

$
’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

Z, n ” 0 pmod 8q;

Z{2Z, n ” 1 pmod 8q;

Z{2Z, n ” 2 pmod 8q;

0, n ” 3 pmod 8q;

Z, n ” 4 pmod 8q;

0, n ” 5 pmod 8q;

0, n ” 6 pmod 8q;

0, n ” 7 pmod 8q;

A vocal rendition of Z{2Z , Z{2Z , 0 , Z , 0 , 0 , 0 , Z is known as the Bott song.

References

[Ha2] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.



Lectures 9 & 10: Fredholm operators

Let X be a compact Hausdorff space. Recall (Definition 3.10) that KpXq is defined as the

group completion of the commutative monoid of equivalence classes of complex (finite rank) vector

bundles on X. So a general element is represented as the formal difference of two vector bundles. In

this lecture we develop another model for K-theory which is more flexible and useful in geometric

applications. For example, it allows us to include Example 1.11, but it will allow quite a bit more.

The basic idea is as follows. Suppose H0, H1 are complex vector spaces and T : H0 Ñ H1 a

linear map. Then there is an exact sequence

(9.1) 0 ÝÑ kerT ÝÑ H0 T
ÝÝÑ H1 ÝÑ cokerT ÝÑ 0

The exactness means that, choosing splittings, there is an isomorphism

(9.2) H0 ‘ cokerT – H1 ‘ kerT,

and so formally we identify the difference H1 ´ H0 with kerT ´ cokerT in Kpptq – Z. This

equality of dimensions is a basic theorem in linear algebra. Now imagine that we have a continuous

family of linear operators parametrized by X, and perhaps the vector spaces H0, H1 also vary in

a locally trivial way and so form vector bundles over X. Then their formal difference defines an

element of KpXq. The kernels and cokernels of T , however, in general are not locally trivial. In

fact their dimensions typically jump. (As a simple example take X “ R, H0 “ H1 “ C, and Tx the

linear map multiplication by x P R.) In some sense we control the jumping by considering not the

kernel and cokernel, but the entire vector spaces H0, H1. The new idea is to allow H0, H1 to be

infinite dimensional while requiring that kerT, cokerT be finite dimensional. An operator with this

property is called Fredholm. In continuous families there is jumping of kernels and cokernels, but

that is controlled by by considering finite dimensional subspaces containing the kernels where there

is no jumping. In this way we make sense of the formal difference between kernels and cokernels.

A canonical open cover of the space of Fredholm operators implements this idea universally.

The infinite dimensional vector spaces H0, H1 have a topology, and there are many species of

infinite dimensional topological vector spaces. We use Hilbert spaces: the topology is induced from

a Hermitian metric, and this retains the usual Euclidean notions of length and angle. The theory is

equally smooth for Banach spaces [Pa1, §VII]. We also need to topologize the space of continuous

linear maps HompH0, H1q. In this lecture we use the norm topology, which makes this a Banach

space. However, other choices are possible and we will see later that the compact-open topology

is a more flexible and applicable choice [ASe1], [FM, Appendix B]. We remark that the Hilbert

spaces H0, H1 needn’t be infinite dimensional, though much of the theory becomes trivial if not.

Some functional analysis

We remind of some basics. Let H0, H1 be Hilbert spaces. A linear map T : H0 Ñ H1 is

continuous if and only if it is bounded, i.e., there exists C ą 0 such that

(9.3) }Tξ} ď C}ξ}, ξ P H0.
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In that case the infimum over all C which satisfy (9.3) is the operator norm }T }. Let HompH0, H1q

denote the linear space of continuous linear maps. The operator norm is complete and makes

HompH0, H1q a Banach space. The operator norm satisfies

(9.4) }T2 ˝ T1} ď }T1} }T2}

whenever the composition makes sense. Let HompH0, H1qˆ Ă HompH0, H1q denote the subspace

of invertible linear operators.

Theorem 9.5.

(i) If T : H0 Ñ H1 is continuous and bijective, then T´1 is continuous.

(ii) HompH0, H1qˆ Ă HompH0, H1q is an open subspace.

(iii) HompH0, H1qˆ is contractible in the norm topology.

(i) is the open mapping theorem. (ii) is proved by constructing a ball of invertible operators around

any given invertible using the power series for 1{p1`xq. (iii) is a theorem of Kuiper [Ku] which we

prove soon.

We remark that if V Ă H is a finite dimensional subspace of a Hilbert space H, then V is closed

and V K is a closed complement. For any closed subspace V Ă H the quotient H{V inherits a

Hilbert space structure by identifying it with V K via the quotient map V K
ãÑ H ։ H{V .

Fredholm operators

Definition 9.6. Let H0, H1 be Hilbert spaces. A continuous linear map T : H0 Ñ H1 is Fredholm

if its range T pH0q Ă H1 is closed and if kerT, cokerT are finite dimensional. Let FredpH0, H1q Ă

HompH0, H1q denote the subset of Fredholm operators, topologized with the norm topology.

The closed range condition is redundant [Pa1, §VII], but as cokerT is not Hausdorff if T is not

closed range it seems sensible to include it as part of the definition. The numerical index of a

Fredholm operator is defined as

(9.7) indT “ dimkerT ´ dim cokerT.

Remark 9.8. From some point of view this definition has the wrong sign! For if H0, H1 are finite

dimensional we identify T : H0 Ñ H1 as an element of H1 b pH0q˚. It is the domain which is

dualized, not the codomain, so we expect the minus sign in (9.7) on the subspace kerT of the

domain. This sign mistake causes minor headaches in certain parts of index theory; for example,

see [Q, §2].

We give several examples.

Example 9.9. If H is separable it has a countable basis e1, e2, . . . in the sense that any element

of H can be written as
ř

n anen where the complex coefficients satisfy
ř

n |an|2 ă 8. For each k P Z

define the shift operator Tk which on the basis is

(9.10) Tkpejq “

#
ej´k, j ą k;

0, j ď k.
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Then Tk is Fredholm of index k. This shows there exist Fredholm operators of any index.

Example 9.11. The differential operator d{dx is Fredholm acting on complex-valued functions on

the circle S1 with coordinate x. We use Hilbert space completions—Sobolev spaces—of the space

of smooth functions:

(9.12)
d

dx
: L2

1pS1q ÝÑ L2pS1q

The index is 0: the kernel and cokernel are each 1-dimensional. This example generalizes to elliptic

operators on compact manifolds.

The canonical open cover

Recall that a linear map T : H0 Ñ H1 is transverse to a subspace W Ă H1, written T &́ W ,

if T pH0q ` W “ H1. Fix Hilbert spaces H0, H1. For each finite dimensional subspace W Ă H1

define

(9.13) OW “ tT P FredpH0, H1q : T &́ W u.

Observe that OW Ă OW 1 if W Ă W 1.

Proposition 9.14.

(i) OW Ă HompH0, H1q is open. FredpH0, H1q Ă HompH0, H1q is open.

(ii) tOW uW is an open cover of FredpH0, H1q.

(iii) If X is compact and T : X Ñ FredpH0, H1q continuous, then T pXq Ă OW for some finite

dimensional W Ă H1.

Proof. Fix T0 P OW . Observe that T &́ W if and only if H0 T
ÝÝÑ H1

։ H1{W is surjective, and

the latter is true if the composition

(9.15) pT´1
0 W qK H0 T

H1 H1{W

is an isomorphism. That is true for T “ T0, and since (Theorem 9.5(ii)) isomorphisms are open

in Hom
`
T´1
0 W,H1{W

˘
and the map HompH0, H1q Ñ Hom

`
pT´1

0 W,H1{W
˘
is continuous, the

space of transverse maps (9.13) is open as well. This proves (i). That every Fredholm operator

is transverse to a finite dimensional subspace follows directly from the finite dimensionality of its

cokernel, which proves (ii). For (iii) the cover tT´1OW uW of X has a finite subcover indexed by

finite dimensional subspaces W1,W2, . . . ,WN . Define W “ W1 ` W1 ` ¨ ¨ ¨ ` WN . �

On OW we have the parametrized family of vector spaces KW Ñ OW whose fiber at T P OW is

the finite dimensional subspace T´1W Ă H0.

Lemma 9.16. KW Ñ OW is a locally trivial vector bundle.
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Proof. Fix T0 P OW and let p : H0 Ñ T´1
0 W be orthogonal projection. On the open set U of T P OW

for which (9.15) is an isomorphism the restriction of p to T´1W is an isomorphism T´1W Ñ T´1
0 W ,

as is easily verified. Topologize KW as a subspace of HompH0, H1q ˆ H0. Since the map pT, ξq ÞÑ

pT, ppξqq is continuous, we have a local trivialization of the restriction of KW Ñ OW to U with the

constant vector bundle with fiber T´1
0 W . �

Corollary 9.17. The function

(9.18)
ind: FredpH0, H1q ÝÑ Z

T ÞÝÑ dimkerT ´ dim cokerT

is locally constant.

Proof. Observe that for T P OW the sequence

(9.19) 0 ÝÑ kerT ÝÑ T´1W
T

ÝÝÑ W ÝÑ cokerT ÝÑ 0

is exact, from which

(9.20) indT “ dimkerT ´ dim cokerT “ dimT´1W ´ dimW.

The right hand side is locally constant on OW , by Lemma 9.16. �

Fredholms and the K-theory of a compact space

As a preliminary we prove that the composition of Fredholms is Fredholm and that the numerical

index behaves well under composition. For convenience we now consider Fredholm operators on a

fixed Hilbert space H.

Lemma 9.21. If T1, T2 P FredpHq, then T2 ˝ T1 P FredpHq and indT2 ˝ T1 “ indT1 ` indT2.

Proof. If T2T1 &́ W , then T2 &́ W and T1 &́ T´1
2 W . Thus

indT2T1 “ dimT´1
1 T´1

2 W ´ dimW

“ dimT´1
1 T´1

2 W ´ dimT´1
2 W ` dimT´1

2 W ` dimW

“ indT1 ` indT2.

(9.22)

�

Suppose X is compact Hausdorff and T : X Ñ FredpHq is continuous. By Proposition 9.14(iii)

there exists a finite dimensional subspace W Ă H such that Tx &́ W for all x P X. Then

T ˚KW Ñ X is a vector bundle, and we define

(9.23) rT ˚KW s ´ rW s P KpXq.
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Theorem 9.24 (Atiyah-Jänich). Assume X is compact Hausdorff. Then T ÞÑ rT ˚KW s ´ rW s is

a well-defined map

(9.25) i : rX,FredpHqs ÝÑ KpXq

which is an isomorphism of abelian groups.

The map i sends a family of Fredholm operators to its index in K-theory.

Corollary 9.26. The numerical index

(9.27) ind: π0 FredpHq ÝÑ Z

is an isomorphism.

This follows from Theorem 9.24 by taking X “ pt.

Proof. We first prove that i is well-defined. If W1,W2 are finite dimensional subspaces for which

Tx &́ Wi for all x P X, then the same holds for W1 ` W2, so it suffices to check well-definedness

of (9.23) for subspaces W Ă W 1. In that case there is a short exact sequence

(9.28) 0 ÝÑ T ˚KW ÝÑ T ˚KW 1 ÝÑ W 1{W ÝÑ 0

of vector bundles over X. Choosing a splitting we construct an isomorphism W 1{W ‘ T ˚KW –

T ˚KW 1 and then, adding W to both sides, we obtain an isomorphism W 1 ‘T ˚KW – W ‘T ˚KW 1 .

It follows that rT ˚KW 1s ´ rW 1s “ rT ˚KW s ´ rW s P KpXq.

To check that the index (9.25) is invariant under homotopy, suppose that H : r0, 1s ˆ X Ñ

FredpHq is a continuous map. Choose W Ă H such that Hpt,xq &́ W for all pt, xq. Then by

Theorem 2.1 the restrictions of H˚KW Ñ r0, 1s ˆ X to the ends of r0, 1s ˆ X are isomorphic, and

it follows that the K-theory classes (9.23) on the two ends agree.

The domain rX,FredpHqs of (9.25) is a monoid by pointwise composition. To see that i is a

homomorphism of monoids, begin as in the proof of Lemma 9.21 by choosing W Ă H such that

pT2T1qx &́ W for all x P X. Let E1
x “ pT2q´1

x pW q. For each x0 P X there is an open neighborhood

of x P X such that the orthogonal projection of E1
x to E1

x0
is an isomorphism and pT1qx &́ E1

x0
.

Cover X by a finite set of such neighborhoods and let V Ă H be a subspace containing the sum of

the corresponding E1
x0

such that pT1qx &́ V for all x P X. Let Ex denote the orthogonal projection

of E1
x to V and define F Ñ X by Fx “ T´1

1 Ex. Note that orthogonal projection is an isomorphism

E1 –
ÝÝÑ E. Compute

ipT2T1q “ rpT2T1q˚KW s ´ rW s

“ rpT2T1q˚KW s ´ rT ˚
2 KW s ` ipT2q

“ rF s ´ rEs ` ipT2q

“ rT ˚
1 KV s ´ rV s ` ipT2q

“ ipT1q ` ipT2q.

(9.29)
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In the penultimate step we use the exact sequence 0 Ñ F Ñ T ˚
1 KV Ñ V {E Ñ 0, analogous

to (9.28).

To prove that i is surjective observe from Proposition 3.15 that any element of KpXq has the

form rEs ´ N for some vector bundle E Ñ X and N P Z
ě0. By Example 9.9 there is a constant

family of Fredholm operators whose index is N . Embed E ãÑ E in a trivial bundle (Proposition 3.15

again) and define px P EndE as orthogonal projection with kernel Ex. Finally, embed E ãÑ H and

extend px to be the identity on E
K.

To prove that i is injective, if ipT q “ 0 for T : X Ñ FredpHq, then for some finite dimensional

vector space E there exists an isomorphism

(9.30) T ˚KW ‘ E
ϕ

ÝÝÑ W ‘ E

of vector bundles over X. The fiber of T ˚KW at x P X is T´1
x W . Add to (9.30) the isomorphism

Tx : pT´1
x W qK Ñ H ։ WK to obtain the family of isomorphisms

(9.31) H ‘ E
Φx“Tx`ϕx

ÝÝÝÝÝÝÝÝÝÑ H ‘ E.

Then t ÞÑ T ` tϕ is a homotopy from T to this family of invertibles. By Kuiper’s Theorem 9.5(iii)

the latter is homotopically trivial. (To obtain operators on H rather than H ‘ E conjugate by an

isomorphism H Ñ H ‘ E.)

Since i is a bijective homomorphism of monoids, and KpXq is an abelian group, it follows that

rX,FredpHqs is also an abelian group and i is an isomorphism of abelian groups. �

Further remarks

We will have more to say about Fredholm operators in future lectures. For now a few comments

will suffice.

(9.32) Invertibles as a fat basepoint. In homotopy theory we work with pointed topological spaces,

that is, topological spaces with a distinguished basepoint. For sure FredpHq has one—the identity

operator—though if H0 ­“ H1 then FredpH0, H1q does not have a distinguished basepoint. In both

cases there is a natural contractible subspace, the subspace of invertible operators. So we can work

with the pair pFredpHq,FredpHqˆq in lieu of a pointed space.

(9.33) Relative K-theory. In this spirit if pX,Aq is a pair of spaces and T : X Ñ FredpHq such

that Ta is invertible for all a P A, then T defines an element in the relative K-theory group KpX,Aq.

(Take this as the definition of relative K-theory.) The support of a Fredholm family is the set of

points at which the Fredholm operator fails to be invertible. The family of linear operators in

Example 1.11 is trivially Fredholm, since they act on a finite dimensional space, and the support

is the set of eigenvalues of the given operator.
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(9.34) Topology of FredpHq. By Corollary 9.26 we can write

(9.35) FredpHq “
ž

n

FredpnqpHq

as the disjoint union of connected spaces of Fredholms of a fixed index. The components are all

homeomorphic, and the underlying homotopy type is that of BU , the classifying space of the group

described in Remark 3.32.

Half of a cohomology theory (Bonus material)

In lecture we covered these ideas following [A1, Ha] in the context of compact Hausdorff spaces.

At this point we have defined a map

(9.36) X ÞÝÑ KpXq “ rX,FredpHqs

which attaches an abelian group to every space X. For compact Hausdorff spaces Theorem 9.24

asserts that this is the same as Definition 3.10. It is conventional to restrict to a category of “nice”

spaces, such as CW complexes or compactly generated spaces. We will see that for free we obtain

half of a cohomology theory through suspensions and loopings, but we need new ideas to recover

the other half. For K-theory that idea is Bott periodicity (Theorem 3.33, Theorem 3.35) In the

next several lectures we give a proof of Bott periodicity in the context of Fredholm operators.

A reference for this section is [A1].

(9.37) Pointed spaces. Let S denote a convenient category of spaces (CW complexes, compactly

generated spaces), S˚ the category of pointed spaces—spaces with a (nondegenerate) basepoint—

and S2 the category of (excisive) pairs. There are functors

(9.38)

S2 S˚

pX,Aq X{A

pX, tx0uq X

where in the last formula X has basepoint x0. Note that unpointed spaces S map to S2 via

X ÞÑ pX,Hq, and

(9.39) X{H “ X` “ X > t˚u

is the union of X with a disjoint basepoint. Recall that the suspension ΣX of a pointed space is

the smash product S1 ^ X.
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Definition 9.40. A cohomology theory is a sequence of abelian group-valued functors

(9.41) rKn : Sop˚ ÝÑ AbGp,

one for each n P Z, and a sequence of natural transformations

(9.42) rKnpXq ÝÑ rKn`1pΣXq, X P S˚,

such that

(i) if ft : X Ñ Y is a homotopy, then

(9.43) f˚
0 “ f˚

1 :
rKnpY q ÝÑ rKnpXq;

(ii) for f : X Ñ Y with mapping cone Cf and j : Y ãÑ Cf the inclusion, the sequence

(9.44) rKnpCf q
j˚

ÝÝÝÑ rKnpY q
f˚

ÝÝÝÑ rKnpXq

is exact;

(iii) the suspension homomorphisms (9.42) are isomorphisms; and

(iv) if X “
Ž
αPA

Xα, then the natural map

(9.45) rKnpXq ÝÑ
ź

αPA

rKnpXαq

is an isomorphism.

(9.46) Nonpositive degree K-theory. From the definition

(9.47) K0pXq “ rX,FredpHqs

developed earlier in this lecture we extract the reduced cohomology

(9.48) rK0pXq “
“
pX,x0q, pFredpHq, idHq

‰

of a pointed space, where we use the identity operator as the basepoint in the space of Fredholms.

Then for nonnegative integers n P Z
ě0 define

(9.49) rK´npXq “ rK0pΣnXq “ rΣnX,FredpHqs “ rX,Ωn FredpHqs,

where X is pointed and maps and homotopies preserve basepoints. Just as the space of Fredholms is

the classifying space (9.47) for K0, its nth loop space is the classifying space for K´n. To define Kn

for n ą 0 it is clear that we need deloopings of FredpHq. That is the challenge for any cohomology

theory.

Remark 9.50. For example, we can define H0pX;Zq “ rX,Zs, where Z is a discrete space with

basepoint 0 P Z. Its loop spaces are all trivial—they consist of one point—and so H´npX;Zq “ 0

for n ą 0. But this gives no clue how to define HnpX;Zq for n ą 0.
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(9.51) Bott periodicity. For K-theory the groups rK´npXq, n ą 0, are periodic and so it is easy

to extend to positive degree. We sketch the proofs in the next few lectures for both the real and

complex cases.

Theorem 9.52 (Bott). There are homotopy equivalences Ω2 FredpHq » FredpHq and Ω8 FredpHRq »

FredpHRq.

(9.53) Suspensions as Thom complexes. We give an alternative picture of suspension and a twisted

version. Let X be an unpointed space. Its nth suspension is

(9.54) ΣnX` “ X ˆ Sn
L
X ˆ t˚u » X ˆ R

n
L
X ˆ

`
R
nzBrp0q

˘
,

where Brp0q Ă R
n is the open ball of radius r ą 0.

The construction generalizes to twisted suspensions, replacing X ˆ R
n by a real vector bundle

V Ñ X. Fix an inner product on the bundle and also fix a real number r ą 0. Define Brp0q Ă V

as the open subspace of vectors of norm strictly less than r. The quotient space

(9.55) XV “ V {
`
V zBrp0q

˘

is the Thom complex of V , and up to homeomorphism it is independent of the inner product and

choice of r ą 0. Note that XV has a natural basepoint.
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Lecture 11: Clifford algebras

In this lecture we introduce Clifford algebras, which will play an important role in the rest of the

class. The link with K-theory is the Atiyah-Bott-Shapiro construction [ABS], which implements

the K-theory of suspensions via Clifford modules. We will begin the next lecture with this ABS

construction.

An algebra from the orthogonal group

The orthogonal group On is a subset of an algebra: the algebra MnR of n ˆ n matrices. The

Clifford algebra plays a similar role for a double cover group of the orthogonal group.

(11.1) Heuristic motivation. Orthogonal transformations are products of reflections. For a unit

norm vector ξ P R
n define

(11.2) ρξpηq “ η ´ 2xη, ξyξ,

where x´,´y is the standard inner product.

Theorem 11.3 (Sylvester). Any g P On is the composition of ď n reflections.

Proof. The statement is trivial for n “ 1. Proceed by induction: if g P On fixes a unit norm vector ξ

then it fixes the orthogonal complement pR ¨ ξqK, and we are reduced to the theorem for On´1. If

there are no fixed unit norm vectors, then for any unit norm vector ζ set ξ “ gpζq´ζ

|gpζq´ζ| . The

composition ρξ˝g fixes ζ and again we reduce to the pn´1q-dimensional orthogonal complement. �

Now generate an algebra from the unit norm vectors, with relations inspired by those of reflec-

tions. Note immediately that the vectors ˘ξ both correspond to the same reflection ρξ “ ρ´ξ.

Therefore, we expect from the beginning that the Clifford algebra “double counts” orthogonal

transformations. Now since the square of a reflection is the identity, we impose the relation

(11.4) ξ2 “ ˘1, |ξ| “ 1.

The sign ambiguity is that described above, and we choose a sign independent of ξ. It follows that

(11.5) ξ2 “ ˘|ξ|2

for any ξ P R
n. Now if xξ1, ξ2y “ 0, then pξ1 ` ξ2q{

?
2 has unit norm and from

(11.6) ˘ 1 “
ˆ

ξ1 ` ξ2?
2

˙2

“ ξ21 ` ξ22 ` pξ1ξ2 ` ξ2ξ1q
2

“ ˘2 ` pξ1ξ2 ` ξ2ξ1q
2

K-Theory (M392C, Fall ’15), Dan Freed, October 12, 2015
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we deduce

(11.7) ξ1ξ2 ` ξ2ξ1 “ 0, xξ1, ξ2y “ 0.

Equations (11.4) and (11.7) are the defining relations for the Clifford algebra. Check that the

reflection (11.2) is given by

(11.8) ρξpηq “ ´ξηξ´1

in the Clifford algebra. By composition using Theorem 11.3 we obtain the action of any orthogonal

transformation on η P R
n.

Definition 11.9. For n P Z define the real Clifford algebra Cℓn as the unital associative real algebra

generated by e1, . . . , e|n| subject to the relations

(11.10)
e2i “ ˘1, i “ 1, . . . , n

eiej ` ejei “ 0, i ­“ j.

The complex Clifford algebra CℓCn is the complex algebra with the same generators and same

relations.

Note Cℓ0 “ R and CℓC0 “ C.

Example 11.11. There is an isomorphism CℓC´n – CℓCn obtained by multiplying each generator ei
by

?
´1.

Example 11.12. Cℓ´1 can be embedded in the matrix algebra M2R by setting

(11.13) e1 “
ˆ

0 ´1
1 0

˙

.

The same equation embeds CℓC´1 in M2C.

Example 11.14. We identify CℓC´2 with EndpC2q by setting

(11.15) e1 “
ˆ

0 ´1
1 0

˙

, e2 “
ˆ

0 i

i 0

˙

,

where i “
?

´1. This does not work over the reals. The product

(11.16) e1e2 “
ˆ

´i 0
0 i

˙

is ´i times a grading operator on C
2.

Example 11.17. The real Clifford algebras Cℓ1 and Cℓ´1 are not isomorphic. We embed in M2R

in the former case by setting

(11.18) e1 “
ˆ

0 1
1 0

˙

and in the latter using (11.13). Note that the doubled orthogonal group t˘1,˘e1u is different in

the two cases: in Cℓ1 it is isomorphic to the Klein group Z{2Z ˆ Z{2Z whereas in Cℓ´1 it is cyclic

of order four.
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(11.19) Spin and Pin. For n ą 0 let SpRnq Ă R
n denote the sphere of unit norm vectors. Since Rn

embeds in Cℓ˘n, so too does SpRnq. We assert without proof that the group it generates is a Lie

group Pin˘n Ă Cℓ˘n. It follows from Theorem 11.3 that there is a surjection Pin˘n Ñ On

defined by composing the reflections (11.8). The inverse image Spin˘n of the special orthogonal

group SOn consists of products of an even number of elements in SpRnq. There is an isomorphism

Spinn – Spin´n, but as we saw in Example 11.14 this is not true in general for Pin.

(11.20) The Dirac operator. The Clifford algebra arises from the following question, posed by

Dirac: Find a square root of the Laplace operator. We work on flat Euclidean space E
n, which is

the affine space A
n endowed with the translation-invariant metric constructed from the standard

inner product on the underlying vector space R
n of translations. Let x1, . . . , xn be the standard

affine coordinates on E
n. The Laplace operator is

(11.21) ∆ “ ´
n

ÿ

i“1

B2

pBxiq2 .

A first-order operator

(11.22) D “ γi
B

Bxi

satisfies D2 “ ∆ if and only if γi satisfy the Clifford relation

(11.23) γiγj ` γjγi “ ´2δij , 1 ď i, j ď n,

as in (11.10). If we let (11.21), (11.22) act on the space C8pEn; Sq of functions with values in a

vector space S, then we conclude that S is a Cℓ´n-module.

(11.24) Z{2Z-gradings. So far we have not emphasized the Z{2Z-grading evident in the examples:

odd products of generators such as (11.13), (11.15), (11.18) are represented by block off-diagonal

matrices whereas even products of generators (11.16) are represented by block diagonal matrices.

Superalgebra

For a more systematic treatment, see [DM, §1]. We use ‘super’ synonymously with ‘Z{2Z-graded’.

(11.25) Super vector spaces. Let k be a field, which in our application will always be R or C. A

super vector space S “ S
0 ‘ S

1 is a pair pS, ǫq of a vector space over k and an operator ǫ with

ǫ2 “ idS. The subspaces S
0, S1 are the `1,´1-eigenspaces, respectively. Eigenvectors are called

even, odd. The tensor product S1 b S
2 of super vector spaces carries the grading ǫ1 b ǫ2. The main

new point is the Koszul sign rule, which is the symmetry of the tensor product:

(11.26)
S

1 b S
2 ÝÑ S

2 b S
1

s1 b s2 ÞÝÑ p´1q|s1||s2|s2 b s1,
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(11.27) Superalgebras. Let A “ A0‘A1 be a super algebra, an algebra with a compatible grading:

Ai ¨Aj Ă Ai`j , where the degree is taken in Z{2Z. A homogeneous element z in its center satisfies

za “ p´1q|z||a|az for all homogeneous a P A. The center is itself a super algebra, which is of course

commutative (in the Z{2Z-graded sense). The opposite super algebra Aop to a super algebra A is

the same underlying vector space with product a1 ¨ a2 “ p´1q|a1||a2|a2a1 on homogeneous elements.

All algebras are assumed unital. Tensor products of super algebras are taken in the graded sense:

the multiplication in A1 b A2 is

(11.28) pa1
1 b a2

1qpa1
2 b a2

2q “ p´1q|a2

1
||a1

2
|a1

1a
1
2 b a2

1a
2
2.

Undecorated tensor products are over the ground field. Unless otherwise stated a module is a left

module. An ideal I Ă A in a super algebra is graded if I “ pI X A0q ‘ pI X A1q.

(11.29) Super matrix algebras. Let S “ S0 ‘S1 be a finite dimensional super vector space over k.

Then EndS is a central simple super algebra. Endomorphisms which preserve the grading on S are

even, those which reverse it are odd. A super algebra isomorphic to EndS is called a super matrix

algebra.

Clifford algebras

For more details see [ABS, Part I], [De1, §2].

A quadratic form on a vector space V is a function Q : V Ñ k such that

(11.30) Bpξ1, ξ2q “ Qpξ1 ` ξ2q ´ Qpξ1q ´ Qpξ2q, ξ1, ξ2 P V,

is bilinear and Qpnξq “ n2Qpξq.

Definition 11.31. The Clifford algebra CℓpV,Qq “ CℓpV q of a quadratic vector space is an algebra

equipped with a linear map i : V Ñ CℓpV,Qq which satisfies the following universal property: If

ϕ : V Ñ A is a linear map to an algebra A such that

(11.32) ϕpξq2 “ Qpξq ¨ 1A, ξ P V,

then there exists a unique algebra homomorphism ϕ̃ : CℓpV,Qq Ñ A such that ϕ “ ϕ̃ ˝ i.

We leave the reader to prove that i is injective and that CℓpV,Qq is unique up to unique isomor-

phism. Furthermore, there is a surjection

(11.33) b V ÝÑ CℓpV,Qq

from the tensor algebra, as follows from its universal property. This gives an explicit construction

of CℓpV,Qq as the quotient of bV by the 2-sided ideal generated by ξ2 ´ Qpξq ¨ 1bV , ξ P V . The

tensor algebra is Z-graded, and since the ideal sits in even degree the quotient Clifford algebra is
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Z{2Z-graded. The increasing filtration b0V Ă bď1V Ă bď2V Ă ¨ ¨ ¨ induces an increasing filtration

on CℓpV,Qq whose associated graded is isomorphic to the (Z-graded) exterior algebra
Ź‚V . There

is a canonical isomorphism

(11.34) CℓpV 1 ‘ V 2, Q1 ‘ Q2q – CℓpV 1, Q1q b CℓpV 2, Q2q,

deduced from the universal property. The standard Clifford algebras in Definition 11.9 have the

form CℓpV,Qq for V “ R
n,Cn and Q the positive or negative definite standard quadratic form

on V .

The Clifford algebras are central simple as Z{2Z-graded algebras. I will leave the simplicity

(there are no nontrivial 2-sided homogeneous ideals) as an exercise and here prove the centrality.

Proposition 11.35. CℓpV,Qq has center k.

Proof. Suppose x “ x0 ` x1 is a central element. Fix an orthonormal basis e1, . . . , en of V . Then

for every i “ 1, . . . , n we have

(11.36)
x0ei “ eix

0

x1ei “ ´eix
1

There is a unique decomposition x0 “ a0`eib
1 where a0, b1 belong to the Clifford algebra generated

by the basis elements excluding ei. Then

(11.37)
x0ei “ a0ei ` eib

1ei “ eia
0 ´ peiq2b1

eix
0 “ eia

0 ` peiq2b1.

Since x0 is central we have x0ei “ eix
0, and so (11.37) implies that b1 “ 0. Since this holds for

every i, we conclude that x0 is a scalar. Similarly, write x1 “ a1 ` eib
0 so that

(11.38)
x1ei “ a1ei ` eib

0ei “ ´eia
1 ` peiq2b0

´eix
1 “ ´eia

1 ´ peiq2b0

from which x1 “ 0. �

For a vector space L and θ P L˚ let ǫθ denote exterior multiplication by θ, which is an endo-

morphism of the exterior algebra
Ź‚L˚. For ℓ P L the adjoint of exterior multiplication by ℓ is

contraction ιℓ, an endomorphism of
Ź‚L˚ of degree ´1.

Proposition 11.39. Suppose V “ L ‘ L˚ with the split quadratic form Qpℓ ` θq “ θpℓq, ℓ P L,

θ P L˚. Set S “ Ź‚L˚ with its Z{2Z-grading by the parity of the degree. Then the map V Ñ End S

(11.40)
ℓ ÞÝÑ ιℓ

θ ÞÝÑ ǫθ

extends to an isomorphism CℓpV q –ÝÝÑ End S of the Clifford algebra with a super matrix algebra.

Proof. Using (11.34) we reduce to the case dimL “ 1 which can be checked by hand; it is essentially

Example 11.14. �
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(11.41) Algebraic Bott periodicity. We may in the future discuss basic Morita theory, in which

we will see that super matrix algebras are in some sense trivial. That is the spirit of the following

theorem. We say the dimension of a finite dimensional super vector space S “ S
0 ‘ S

1 is d0|d1 if

dim S
i “ di.

Theorem 11.42. There are isomorphisms of superalgebras

(11.43)
CℓC´2

–ÝÝÑ EndpSq, dim S “ 1|1,
Cℓ´8

–ÝÝÑ EndpSRq, dim SR “ 8|8.

Proof. The complex case is Example 11.14. For the real case we let Cℓ´2 act on W “ C
1|1 via the

formulas in (11.15). This action commutes (in the graded sense) with the odd real structure

(11.44) Jpz0, z1q “ pz1, z0q.

That is, J : W Ñ W is antilinear, odd, and squares to ´ idW. Set S “ Wb4. It carries an action

of Cℓb4
´2 – Cℓ´8 which commutes with Jb4. The latter is antilinear, even, and squares to idS, so is

a real structure. �

As stated in the proof, Wb2 carries a quaternionic structure Jb2: the Koszul sign rule (11.26)

implies that Jb2 squares to minus the identity. (Check that sign! It will test your understanding

of the sign rule.)

(11.45) Spin and Pin redux. Sitting inside the Clifford algebra CℓpV,Qq is the pin group PinpV,Qq
generated by SpV q and its even subgroup SpinpV,Qq “ PinpV,Qq XCℓpV,Qq0. When V is real and

Q is definite these are compact Lie groups. In that case we can average a metric over a real or

complex Clifford module S “ S
0 ‘ S

1 so that PinpV,Qq acts orthogonally (unitarily in the complex

case). It follows that e P SpV q is self- or skew-adjoint, according as Q is positive or negative

definite.

Remark 11.46. There is a tricky sign in the proper definition of ‘self-adjoint’ and ‘skew-adjoint’ in

the super world. There is a way around that sign to a more standard convention, which is the one

we use; see [DM, §4.4], [De2, §4].
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Lecture 12: Kuiper’s theorem, classifying spaces, Atiyah-Singer loop map,

Atiyah-Bott-Shapiro construction

We begin this lecture by giving a proof of Kuiper’s theorem on the contractibility of the general

linear group of an infinite dimensional Hilbert space. We follow [ASe1, Appendix C] closely; see

also the original paper [Ku]. One consequence is the contractibility of infinite dimensional Stiefel

manifolds, which we use to construct geometric classifying spaces for compact Lie groups. Then

we introduce spaces of Fredholm operators which incorporate Clifford algebras. We state the

Atiyah-Singer looping construction (12.59), which is the main theorem in [AS3], and show how

together with algebraic Bott periodicity (11.41) it implies Bott periodicity. In the next two lectures

we sketch the main points in the proof of that theorem, which relies on Kuiper’s contractibility

result. We conclude with some important material not covered in class: the Atiyah-Bott-Shapiro

construction.

Kuiper’s Theorem

Theorem 12.1 ([Ku]). Let H be an infinite dimensional real or complex separable Hilbert space.

Then the general linear group AutpHq is contractible in the norm topology.

The general linear group deformation retracts onto the unitary group of automorphisms which

preserve the inner product. Namely, to any operator P is associated a nonnegative self-adjoint

operator |P | such that |P |2 “ P ˚P . The operator |P | is positive if P is invertible. Then the

retraction is

(12.2) Pt “ P
`

p1 ´ tq idH `t|P |´1
˘

.

Corollary 12.3. The unitary group UpHq is contractible in the norm topology

In the real case ‘unitary’ is usually called ‘orthogonal’ and the group is denoted OpHq.

Definition 12.4. A continuous map f : X Ñ Y of topological spaces is a weak homotopy equiva-

lence if f˚ : π0X Ñ π0Y is a bijection and for every x P X the map f˚ : πqpX,xq Ñ πqpY, fpxqq is

an isomorphism for all q ą 0.

Whitehead proved that a weak homotopy equivalence of CW complexes is a homotopy equivalence,

and the same is true for spaces with the homotopy type of a CW complex [Mi]. This applies in

particular to open subsets of a Banach space,1 so to the general linear group in the norm topology.

Therefore, to prove Theorem 12.1 it suffices to show all homotopy groups of AutpHq vanish.

Let X be a compact simplicial complex and f : X Ñ AutpHq a continuous map. We prove by a

series of deformations that f “ f0 is homotopic to the constant map with value idH .

Lemma 12.5. There exists a homotopy f0 » f1 and a finite dimensional subspace V Ă EndpHq

such that f1pxq P V for all x P X.

K-Theory (M392C, Fall ’15), Dan Freed, October 13, 2015
1Milnor [Mi] proves that an absolute neighborhood retract (ANR) has the homotopy type of a CW complex. A

(paracompact) Banach manifold is an ANR [Pa2].
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Of course, we make a choice of the homotopy whose existence is proved! (Similar comment for the

lemmas which follow.)

Proof. Since AutpHq Ă EndpHq is open it has a cover by balls, and since X is compact it is covered

by a finite number of their inverse images. Subdivide X so that every simplex lies in such a ball.

Define f1 to agree with f0 on vertices and be affine on each simplex. Then ft “ p1 ´ tqf0 ` tf1 is

the desired homotopy and V is the span of fpxq in EndpHq over the vertices x in X. �

Lemma 12.6. There exists an orthogonal decomposition H “ H1 ‘H2 ‘H3 such that (i) αpH1q K

H3 for all α P V , (ii) H1 is infinite dimensional, and (iii) there is an isomorphism T : H1 Ñ H3.

Proof. Let P1 Ă H be a line and P2 Ă H a finite dimensional orthogonal subspace so that αpP1q Ă

P1 ‘ P2 for all α P V . Let P3 be a line orthogonal to P1 ‘ P2. We begin an iterative process.

Choose a line Q1 orthogonal to P1 ‘ P2 ‘ P3 and a finite dimensional subspace Q2 such that

the sum P1 ‘ Q1 ‘ P2 ‘ Q2 is orthogonal and contains αpQ1q for all α P V . Let Q3 be a line

orthogonal to P1 ‘ Q1 ‘ P2 ‘ Q2 ‘ P3. Set P
p1q
i “ Pi ‘ Qi, i “ 1, 2, 3. Then αpP

p1q
1 q Ă P

p1q
1 ‘ P

p1q
2 ,

dimP
p1q
1 ą dimP1, and P

p1q
1 – P

p1q
3 . Iterate to find P

p1q
i Ă P

p2q
i Ă ¨ ¨ ¨ with these properties. Set

(12.7) Hi “
8
ď

k“1

P
pkq
i , i “ 1, 3,

and choose H2 “ pH1 ‘ H3qK. �

Lemma 12.8. There exists a homotopy f1 » f3 so that f3
ˇ

ˇ

H1

“ idH1
.

Proof. For x P X let Hx “
`

f1pxqH1 ‘ H3

˘K
. The identity transformation is connected to the

rotation

(12.9)
H1 ‘ Hx ‘ H1 ÝÑ H1 ‘ Hx ‘ H1

ξ ‘ η ‘ ζ ÞÝÑ p´ζq ‘ η ‘ ξ

by a path (of unitaries). Conjugate this path by

(12.10) f1pxq ‘ idHx
‘T : H1 ‘ Hx ‘ H1 ÝÑ f1pxqH1 ‘ Hx ‘ H3

to obtain a path from idH to

(12.11)
ϕx : f1pxqH1 ‘ Hx ‘ H3 ÝÑ f1pxqH1 ‘ Hx ‘ H3

f1pxqξ ‘ η ‘ Tζ ÞÝÑ ´f1pxqζ ‘ η ‘ Tξ

Set f2pxq “ ϕ´1
x f1pxq. Then f2 is continuous, f1 » f2, and f2pxq

ˇ

ˇ

H1

“ ´T : H1 Ñ H3 for all x P X.

Now compose with the rotation

(12.12)
H1 ‘ H2 ‘ H3 ÝÑ H1 ‘ H2 ‘ H3

ξ ‘ λ ‘ Tζ ÞÝÑ ´ζ ` λ ‘ Tξ

to obtain f3 homotopic to f2 with f3
ˇ

ˇ

H1

“ idH1
. �
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Proof of Theorem 12.1. We execute the Eilenberg swindle. First, relative to the orthogonal decom-

position H “ HK
1 ‘ H1 we have

(12.13) f3pxq “

ˆ

upxq 0
˚ 1

˙

,

where ‘1’ denotes the identity operator. By a simple homotopy multiplying the operator ‘˚’ by t

we move to a homotopic family

(12.14) f4pxq “

ˆ

upxq 0
0 1

˙

.

Since H1 is infinite dimensional and separable we can write it as a countable orthogonal direct

sum

(12.15) H1 “ K1 ‘ K2 ‘ K3 ‘ ¨ ¨ ¨

of infinite dimensional subspaces, each equipped with an isomorphism to HK
1 . Now the path of

operators

(12.16)

ˆ

cos t ´ sin t
sin t cos t

˙ ˆ

u

1

˙ ˆ

cos t sin t
´ sin t cos t

˙ ˆ

u´1

1

˙

on HK
1 ‘ HK

1 begins at t “ 0 with the identity operator and concludes at t “ 1 with
`

u´1

u

˘

.

Exchanging the roles of u, u´1 we obtain a path of operators from p u
u´1 q to the identity. Therefore,

we obtain a homotopy

(12.17) f4 “

¨

˚

˚

˚

˚

˚

˝

u

1
1

1
. . .

˛

‹

‹

‹

‹

‹

‚

»

¨

˚

˚

˚

˚

˚

˝

u

u´1

u

u´1

. . .

˛

‹

‹

‹

‹

‹

‚

»

¨

˚

˚

˚

˚

˚

˝

1
1

1
1

. . .

˛

‹

‹

‹

‹

‹

‚

of operators on H “ HK
1 ‘ K1 ‘ K2 ‘ K3 ‘ ¨ ¨ ¨ . �

Stiefel manifolds and classifying spaces for principal bundles

Recall first the definition.

Definition 12.18. Let G be a Lie group. A principal G bundle is a fiber bundle π : P Ñ M over

a smooth manifold M equipped with a right G-action P ˆ G Ñ P which is simply transitive on

each fiber.
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The hypothesis that π is a fiber bundle means it admits local trivializations. For a principal bundle

a local trivialization is equivalent to a local section. In one direction, if U Ă M and s : U Ñ P is a

section of π
ˇ

ˇ

U
: P

ˇ

ˇ

U
Ñ U , then there is an induced local trivialization

(12.19)
ϕ : U ˆ G ÝÑ P

x, g ÞÝÑ spxq ¨ g

where ‘¨’ denotes the G-action on P .

(12.20) From vector bundles to principal bundles and back. Let π : E Ñ M be a vector bundle of

rank k. Assume for definiteness that π is a real vector bundle. There is an associated principal

GLkpRq-bundle BpEq Ñ M whose fiber at x P M is the spaces of bases b : Rk –
ÝÝÑ Ex. These fit

together into a principal bundle which admits local sections: a local section of the principal bundle

BpEq Ñ M is a local trivialization of the vector bundle E Ñ M . Conversely, if P Ñ M is a

principal G “ GLkpRq-bundle, then there is an associated rank k vector bundle E Ñ M defined as

(12.21) E “ P ˆ R
k{G,

where the right G-action on P ˆ R
k is

(12.22) pp, ξq ¨ g “ pp ¨ g, g´1ξq, p P P, ξ P R
k, g P G,

and we use the standard action of GLkpRq on R
k to define g´1ξ.

A section of the associated bundle E is a G-equivariant map s : P Ñ R
k. Note that G acts on

the right on both P and R
k. A special case of this construction is the frame bundle of a smooth

k-dimensional manifold M , a case the reader should thing through carefully if this is new.

(12.23) More general associated bundles. Let P Ñ M be a principal G-bundle and F a space

equipped with a left G-action. Then there is an associated fiber bundle with fiber F ; the total

space is the quotient

(12.24) FP “ pP ˆ F q{G “ P ˆG F

where g P G acts on the right of pp, fq P P ˆ F to give pp ¨ g, g´1 ¨ fq. A section of the associated

bundle is a G-equivariant function P Ñ F . The fibers of FP Ñ M are identified with F only up to

the action of G. The principal bundle controls this uncertainty. More precisely, each point p P Px

gives an identification of the fiber pFP qx with F . In that sense points of a principal bundle are

generalized bases for all associated fiber bundles, and it is the principal bundle which controls the

geometry and topology.

This geometric viewpoint on fiber bundles was advocated by Steenrod [St].
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(12.25) Fiber bundles with contractible fiber. We quote the following general proposition in the

theory of fiber bundles.

Proposition 12.26. Let π : E Ñ M be a fiber bundle whose fiber F is contractible and a metrizable

topological manifold, possibly infinite dimensional. Assume that the base M is metrizable. Then

π admits a section. Furthermore, if E,M, F all have the homotopy type of a CW complex, then

π is a homotopy equivalence.

See [Pa2] for a proof of the first assertion. The last assertion follows from the long exact sequence

of homotopy groups and Whitehead’s theorem, stated after Definition 12.4. The takeaway, after

stripping off the technical hypotheses, is that a fiber bundle with contractible fibers is a homotopy

equivalence. But don’t forget that there are technical hypotheses!

(12.27) Classifying maps for principal bundles. Now we characterize universal principal bundles.

Theorem 12.28. Let G be a Lie group. Suppose πuniv : P univ Ñ B is a principal G-bundle and

P univ is a contractible metrizable topological manifold.2 Then for any continuous principal G-bundle

P Ñ M with M metrizable, there is a classifying diagram

(12.29) P
ϕ̃

P univ

M
ϕ

B

In the commutative diagram (12.29) the map ϕ̃ commutes with the G-actions on P, P univ, i.e., it

is a map of principal G-bundles.

Proof. A G-map ϕ̃ is equivalently a section of the associated fiber bundle

(12.30) pP ˆ P univq{G Ñ M

formed by taking the quotient by the diagonal right G-action. The fiber of the bundle (12.30)

is P univ. Sections exist by Proposition 12.26, since P univ is contractible. �

(12.31) Stiefel manifolds. Let H be a separable (complex) Hilbert space. Introduce the infinite

dimensional Stiefel manifold

(12.32) StkpHq “ tb : Ck Ñ H : b is an isometryu.

It is an open subset of the linear space HompCk, Hq – H ‘ ¨ ¨ ¨ ‘H, which we give the topology of a

Hilbert space. Then the open subset StkpHq is a Hilbert manifold. There is an obvious projection

(12.33) π : StkpHq ÝÑ GrkpHq

2We allow an infinite dimensional manifold modeled on a Hilbert space, say.
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to the Grassmannian

(12.34) GrkpHq “ tW Ă H : dimW “ ku.

which maps b to its image bpCkq Ă H. We leave the reader to check that π is smooth. In fact, π is

a principal bundle with structure group the unitary group Uk.

Theorem 12.35. StkpHq is contractible.

Proof. The unitary group UpHq acts transitively on StkpHq by left composition. The stabilizer of

a k-frame b0 : C
k Ñ H is the unitary group of the orthogonal complement bpCkqK. Both unitary

groups are contractible, by Kuiper (Corollary 12.3). So too is the quotient homogeneous space,

which is diffeomorphic to StkpHq. �

Corollary 12.36. The bundle (12.33) is a universal Uk-bundle.

Remark 12.37. There is a simpler proof that StkpHq is contractible based on the contractibility of

the unit sphere in H.

(12.38) Other Lie groups. Let G be a compact Lie group. (Note G need not be connected.) The

Peter-Weyl theorem asserts that there is an embedding G Ă Uk for some k ą 0. Let EG “ StkpHq

be the Stiefel manifold for a complex separable Hilbert space H. Then the restriction of the free

GLkpCq-action to G is also free; let BG be the quotient. It is a Hilbert manifold, and

(12.39) EG ÝÑ BG

is a universal principal G-bundle, by Theorem 12.28.

This gives Hilbert manifold models for the classifying space of any compact Lie group.

Fredholms and Clifford algebras

Fix a Z{2Z-graded complex Hilbert space H “ H0 ‘ H1 for which both H0 and H1 are infinite

dimensional. With few modifications what we do applies to real Hilbert spaces, but we defer that

to the next lecture.

Remark 12.40. Following (11.25) strictly, which I strongly recommend [DF], leads to some awkward

conventions [DM, §4.4]. First, H should have an inner product x´,´y, which we assume is even

so that H0 K H1. But then the sign rule implies that xξ, ξy P iR for ξ P H1. Worse, an odd

skew-adjoint operator on H has eigenvalues which are multiples of a primitive eighth root of unity;

they are neither purely real nor purely imaginary. We will take the easy way out to conform with

the (old) literature, which does not follow the Koszul sign rule. So each of H0, H1 is a Hilbert

space with a usual inner product, and a continuous odd skew-adjoint operator A on H “ H0 ‘ H1

has the form

(12.41) A “

ˆ

0 ´T ˚

T 0

˙

where T : H0 Ñ H1 is continuous and T ˚ : H1 Ñ H0 is its usual adjoint relative to the inner

products on H0, H1.
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Definition 12.42. Let H “ H0 ‘ H1 be a Z{2Z-graded Hilbert space. The following spaces of

operators are endowed with the norm topology.

(i) Fred0pHq is the space of odd skew-adjoint Fredholm operators on H.

(ii) For n ą 0, Fred´npHq Ă Fred0pCℓC´n b Hq is the subspace3 of operators which (graded)

commute with the left action of CℓC´n.

We endow CℓC´n with the Hermitian inner product which renders products ei1 ¨ ¨ ¨ eiq of basis el-

ements orthonormal; then the pin group Pin´n acts unitarily and the generators ei act by odd

skew-adjoint unitary isomorphisms. An odd operator A on CℓC´n b H commutes with CℓC´n if and

only if Aei “ ´eiA for i “ 1, . . . , n.

Remark 12.43. The matrix (12.41) makes clear that Fred0pHq is canonically identified with FredpH0, H1q,

the space studied in Lecture 1. There is also an ungraded interpretation of Fred´npHq. First ob-

serve that the n ´ 1 elements fi “ eien, i “ 1, . . . , n ´ 1 generate a Clifford algebra isomorphic

to CℓC´pn´1q. Then if A P Fred´npHq the restriction of enA to the even subspace of CℓC´n b H is a

skew-adjoint Fredholm operator whcih anticommutes with the fi. This is the form of Fred´npHq

which is most studied in [AS3].

(12.44) Periodicity of Fred´npHq. Recall from Theorem 11.42 that there is an isomorphism

(12.45) CℓC´2 – EndpSq – S b S
˚

for a complex super vector space of dimension 1|1.

Proposition 12.46. The map

(12.47)
Fred0pS˚ b Hq ÝÑ Fred´2pHq Ă Fred0pS b S

˚ b Hq

A ÞÝÑ idS bA

is a homeomorphism.

This follows since the only central endomorphisms of S are multiplies of idS.

Kuiper’s Theorem 12.1 implies that there is a contractible space of isomorphisms H
–

ÝÝÑ S
˚ bH.

Corollary 12.48. Up to a contractible choice the isomorphism (12.45) leads to a homeomorphism

(12.49) Fred0pHq
–

ÝÝÑ Fred´2pHq.

The same argument leads to contractible spaces of isomorphisms

(12.50)
Fred0pHq – Fred´2pHq – Fred´4pHq – ¨ ¨ ¨

Fred´1pHq – Fred´3pHq – Fred´5pHq – ¨ ¨ ¨

3We add another condition in the next lecture to get rid of contractible components.
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It is natural to extend the definition

(12.51) FrednpHq Ă Fred0pCℓCn b Hq, n P Z,

to allow positive integers as well. Note that the generators ei of the Clifford algebra are odd

self -adjoint if n ą 0. Then (12.50) extends in both directions:

(12.52)
¨ ¨ ¨ – Fred2pHq – Fred0pHq – Fred´2pHq – ¨ ¨ ¨

¨ ¨ ¨ – Fred1pHq – Fred´1pHq – ¨ ¨ ¨

(12.53) Atiyah-Singer loop map. For each n ą 0 define

(12.54)
α : Fred´npHq ÝÑ ΩFred´pn´1qpCℓ

C
´1 b Hq

A ÞÝÑ
`

t ÞÑ en cosπt ` A sinπt
˘

, 0 ď t ď 1.

The Clifford algebra CℓC´1 in the codomain has generator en. Note that the operators in the

domain and codomain both act on the same Hilbert space CℓC´n b H. The codomain consists of

paths from en to ´en, the endpoints fixed independent of A. The space of such paths is homotopy

equivalent to the based loop space with any basepoint. (Recall (9.32).) The reader should check

that en cosπt ` A sinπt is indeed Fredholm, and in fact is invertible if t ­“ 1{2.

Theorem 12.55 ([AS3]). α is a homotopy equivalence.

Then algebraic Bott periodicity in the form Corollary 12.48 combines with Theorem 12.55 to

prove Bott periodicity (Theorem 9.52).

Corollary 12.56. There is a homotopy equivalence

(12.57) Ω2 Fred0pHq » Fred0pHq

We sketch a proof of Theorem 12.55 in the next few lectures.

Atiyah-Bott-Shapiro construction (Bonus material)

We did not have time in lecture for this important construction, which we explain in the next

section is “adjoint” to the Atiyah-Singer loop map in some sense. Clifford modules implement

the suspension in the definition (9.49) of the negative K-groups. The constructions work equally

over R and C, though our notation assumes the latter. The picture of suspension is (9.54), and the

construction applies as well to the twisted suspension, or Thom complex, in (9.55).

(12.58) A family of operators parametrized by a real vector space. Let pV,Qq be a real quadratic

vector space with Q negative definite and S “ S
0‘S

1 a CℓpV,Qq-module. Then ξ P V determines an

odd endomorphism cpξq P pEnd Sq1. Since Q is negative definite we can choose a compatible inner

product on S; then cpξq is skew-adjoint. The family of operators ξ ÞÑ cpξq is supported at 0 P V ,

i.e., the operator cpξq is invertible if ξ ­“ 0. This defines an element in the relative K-theory group

K0pV, V z0q – K0pV, V zBrp0qq, as in (9.33).
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(12.59) A vector bundle over the sphere. Let V ‘ R have the direct sum inner product which

is negative definite. The sphere SpV ‘ Rq is the 1-point compactification of V and is naturally

decomposed as

(12.60) SpV ‘ Rq “ D` YSpV q D
´, D˘ “ tpξ, tq P SpV ‘ Rq : ˘t ą 0u.

We identify D` as the closed unit ball in V . Glue the trivial bundles D` ˆ S
0 and D´ ˆ S

1 using

the isomorphisms cpξq : S0 Ñ S
1 for ξ P SpV q. This gives a vector bundle over SpV ‘ Rq whose

K-theory class agrees with the class constructed in (12.58). Note that the vector bundle comes

trivialized on D´, which is the 1-point compactification of the complement of the open unit ball

in V .

(12.61) The clutching function. By Proposition 3.26 the K-theory class is determined by the

homotopy class of the clutching function

(12.62)
SpV q ÝÑ AutpS0q

ξ ÞÝÑ cpξ0q´1cpξq,

where ξ0 P SpV q is a basepoint.

Note that (12.58), (12.59), and (12.61) describe three geometric objects which represent the

same information, all defined from a Clifford module.

Example 12.63. Take V “ R
2 and S “ C

1|1 the complex Clifford module with

(12.64) cpe1q “

ˆ

´1
1

˙

cpe2q “

ˆ

i

i

˙

.

Then

(12.65) cpcos θ e1 ` sin θ e2q “

ˆ

´e´iθ

eiθ

˙

and the product with cpe1q´1 on the left is
´

eiθ

e´iθ

¯

. Restricted to S
0 we get the clutching function

for the hyperplane bundle over S2.

(12.66) Modding out by modules which extend. Suppose S extends to a CℓpV ‘Rq-module. Then

we use the extra generator en`1 to make a homotopy of clutching functions (12.62):

(12.67) cpξ0q´1 rcosπt{2 cpξq ` sinπt{2 cpen`1qs , 0 ď t ď 1.

This shows that the bundle we obtain over SpV ‘ Rq is trivializable. ABS [ABS, §11] use this to

define a map from the graded ring of Clifford modules modulo those which extend to the reduced

K-theory of the sphere—working both over the reals and the complexes—and they prove that this

map is an isomorphism of graded rings. The Atiyah-Singer theorem [AS3] we are proving is a

generalization.
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(12.68) Parametrized version; twisted K-theory. Let V Ñ X be a real vector bundle equipped

with a family Q of negative definite quadratic forms. Then we obtain a bundle CℓpV,Qq Ñ X of

Clifford algebras. Let S Ñ X be a CℓpV,Qq-module, that is, a super vector bundle with an action

of CℓpV,Qq fiberwise. The previous constructions can be carried out fiber by fiber to construct a

class in the Thom space K0pXV q. This can be identified with a K-theory class of degree ´n in the

base, but in general it lives in twisted K-theory, a topic we will return to shortly.

Comparison of ABS and AS suspension maps (Bonus material)

Consider the ABS construction (12.58) in a special case. Suppose E Ñ X is a complex vector

bundle. The ABS construction yields a complex vector bundle CℓC´1 b pr˚
1E Ñ X ˆ R equipped

with the family of odd skew-adjoint operators which at px, sq P X ˆ R is Clifford multiplication

multiplication by

(12.69) se1 b idE .

The operator is invertible except at s “ 0, when it is the zero operator. This family of operators is

clutching data for a vector bundle over ΣX`.

The AS map (12.54) is a sort of adjoint in the world of Fredholm operator representatives for

K-theory. The relevant special case of (12.54) is

(12.70)
α : Fred´1pHq ÝÑ ΩFred0pCℓC´1 b Hq

A ÞÝÑ
`

e1 cosπt ` A sinπt, 0 ď t ď 1
˘

.

Write

(12.71) e1 cosπt ` A sinπt “ e1pcosπt ´ e1A sinπtq

and note that pe1Aq˚ “ A˚e˚
1 “ p´Aqp´e1q “ Ae1 “ ´e1A is skew-adjoint. Since cosπt times the

identity operator is invertible self-adjoint except at t “ 1{2, it follows that the operator in (12.70)

is invertible except at t “ 1{2. At t “ 1{2 it is the Fredholm operator A. Recalling that invertible

operators are a “fat basepoint” in Fredholms, we can homotop the family (12.70) to a family of

Fredholm operators

(12.72) s ÞÝÑ se1 b id` idbA, s P R,

which is more parallel to the ABS construction. It is in this sense that the AS loop map is adjoint

to the ABS suspension.
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Lecture 13: Topology of skew-adjoint Fredholm operators

We present background and many of the ideas in the proof of Theorem 12.55, the key result in

the proof of Bott periodicity given by Atiyah and Singer [AS3]; the last part of the proof is deferred

to the next lecture. In this lecture we get as far as explaining the contractible components of

skew-adjoint Fredholms and so making complete Definition 12.42 for n odd. We emphasize the two

key deformations in the proof: the deformation retraction to unitary operators (12.2) and modding

out by the contractible space of compact operators. For the latter we need to know that a fiber

bundle E Ñ M with contractible fibers is a homotopy equivalence, conditions for which are set out

in Proposition 12.26. The real case is parallel to the complex case. We will not present complete

proofs, but highlight most of the main ideas as a reader’s guide to [AS3]. We work in an ungraded

(non-super) situation which contains most of the key ideas. Along the way we review basic facts

about compact operators and the relation to Fredholm operators. We also introduce Banach Lie

groups which have the homotopy type of BGL8; see [F3] for more along these lines. In the first

part of this lecture we give some context; see the end of Lecture 9 for additional relevant material.

In particular, we describe the geometric model of K-theory that we are developing, something

very important for the rest of the course. (Some of the technical background, especially for the

equivariant case that we will use later, may be found in the appendix to [FHT1].)

We continue with some of the notation from previous lectures.

The periodic K-theory spectra

We present the definition of a spectrum and its antecedents: prespectra and Ω-prespectra. These

definitions and terms vary in the literature. Spectra are the basic objects of stable homotopy theory.

Definition 13.1.

(i) A prespectrum T‚ is a sequence tTnunPZą0 of pointed spaces and maps sn : ΣTn Ñ Tn`1.

(ii) An Ω-prespectrum is a prespectrum T‚ such that the adjoints tn : Tn Ñ ΩTn`1 of the

structure maps are weak homotopy equivalences.

(iii) A spectrum is a prespectrum T‚ such that the adjoints tn : Tn Ñ ΩTn`1 of the structure

maps are homeomorphisms.

Obviously a spectrum is an Ω-prespectrum is a prespectrum. We can take the sequence of pointed

spaces Tn0
, Tn0`1, Tn0`2, . . . to begin at any integer n0 P Z. If T‚ is a spectrum which begins at n0,

then we can extend to a sequence of pointed spaces Tn defined for all integers n by setting

(13.2) Tn “ Ωn0´nTn0
, n ă n0.

Note that each Tn, in particular T0, is an infinite loop space:

(13.3) T0 » ΩT1 » Ω2T2 » ¨ ¨ ¨

Example 13.4. Let X be a pointed space. The suspension prespectrum of X is defined by setting

Tn “ ΣnX for n ě 0 and letting the structure maps sn be the identity maps. In particular,

for X “ S0 we obtain the sphere prespectrum with Tn “ Sn.
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(13.5) Spectra from prespectra. Associated to each prespectrum T‚ is a spectrum1 LT‚ called its

spectrification. It is easiest to construct in case the adjoint structure maps tn : Tn Ñ ΩTn`1 are

inclusions. Then set pLT qn to be the colimit of

(13.6) Tn

tnÝÝÝÑ ΩTn`1
Ωtn`1
ÝÝÝÝÑ Ω2Tn`2 ÝÑ ¨ ¨ ¨

which is computed as an union. For the suspension spectrum of a pointed space X the 0-space is

(13.7) pLT q0 “ colim
ℓÑ8

ΩℓΣℓX,

which is usually denoted QX.

(13.8) Homotopy and homology of prespectra. Let T‚ be a prespectrum. Define its homotopy

groups by

(13.9) πnpT q “ colim
ℓÑ8

πn`ℓTℓ,

where the colimit is over the sequence of maps

(13.10) πn`ℓTℓ

πn`ℓtℓ
ÝÝÝÝÑ πn`ℓΩTℓ`1

adjunction
ÝÝÝÝÝÝÑ πn`ℓ`1Tℓ`1

For an Ω-prespectrum the composition (13.10) is an isomorphism and there is no need for the

colimit. Similarly, define the homology groups as the colimit

(13.11) HnpT q “ colim
ℓÑ8

rHn`ℓTℓ,

where rH denotes the reduced homology of a pointed space. We might be tempted to define the

cohomology similarly, but that does not work.2

(13.12) Cohomology theory of a spectrum. A prespectrum T‚ determines a cohomology theory hT

on CW complexes and other nice categories of spaces. Assume for simplicity that T‚ is an Ω-

prespectrum. Then the reduced cohomology of a pointed space X is

(13.13) h̃nT pXq “ rX,Tns,

where we take homotopy classes of pointed maps. All the computational tools (long exact sequences,

spectral sequences, etc.) work for generalized cohomology theories. One account is [DaKi].

1The notation ‘L’ indicates ‘left adjoint’.
2Homotopy and homology commute with colimits, but cohomology does not: there is a derived functor lim1 which

measures the deviation.
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(13.14) Periodic K-theory spectra. Theorem 12.55 tells that Fredholm operators give an Ω-prespectrum

whose nth space is FrednpHq and whose structure maps are the adjoint of α in (12.54). Bott period-

icity (Corollary 12.56) tells that this spectrum is 2-periodic. It is the periodic complex topological

K-theory spectrum; the corresponding cohomology groups of a space X are denoted KnpXq. The

real version of the theorems gives an Ω-prespectrum whose nth space is FrednpHRq; the structure

maps are the adjoint of α. Now the spectrum is 8-periodic and the corresponding cohomology

groups are KOnpXq, the real K-theory groups.

The geometric model of K-theory

Our point of view in this course is to develop a geometric model of K-theory and to see it

arise in geometry and physics. Were we to discuss real singular cohomology in place of K-theory

the geometric model of interest is restricted to smooth manifolds: the de Rham complex. A

closed differential form on a smooth manifold determines a real cohomology class, and this brings

topological methods into differential geometry. Absent the geometric model we would not be able

to recognize and use the topology underlying Chern-Weil forms, a symplectic form, and many other

closed forms which occur naturally in geometry.

The paper [FHT1], especially the appendix, contains much more about this model of K-theory,

including the equivariant and twisted cases which we need later in the course.

(13.15) Untwisted classes. The model so far consists of a fixed super Hilbert space H “ H0 ‘H1

with the left action of a fixed superalgebra CℓCn , the complex Clifford algebra. (It is important

that every irreducible Clifford module appear infinitely often in the Hilbert space, which is why

in Definition 12.42 we write the Hilbert space as CℓCn b H 1 for an infinite dimensional separable

Hilbert space with no Clifford action.) Then a K-theory class in KnpXq on a space X is represented

geometrically by a family X Ñ FrednpHq of odd skew-adjoint Fredholm operators on the fixed

Hilbert space H which commute with the fixed algebra CℓCn .

(13.16) Invertibles. Kuiper’s theorem asserts that the invertibles are a contractible subspace

of FrednpHq; see (9.32) and (9.33). Thus families of invertible operators determine the zero

K-theory class, and more generally families of Fredholms X Ñ FrednpHq determine a class relative

to the subspace A Ă X consisting of x P X such that T pxq is invertible.

(13.17) Twisted classes. A more flexible model is obtained by allowing the Hilbert space H and

the superalgebra CℓCn to also depend on the point x P X. As usual, we want them to vary in a locally

trivial family, so form fiber bundles. We need to pay some point-set attention to define a locally

trivial family of Hilbert spaces, though in fact Definition 1.12 goes over verbatim. We can generalize

the standard Clifford algebras to central simple superalgebras and so consider fiber bundles of such

equipped with a supermodule which is a Hilbert space bundle. Now the family of odd skew-adjoint

Fredholms act on variable Hilbert spaces; they still commute with the superalgebra action. This is

a geometric model for twisted K-theory which we will come to shortly.

Of course, there is a real version as well. This model extends nicely to groupoids, as we will

discuss in a future lecture.
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(13.18) Finite rank vector bundles. It is convenient to allow finite rank Hilbert bundles, i.e.,

ordinary finite rank vector bundles, via a simple construction. Let E Ñ X be a finite rank complex

vector bundle. Fix a Z{2Z-graded Hilbert space H “ H0 ‘ H1 whose homogeneous subspaces are

infinite dimensional. Then E ‘H is a Hilbert bundle and the constant family of Fredholms 0‘ idH
has kernel the original vector bundle E Ñ X. In the sequel we use finite rank bundles as geometric

representatives of K-theory with no further comment.

(13.19) Warning about finite dimensional representatives of K1. Suppose E “ E0 ‘ E1 Ñ X

is a finite rank complex super vector bundle with a CℓC´1-module structure on each fiber. Let

e1 denote the action of the Clifford generator and ǫ the grading operator. Define e2 “ ie1ǫ. Then

a simple computation shows that e22 “ e21 “ ´1 and e1e2 “ ´e2e1. One interpretation is that

E Ñ X automatically extends to a bundle of CℓC2 -modules. Another is that e2 is an invertible odd

skew-adjoint endomorphism of finite rank CℓC´1-modules, and furthermore the homotopy t ÞÑ te2

connects the zero operator on E to an invertible operator. Adding the identity on a fixed infinite

dimensional CℓC´1-module, as in (13.18), we see that we get the zero element of K1pXq from this

finite rank CℓC´1-module over X.

A similar argument works for finite rank real Clifford modules except in degrees congruent to 0, 8

pmod 8q.

Compact operators

Let H0, H1 be ungraded Hilbert spaces.

Definition 13.20.

(i) An operator T : H0 Ñ H1 is finite rank if the image T pH0q Ă H1 is a finite dimensional

subspace.

(ii) An operator T : H0 Ñ H1 is compact if the closure T
`
BpH0q

˘
Ă H1 of the image of the unit

ball is compact.

We topologize the set cptpH0, H1q Ă HompH0, H1q of compact operators by the norm topology.

Some basic facts whose proof we leave to the reader: The space of compact operators is closed, and

in fact is the closure of the set of finite rank operators. The composition of a bounded operator

and a compact operator is compact. Hence the compact operators cptpHq Ă EndpHq on a Hilbert

space H form a closed 2-sided ideal in the space of bounded operators. A Hilbert space H is finite

dimensional if and only if idH : H Ñ H is compact.

We will prove a basic fact (Proposition 13.23) relating Fredholm and compact operators. It

will be convenient to first prove that the closed range condition is superfluous in the definition

(Definition 9.6) of a Fredholm operator.

Lemma 13.21. Let H0, H1 be Hilbert spaces and T : H0 Ñ H1 a continuous linear map with finite

dimensional kernel and finite dimensional cokernel. Then T is Fredholm.

We use the fact that a finite dimensional subspace of a Hilbert space is closed.

Proof. The kernel kerT is a closed finite dimensional subspace of H0 and the image of T equals

that of T restricted to the closed subspace pkerT qK, so to prove that T is closed range we may
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assume that T is injective. Choose a finite dimensional complement V to T pH0q Ă H1; it exists

since T has finite dimensional cokernel. Then

(13.22) H1 “ T pH0q ‘ V “ V K ‘ V,

where the latter is the direct sum of closed subspaces. Let π denote orthogonal projection onto V K.

Then πT is bijective and continuous, so by the open mapping theorem its inverse F is also contin-

uous.

Now suppose tξnu Ă H0 is a sequence such that Tξn Ñ η8 as n Ñ 8. Then πTξn Ñ πη8.

Apply TF to conclude that Tξn Ñ TFπη8. It follows that η8 “ TFπη8, which shows that η8 lies

in the image of T . This proves that T has closed range. �

Proposition 13.23. A bounded operator T : H0 Ñ H1 is Fredholm if and only if there exist bounded

operators S, S1 : H1 Ñ H0 such that idH0 ´ST and idH1 ´TS1 are compact.

We can replace ‘compact’ by ‘finite rank’, as is clear from the proof, which also makes clear that

we can choose S1 “ S. The operators S, S1 are called parametrices for T .

Proof. If T is Fredholm, write H0 “ kerT ‘ pkerT qK and H1 “ T pH0qK ‘ T pH0q as orthogonal

sums of closed subspaces. Since T restricted to pkerT qK is an isomorphism onto T pH0q, it has a

continuous inverse on those spaces by the open mapping theorem. Define S “ S1 to be the extension

of this inverse by zero on T pH0qK.

Conversely, if the parametrices exist, restrict idH0 ´ST to kerT to deduce that idkerT is compact.

Also, the operator idH1 ´TS1 is compact and preserves T pH0q, thus idcokerT is compact. �

We turn now to groups—in fact, complex Banach Lie groups—and so switch notation to empha-

size that the linear spaces of operators we have been using are Lie algebras:

(13.24)

Aut ÝÑ GL

End ÝÑ gl

cpt ÝÑ cpt

We often omit the Hilbert space from the notation for visual clarity.

Definition 13.25. GLcptpHq “ tP : H Ñ H such that P is invertible and P ´ idH is compactu.

GLcpt is a Banach Lie group with Lie algebra cpt.

Fix a filtration H1 Ă H2 Ă H3 Ă ¨ ¨ ¨ of H by subspaces with dimHn “ n such that
8Ť

n“1
Hn “ H.

We can achieve this by choosing a countable basis (H is always assumed separable) and letting

Hn be the span of the first n basis vectors. There is an induced increasing sequence of groups

(13.26) GLpH1q Ă GLpH2q Ă GLpH3q Ă ¨ ¨ ¨

where the nth group consists of invertible operators which are the identity on HK
n .
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Theorem 13.27 (Palais [Pa3]). The inclusion
8Ť

n“1
GLpHnq ãÑ GLcptpHq is a homotopy equiva-

lence.

The union of the groups (13.26), denoted GL8, has the colimit topology: a subset is open iff its

intersection which each group in (13.26) is open. We encountered this group—rather its deformation

retraction to the unitary subgroup (and with a different notation)—in Remark 3.32.

The Calkin algebra and its subgroups

Definition 13.28. The Calkin algebra of a Hilbert spaceH is the quotient algebra EndpHq{ cptpHq.

Since the ideal of compact operators is closed, the Calkin algebra inherits a Banach space structure.

(It is not only a Banach algebra but a C˚-algebra.) So we can talk about unitary elements, skew-

adjoint elements, the spectrum of an element, etc. We usually use the notation ‘gl{cpt’ to emphasize

that the Calkin algebra is the Lie algebra of a Banach Lie group.

That group is the quotient GL{GLcpt. The quotient map GL Ñ GL{GLcpt is a principal bundle.

(To prove that we need the existence of local sections, which follows from a theorem of Bartle and

Graves, for example; see also [Pa2].) Kuiper’s Theorem 12.1 asserts that GL is contractible. It

follows from Theorem 12.28 that GL Ñ GL{GLcpt is a universal bundle in the sense that it classifies

principal GLcpt-bundles (over metrizable bases). In particular, we have proved

Proposition 13.29. The group GL{GLcpt has the homotopy type BGL8.

We now have two homotopy types on the table: GL8 and BGL8. There are also two homotopy

types in (12.52). The main result implies a match if we replace BGL8 with Z ˆ BGL8.

Now we bring in the deformation retraction to unitaries (12.2). GL retracts to the contractible

group U , as in Corollary 12.3, and GLcpt retracts onto U cpt, which has the same homotopy type.

Denote

(13.30) G “ U{U cpt,

which is a deformation retract of GL{GLcpt and thus has the homotopy type BGL8. We summarize

the groups defined so far in the diagram

(13.31)

U d.r.

Ucpt

GL

GLcpt

gl

π

G “ U{U cpt
d.r. GL{GLcpt gl{cpt

The labeled horizontal arrows are deformation retractions and the first two vertical arrows are

principal bundles.

Let pgl{cptqˆ Ă gl{cpt denote the Banach Lie group of invertible elements.

Lemma 13.32. GL{GLcpt is the identity component of pgl{cptqˆ.
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We leave the proof to the reader; it can be found in [F3]. The intuition is that GL{GLcpt is a

Banach Lie group with Lie algebra the Calkin algebra gl{cpt. So too is pgl{cptqˆ.

The following is a restatement of Proposition 13.23.

Proposition 13.33. π´1
`
pgl{cptqˆ

˘
“ Fred Ă gl. Also, π´1

`
GL{GLcpt

˘
“ Fredp0q is the space of

Fredholm operators of numerical index zero.

For the latter statement we use Corollary 9.26. We summarize in an expanded version of (13.31):

(13.34)

U d.r.

Ucpt

GL

GLcpt

gl

π

Fred

π

Fredp0q

π

G “ U{U cpt
d.r. GL{GLcpt gl{cpt pgl{cptqˆ GL{GLcpt

The central vertical map is the quotient by cpt which defines the Calkin algebra. To the right are

restrictions of that quotient to Fredholm operators. To the left are principal bundles with total

space a group.

Corollary 13.35. The space Fredp0q of Fredholm operators of index zero has the homotopy type

BGL8 and the space Fred of all Fredholm operators has the homotopy type Z ˆ BGL8.

Since Fred0pHq in (12.52) is isomorphic to the space of Fredholm operators on an ungraded Hilbert

space, this determines the homotopy type of the spaces in the first line of (12.52).

Remark 13.36. It follows that G also has the homotopy type BGL8. We caution that [AS3] uses

the symbol ‘G’ for the unitary retraction of pgl{cptqˆ, a group whose identity component is our ‘G’.

Spaces of skew-adjoint Fredholm operators

Recall that the Lie algebra of the group of unitary operators is the space of skew-adjoint operators.

(This is true in finite dimensions.) For any space of operators, or operator algebra, we use a “hat” to

denote the subspace of skew-adjoint elements. Thus if we use F “ Fred for all Fredholm operators,

then pF is the notation for skew-adjoint Fredholms.

(13.37) An ungraded version of Fred1. This is essentially a reprise of the text following (12.70).

Let H “ H0 ‘H1 be a super Hilbert space and suppose A Ă Fred1pHq. Let e1 denote the action of

the Clifford generator. Then e1A is even and skew adjoint: pe1Aq˚ “ A˚e˚
1 “ p´Aqp´e1q “ Ae1 “

´e1A. Let T denote its restriction to the even part of CℓC1 b H. The loop map (13.41) which

appears below is essentially the Atiyah-Singer map (12.70); see (12.71).

(13.38) Main theorem. We now state the ungraded version of Theorem 12.55 whose proof we

sketch in the next lecture.

Theorem 13.39 ([AS3]). The space pF has three components

(13.40) pF “ pF` > pF´ > pF˚.
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The components pF˘ are contractible, and the map

(13.41)
α : pF˚ ÝÑ ΩF

T ÞÝÑ pcosπt ` T sinπt, 0 ď t ď 1q

is a homotopy equivalence.

Notice that the Atiyah-Singer loop map (13.41) has domain a space of skew-adjoint operators and

codomain loops in a space related to a Lie group (Theorem 13.33). So we might expect—after

retracting to unitaries which do have skew-adjoints as the Lie algebra—that (13.41) is closely

related to exponentiation from a Lie algebra to a Lie group. It is.

(13.42) The contractible components of skew-adjoint Fredholms. In the diagram

(13.43)

pF
cpt

pG d.r. {GL{GLcpt

the vertical arrow is a fiber bundle with contractible fibers and the horizontal arrow is a deformation

retraction. So pG is homotopy equivalent to pF . Now an element x P pG is unitary skew-adjoint, so

xx˚ “ 1 and x “ ´x˚, which implies x2 “ ´1. It follows that specx Ă t`i´iu. Since the spectrum

is nonempty, there are three possibilities. This decomposes pG into three disjoint subspaces which

one can prove are components:

(13.44) pG “ pG` > pG´ > pG˚

Furthermore, the spaces pG˘ each contain a single element ˘i. The decomposition (13.40) of pF
follows as does the contractibility of the two components consisting of skew-adjoint Fredholms

whose essential spectrum is t`iu or t´iu.

Remark 13.45. There are contractible components of FrednpHRq in the real case if n ” 1 pmod 4q.

(13.46) The noncontractible component of skew-adjoint Fredholms. Replacing the spaces in (13.41)

by homotopy equivalent spaces, we reduce the remaining part of Theorem 13.39 to the following.

Theorem 13.47. The exponential map

(13.48)
ǫ : pG˚ ÝÑ ΩG

x ÞÝÑ pexpπtx, 0 ď t ď 1q

is a homotopy equivalence.

Now, as promised, the loop map is exponentiation, since x2 “ ´1 implies

(13.49) cosπt ` x sinπt “ expπtx.

We sketch a proof of Theorem 13.47 in the next lecture.
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Lecture 14: Proof of Bott periodicity (con’t)

There are many spaces of operators in the proof, and it is confusing to follow at first. So we’ll

first try to sort things out a bit.

For a super Hilbert space Hs “ H0 ‘ H1 we have a sequence of spaces of skew-adjoint odd

Fredholm operators which exhibit just two homeomorphism types, as in (12.52). Letting H denote

a (non-super) Hilbert space, and identifying H “ H0 “ H1, we can identify Fred0pHsq with

F “ FredpHq by identifying
`
0 ´T˚

T 0

˘
with T ; see (12.41). Also, the argument after (12.71) shows

that we can identify Fred´1pHsq with the space pF of skew-adjoint Fredholms (on pCℓC´1 b Hsq0)

by identifying A with e1A restricted to the even subspace. We proved in Corollary 13.35 that

F has the homotopy type Z ˆ BGL8, which is then the homotopy type of all spaces in the first

line of (12.52). Its loop space ΩF has the homotopy type GL8. Theorem 13.39, whose proof

we complete in this lecture, says that that is also the homotopy type of the nontrivial component
xF˚ of pF . The identification with Fred´1pHsq, which we re-define to denote only this nontrivial

component, then determines the homotopy type of the spaces in the second line of (12.52) as GL8.

This completes the proof of Bott periodicity, which in this form is Corollary 12.56.

Fiber bundles, fibrations, and quasifibrations

If p : E Ñ B is a continuous map with contractible fibers we might like to conclude that p is a

homotopy equivalence, but that is not always true. (Counterexample: Take E “ B “ R and p the

identity map, but topologize E as a discrete set and B with the usual topology.) Not surprisingly,

we need control over the fibers. The three classes of maps in the title are successively more general

yet retain just such control. Namely, assuming the base is path connected, the fibers are respectively

(i) homeomorphic, (ii) homotopy equivalent, (iii) weakly homotopy equivalent.

For convenience assume B is path connected, and always assume that E,B are metrizable.

(14.1) Fiber bundles. We already discussed these in (12.23).

Definition 14.2. p : E Ñ B is a fiber bundle if for every b P B there exists an open neighborhood U

and a local trivialization

(14.3)

U ˆ p´1pbq p´1pUq

B

Many important maps in geometry are fiber bundles.

(14.4) Fibrations. Now assume that E,B are pointed spaces with basepoints e, πpeq “ b. A

fibration is characterized by the homotopy lifting property.

Definition 14.5. p : E Ñ B is a fibration if for every pointed space X, continuous map f : r0, 1s ˆ

X Ñ B and lift f̃0 : X Ñ E of f0 there exists an extension f̃ : r0, 1s ˆ X Ñ E lifting f .
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The lift is encoded in the diagram

(14.6)

t0u ˆ X
f̃0

E

p

r0, 1s ˆ X
f

f̃

B

Theorem 14.7. Suppose p : E Ñ B is a fibration.

(i) p˚ : πnpE, p´1pbq, eq Ñ πnpB, bq is an isomorphism for all n P Z
ě0.

(ii) There is a long exact sequence

(14.8) ¨ ¨ ¨ ÝÑ πnpF, eq ÝÑ πnpE, eq ÝÑ πnpB, bq ÝÑ πn´1pF, eq ÝÑ ¨ ¨ ¨

in which F “ p´1pbq.

Proposition 14.9. Let p : pE, eq Ñ pB, bq be a fibration, b1 P B, and Pe

`
E; p´1pb1q

˘
the space of

paths in E which begin at e and terminate on the subspace p´1pb1q. Then p induces a fibration

(14.10) Pe

`
E; p´1pb1q

˘
ÝÑ PbpB; b1q

with contractible fibers, so is a weak homotopy equivalence.

The last conclusion follows from the long exact sequence (14.8). We leave the reader to provide a

proof of Proposition 14.9 using the homotopy lifting property.

(14.11) Quasifibrations. A quasifibration is a map for which the statements in Theorem 14.7 hold,

but the homotopy lifting property does not necessarily hold. See Figure 4 for a typical example.

 

Figure 4. A quasifibration which is not a quasifibration

Definition 14.12. Amap p : E Ñ B (of unpointed spaces) is a quasifibration if p˚ : πnpE, p´1pbq, eq Ñ

πnpB, bq is an isomorphism for all b P B, e P p´1pbq, and n P Z
ě0.

The long exact sequence (14.8) follows.

An equivalent condition is that the natural map from each fiber to the homotopy fiber is a weak

homotopy equivalence.

Quasifibrations are useful in part because of the following criterion to recognize them. This was

proved by Dold-Thom [DT], who introduced quasifibrations.
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Theorem 14.13. Suppose q : E Ñ B is a surjective map with B path connected. Let

(14.14) F0B Ă F1B Ă F2B Ă ¨ ¨ ¨

be an increasing filtration of B with
8Ť

n“0
FnB “ B such that

(i) q
ˇ̌
U

is a quasifibration for all open U Ă FnBzFn´1B, and

(ii) For n ě 1 there exists an open neighborhood Un Ă FnB of Fn´1B and deformation retractions

(14.15)
Un

htÝÝÝÑ Fn´1B

q´1Un
HtÝÝÝÑ q´1Fn´1B

such that H1 : q
´1pbq Ñ q´1ph1bq is a weak homotopy equivalence.

Then q is a quasifibration.

There is a nice exposition of quasifibrations in [Ha2, pp. 476–481] based on [Ma]. You will find

the proofs of the theorems and much more there.

The basic diagram

We continue where we left off in Lecture 13. Introduce

(14.16) pF˚ “ tT P π´1p pG˚q : }T } “ 1u.

Thus an operator T : H Ñ H in pF˚ satisfies:

(14.17)

T is Fredholm,

T ˚ “ ´T,

}T } “ 1,

ess specT “ t`i,´iu.

Lemma 14.18. pF˚ is a deformation retract of xF˚.

Proof. First use the deformation retraction
`
p1 ´ tq ` t}πpT q´1}

˘
T onto the subspace of S P xF˚

with }πpSq´1} “ 1. Then deformation retract iR symmetrically onto r´i,`is and use the spectral

theorem. (The symmetry ensures we stay in the space of skew-adjoint operators.) �

Corollary 14.19. π̂ : pF˚ Ñ pG˚ is a homotopy equivalence

Now we have the basic diagram

(14.20)

pF˚
δ

π̂

P1pU,´U cptq

ρ

pG˚
ǫ

P1pG,´1q
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Both δ and ǫ are given by the formula

(14.21) x ÞÝÑ expπtx, 0 ď t ď 1.

In (14.20) we know that π̂ is a homotopy equivalence and we need to prove that ǫ is a homotopy

equivalence (Theorem 13.47). We will do so by proving that δ, ρ are homotopy equivalences.

That ρ is a weak homotopy equivalence follows directly from Proposition 14.9 once we observe

(see (13.31)) that U Ñ G is a principal fiber bundle (hence fibration) with fiber U cpt. All spaces in

the game have the homotopy type of CW complexes, so weak homotopy equivalences are homotopy

equivalences.

Proposition 14.22. Evaluation at the endpoint is a homotopy equivalence

(14.23) P1pU,´U cptq ÝÑ ´U cpt

Proof. The map (14.23) is a fibration with fiber ΩU , and the latter is contractible by Kuiper’s

Theorem 12.1. �

From the basic diagram (14.20) we are reduced to proving the following.

Theorem 14.24. The map

(14.25)
q : pF˚ ÝÑ ´U cpt

T ÞÝÑ exppπT q

is a homotopy equivalence.

A dense quasifibration

To gain some intuition, let’s look at a few fibers of the map q in (14.25). We write P P ´U cpt as

P “ ´ idH `ℓ where ℓ P cptpHq is a compact operator.

Example 14.26. Suppose that ℓ has finite rank. Then K “ kerpℓq is a closed subspace of finite

codimension and H “ K ‘ KK; the dimension of KK is finite. Suppose T P q´1pP q so expπT “ P

and T satisfies the conditions in (14.17). The first observation is that T
ˇ̌
KK is determined by P

ˇ̌
KK .

For on this finite dimensional space we can diagonalize the operators and we are studying the map

exppπ´q : r´i,`is Ñ T, which is an isomorphism except at the endpoints, both of which map

to ´i P T. On KK the operator P does not have eigenvalue ´i so the logarithm (inverse image

under q) is unique. On the other hand, the operator T
ˇ̌
K

has spectrum contained in t`i,´iu, and

by the last condition in (14.17) both `i and ´i are in the spectrum with “infinite multiplicity”. It

follows that there is a decomposition

(14.27) K “ K` ‘ K´

with T
ˇ̌
K˘

“ ˘i and dimK` “ dimK´ “ 8. The fiber q´1pP q is then identified with the Grass-

mannian of all splittings (14.27). This Grassmannian is diffeomorphic to the homogeneous space

UpKq
L
UpK`qˆUpK´q. All three unitary groups are contractible by Kuiper, hence so is the fiber.
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Example 14.28. Suppose e1, e2, . . . is an orthonormal basis of the Hilbert space H. Consider the

following two operators in ´U cpt:

(14.29)
P1penq “ exp

`
πip1 ´

1

n
q
˘

P2penq “ exp
`
πip1 `

p´1qn

n
q
˘

There is a unique operator Ti : H Ñ H which exponentiates to Pi under exppπ´q, but as the

essential spectrum of T1 is t`iu it is not an element of pF˚. Thus q´1pP1q is empty whereas

q´1pP2q has a single point.

Since not all fibers of q are weakly homotopy equivalent, q is not a quasifibration. However, it

is still a homotopy equivalence. Atiyah-Singer prove this by proving that q is a quasifibration over

the dense subspace of operators of the form treated in Example 14.26, and in turn the inclusion of

the subspaces of both base and total space are homotopy equivalences.

Definition 14.30. Let n P Z
ą0. Define

(i) ´U cptpnq Ă ´U cpt as the subset tP “ ´ idH `ℓ : rank ℓ ď nu,

(ii) pF˚pnq Ă pF˚ as the subset q´1
`
´U cptpnq

˘
.

In each case we have an increasing filtration of the unions

(14.31)

´U cptp8q “
8ď

n“1

´U cptpnq

pF˚p8q “
8ď

n“1

pF˚pnq

The first union is the space of all unitaries which differ from ´ idH by a finite rank operator. That

resembles the union of the groups (13.26) in which we fix the subspaces on which the operator

deviates from ´ idH . In any case the homotopy type of the unions are the same.

Proposition 14.32. The inclusion maps

(14.33)
i : ´ U cptp8q ÝÑ ´U cpt

i : pF˚p8q ÝÑ pF˚

are homotopy equivalences.

Proposition 14.34. q
ˇ̌

pF˚p8q
is a quasifibration with contractible fibers.

Theorem 14.24 follows immediately from these propositions.

We sketch the proofs (literally) and defer to [AS3] for details. For Proposition 14.32 we must

show that any compact X Ă pF˚ can be deformed to a subset of pF˚pnq for some n. We do that by

a spectral deformation, illustrated in Figure 5 in which 0 ă α ă 1. The key observation is that
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Figure 5. Spectral deformation for Proposition 14.32

any operator in pF˚ has only a finite spectrum in the interval r´iα, iαs as the essential spectrum

is t´i,`iu. The argument for U cpt is similar.

For Proposition 14.34 we use the Dold-Thom criterion Theorem 14.13. To verify condition (i) we

sup up the argument in Example 14.26 to show that over the subspace where rank ℓ “ n is constant

the kernels K form a vector bundle, as do their orthogonal complements. Thus the restriction of q

over this subspace is a fiber bundle with contractible fibers, so in particular is a quasifibration on

any open subset. For (ii) we observe that an operator in ´U cptpnq has at most n eigenvalues not

equal to ´1. We need to deform a neighborhood of ´U cptpn ´ 1q in ´U cptpnq to ´U cptpn ´ 1q.

Let Un be the subset where there is such an eigenvalue with negative real part. Make a spectral

deformation as illustrated in Figure 6. It is easy to check that the induced map on fibers is a

homotopy equivalence.

 

Figure 6. Spectral deformation for Proposition 14.34

McDuff’s proof of Bott periodicity (Bonus material)

We begin with the observation of an exchange between finite and infinite dimensions. Let V be

a finite dimensional complex vector space and H an infinite dimensional Hilbert space. Then

whereas GLpHq is contractible (Kuiper), GLpV q definitely has interesting topology: the colimit

for dimV large is the homotopy type GL8. On the other hand, the space FredpHq of Fredholm

operators is interesting—it has the homotopy type Z ˆ BGL8—whereas the space EndpV q is

contractible.

McDuff [McD] gave a proof of Bott periodicity by constructing a variation of (14.25) from finite

dimensional spaces which exchanges the spaces of interest: the total space in her quasifibration is

contractible, whereas it is the fibers of (14.25) which are contractible. Thus her quasifibration has
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the form

(14.35)

Z ˆ BGL8 pt

GL8

This shows that ΩGL8 » Z ˆ BGL8. It is trivial that ΩpZ ˆ BGL8q » GL8, and the two

statements together immediately imply Bott periodicity.

For each finite dimensional vector space V we let upV qď1 be the subspace of skew-adjoint oper-

ators with operator norm ď 1, and as in (14.25) consider the map

(14.36)
q : upV qď1 ÝÑ UpV q

T ÞÝÑ exppπT q

This is a quasifibrations with fibers the Grassmannian of the p´iq-eigenspace, exactly as in the

analysis of Example 14.26. The idea is to replace V by the colimit C8 of finite dimensional vector

spaces and work with a “restricted Grassmannian” and “restricted general linear group”. Details

of the argument are worked out in the series of papers [AP], [Beh1], [Beh2]; the latter also works

out real Bott periodicity.

We want not only Bott periodicity but also a geometric model of K-theory. As we meet Fredholm

operators in geometry this alternative proof, while very beautiful and elegant, does not suffice for

our purposes.
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Lecture 15: Groupoids and vector bundles

So far we have two notions of ‘space’: a topological space and a smooth manifold. But in many

situations this is not adequate: the objects represented by the points of a “space” have internal

structure, or symmetries. For example, consider the moduli “space” of triangles in the plane, where

two triangles represent the same point if there is an isometry of the plane which carries one to the

other. Then some triangles, for example an isosceles triangle, admit self-symmetries. We need a

mathematical structure which tracks these internal symmetries. In physics too we meet the same

phenomenon. For example, some fields in field theory, such as gauge fields (connections), admit

internal symmetries. In fact, in both geometry and physics there are geometric objects with more

than one layer of internal structure, but in this course we restrict ourselves to a single layer. The

intrinsic geometric object we need is called a stack. Stacks are presented by groupoids, which

are more concrete, and we focus on them. Again we consider a topological version (topological

groupoids) and a smooth version (Lie groupoids). In both cases we need to restrict to local quotient

groupoids to developK-theory. A key idea in this lecture is local equivalence of groupoids: groupoids

which are locally equivalent represent the same underlying stack. We prove that a local equivalence

of groupoids induces an equivalence of the categories of vector bundles. We also prove homotopy

invariance for vector bundles over local quotient groupoids. This enables us to define K-theory for

local quotient groupoids, which we will pursue in subsequent lectures. A reference for this material

is [FHT1, Appendix].

The important special case of a global quotient groupoid leads to the K-theory of equivariant

bundles [Se2].

We begin these notes with background material about categories and simplicial sets, topics which

will not be covered in lecture. That makes these notes very definition-heavy, a burden surmountable

by careful consideration of examples on the part of the reader.

Categories, functors, and natural transformations

Definition 15.1. A category C consists of a collection of objects, for each pair of objects y0, y1 a

set of morphisms Cpy0, y1q, for each object y a distinguished morphism idy P Cpy, yq, and for each

triple of objects y0, y1, y2 a composition law

(15.2) ˝ : Cpy1, y2q ˆ Cpy0, y1q ÝÑ Cpy0, y2q

such that ˝ is associative and idy is an identity for ˝.

The last phrase indicates two conditions: for all f P Cpy0, y1q we have

(15.3) idy1 ˝f “ f ˝ idy0 “ f

and for all f1 P Cpy0, y1q, f2 P Cpy1, y2q, and f3 P Cpy2, y3q we have

(15.4) pf3 ˝ f2q ˝ f1 “ f3 ˝ pf2 ˝ f1q.

K-Theory (M392C, Fall ’15), Dan Freed, October 23, 2015
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We use the notation y P C for an object of C and f : y0 Ñ y1 for a morphism f P Cpy0, y1q.

Remark 15.5 (set theory). The words ‘collection’ and ‘set’ are used deliberately. Russell pointed

out that the collection of all sets is not a set, yet we still want to consider a category whose objects

are sets. For many categories the objects do form a set. In that case the moniker ‘small category’

is often used. In these lecture we will be sloppy about the underlying set theory and simply talk

about a set of objects.

Definition 15.6. Let C be a category.

(i) A morphism f P Cpy0, y1q is invertible (or an isomorphism) if there exists g P Cpy1, y0q

such that g ˝ f “ idy0 and f ˝ g “ idy1 .

(ii) If every morphism in C is invertible, then we call C a groupoid.

(15.7) Reformulation. To emphasize that a category is an algebraic structure like any other,

we indicate how to formulate the definition in terms of sets1 and functions. Then a category

C “ pC0, C1q consists of a set C0 of objects, a set C1 of morphisms, and structure maps

(15.8)

i : C0 ÝÑ C1

s, t : C1 ÝÑ C0

c : C1 ˆC0
C1 ÝÑ C1

which satisfy certain conditions. The map i attaches to each object y the identity morphism idy,

the maps s, t assign to a morphism pf : y0 Ñ y1q P C1 the source spfq “ y0 and target tpfq “ y1,

and c is the composition law. The fiber product C1 ˆC0
C1 is the set of pairs pf2, f1q P C1 ˆ C1

such that tpf1q “ spf2q. The conditions (15.3) and (15.4) can be expressed as equations for these

maps. If C is a groupoid, then there is another structure map

(15.9) ι : C1 ÝÑ C1

which attaches to every arrow its inverse.

Definition 15.10. Let C,D be categories.

(i) A functor or homomorphism F : C Ñ D is a pair of maps F0 : C0 Ñ D0, F1 : C1 Ñ D1

which commute with the structure maps (15.8).

(ii) Suppose F,G : C Ñ D are functors. A natural transformation η from F to G is a map of

sets η : C0 Ñ D1 such that for all morphisms pf : y0 Ñ y1q P C1 the diagram

(15.11) Fy0
Ff

ηpy0q

Fy1

ηpy1q

Gy0
Gf

Gy1

commutes. We write η : F Ñ G.

1ignoring set-theoretic complications, as in Remark 15.5
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(iii) A natural transformation η : F Ñ G is an isomorphism if ηpyq : Fy Ñ Gy is an isomorphism

for all y P C.

(iv) A functor F : C Ñ D is an equivalence of categories if there exist a functor F 1 : D Ñ C, a

natural equivalence F 1 ˝ F Ñ idC , and a natural equivalence F ˝ F 1 Ñ idC1 .

In (i) the commutation with the structure maps means that F is a homomorphism in the usual sense

of algebra: it preserves compositions and takes identities to identities. A natural transformation is

often depicted in a diagram

(15.12) C

G

F

η D

with a double arrow.

Definition 15.13. Let F : C Ñ D be a functor. F is essentially surjective if for each z P D0 there

exists y P C0 such that Fy is isomorphic to z. It is faithful if for every y0, y1 P C0 the map

(15.14) F : Cpy0, y1q Ñ DpFy0, Fy1q

is injective, and it is full if (15.14) is surjective.

The following lemma characterizes equivalences of categories; the proof, which we leave to the

reader, invokes the axiom of choice to construct an inverse equivalence.

Lemma 15.15. A functor F : C Ñ D is an equivalence of categories if and only if it is fully faithful

and essentially surjective.

Example 15.16. Let Vect denote the category of vector spaces over a fixed field with linear maps

as morphisms. There is a functor ˚˚ : Vect Ñ Vect which maps a vector space V to its double

dual V ˚˚. But this is not enough to define it—we must also specify the map on morphisms. Thus

if f : V0 Ñ V1 is a linear map, there is an induced linear map f˚˚ : V ˚˚
0 Ñ V ˚˚

1 . (Recall that

f˚ : V ˚
1 Ñ V ˚

0 is defined by xf˚pv˚
1 q, v0y “ xv˚

1 , fpv0qy for all v0 P V0, V
˚
1 P V ˚

1 . Then define

f˚˚ “ pf˚q˚.) Now there is a natural transformation η : idVect Ñ ˚˚ defined on a vector space V as

(15.17)
ηpV q : V ÝÑ V ˚˚

v ÞÝÑ
`
v˚ ÞÑ xv˚, vy

˘

for all v˚ P V ˚. I encourage you to check (15.11) carefully.
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Simplices, simplicial sets, and the nerve

Let S be a nonempty finite ordered set. For example, we have the set

(15.18) rns “ t0, 1, 2, . . . , nu

with the given total order. Any S is uniquely isomorphic to rns, where the cardinality of S is n`1.

Let ApSq be the affine space generated by S and ΣpSq Ă ApSq the simplex with vertex set S. So

if S “ ts1, s1, . . . , snu, then ApSq consists of formal sums

(15.19) p “ t0s0 ` t1s1 ` ¨ ¨ ¨ ` tnsn, ti P R, t0 ` t1 ` ¨ ¨ ¨ ` tn “ 1,

and ΣpSq consists of those sums with ti ě 0. We write A
n “ Aprnsq and ∆n “ Σprnsq. For these

standard spaces the point i P rns is p. . . , 0, 1, 0, . . . q with 1 in the ith position.

Let ∆ be the category whose objects are nonempty finite ordered sets and whose morphisms are

order-preserving maps (which may be neither injective nor surjective). The category ∆ is generated

by the morphisms

(15.20) r0s r1s r2s ¨ ¨ ¨

where the right-pointing maps are injective and the left-pointing maps are surjective. For example,

the map di : r1s Ñ r2s, i “ 0, 1, 2 is the unique injective order-preserving map which does not

contain i P r2s in its image. The map si : r2s Ñ r1s, i “ 0, 1, is the unique surjective order-

preserving map for which s´1
i piq has two elements. Any morphism in ∆ is a composition of the

maps di, si and identity maps.

Each object S P ∆ determines a simplex ΣpSq, as defined above. This assignment extends to a

functor

(15.21) Σ: S ÝÑ Top

to the category of topological spaces and continuous maps. A morphism θ : S0 Ñ S1 maps to the

affine extension θ˚ : ΣpS0q Ñ ΣpS1q of the map θ on vertices.

Recall the definition (15.7) of a category.

Definition 15.22. Let C be a category. The opposite category Cop is defined by

(15.23) C
op
0 “ C0, C

op
1 “ C1, sop “ t, top “ s, iop “ i,

and the composition law is reversed: gop ˝ fop “ pf ˝ gqop.

Here recall that C0 is the set of objects, C1 the set of morphisms, and s, t : C1 Ñ C0 the source and

target maps. The opposite category has the same objects and morphisms but with the direction of

the morphisms reversed.

The following definition is slick, and at first encounter needs unpacking (see [Fr], for example).
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Definition 15.24. A simplicial set is a functor

(15.25) X : ∆op ÝÑ Set

It suffices to specify the sets Xn “ Xprnsq and the basic maps (15.20) between them. Thus we

obtain a diagram

(15.26) X0 X1 X2 ¨ ¨ ¨

We label the maps di and si as before. The di are called face maps and the si degeneracy maps.

The set Xn is a set of abstract simplices. An element of Xn is degenerate if it lies in the image of

some si.

The morphisms in an abstract simplicial set are gluing instructions for concrete simplices.

Definition 15.27. Let X : ∆op Ñ Set be a simplicial set. The geometric realization is the topo-

logical space |X| obtained as the quotient of the disjoint union

(15.28)
ž

S

XpSq ˆ ΣpSq

by the equivalence relation

(15.29) pσ1, θ˚p0q „ pθ˚σ1, p0q, θ : S0 Ñ S1, σ1 P XpS1q, p0 P ΣpS0q.

The map θ˚ “ Σpθq is defined after (15.21) and θ˚ “ Xpθq is part of the data of the simplicial

set X. Alternatively, the geometric realization map be computed from (15.26) as

(15.30)
ž

n

Xn ˆ ∆n
L

„,

where the equivalence relation is generated by the face and degeneracy maps.

Remark 15.31. The geometric realization can be given the structure of a CW complex.

Example 15.32. Let X be a simplicial set whose nondegenerate simplices are

(15.33) X0 “ tA,B,C,Du, X1 “ ta, b, c, du.

The face maps are as indicated in Figure 4. For example d0paq “ B, d1paq “ A, etc. (This requires

a choice not depicted in Figure 4.) The level 0 and 1 subset of the disjoint union (15.30) is pictured

in Figure 5. The 1-simplices a, b, c, d glue to the 0-simplices A,B,C,D to give the space depicted

in Figure 4. The red 1-simplices labeled A,B,C,D are degenerate, and they collapse under the

equivalence relation (15.29) applied to the degeneracy map s0.
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Figure 4. The geometric realization of a simplicial set

Figure 5. Gluing the simplicial set

(15.34) The nerve of a category. Let C “ pC0, C1q be a category, which in part is encoded in the

diagram

(15.35) C0 C1

The solid left-pointing arrows are the source s and target t of a morphism; the dashed right-pointing

arrow i assigns the identity map to each object. This looks like the start of a simplicial set, and

indeed there is a simplicial set NC, the nerve of the category C, which begins precisely this way:

NC0 “ C0, NC1 “ C1, d0 “ t, d1 “ s, and s0 “ i. A slick definition runs like this: a finite

nonempty ordered set S determines a category with objects S and a unique arrow s Ñ s1 if s ď s1

in the order. Then

(15.36) NCpSq “ FunpS,Cq

where Funp´,´q denotes the set of functors. As is clear from Figure 6, NCprnsq consists of sets

of n composable arrows in C. The degeneracy maps in NC insert an identity morphism. The face

map di omits the ith vertex and composes the morphisms at that spot; if i is an endpoint i “ 0 or

i “ n, then di omits one of the morphisms.
 

Figure 6. A totally ordered set as a category

Example 15.37. Let M be a monoid, regarded as a category with a single object. Then

(15.38) NMn “ Mˆn.

It is a good exercise to write out the face maps.
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Definition 15.39. Let C be a category. The classifying space BC of C is the geometric realiza-

tion |NC| of the nerve of C.

Example 15.40. Suppose G “ Z{2Z is the cyclic group of order two, viewed as a category with

one object. Then NGn has a single nondegenerate simplex pg, . . . , gq for each n, where g P Z{2Z

is the non-identity element. So BG is glued together with a single simplex in each dimension. We

leave the reader to verify that in fact BG » RP
8.

Topological and Lie groupoids

From now on we use the formulation (15.7) of a category, recall (Definition 15.6) that a groupoid

is a category in which all morphisms are invertible, and we identify a groupoid X “ pX0, X1q with

its nerve NX‚ “ X‚, which is a simplicial set (15.34).

Definition 15.41. Let X “ pX0, X1q be a groupoid.

(i) X is a topological groupoid if X0, X1 have the structure of topological spaces and if the

structure maps i, s, t, c, ι in (15.8), (15.9) are continuous.2

(ii) X is a Lie groupoid ifX0, X1 have the structure of smooth manifolds, the structure maps i, s, t, c, ι

are smooth, and the source and target maps s, t : X1 Ñ X0 are submersions.

The submersion condition guarantees that the fiber product X1ˆX0
X1 is a smooth manifold, which

is necessary if the composition c in (15.8) is to be a smooth map.

We now give many examples to illustrate the pervasiveness and utility of topological and Lie

groupoids.

Example 15.42 (groups). A groupoid with a single object X0 “ t˚u is a group; that is, X1 is

a group. A topological groupoid with a single object is a topological group. A Lie groupoid

with a single object is a Lie group. The groupoid attached to a (topological, Lie) group G is often

denotedBG, but we reserve that notation for classifying spaces. Instead we use the notation ‘pt {{G’,

explained below in Example 15.44.

Example 15.43 (spaces). A groupoid with only identity arrows (i : X0 Ñ X1 is a bijection) is a

set X0. A topological groupoid with only identity arrows is a space. A Lie groupoid with only

identity arrows is a smooth manifold.

Example 15.44 (group actions). Let X be a set, G a group, and suppose G acts on X on the

right.3 Then we construct a groupoid4 Y “ X{{G variously called the quotient groupoid or action

groupoid. We have Y0 “ X and Y1 “ X ˆ G. The source map is projection X ˆ G Ñ X and the

target is the action X ˆ G Ñ X. Composition is defined using the group action. If X is a space,

G a topological group, and the action is continuous, then Y is a topological groupoid in a natural

way. Similarly, if X is a smooth manifold, G a Lie group, and the action is smooth, then Y is a

Lie groupoid in a natural way.

2It is sometimes convenient to also ask that s, t be open maps.
3There is a similar construction for left actions.
4This notation is not universally admired as it conflicts with the notation for symplectic or Kähler or GIT quotients.

Other possibilities include ‘X :G’, ‘G ˙ X’, and ‘X ¸ G’.
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Example 15.45 (principal bundles). As a special case of the previous example, suppose P is a

space (or smooth manifold) with a continuous (smooth) right G-action, assume the action is free,

and suppose furthermore that continuous (or smooth) local slices exist. That is, for every p P P

there exists a set U Ă P containing p such that the restriction of the projection π : P Ñ P {G to U

is a homeomorphism (diffeomorphism) onto an open subset of P {G. Then π : P Ñ P {G is called a

principal bundle with base P {G and structure group G. The action groupoid P {{G is equivalent to

the space P {G (see Definition 15.10(iv)), and we will see below that π defines a local equivalence.

Example 15.46 (G{{G). Let G be a topological or Lie group. Let G act on itself by conjugation,

and denote the resulting quotient groupoid as G{{G. Even for finite groups this is an important

groupoid, for example in proofs of the Sylow theorems. It will play a large role in our later study

of loop groups and the Verlinde ring.

Example 15.47 (open covers). Let X be a topological space and tUiuiPI an open cover. Define

(15.48) Y0 “
ž

iPI

Ui

as the disjoint union of the sets in the cover, with the obvious topology. There is a projec-

tion π : Y0 Ñ X which is a continuous surjection. Given that we can construct a topological

groupoid pY0, Y1q by setting

(15.49) Y1 “ Y0 ˆX Y0

as the fiber product of π : Y0 Ñ X with itself. So a point of Y0 is an ordered pair of points x0 P Ui0 ,

x1 P Ui1 such that x0 “ x1 as points of X. We can take higher fiber products to construct the

simplicial set Y‚ which is the nerve of the groupoid Y .

The next examples can be considered to be moduli spaces, except that they are groupoids rather

than spaces.5 They are parameter spaces for geometric objects with internal symmetries.

Example 15.50 (Galois coverings). Fix a spaceX and a discrete groupG. Then there is a groupoid

Y “ BunGpXq whose objects are Galois covers P Ñ X with group (of deck transformations) G

and whose morphisms XpP, P 1q are homeomorphisms ϕ : P Ñ P 1 which cover the identity map idX
and commute with the G-actions. For G “ Z{2Z we obtain the groupoid of double covers. Suppose

X “ S1 “ R{Z. Let Y be the groupoid whose objects are Galois covers P Ñ S1 equipped with a

basepoint in the fiber P0; the morphisms need not fix the basepoint. Then we obtain a diagram

(15.51)

Y

X G{{G

in which the left arrow forgets the basepoint and the right arrow maps a cover to its holonomy : the

path r0, 1s ãÑ R Ñ R{Z has a lift to a Galois cover P Ñ R{Z with initial point the basepoint ˚ P P0,

and the terminal point is ˚ ¨ h, where h P G is the holonomy. The maps in (15.51) are equivalences

of groupoids, in fact, local equivalences.

5Thus the term ‘moduli stack’ is more accurately used.
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Example 15.52 (connections on principal bundles). We will discuss connections systematically in

a later lecture. Here we want to observe that connections give an extension of Example 15.50 when

G is not discrete. Namely, fix a smooth manifold M and a Lie group G. Let ConnGpMq be the

groupoid whose objects are pairs pP,Θq consisting of a smooth principal G-bundle P Ñ M and a

connection Θ P Ω1
P pgq. (Here g “ LiepGq is the Lie algebra of G.) A morphism pP,Θq Ñ pP 1,Θ1q

is a smooth map ϕ : P Ñ P 1 such that ϕ˚Θ1 “ Θ. If G is discrete, then every principal bundle

carries a unique connection and ConnGpMq “ BunGpMq. For M “ S1 the holonomy map gives an

equivalence with the Lie groupoid G{{G.

Remark 15.53. ConnGpMq is not a Lie groupoid as presented. It is (locally) equivalent to a groupoid

which is the global quotient of an infinite dimensional manifold by an infinite dimensional Lie group;

the details of what type of manifold and Lie group depend on whether we use smooth connections

or complete to Banach spaces of connections.

Example 15.54 (Riemannian metrics; complex structures). Connections are extrinsic to the geom-

etry of the smooth manifold M . There are also natural groupoids of intrinsic geometric structures,

which are often quotient groupoids of spaces by the action of the diffeomorphism group DiffpMq.

Examples include the space of Riemannian metrics and the space of complex structures. (The

latter may be empty, for example if M has odd dimension.) If M is an oriented compact connected

2-manifold of genus g, then the groupoid of compatible complex structures is a model for the moduli

stack of curves of genus g.

Example 15.55 (spin structures). Again, we will discuss spin structures in detail later in the

course. Here we remark that if M is a fixed smooth manifold, then there is a groupoid whose

objects are spin structures and whose morphisms are maps of spin structures. This groupoid is

empty if M is not spinable.

One particular type of groupoid is important in differential geometry as a mild generalization of

a smooth manifold.

Definition 15.56. A Lie groupoid X is étale if the target and source maps p0, p1 : X1 Ñ X0 are

local diffeomorphisms.

In this case the underlying topological stack (defined below) is called an orbifold or smooth Deligne-

Mumford stack and the representing groupoid an orbifold groupoid. We remark that smooth

Deligne-Mumford stacks may be presented by Lie groupoids which are not étale—for example,

if P Ñ M is a principal G-bundle over a smooth manifold, then P {{G is locally equivalent to M .

Orbifolds have a more concrete differential-geometric description as “V-manifolds” in the work of

Satake, Kawasaki, Thurston and others; see [ALR] and the references therein for a discussion of

the various approaches.

Local equivalence of groupoids

An equivalence of groupoids (Definition 15.10(iv), Lemma 15.15) has an inverse equivalence, but

an equivalence of topological groupoids does not necessarily have a continuous inverse.
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Example 15.57. A principal G-bundle π : P Ñ X induces an continuous equivalence P {{X Ñ X

which has a continuous inverse if and only if π admits a continuous global section (which only

happens if the principal bundle is globally trivializable). As another example, an open cover tUiuiPI
of a topological spaceX gives rise to an equivalence of groupoids π : Y Ñ X, where Y is the groupoid

of Example 15.47. It admits a global continuous inverse only if each component of X appears as a

set in the cover.

The following definition encodes the notion of continuous local inverses.

Definition 15.58. Let f : X Ñ Y be a continuous equivalence of topological groupoids. Then f is

a local equivalence if for each y0 P Y0 there exists a neighborhood i : U ãÑ Y0 of y0 and a lift ĩ

(15.59)

rX0 X0

f

Y1
t

s

Y0

U

ĩ

i
Y0

which makes the diagram commute.

In the diagram the upper square is a fiber product. Concretely, for y P U the lift ĩpyq gives, in a

continuous way, x P X0 and an arrow
`
a : y Ñ fpxq

˘
.

Example 15.60. We list examples of local equivalences whose verification we leave to the reader.

(1) A principal G-bundle π : P Ñ X induces a local equivalence P {{G Ñ X.

(2) An open cover of a space X induces a local equivalence Y Ñ X, where Y is defined in Exam-

ple 15.47.

(3) Let G be a Lie group. The holonomy map determines a local equivalence ConnGpS1q Ñ G{{G.

(4) The composition of local equivalences is a local equivalence. The pullback of a local equivalence

is a local equivalence. The fiber product P ˆX Q Ñ X of local equivalences P Ñ X, Q Ñ X

is a local equivalence.

Remark 15.61. Definition 15.58 fits into the theory of presheaves of groupoids on the category of

topological spaces: it says that f induces a map of stalks. See [FHT1, Remark A.5] for more

explanation.

Coarse moduli space

A topological groupoid X has an associated topological space rXs. For a groupoid quotient X{{G

as in Example 15.44, rX{{Gs “ X{G is the quotient space.

Definition 15.62. Let X “ pX0, X1q be a topological groupoid. Define an equivalence relation „

on X0 by x „ x1 if there exists f P X1 such that spfq “ x and tpfq “ x1. Let X0 Ñ rXs be the

quotient map of the equivalence relation, and topologize rXs as a quotient. The space rXs is the

coarse moduli space of the groupoid X.
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Recall (15.8) that s, t are the source and target maps, respectively. We write f : x Ñ x1. The

coarse moduli space, or orbit space, can be bad, very bad. In particular, it may not be Hausdorff

or paracompact.

Example 15.63. Consider an irrational rotation of S1, which generates a Z-action. The quotient

space S1{Z, which is the coarse moduli space of the quotient groupoid S1{{Z, is not Hausdorff.

We will soon restrict to a class of groupoids (local quotient groupoids) whose coarse moduli space

is paracompact Hausdorff.

If X is a groupoid, S a space, and φ : S Ñ rXs a continuous map, then there is a pullback

groupoid Y “ φ˚X with coarse moduli space rφ˚Xs “ S. Namely, define Y0 as the pullback

(15.64)

Y0 X0

π

S
φ

rXs

and Y1 as the pullback

(15.65)

Y1 X1

π˝s“π˝t

S
φ

rXs

The structure maps pullback from the structure maps of X. In particular, we can take f to be an

inclusion. For example, an open cover of rXs induces an open cover of X by groupoids.

The course moduli space of a topological stack is invariant under local equivalences if we add

the hypothesis that the source (hence target) maps be open.6

Lemma 15.66. If the source map s : Y1 Ñ Y0 of a topological groupoid is open, then so too is the

quotient map q : Y0 Ñ rY s.

Proof. For U Ă Y0 open we must show qpUq Ă rY s is open, which is equivalent to q´1qpUq Ă Y0

open. But q´1qpUq “ ts´1pUq, and t is an open map if s is, since inversion is continuous in a

topological groupoid. �

Proposition 15.67. Let F : X Ñ Y be a local equivalence of topological groupoids. Assume the

source map Y1 Ñ Y0 in Y “ pY0, Y1q is continuous. Then the induced map rF s : rXs Ñ rY s is a

homeomorphism.

Proof. In (iii) since F is an equivalence of discrete groupoids it induces a bijection rF s on equivalence

classes. For any continuous map F of groupoids the induced map rF s is continuous. Given ry0s P rY s

we choose an open neighborhood U Ă Y0 of y0 and a local inverse, as in (15.59). The composition

(15.68) U
ĩ

ÝÝÑ rX0 ÝÑ X0 ÝÑ rXs

6The version of Lecture 1 posted online omitted a hypothesis in the definition of a topological groupoid Y “
pY0, Y1q: the inversion map ι : Y1 Ñ Y1 should also be assumed continuous.
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is continuous and factors through the quotient map U Ñ rU s Ă rXs. The resulting map rU s Ñ rXs

is the inverse to rF s restricted to rU s. Since the quotient map is open, by Lemma 15.66, rU s is an

open neighborhood of ry0s. It follows that rF s´1 is continuous at ry0s. �

The homotopy category of groupoids: stacks

Let Top be the category of topological spaces. A weak equivalence is a continuous map φ : X Ñ

Y of spaces which induces an isomorphism on π0 and an isomorphism of all homotopy groups

πqpX;xq Ñ πqpY ;φpxqq for all x P X. The homotopy category of spaces is obtained from Top by

formally inverting all weak equivalences. The resulting category can be considered to have the

same objects as Top—topological spaces—but only the underlying homotopy type has invariant

meaning. Similarly, let TGpd denote the category whose objects are topological groupoids and

whose morphisms are continuous maps of groupoids. Now invert the weak equivalences to obtain

the homotopy category of stacks. See [SiTe, MV] for a detailed development and [FH] for a gentle

introduction to sheaves (on the category of smooth manifolds rather than Top, but the basic ideas

are the same).

Local quotient groupoids

Even if we require the coarse moduli space rXs of a topological groupoid X to be paracompact

Hausdorff, we will not have homotopy invariance. For example, consider the groupoid X “ pt {{R,

the real line as a group under addition. As we shall see shortly, a vector bundle over X is sim-

ply a representation of R. There is a continuous family of nonisomorphic 1-dimensional unitary

representations

(15.69)
ρξ : R ÝÑ T

x ÞÝÑ eiξx

parametrized by ξ P R, where T “ tλ P C : |λ| “ 1u is the multiplicative group of unit norm complex

numbers. Thus there is a complex line bundle over r0, 1s ˆ X not isomorphic to its restriction to

the endpoints. The lesson is that the representations of the automorphism groups of the groupoid

must form a discrete set if homotopy invariance is to have a chance of working: representations

must be discrete. This happens for compact Lie groups.

Definition 15.70. A topological groupoid X is a local quotient groupoid if rXs admits a countable

open cover tUiuiPI such that each groupoid XUi
is locally equivalent to a groupoid of the form S{{G,

where S is a paracompact Hausdorff locally contractible space and G is a compact Lie group.

Proposition 15.71.

(i) Let X be a local quotient groupoid. Then rXs is paracompact Hausdorff.

(ii) Let F : X Ñ Y be a local equivalence of topological groupoids with open source maps. Then

X is a local quotient groupoid if and only if Y is.
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Proof. For (i) it suffices, based on Proposition 15.67, to show that the quotient space S{G is

paracompact Hausdorff. Paracompactness follows from [En, (5.1.33)] and Hausdorffness from [tD,

(I.3.1)]. The second assertion (ii) is immediate from Proposition 15.67. �

Remark 15.72. The source map of a local quotient groupoid is open [tD, (I.3.1)].

Vector bundles over groupoids

A topological groupoid X can be viewed as a space X0 of points together with gluing data X1,

and a composition law on gluing data. A vector bundle over a topological groupoid, then, is: a

vector space for each point x P X, gluing data for each arrow px0
f
ÝÑ x1q P X1, and a consistency

condition for each composable pair of arrows px0
f1ÝÑ x1

f2ÝÑ x2q P X2. Continuity is ensured by

specifying this data all at once. We use the nerve (15.34) of the groupoid and write in terms of

the face maps di.

Remark 15.73. The discussion in this section applies to fiber bundles, not just vector bundles; see

[FHT1, §A.3].

Definition 15.74. Let X be a topological groupoid.

(i) A vector bundle E Ñ X is a pair E “ pE0, ψq consisting of a vector bundle E0 Ñ X0 and an

isomorphism ψ : d˚
1E0 Ñ d˚

0E0 on X1 which satisfies the cocycle constraint

(15.75) ψf2˝f1 “ ψf2 ˝ ψf1 .

for px0
f1ÝÑ x1

f2ÝÑ x2q P X2.

(ii) A map φ : E Ñ E1 of vector bundles over X is a map φ : E0 Ñ E1
0 of vector bundles over X0

such that for every px0
f
ÝÑ x1q P X1 the diagram

(15.76)

Ex0
ψf

φx0

Ex1

φx1

E1
x0

ψ1

f

E1
x1

commutes.

The notation is that the isomorphism ψ at px0
f
ÝÑ x1q P X1 is ψf : pE0qx0 Ñ pE0qx1 . This data

determines a groupoid E “ pE0 E1
d̃0

d̃1
q where E1 is the pullback d˚

1E0 and d̃0 : E1 Ñ E0 is the

composition d˚
1E0

ψ
ÝÑ d˚

0E0 Ñ E0.

There is a category VectpXq of vector bundles over a topological groupoid X. If F : X Ñ Y is a

continuous map of groupoids, there is a pullback functor

(15.77) F ˚ : VectpY q ÝÑ VectpXq
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Example 15.78. For a topological group G a vector bundle over pt {{G is a continuous represen-

tation of G; see Figure 2 in Lecture 1.

Example 15.79. Let a topological group G act on a topological space X. Then a vector bundle

over X{{G is a G-equivariant bundle over X.

Example 15.80. Let G be a finite group. A vector bundle over G{{G has support over a union of

conjugacy classes in X0 “ G. If the support is a single conjugacy class, the bundle is determined

up to isomorphism by its restriction to any g P G in that conjugacy class, and that restriction is

a representation of the centralizer subgroup Zpgq Ă G. So the simple objects in the category of

vector bundles over X are parametrized by pairs pO, ρq consisting of a conjugacy class in G and an

irreducible representation of the centralizer of an element in that conjugacy class.

Example 15.81 (orbifolds). If X is an orbifold groupoid its tangent bundle TX Ñ X is the vector

bundle TX0 Ñ X0 with the natural isomorphism d˚
1TX0 Ñ d˚

0TX0 from the fact that d0, d1 are

local diffeomorphisms. A tensor field on an orbifold groupoid X is a tensor field t on X0 which

satisfies d˚
0t “ d˚

1t. This includes functions, Riemannian metrics, etc.

Example 15.82 (open covers). A vector bundle over the groupoid Y associated to an open cover

tUiuiPI of a space (Example 15.47) is a vector bundle over each Ui together with gluing data on

the overlaps Ui0 X Ui1 which satisfies a cocycle condition on triple overlaps Ui0 X Ui1 X Ui2 . Thus

Definition 15.74 includes the clutching construction of vector bundles; see (1.16), (1.18).

Proposition 15.83. Let F : X Ñ Y be a local equivalence of topological groupoids. Then the

pullback functor (15.77) is an equivalence of categories.

Proof. We sketch the construction of an inverse equivalence

(15.84) F˚ : VectpXq ÝÑ VectpY q

called descent ; we leave the verification of details to the reader. Suppose E Ñ X is a vector bundle.

For each y0 P Y0 consider the set of pairs px, gq P X0 ˆY1 where g : y0 Ñ Fx. They form the objects

of a groupoid Gy0 which is contractible in the sense that there is a unique arrow between any two

objects. The restriction of the vector bundle E0 Ñ X0 to this groupoid has a limit which is a vector

space isomorphic to the fiber over any object. (You may think of it as the vector space of invariant

sections over the contractible groupoid Gy0 .) Define the fiber of pF˚Eq0 at y0 to be this vector

space. To topologize and see we get a vector bundle pF˚Eq0 Ñ Y0 use the local lifts ĩ in (15.59).

You will need to check that the topology is independent of the local lift. The clutching data ψ

also descends: if py0
h
ÝÑ y1q P Y1 and we choose x0, x1 P X0 together with arrows py0

g0ÝÑ Fx0q,

py1
g1ÝÑ Fx1q in Y1, then the composite g1hg

´1
0 has a unique lift to px0

f
ÝÑ x1q P X1 and we use ψf

to define an isomorphism between the fibers of pF˚Eq0 at y0 and y1. �

Homotopy invariance

The definition of local quotient groupoid is designed in part so that the following extension of

Theorem 2.1 holds.



Topics in Geometry and Physics: K-Theory (Lecture 15) 15

Theorem 15.85. Let X be a local quotient groupoid. Suppose E Ñ r0, 1s ˆ X is a vector bundle,

and denote by jt : X Ñ r0, 1s ˆX the inclusion jtpxq “ pt, xq. Then there exists an isomorphism

(15.86) j˚
0E

–
ÝÝÑ j˚

1E.

Proof. First we prove the homotopy invariance for a global quotient. Thus suppose S is a paracom-

pact Hausdorff space with the continuous action of a compact Lie group G, and let E Ñ r0, 1s ˆ S

be a vector bundle. By Theorem 2.1 there exists a nonequivariant trivialization

(15.87) r0, 1s ˆ S ˆ E ÝÑ E

of vector bundles over r0, 1s ˆS. The G-action on E Ñ r0, 1s ˆS transports to a continuous family

(15.88) ψgpt, sq P EndE, g P G, t P r0, 1s, s P S,

of endomorphisms, thought of as the lift of the arrow pt, sq
g
ÝÑ pt, gsq. For t ď t1 we average against

Haar measure dg on the compact Lie group G to define

(15.89) ϕpt, t1; sq “

ż

G

dg ψgpt1, g´1sqψg´1pt, sq P EndE,

thought of as a homomorphism Ept,sq Ñ Ept1,sq. A direct check shows it is G-invariant. Since

isomorphisms are open in EndE, and ϕpt, t; sq “ idE, we see that ϕpt, t1; sq is an isomorphism for

t1 sufficiently close to t. Now argue as in the topological proof of Theorem 2.1 in Lecture 1. First,

for each s P S we see by compactness of r0, 1s that there exists 0 ă t1 ă t2 ă ¨ ¨ ¨ ă tN ă 1 such

that the composition

(15.90) ϕptN , 1; sq ˝ ¨ ¨ ¨ ˝ ϕpt1, t2; sq ˝ ϕp0, t1; sq

is an isomorphism. Then by paracompactness cover S by open sets U for which we string together

G-inveriant isomorphisms (15.90) for all s P U . Use a partition of unity for a locally finite refinement

to patch.

Returning to the general local quotient groupoid X, cover rXs by open sets on which the restric-

tion of X is locally equivalent to a global quotient S{G. Then apply the argument of Theorem 2.1

again to paste the trivializations of the previous paragraph. �
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