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Abstract
The full 6d Hopf-Wess-Zumino term in the action functional for the M5-brane is anomalous as traditionally

defined. What has been missing is a condition implying the higher analogue of level quantization familiar from
the 2d Wess-Zumino term. We prove that the anomaly cancellation condition is implied by the hypothesis that
the C-field is charge-quantized in twisted Cohomotopy theory. The proof follows by a twisted/parametrized
generalization of the Hopf invariant, after identifying the full 6d Wess-Zumino term with a twisted homotopy
Whitehead integral formula, which we establish.
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1 Introduction and results

The expected but elusive quantum theory of M5-branes in M-theory (see [Duf99, §3][HSS18, §2]) has come to
be widely regarded as a core open problem in string theory, already in its decoupling limit of an expected 6-
dimensional superconformal quantum field theory (see [Mo12][HR18]). Most attempts to understand at least
aspects of this theory have been based on analogies (such as with the known M2-brane theory) and consistency
checks (such as from implications of the expected superconformal structure). But a systematic derivation of the
theory from deeper principles has not been possible, since these deeper principles must be those of the ambient M-
theory, whose formulation is itself a wide open problem ([Du96, §6][Mo14, §12][Wi19, @21:15][Du19, @17:14]).

Recently in [FSS19a], following [Sa13], we motivated, from rigorous analysis of the super homotopy theory of
super p-branes initiated in [FSS13b], a hypothesis about the mathematical foundations of microscopic M-theory:

Hypothesis H. The M-theory C-field is charge-quantized in J-twisted Cohomotopy theory ([FSS20c], Def. 4.1).

We proved in [FSS19b][SS19][SS20][FSS20b] that this hypothesis implies a list of subtle consistency condi-
tions that had informally been argued to be necessary for M-theory to exist. This suggests that Hypothesis H could
indeed be a correct assumption about the mathematical principles underlying microscopic M-theory. If this is the
case, further aspects of M-theory must be systematically derivable, by rigorous mathematical deduction.

Here we prove that Hypothesis H implies global consistency of the full Hopf-Wess-Zumino-type term that
appears in the Green-Schwarz-type action functional of the M5-brane. This used to be an open problem:
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The open problem. The full 6d Hopf-Wess-Zumino-term (Hopf-WZ-term) of the single M5-brane (see (3) below
for multiple M5-branes), originally proposed in [Ah96, p. 10] and fully established by [BLNPST97, (1)] (reviewed
in detail below in §2) is a functional of fields on a 6d worldvolume manifold Σ6 that may be expressed in terms
of auxiliary extended fields on a cobounding extended worldvolume manifold Σ̂7, as follows (full generality and
details are presented in Def. 2.6, Remark 2.2 below, notation is summarized in Table A):

Ŝ 1M5
WZ = 2Ŝ M5

WZ
Hopf-WZ term

:= 2
∫
Σ̂7

(
1
2 Ĥ3∧ f̂ ∗G̃4 + f̂ ∗G7

)
(1)

exp
(

2πi
(
Ŝ 1M5

WZ
))
∈ U(1) (2)

Σ̂7 Extended worldvolume

f̂ Extended sigma-model field

Ĥ3 Extended worldvolume higher gauge field

G̃4 Shifted background C-field flux

G7 Dual background C-field flux

The open problem is to show that this expression (1) is actually well-defined, in that it is independent of the choice
of extensions, or at least independent up to integer shifts, so that at least the exponentiated Wess-Zumino action
functional (2) is well-defined.

Partial solution in the literature. A suggestive partial solution to this problem was proposed in [In00], by
(i) assuming that G4 is not only the form datum underlying a topological cocycle in rational Cohomotopy, 1 but

even that of an actual smooth function csmth to the smooth 4-sphere [In00, (5.3)];
(ii) focusing on the first summand [In00, (2.4)] and disregarding the second summand in (1), leaving its under-

standing for later [In00, top of p. 16].

With these simplifications imposed, expression (1) reduces on oriented difference manifolds Σ̃7 := Σ̂7
1 − Σ̂7

2 (6) to
the classical Whitehead integral formula [Wh47] (see [BT82, Prop. 17.22]) for the Hopf invariant HI(csmth ◦ f̃ ) of
maps to the 4-sphere. Since the Hopf invariant is an integer by its homotopy-theoretic definition (recalled as Def.
4.4 below), [In00] suggests that (2) is satisfied and thus refers to the first summand in (1) as the Hopf-Wess-Zumino
term, a terminology that was used for other sigma-models before [WZ83][TN89], and which has become widely
adopted for the M5 since (e.g. [KS03, §3.2][HN11, (2)][Ar18, (4.13)]). But, since assumption (i) is not supposed
to be generally satisfied, so that disregarding the second term (ii) is not generally possible, this is only a partial
solution, and the full problem of showing general consistency of (1) by demonstrating (2) had remained open.

Solution by homotopy periods in Cohomotopy. We observe here that the full Hopf-WZ-term (1), including
the previously neglected summand f̂ ∗G7, has the form of a secondary characteristic class descending from the
intersection pairing, originally called a “functional cup product” by Steenrod [St49] and more recently discussed
under the name homotopy period in [SW08, Ex. 1.9]. That these homotopy Whitehead integrals are the proper
homotopy-theoretic formulation of the original Whitehead integral formula [Wh47] for the Hopf invariant, was
remarked already by Haefliger [Ha78, p. 17]. For the analogous lower-dimensional case of maps from the 3-
sphere to the 2-sphere, this had been worked out in [GM81, §14.5].

Our first main result here (Theorem 3.4 below) is a transparent proof that the full 6d Hopf-WZ-term (1)
(including both summands) is a homotopy period/homotopy Whitehead integral in this sense, which reduces to the
Whitehead integral formula for the Hopf invariant in the respective special cases (Remark 4.7 below). In fact, we
prove a more general twisted version of the homotopy Whitehead integral, which incorporates also the topological
twists that account for the half-integral shift by 1

4 p1 demanded by flux quantization of the background C-field
(Remark 2.2 below) thus generalizing the 6d Hopf-WZ term (1) to curved backgrounds (Def. 2.6 below).

This shows, in particular, that the two summands in (1) can not be invariantly separated, and hence that it is
really the full term (1) which deserves to be called the Hopf-Wess-Zumino term. Thereby the puzzlement expressed
in [In00, top of p. 8] is resolved: The first summand of (1) by itself does not actually qualify as a Wess-Zumino

1This is an after the fact statement, in that we recast it that way in our formulation. In [In00], the 4-sphere was part of spacetime, whereas
in our Cohomotopy formulation it serves as a classifying space that receives maps out of spacetime; and we view the formulation in [In00]
as a special case where part of spacetime is identified with that classifying space. The sphere as a classifying space for Cohomotopy
cohomology theory generalizes the Eilenberg-MacLane spaces that classify ordinary cohomology. See cite[§2]FSS20b for these general
concepts, and see [GS20] for a detailed comparison.
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term, since it is not (the pullback of) a cocycle. The full term is a cocycle, and in fact a cocycle in integral
cohomology if Hypothesis H is satisfied, by the proof of our second main result:

Our second main result (Theorem 4.8 below) shows that under Hypothesis H the 6d Wess-Zumino term
(1) is generally integral, even in its topologically twisted generalization. This topologically twisted/parametrized
generalization of the Hopf invariant thus establishes (2) and hence proves in generality that the 6d Hopf-Wess-
Zumino term of the M5-brane is well-defined (namely integral, level-quantized).

Consequences. We briefly highlight some consequences of and conclusions drawn from this result:

1. Level quantization. A key argument of [In00, (2.8)] was that the mathematical incarnation of N coinciding
M5-branes is in the bare Hopf-WZ term (1) Ŝ M5

WZ =
∫ 1

2 H3 ∧ f̂ ∗G4 + · · · being multiplied by N(N + 1), at least in
its first summand. Since, by our result here, the two summands cannot be invariantly separated, this means that the
full term has to be multiplied this way, hence that for N coincident M5-branes the expression (1) generalizes to

Ŝ N M5
WZ := N(N +1)

∫
Σ̂7

(
1
2 Ĥ3∧ f̂ ∗G̃4 + f̂ ∗G7

)
N Number of coincident M5-branes (3)

with the factor of 2 in (1) being the case of N = 1. Since N(N + 1) is even for all N, the condition that (2) is
well-defined up to an integral shift (by Theorems 3.4 and 4.8) implies that

exp
(

2πi
(
Ŝ N M5

WZ
))
∈ U(1) (4)

is also well-defined, for all N. Thus the factor N(N + 1) plays the role of the level of the 6d Wess-Zumino term
of the M5-brane; and its even integral form is the level quantization for the 6d Hopf-Wess-Zumino term of the
M5-brane, in analogy with integral levels of ordinary Wess-Zumino terms [Wi83].

2. Dimensional generalization and the Hopf invariant one theorem. The full 6d Wess-Zumino term of the
M5-brane (1) is evidently the special case k = 1 of a sequence of Wess-Zumino terms S1B(4k+1)

WZ that exist for all
k ∈ N on higher gauged p-brane sigma-model fields with p = 4k+1, hence the notation B(4k+1). It is precisely
those worldvolume dimensions that admit self-dual higher gauge fields. For trivial topological twist τ in (34),
the proof of Theorem 3.4 generalizes verbatim to this infinite hierarchy, simply by generalizing the degree of the
generator ω4 in (34) to 2(k+ 1) and the degree of the generator ω7 to 4k+ 3. Similarly, Prop. 4.6 generalizes
verbatim and shows that for all k ∈ N the anomaly functionals S̃ 1B(4k+1)

WZ (Def. 2.9) of these Wess-Zumino terms
compute, in the absence of topological twists and under Hypothesis H, the Hopf invariant of the composite of the
brane’s sigma-model field with the cocycle of the background field in Cohomotopy.

It is interesting to note that, from this perspective, we may take the classical Hopf invariant one theorem
[Ad60] to say that if the oriented difference of extended worldvolumes is the (4k+1)-sphere Σ̃4k+1 = S4k+1, then
for almost all values of k ∈N the anomaly functional S̃ 1B(4k+1)

WZ (Def. 2.9) is an even integer, in that the only values
of k for which it may take odd integer values are precisely those that correspond to branes which actually appear
in string/M-theory:

k = 0 1 2

(4k+1)-brane string five-brane nine-brane

Hypothesis H with the Hopf invariant one theorem singles out the worldvol-
ume dimensions p+1∈ {2,6,10} among p-branes admitting self-dual higher
gauge fields, as those whose Wess-Zumino anomaly functional S̃ 1B(4k+1)

WZ is
integrally indivisible.

3. Unifying role of the quaternionic Hopf fibration. It is noteworthy that the proofs of our main results (The-
orem 3.4 and Theorem 4.8) proceed entirely by characterizing lifts in Cohomotopy through the quaternionic Hopf
fibration, observing that it is such lifts which reflect, under Hypothesis H, the higher gauge field H3 on the world-
volume of the M5-brane [FSS19b, Prop. 3.20]. This tightly connects the discussion of the 6d Wess-Zumino term
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here to the analogous cohomotopical discussion of its supersymmetric completion in [FSS15][FSS19c] and to the
anomaly cancellation conditions on the background fields in [FSS19b][SS20], all rigorously derived from first
principles; and thus suggests that a complete derivation of the elusive quantum M5-brane may exist guided by
Hypothesis H.

4. Outlook – Refinement to differential Cohomotopy. It is well known (see [FSS12b], review in [FSS13a])
that the definition of Wess-Zumino- and Chern-Simons-terms by field extensions over a cobounding manifold,
while an elegant method when it applies, is not the most general definition of these terms. In cases where such
field extensions do not exist, the WZ- and CS-terms may still exist, now defined as hypervolume holonomies
of cocycles in a differential cohomology theory (see [FSS20c, §4.3]). For the ordinary WZ- and CS-term this
differential cohomology theory is differential ordinary cohomology, represented equivalently as Cheeger-Simons
differential characters or as Deligne cohomology or as bundle gerbes with connections, or as BnU(1)-principal
connections.

But for the case of the 6dWZW term of the M5-branes, our results here show that the appropriate differential
cohomology theory that generalizes the construction by field extension presented here must be a differential re-
finement of Cohomotopy cohomology theory. We had constructed one version of such a differential Cohomotopy
cohomology theory in [FSS15, §4][FSS20c, §5.3], further discussed in [GS20, §3]. Ultimately one should use this
to generalize the results we present here to situations where extensions of fields over cobounding manifolds may
not exist.

Outline. In §2 we make precise the 6d Hopf-Wess-Zumino term and its anomaly, including topological twisting.
In §3 we establish that the full WZ term is a homotopy period/homotopy Whitehead integral. In §4 we prove that
Hypothesis H implies that the full 6d Hopf-Wess-Zumino term is well-defined.

2 The full 6d Hopf-WZ term of the M5-brane

In this section we present a precise definition, paraphrasing from the informal literature, of the 6d Hopf-Wess-
Zumino term of the M5-brane, refine it to include topological twists reflecting the shifted quantization condition
on the C-field flux, and then prove that the corresponding anomaly functional is a homotopy invariant.

First we state (in Def. 2.4 below) the 6d WZ term for “small” sigma-model fields as found in the original
articles [Ah96, p. 11][BLNPST97, (1)], then we consider its globalization via extension to cobounding extended
worldvolumes as in [In00, (5.4)] (Def. 2.6 below). Throughout, we include the half-integral shift of G4 by 1

4 p1,
demanded by the flux quantization of the C-field [Wi97a]; see Remark 2.2 below. Finally, we discuss the corre-
sponding anomaly functional (Def. 2.9 below) and show that it is a homotopy invariant on the space of gauged
sigma-model fields (Lemma 2.10).

To be precise, we begin by introducing the relevant ingredients:

Definition 2.1 (Background C-field and higher gauged sigma-model fields).
(i) Let X8 be a smooth 8-manifoldwhich isconnected, simplyconnected2 and spin, tobecalled the target spacetime3.
(ii) Let Σ be a smooth manifold, which is compact and oriented, to be called

(a) the worldvolume if it is 6-dimensional Σ := Σ6 without boundary;
2 All results in the following readily generalize to non-connected X , but nothing essential is gained thereby. The assumption that X is

simply connected is to allow the use of Sullivan model analysis in §3 and §4 (as in [FSS19b, Rem 2.6][FSS20c, Rem. 3.53]). For this
it would be sufficient to assume that X is nilpotent [FSS20c, Def. 3.52] in that it has nilpotent fundamental group acting nilpotently on
homotopy and homology groups of its universal cover. This assumption should not be necessary, but without it all proofs will become much
more involved.

3 This pertains to M-theory on 8-manifolds, see [FSS19b, Remark 3.1]. We will often just write X for X8.
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(b) the extended worldvolume if it is 7-dimensional Σ := Σ̂7, with collared boundary

Σ6 = ∂ Σ̂7 � � (id,0) //
(
∂ Σ̂7

)
× [0,1) �

� // Σ̂7 . (5)
(c) the oriented difference of extended worldvolumes if it is 7-dimensional Σ := Σ̃7 and arising as the oriented

difference
Σ̃

7 = Σ̂
7
1− Σ̂

7
2 := Σ̂

7
1∪Σ6

(
Σ̂

7
2
)op (6)

(where (−)op denotes orientation reversal) of two collared coboundary extension Σ̂7
1,2 (5) of the same world-

volume ∂ Σ̂7
1,2 = Σ6; in particular Σ̃7 has no boundary.

(iii) A background field configuration on X8 is
(a) an affine Spin(8)-connection ∇ on the tangent bundle4 T X8;
(b) a pair of differential forms

G4 ∈ Ω
4
dR
(
X8)

2G7 ∈ Ω
7
dR
(
X8) such that

d G4 = 0 ,

d 2G7 =−G4∧G4 +
(1

4 p1(∇)
)
∧
(1

4 p1(∇)
)
,

(7)

where the Pontrjagin 4-form (e.g. [KN63, §XII.4])
p1(∇) := 〈R∇∧R∇〉 (8)

is the value of the curvature 2-form R of ∇ in the normalized Killing form invariant polynomial 〈−,−〉 on
so(8). Notice that in terms of the shifted flux form [Wi97a, (1.2)][Wi97b, (1.2)][FSS19b, §3.4][FSS20b]

G̃4 := G4 +
1
4 p1(∇) (9)

the second condition in (7) [Wi97b, (3.6)][FSS19b, §3.3] equivalently reads

d 2G7 =−
(
G̃4∧ G̃4− 1

2 p1(∇)∧ G̃4
)
. (10)

(iv) A higher gauged5 sigma-model field is a pair(
f , H3

)
=
(

Σ
f smooth
−−−−−! X , dH3 = f ∗

(
G4− 1

4 p1(∇)
)

(11)
consisting of
(a) a smooth function f from the (extended) worldvolume to spacetime,
(b) a smooth differential 3-form H3 on the (extended) worldvolume, which trivializes the pullback along f of the

difference between G4 from (7) and 1
4 p1(∇) from (8),

both required to have sitting instants on any collared boundary (5), in that in some neighborhood of the boundary
they are constant in the direction perpendicular to it [FSS10, Def. 4.2.1];

(v) A gauge transformation or homotopy between two higher gauged sigma-model fields (11)(
f0, (H3)0

) (η , (H3)[0,1]) +3
(

f1, (H3)1
)

(12)

is a pair consisting of a smooth homotopy η from f0 to f1 and a differential 3-form (H3)[0,1] ∈ Ω3
dR

(
Σ× [0,1]

)
gauging η and restricting to (H3)0,1 at the boundaries of the interval:

Σ

(id,0)

��

f0

))

(H̃3)0

Σ× [0,1]
η smooth // X (H3)[0,1]

_
(id,0)∗

OO

_

(id,1)∗

��

d
(
(H3)[0,1]

)
= η∗

(
G4− 1

4 p1(∇)
)
.

Σ

(id,1)

OO

f1

55

(H3)1

(13)

4 The theorems below hold, as general statements about the 6d WZ term, for ∇ a connection on any Spin bundle. But application to the
actual M5-brane system requires ∇ to be a tangent connection on spacetime.

5 This is the higher analog of abelian gauging of 2d WZW model fields (e.g. [Fo03, (5)]), making the 6d Wess-Zumino term the action
functional of a higher gauged Wess-Zumino model [FSS13b].
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(vi) We write

Mapsggd
smth(Σ,X) :=

{(
f ,H3

)}
, π0

(
Mapsggd

smth(Σ,X)
)

:=
{(

f ,H3
)}/

∼homotopy
(14)

for the sets6 of higher gauged sigma-model fields (11) and of their homotopy classes (12), respectively.

Remark 2.2 (Shifted flux quantization corrections to the Hopf-WZ term). The existing literature on the Hopf-WZ
term [Ah96, p. 11][BLNPST97, (1)][In00, (2.4)] [KS03, §3.2][HN11, (2)][Ar18, (4.13)] disregards any topological
correction terms to the C-field flux proportional to p1(∇), shown in (9), (10). Hence, in comparing to this literature
(as in Def. 2.4, Def. 2.6 below), one has to restrict to the special case that p1(∇) = 0 (for instance in that ∇ = 0,
hence that spacetime is assumed to be flat). Beyond this special case, such correction terms are famously thought
to be required, by circumstantial arguments provided in [Wi97a][Wi97b]. The result of [FSS19b, §3.3] (recalled
as Remark 3.3 below) is that charge quantization of the C-field in J-twisted Cohomotopy theory [FSS20c, §5.3]
implies exactly these corrections (10); and the main Theorem 4.8 below says that with these p1-corrections and
this cohomotopical charge quantization, the full Hopf-WZ term is actually guaranteed to be anomaly-free (namely:
integral, level-quantized).

As an important example of Def. 2.1, we offer the following:

Lemma 2.3 (The 7-sphere as an extended worldvolume). In the situation of Def. 2.1, let the oriented difference of
extended worldvolumes be the 7-sphere: Σ := Σ̃7 := S7. Then the set (14) of homotopy classes of extended gauged
sigma-model fields is the set underlying the 7th homotopy group of target spacetime X:

π0

(
Mapsggd

smth

(
S7,X

))
' π7(X) . (15)

Proof. Since homotopy classes of continuous functions between smooth manifolds are given by smooth homotopy
classes of smooth functions (e.g. [BT82, Cor. 17.8.1]) it follows that already smooth homotopy classes of ungauged
sigma-model fields are in bijection to π7(X) (since the target spacetime X is assumed to be connected there is no
dependence on a basepoint). Hence it only remains to show that, for any extended sigma-model field f̃ , there exists
at least one gauging H̃3 (11) and that, for any two such gaugings

(
f̃ ,(H̃3)0

)
and

(
f̃ ,(H̃3)1

)
of the same extended

sigma-model field f̃ , there exists a gauged homotopy (12)(
f̃ ,(H̃3)0

) (η̃ ,(H̃3)[0,1]) +3
(

f̃ ,(H̃3)1
)

between them. For the existence of the gauging H̃3 for a given f̃ , we only need to notice that because H4
dR(S

7) ∼=
H4(S7;R) = 0, we have f ∗[G4− 1

4 p1(∇)] = 0 and so there exists H̃3 ∈Ω3
dR

(
S7
)

such that dH̃3 = f ∗
(
G4− 1

4 p1(∇)
)
.

Similarly, given two gaugings (H̃3)0 and (H̃3)1 of f̃ , since H3
dR

(
S7
)
= 0 and (H̃3)1− (H̃3)0 ∈ Ω3

dR

(
S7
)

is closed
by assumption, there exists

α ∈Ω
2
dR
(
S7) such that dα = (H̃3)1− (H̃3)0 .

Thus (
η̃ : (x,s) 7−! f̃ (x) , (H̃3)[0,1] := (H̃3)1 +(s−1) ·dα +(ds)∧α

)
constitutes a homotopy as required.

We now consider the 6d Hopf-WZ term in its various incarnations, surveyed in Table A.

6 The inclined reader will notice (see [FSS13b] for exposition) that the set Mapsggd
smth(Σ,X) is of course the underlying set of global

sections of the atlas for the smooth moduli 2-stack of higher gauged sigma-model fields on Σ [FSS20c, §4.3], and π0
(
Mapsggd

smth(Σ,X)
)

is the set of connected components of the geometric realization of this moduli 2-stack. All of the following discussion lifts to the higher
differential geometry of moduli stacks of fields, but for the sake of brevity we will not further consider this here.
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Mapsggd
smth

(
Σ6,X11

) S // R
Hopf-WZ action functional
on worldvolume
Σ6

Def. 2.4

Mapsggd
smth

(
Σ̂7,X11

) Ŝ // R
Extended Hopf-WZ functional
on coboundary
∂ Σ̂7 = Σ6

Def. 2.6

Mapsggd
smth

(
Σ̃7,X11

) S̃ // R
Hopf-WZ anomaly functional
on oriented difference
Σ̃7 = Σ̂7

1− Σ̂7
2

Def. 2.9

Table A – Incarnations of the Hopf-WZ
term. The 6d Hopf-WZ term functional S :=

SM5
WZ is a priori defined on gauged sigma-model

fields on Σ6. Its global definition involves an

extension Ŝ to extended fields on a coboundary

Σ̂7. The difference of any two extensions is the

anomaly functional S̃ on fields on the oriented

difference Σ̃7 = Σ̂7
1− Σ̂7

2.

Definition 2.4 (6d Hopf-WZ term for small sigma-model fields). In the setting of Def. 2.1, let U ⊂ X8 be a chart
(a contractible open subset). For Σ6 any closed orientable 6-manifold, write Mapsggd

smth

(
Σ6,U

)
⊂ Mapsggd

smth

(
Σ6,X

)
for the subset of those higher gauged sigma-model fields (14) which factor through U ⊂ X (the “U-small sigma-
model fields”). As the de Rham cohomology of U is trivial in positive degree, we may choose local potentials
CU

3 ∈Ω3
dR

(
U
)

for ι∗U(G4 +
1
4 p1(∇)) and 2CU

6 ∈Ω6
dR

(
U
)

for ι∗U 2G7 +CU
3 ∧ ι∗U(G4− 1

4 p1(∇)
)
.

U� _

ιU

��

dCU
3 = ι∗U

(
G4 +

1
4 p1(∇)

)
d 2CU

6 = ι∗U 2G7 +CU
3 ∧ ι∗U

(
G4− 1

4 p1(∇)
)

Σ6
f

//

fU

<<

X8 d G4 = 0

d 2G7 =−G4∧G4+
( 1

4 p1(∇)
)
∧
( 1

4 p1(∇)
)

(16)

Then the M5 6d Wess-Zumino term action functional on these small fields is the function

Mapsggd
smth

(
Σ6,U

) SM5
WZ // R(

fU ,H3
)

7−! SM5
WZ

(
fU ,H3

)
:= 1

2

∫
Σ6

(
−H3∧ f ∗UCU

3 + f ∗U 2CU
6

)
.

(17)

Lemma 2.5 (Independence of choices). The functional SM5
WZ

(
fU ,H3

)
(17) is indeed well defined, in that it does not

depend on the choice of the local potentials CU
3 and CU

6 (16).

Proof. A different choice of local potentials is of the form (CU
3 +αU

3 ,2CU
6 + 2αU

6 ), with differentials dα3
U = 0

and d2αU
6 = αU

3 ∧ ι∗U(G4− 1
4 p1(∇)

)
. As the local chart U is contractible, this implies αU

3 = dαU
2 and 2αU

6 =
αU

2 ∧ ι∗U
(
G4− 1

4 p1(∇)
)
+dαU

5 . Therefore, we have∫
Σ6

(
−H3∧ f ∗U

(
CU

3 +α
U
3
)
+2 f ∗U

(
CU

6 +α
U
6
))
−
∫

Σ6

(
−H3∧ f ∗U

(
CU

3
)
+ f ∗U

(
2CU

6
))

=
∫

Σ6
−H3∧d f ∗U

(
α

U
2
)
+ f ∗U

(
α

U
2 ∧ ι

∗
U
(
G4− 1

4 p1(∇)
))

+d f ∗U
(
α

U
5
)

=
∫

Σ6
−H3∧d f ∗U

(
α

U
2
)
+ f ∗U

(
α

U
2
)
∧ f ∗

(
G4− 1

4 p1(∇)
)
+d f ∗U

(
α

U
5
)

=
∫

Σ6
−H3∧d f ∗U

(
α

U
2
)
+ f ∗U

(
α

U
2
)
∧dH3 +d f ∗U

(
α

U
5
)

=
∫

Σ6
d
(

H3∧ f ∗U
(
α

U
2
)
+ f ∗U

(
α

U
5
))

= 0.

Now we globalize this definition, following the well-known procedure originally introduced in the 2-dimensional
case in [Wi83].
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Definition 2.6 (Global 6d Hopf-Wess-Zumino term via extended worldvolumes). In the situation of Def. 2.1, for
Σ6 a given worldvolume, let Σ̂7 be a compact oriented smooth collared cobounding 7-manifold7 according to (5)

Σ
6 := ∂ Σ̂

7 . (18)

Then we say that the corresponding extended action functional for the 6d Hopf-WZ-term on the closed manifold
Σ6 is the function

Mapsggd
smth

(
Σ̂7,X

) Ŝ M5
WZ // R(

f̂ , Ĥ3
)

7−! Ŝ M5
WZ

(
f̂ , Ĥ3

)
:= 1

2

∫̂
Σ7

(
Ĥ3∧ f̂ ∗

(
G4 +

1
4 p1(∇)

)
+ f̂ ∗2G7

) (19)

on the set of extended gauged sigma-model fields (11). (For flat backgrounds, ∇ = 0, this reduces to the (1), see
Remark 2.2.)

Lemma 2.7 (Global Hopf-WZ-term restricts to local Hopf-WZ-term). In the situation of Def. 2.4, consider a
worldvolume Σ6. Then, for every choice of extended worldvolume Σ̂7 (18) the corresponding extended action
functional Ŝ (Def. 2.6) coincides, for any chart U ⊂ X, on U-small extended sigma-model fields f̂ = ιU ◦ f̂U (16)
with the local action functional S (Def. 2.4) evaluated on the boundary values f := f̂ |Σ6 of the extended fields:

Mapsggd
smth

(
Σ̂7,U

)
(−)|

∂ Σ̂7
��

Ŝ M5
WZ // R

Mapsggd
smth

(
Σ6,U

) SM5
WZ

55

Ŝ M5
WZ
(

f̂ , Ĥ3
)
= SM5

WZ

(
f := f̂ |∂Σ7 , H3 :=

(
Ĥ3
)
|
∂ Σ̂7

)
.

Proof. Observe, with (11) and (16), that

d
(
− Ĥ3∧ f̂ ∗UCU

3 + f̂ ∗U 2CU
6
)
= −dĤ3︸︷︷︸

f̂ ∗
(
G4− 1

4 p1(∇)
)∧ f̂ ∗UCU

3 + Ĥ3 ∧ f ∗U dCU
3︸ ︷︷ ︸

f̂ ∗(G4+
1
4 p1(∇))

+ f̂ ∗U d2CU
6︸ ︷︷ ︸

f̂ ∗(G4−1
4 p1(∇))∧ f̂ ∗UCU

3

+ f̂ ∗2G7

= Ĥ3∧ f̂ ∗
(
G4+

1
4 p1(∇)

)
+ f̂ ∗2G7 .

(20)

With this, the claim follows by Stokes’ theorem:

Ŝ M5
WZ
(

f̂ , Ĥ3
)

:= 1
2

∫
Σ̂7

(
Ĥ3∧ f̂ ∗

(
G4+

1
4 p1(∇)

)
+ f̂ ∗U 2G7

)
= 1

2

∫
Σ̂7

d
(
− Ĥ3∧ f̂ ∗UCU

3 + f̂ ∗U 2CU
6
)

= 1
2

∫
∂ Σ̂7

(
− Ĥ3∧ f̂ ∗UCU

3 + f̂ ∗U 2CU
6
)
|∂Σ7

= 1
2

∫
Σ6

(
−H3∧ f ∗UCU

3 + f ∗U 2CU
6
)

=: SM5
WZ
(

fU , H3
)
.

(21)

Example 2.8 (Coboundaries for Σ6 = S3×S3). In the situation of Def. 2.1, consider as worldvolume the product
manifold of two 3-spheres (this is considered in [MS15, Example 2] in the non-commutative setting):

Σ
6 = S3×S3 .

7This always exists, since the oriented cobordism ring in dimension 6 is trivial and by the collar neighbourhood theorem.
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In this case there is a canonical choice of cobounding manifold Σ̂7 (18) given by the Cartesian product of the 4-disk
D4 (the closed 4-dimensional ball) with the 3-sphere, in either order (as in [Sa13]):

Σ̂
7
L := D4×S3 and Σ̂

7
R :=

(
S3×D4)op

. (22)

Here we are equipping each of

S3×S3,

D4×S3 = D4 ×
(
∂D4

)
,

S3×D4 =
(
∂D4

)
× D4 ,

 ⊂ D4×D4 ⊂ R8

with the orientation induced from the canonical embedding into R8, which implies, by the odd-dimensionality of
S3, that the boundary of S3×D4 is

(
S3×S3

)op (opposite orientation). This way, with (22) we indeed have

∂ Σ̂
7
L,R = Σ

6 := S3×S3

as oriented manifolds. Observe that the union of one of these coboundaries with the orientation reversal of the
other is the 7-sphere (as considered in Lemma 2.3): 8

Σ̃
7 := Σ̂

7
L∪
(
Σ̂

7
R
)op

= D4×
(
∂D4) ∪ (∂D4)×D4

= ∂
(
D4×D4)

' ∂D8

= S7 .

S3×S3

(po)
��

// D4×S3

��
S3×D4 // S7

(23)

While Def. 2.6 gives global meaning to the local Hopf-WZ term (Def. 2.4), by Lemma 2.7, this potentially
comes at the cost that the global definition depends on the choice of coboundary (18). The following definition
measures this potential dependency:

Definition 2.9 (Hopf-WZ anomaly functional). In the situation of Def. 2.1, with given worldvolume Σ6, consider
in Def. 2.6 two choices Σ̂7

L,R of collared cobounding extended worldvolumes (5) ∂Σ7
L,R = Σ6. This makes their

oriented difference (6) a smooth closed 7-manifold Σ̃7 := Σ̂7
L− Σ̂7

R := Σ̂7
L∪Σ6

(
Σ̂7

R
)op

. Then for

Σ̂7
L

f̂L

%%

d
(
Ĥ3
)

L = f̂ ∗L G4
_

ι∗
∂L
��

Σ6
?�

ι∂L

OO

_�

ι∂R

��

f // X d H3 = f ∗G4

Σ̂7
R

f̂R

99

d
(
Ĥ3
)

R = f̂ ∗RG4

_
ι∗
∂R

OO

any pair of gauged extended sigma-model fields (11), extending the same ordinary sigma-model field f over the
two choices of coboundaries, respectively, we obtain a gauged extended sigma-model field

(
f̃ , H̃3

)
on the closed

7-manifold Σ̃7 (6) (which is smooth by the assumption of sitting instants in (11)):

Σ̂7
L� _

ιL

��

f̂L

%%

d
(
Ĥ3
)

L = f̂ ∗L G4
OO
ι∗L

_

Σ̃7 f̃ // X d H̃3 = f̃ ∗G4

Σ̂7
R

f̂R

99

� ?

ιR

OO

d
(
Ĥ3
)

R = f̂ ∗RG4

��
ι∗R

_

(24)

8Note that a different manipulation treats these, untraditionally, as manifolds with corners [Sa14][Sa13].
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In terms of this, the difference between the two extended action functionals (Def. 2.6) corresponding to the two
choices of coboundaries may be expressed as a single integral over Σ̃7:

S̃
(

f̃ , H̃3
)

:= Ŝ
(

f̂L,(Ĥ3)L
)
− Ŝ
(

f̂R,(Ĥ3)R
)

= 1
2

∫
Σ̃7

(
H̃3∧ f̃ ∗

(
G4 +

1
4 p1(∇)

)
+ f̃ ∗2G7

)
. (25)

We call expression (25) the anomaly functional of the 6d Wess-Zumino term.

Lemma 2.10 (Hopf-WZ anomaly functional is homotopy invariant). In the situation of Def. 2.1, let Σ := Σ̃7 be a
closed 7-manifold. Then the Hopf-WZ anomaly functional (25) is well-defined on the set (14) of homotopy-classes
of higher gauged sigma-model fields:

π0

(
Mapsggd

smth

(
Σ̃7,X

)) S̃ // R[
f̃ , H̃3

]
7−! 1

2

∫̂
Σ7

(
H̃3∧ f̃ ∗

(
G4 +

1
4 p1(∇)

)
+ f̃ ∗2G7

) (26)

in that the integral on the right is independent of the choice of representative ( f̃ , H̃3) in its homotopy class.

Proof. Given a gauge transformation/homotopy (12) between two extended gauged sigma-model fields(
f̃0,(H̃3)0

) (η̃ ,(H̃3)[0,1]) +3
(

f̃1,(H̃3)1
)

we need to show that S̃
([

f̃1,(H̃3)1
])

= S̃
([

f̃0,(H̃3)0
])

. With the data (13) and using Stokes’ theorem we directly
compute as follows:

S̃
([

f̃1,(H̃3)1
])
− S̃
([

f̃0,(H̃3)0
])

= 1
2

∫
∂

(
Σ̃7×[0,1]

)
((

H̃3
)
[0,1]∧ η̃

∗(G4 +
1
4 p1(∇)

)
+ η̃

∗2G7

)

= 1
2

∫
Σ̃7×[0,1]

d
((

H̃3
)
[0,1]∧ η̃

∗(G4 +
1
4 p1(∇)

)
+ η̃

∗2G7

)
= 1

2

∫
Σ̃7×[0,1]

(
d
((

H̃3
)
[0,1]

)
︸ ︷︷ ︸
η̃∗
(

G4− 1
4 p1(∇)

)∧ η̃
∗(G4 +

1
4 p1(∇)

)
+ η̃

∗d2G7

)

= 1
2

∫
Σ̃7×[0,1]̃

η
∗
((

G4− 1
4 p1(∇)

)
∧
(
G4 +

1
4 p1(∇)

)
+d2G7︸ ︷︷ ︸

=0

)
= 0 ,

where in the last step, under the brace, we used the condition (7).

3 The full M5 Hopf-WZ anomaly is a homotopy Whitehead integral

We first recall from [FSS19b][FSS20c, §5.3] how the background C-field (G4,2G7) is a cocycle in twisted rational
Cohomotopy; this is Remark 3.3 below. Then we prove, in Theorem 3.4, that the Hopf-WZ anomaly functional
from §2 is equivalently a lift in rational Cohomotopy through the equivariant quaternionic Hopf fibration, hence is
in particular a homotopy invariant of both the gauged sigma-model fields and the background fields in Cohomotopy.
Further below, in §4, this allows us to identify the anomaly functional as a twisted/parametrized generalization of
a homotopy Whitehead integral.
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Notions from rational homotopy theory. In the following, we make free use of Sullivan model dgc-algebras in
rational homotopy theory (i.e., what in supergravity are called “FDA”s [FSS13b][FSS19a]); see [Su77][BG76] for
the original accounts, [Hes06] for introduction, [GM81] for a standard textbook account, and see [FSS16][FSS17]
[FSS19a][FSS20c] for review streamlined towards our application. As in these references, for X a simply-connected
topological space of finite rational type, we write CE(lX) for its minimal Sullivan model differential graded-
commutative algebra (dgc-algebra), indicating that this is the Chevalley-Eilenberg algebra of the minimal White-
head L∞-algebra lX corresponding to the loop group of X (see [FSS20c, Prop. 3.64]). For making Sullivan models
explicit, we display the list of differential relations on each generator, thereby declaring what the generators are
(see [FSS20c, (99)]), as shown in the following examples.

Example 3.1 (Quaternionic Hopf fibration). We denote the minimal relative Sullivan model for the plain quater-
nionic Hopf fibration hH as follows (see [FSS19b, Lemma 3.18]):

S7

hH
quaternionic

Hopf fibration

��

CE
(
lS7
)

OO

CE(lhH)
minimal relative
Sullivan model

(“FDA”)

� ?

(
d ω7 = 0

)
OO

0 ω7

7! 7!

ω4 ω7

S4 CE
(
lS4
) (

d ω4 = 0

d ω7 = −ω4∧ω4

)
topological homotopy theory dgc-algebraic rational homotopy theory

(27)

Example 3.2 (Classifying space of Fivebrane-extended Spin-group). The minimal relative Sullivan model for the
homotopy fiber BŜp(2) of the classifying map for the Euler 8-class χ8 on the classifying space for the quaternionc
unitary group Sp(2) ↪! Spin(8) (see [FSS20b, §A]) is as follows (using [FSS19b, (97)][FSS20c, Lem. 4.24]):

BŜp(2)

hofib(χ8)

��

' // BŜpin(5)

hofib
(
− 1

4 p2 +
(1

4 p1
)2)

��

homotopy fiber
trivializing

obstructing 8-class

 d θ7 = χ8

d χ8 = 0

d 1
2 p1 = 0


OO

minimal relative
Sullivan model

� ?

oo '

 d θ7 =−1
4 p2 +

(1
4 p1
)2

d p2 = 0

d 1
2 p1 = 0


OO

� ?

BSp(2)
χ8

55'
tri // BSpin(5)

−1
4 p2 +

(1
4 p1
)2

// K(Z,8)
(

d χ8 = 0

d 1
2 p1 = 0

)
jj

χ8  [ c8

oo
'

tri∗
(

d p2 = 0

d 1
2 p1 = 0

)
oo−

1
4 p2 +

(1
4 p1
)2
 [ c8

(d c8 = 0) .

(28)

Notice that the higher extension Ŝp(2) in (28) is a version of the Fivebrane 6-group, and tangential Ŝp(2)-structure
trivializing this 8-class is a kind of Fivebrane structure according to [SSS09][SSS12]: a higher analog of String
structure (trivializing 1

2 p1), which itself is a higher analog of Spin-structure (trivializating w2). In higher analogy
to how Spin-structure is the topological condition on target spacetime needed for anomaly cancellation of the
spinning particle [1], and String-structure is the topological condition for anomaly cancellation of the (heterotic)
string (i.e. for the Green-Schwarz mechanism, see [SSS12][FSS20a][FSS20b]), so Fivebrane structure is meant to
be the topological condition needed for anomaly cancellation of the (heterotic) five-brane. That this is the case for
Ŝp(2)-structure, as concerns the Hopf-WZ term of the M5-brane, is brought out by our main Theorems 3.4 and 4.8
below, see Remark 4.3 below.

Rationalization over the real numbers. In order to have a smooth non-abelian de Rham theorem ([FSS20c, Thm.
3.87]) involving the real de Rham dg-algebras Ω•dR(−) of smooth differential forms, we take the rational base field
to be R instead of Q (as in [GM81][FSS20c, Rem. 3.51]), so that our “rational homotopy groups” are actually
“real homotopy groups” π(X)⊗ZR; which makes no essential difference (by [BG76, Lem. 11.7]). Accordingly,
for X a simply-connected topological space, we write

X
ηR

X

rationalization
// LRX (29)

for its rationalization (localization over the real numbers, see [FSS20c, Def. 3.55]).
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Example 3.3 (Background C-field is cocycle in rational twisted Cohomotopy). The minimal Sullivan model
(“FDA”) of the 4-sphere is free on generators ω4 and ω7 (in degrees 4 and 7, respectively), subject to differen-
tial relations shown on the bottom of (27). This means ([Sa13, §2.5], see also [FSS16, §2][FSS19a, (59)][FSS20c,
Exml. 3.81]) that the background C-field data (7) in the case that p1(∇) = 0 (8), is equivalently a flat L∞-algebra
valued differential form [FSS20c, Def. 3.77] with values in the Whitehead L∞-algebra lS4 [FSS20c, Exmpl. 3.68],
namely a dg-algebra homomorphism from CE

(
lS4
)

to the de Rham algebra of X :

X
(G4,2G7) // LRS4

non-abelian de Rham theorem
[FSS20c, Thm. 3.87]

 −−−−−−−−−−−−−−! Ω•dR(X) oo

G4  [ ω4

2G7  [ ω7

(
d ω4 = 0

d ω7 =−ω4∧ω4

)
cocycle in

rational 4-Cohomotopy dg-algebra homomorphism

(30)

More generally [FSS19b, Prop. 3.20], consider X = X8 a spin 8-manifold for M-theory compactified on 8-
manifolds [FSS19b, Rem. 3.1], hence such that:
(i) the tangent bundle of X8 is equipped with tangential Sp(2)! Spin(8)-structure τ (reflecting M2-brane back-
ground, see [FSS19b, p. 8 & §2.3]) with compatible connection ∇ (see [FSS20c, Def. 5.25]):

X8

T X8

classifying map
of spin-structure ��

tangential
Sp(2)-structure

τ // BSp(2)

��

Ω•dR

(
X8
)
^^

p2(∇) [ p2

p1(∇) [ p1

χ8(∇) [ χ8
1
2 p1(∇) [ 12 p1

//

(
d χ8 = 0

d 1
2 p1 = 0

)
==

p2 7! 4
((1

4 p1
)2−χ8

)
p1 7! p1

BSpin(8)

(
d p2 = 0

d p1 = 0

)
u}

(31)

(ii) the corresponding Euler 8-form χ8(∇) trivializes (meaning that the singular M2-brane loci themselves are
removed from X8, see [FSS19b, §2.5])

Θ7 ∈Ω
7
dR(X) s.t. dΘ7 = χ8(∇) := Pf(R) , (32)

which means (by Example 3.2) that the Sp(2)-structure on X further lifts to Ŝp(2)-structure τ̂:

X

τ

��

τ̂ // BŜp(2)

hofib(χ8)

~~

Ω•dR

(
X8
)
oo

Θ7  [ θ7

χ8(∇)  [ χ8
1
2 p1(∇)  [ 1

2 p1
cc

χ8(∇)  [ χ8
1
2 p1(∇)  [ 1

2 p1

 d θ7 = χ8

d χ8 = 0

d 1
2 p1 = 0


99

+ �

BSp(2) CE
(
lBSp(2)

)
rz

(33)

Then the general background field data (7) (now including the p1-terms, Remark 2.2) may be identified with a
cocycle in rational τ-twisted Cohomotopy (see also [FSS20c, Exmpl. 3.96]):

X
(G4,2G7) //

τ

��

LR
(
S4�Sp(2)

)
,

{{

Ω•dR(X) oo

G4  [ ω4

2G7−Θ7  [ ω7

bb

p1(∇)  [ p1

p2(∇)  [ p2
χ8(∇)  [ χ8

d ω4 = 0

d ω7 =−ω4∧ω4 +
1
4 p1∧ 1

4 p1

−χ8


77

p1 7! p1

p2 7! p2
χ8 7! χ8

) 	

LRBSp(2) CE
(
lBSp(2)

)
v~

cocycle in twisted rational 4-Cohomotopy relative dg-algebra homomorphism

(34)
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Our first main Theorem 3.4 says that not only does rational twisted Cohomotopy naturally encode the back-
ground C-field, via Remark 3.3, but that it also naturally encodes the gauging (11) of the M5-brane sigma-model
fields (as in [FSS19b, Rem. 3.17]) as well as the anomaly functional of the 6d Hopf-WZ term (Def. 2.9) as a
homotopy invariant (Lemma 2.10):

Theorem 3.4 (6d Hopf-WZ anomaly functional is lift through hH). In the situation of Def. 2.1, consider a closed
extended worldvolume Σ := Σ̃7. Then, under the identification of the background field with a cocycle c in rational
twisted Cohomotopy, via Remark 3.3, we have:

(i) The homotopy classes (14) of gaugings H̃3 (11) of an extended sigma-model field f̃ are in bijection to homo-

topy classes of homotopy lifts ĉ◦ f̃ through the quaternionic Hopf fibration hH (27) of the composite c◦ f̃ of
f̃ with the classifying map c (34) of the background C-field:

π0
(
Mapsggd

smth(Σ,X)
)
| f̃
'



Σ̃7 ĉ◦ f̃ //

c◦ f̃

��

LR
(
S7�Sp(2)

)
LR
(

hH�Sp(2)
)

}}
LR
(
S4�Sp(2)

)
~�

/
∼ relative

homotopy

(35)

(ii) Under this bijection (35), twice the anomaly functional (Def. 2.9) equals the correction by the Euler-potential
Θ7 (32) of the integral

2S̃
(

f̃ , H̃3
)
=
∫
Σ̃7

((
ĉ◦ f̃

)∗
(ω7) + f ∗Θ7

)
(36)

of the pullback of the angular cochain ω̃7 on the universal 7-spherical fibration (34) which is fiberwise the
unit volume form on S7 and which trivializes minus the universal Euler form:

〈ω̃7,S7〉= 1 , dω̃7 =−χ8 . (37)

Proof. By [FSS19b, Lemma 3.19] the dgc-algebra model for the situation is as shown on the right in the following
diagram, where the generator ω̃7 in the top right satisfies (37) by [FSS19b, Prop. 2.5 (39)]:

Σ̃7

f̃

��

ĉ◦ f̃ // LR
(
S7�Sp(2)

)

LR
(

hH�Sp(2)
)

��

Ω•dR

(
Σ̃7
)
oo
(

2S̃
(

f̃ , H̃3
)
−
∫

Σ̃7 f ∗Θ7

)
·vol

Σ̃7  [ ω̃7

hh

H̃3  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗(2G7−Θ7) [ ω7

OO

f̃ ∗

(
d ω̃7 = −χ8

)
OO

'
0 1

4 p1 ω̃7

7! 7! 7!

h3 ω4 ω7
d h3 = ω4− 1

4 p1

d ω4 = 0

d ω7 = −dh3∧
(
ω4 +

1
4 p1
)

−χ8


OO

ω4 ω7

7! 7!

ω4 ω7� ?

X

τ

��

c
// LR
(
S4�Sp(2)

)

||

Ω•dR(X) oo

G4  [ ω4

2G7−Θ7  [ ω7

[[

p1(∇)  [ p1

p2(∇)  [ p2
χ8(∇)  [ χ8


d ω4 = 0

d ω7 = −ω4∧ω4 +
(1

4 p1
)2

−χ8


88

p1 7! p1

p2 7! p2
χ8 7! χ8

* 


BSp(2) CE
(
lBSp(2)

)

'
H̃3

��

9A

'
η∗

(38)

13



Here the right vertical morphism is the relative minimal Sullivan model (e.g. [FSS20c, Prop. 3.17]) of the
parametrized quaternionic Hopf fibration, which is a cofibration out of a cofibrant object (e.g. [FSS20c, Prop.
3.43]). Since, moreover, every dgc-algebra is projectively fibrant (e.g. [FSS20c, Rem. 3.37]), any homotopy as on
the left in (38) is represented by a homotopy η∗ as shown on the right (e.g. [FSS20c, Prop. A.16]).
(i) The diagonal morphism on the right of (38) manifestly exhibits a choice of gauging H̃3 of f̃ . So to prove the
first claim it just remains to see that this establishes a bijection on homotopy classes. Observe that a homotopy of
homotopy lifts is now of this form:

Ω•dR

(
Σ̃7
)
dd

(H̃3)1  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7− f̃ ∗Θ7  [ ω7

qq
(H̃3)0  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7− f̃ ∗Θ7  [ ω7OO

f̃ ∗


d h3 = ω4− 1

4 p1

d ω4 = 0

d ω7 = −dh3∧
(
ω4 +

1
4 p1
)
−χ8


OO

ω4 ω7

7! 7!

ω4 ω7� ?

Ω•dR(X) oo

G4  [ ω4

2G7−Θ7  [ ω7

(
d ω4 = 0

d ω7 = −ω4∧ω4 +
(1

4 p1
)2−χ8

)
.

@H

η∗

(39)

Hence, since path space objects of de Rham dgc-algebras over X are given by de Rham dgc-algebras over X× [0,1]
(e.g. [FSS20c, Lem. 3.88]), this is equivalently (e.g. [FSS20c, Prop. A.16]) a dgc-algebra homomorphism making
the following diagram commute under CE

(
lBSp(2)

)
(where s denotes the canonical coordinate function on [0,1]):

Ω•dR

(
Σ̃7
)

OO
0 0

7! 7!

s ds

ll
(H̃3)0  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7− f̃ ∗Θ7  [ ω7

Ω•dR

(
Σ̃7× [0,1]

)
oo η∗


d h3 = ω4− 1

4 p1

d ω4 = 0

d ω7 = −ω4∧ω4 +
(1

4 p1
)2

−χ8

 .

Ω•dR

(
Σ̃7
)��

s ds
7! 7!

1 0

rr
(H̃3)1  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7− f̃ ∗Θ7  [ ω7

(H̃3)[0,1] oo
� h3

(40)

But this homotopy diagram (40) manifestly exhibits the same data and conditions as in (13) for a homotopy of
gaugings of a sigma-model field f̃ : (

f̃ ,(H3)0
) (id,(H̃3)[0,1]) +3

(
f̃ ,(H3)1

)
,

and hence homotopy classes are equivalent to gauge equivalence classes, as claimed.
(ii) Consider in the following any 7-form on Σ̃7 of unit volume:

vol
Σ̃7 ∈ Ω

7
dR
(
Σ̃

7) such that
∫
Σ̃7

vol
Σ̃7 = 1 . (41)

Again using the above path space objects, the homotopy η∗ on the right in (38) is a dgc-algebra homomorphism

14



that makes the following diagram commute under CE
(
lBSp(2)

)
:

Ω•dR

(
Σ̃7
)

OO
0 0

7! 7!

s ds

ll

(
2S̃−

∫
Σ̃7 f ∗Θ7

)
·vol

Σ̃7  [ ω7
1
4 f̃ ∗ p1(∇)  [ ω4

0  [ h3

Ω•dR

(
Σ̃7× [0,1]

)
oo η∗


d h3 = ω4− 1

4 p1

d ω4 = 0

d ω7 = −ω4∧ω4 +
(1

4 p1
)2

−χ8

 .

Ω•dR

(
S7
)��

s ds

7! 7!

1 0

rr
H̃3  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7− f̃ ∗Θ7  [ ω7

We claim that such an η∗ is given by:
sH̃3  [ h3

ds∧ H̃3 + s · f̃ ∗
(
G4
)
+(1− s) 1

4 f̃ ∗
(

p1(∇)
) η∗

 [ ω4

s ·
(

f̃ ∗
(
2G7

)
− f̃ ∗

(
Θ7
))

+
(

2S̃−
∫

Σ̃7 f̃ ∗
(
Θ7
))
· (1− s) ·vol

Σ̃7 + s(1− s) · H̃3∧ f̃ ∗
(
G4− 1

4 p1(∇)
)
+ds∧Q6  [ ω7

(42)

where Q6 ∈Ω6
dR

(
Σ̃7
)

is any differential form which satisfies

dQ6 =
(

H̃3∧ f̃ ∗
(
G4 +

1
4 p1(∇)

)
+ f̃ ∗

(
2G7−Θ7

))
−

=:2S̃−
∫

Σ̃7 f̃ ∗(Θ7)( ︷ ︸︸ ︷∫
Σ̃7

(
H̃3∧ f̃ ∗

(
G4 +

1
4 p1(∇)

)
+ f̃ ∗

(
2G7−Θ7

)) )
·volS7 .

This exists by (41) and because cohomology classes of differential forms in top degree on compact connected
manifolds are in bijection with the values of their integrals (e.g. [La15, §7.3, Thm. 7.5]).

It is clear that η∗ thus defined satisfies the required boundary conditions of a homotopy in (42). Hence it only
remains to check that it is indeed a dg-algebra homomorphism, in that it respects the differentials on the generators.
This is verified by direct computation:

dη
∗(ω7) = d

(
s ·
(

f̃ ∗
(
2G7

)
− f̃ ∗

(
Θ7
))
+(1− s) ·

(
2S̃−

∫
Σ̃7

f̃ ∗Θ7

)
·volS7 + s(1− s) · H̃3∧ f̃ ∗

(
G4− 1

4 p1(∇)
)
+ds∧Q6

)
= ds∧

(
f̃ ∗
(
2G7

)
− f̃ ∗

(
Θ7
))
−ds∧

(
2S̃−

∫
Σ̃7

f̃ ∗
(
Θ7
))
·volS7 +ds∧ H̃3∧ f̃ ∗

(
G4− 1

4 p1(∇)
)

−2s ·ds∧ H̃3∧ f̃ ∗
(
G4− 1

4 p1(∇)
)
−ds∧dQ6

= ds∧
((

f̃ ∗(2G7)− f̃ ∗(Θ7)
)
+ H̃3∧ f̃ ∗

(
G4− 1

4 p1(∇)
)
−
(

2S̃−
∫

Σ̃7
f̃ ∗(Θ7)

)
·volS7−dQ6

)
−2s ·ds∧ H̃3∧ f̃ ∗

(
G4− 1

4 p1(∇)
)

= ds∧
(

f̃ ∗
(
2G7−Θ7

)
+ H̃3∧ f̃ ∗

(
G4+

1
4 p1(∇)

)
−
(

2S̃−
∫

Σ̃7
f̃ ∗Θ7

)
·volS7−dQ6

)
︸ ︷︷ ︸

=0

−2 ·ds∧ H̃3∧ f̃ ∗
(
s ·G4 +(1− s)1

4 p1(∇)
)

=−η
∗(

ω4
)
∧η

∗(
ω4
)

= η
∗(dω7

)
.

Here the crucial non-trivial step is the fourth (third line from below). In the last two steps we used that all 8-forms
on Σ̃7 vanish, so that only the 8-forms on Σ̃7× [0,1] with one factor of ds survive.
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The verification on the other two generators is immediate:

dη
∗(h3) = d

(
sH̃3
)

= ds∧ H̃3 + s ·
(

f̃ ∗
(
G4
)
− 1

4 f̃ ∗
(

p1(∇)
))

= η
∗(ω4)− 1

4 f̃ ∗
(

p1(∇)
)

= η
∗(dh3

)
,

dη
∗(ω4) =−ds∧dH̃3

+d
(

s · f̃ ∗
(
G4
)
+(1− s)1

4 f̃ ∗
(

p1(∇)
))

= 0

= η
∗(dω4

)
.

4 Hypothesis H implies M5 Hopf-WZ anomaly cancellation

In view of the rational cohomotopical interpretation of background C-field (Remark 3.3) and of the 6d Hopf-WZ
anomaly functional (Theorem 3.4) it is natural to hypothesize that the topological sector of the background C-field
should be required to be a cocycle in actual twisted Cohomotopy. This non-abelian charge-quantization condition
([FSS20c, §5.3]) is called Hypothesis H in [FSS19b]; we recall the precise statement as Def. 4.1 below.

We observe in Prop. 4.6 that, under Hypothesis H and in the absence of topological twisting, Theorem 3.4
exhibits the M5 Hopf-WZ anomaly functional as the homotopy Whitehead integral formula (see Remark 4.7 below)
for the Hopf invariant (recalled in Def. 4.4 below). This proves the anomaly cancellation (2) for the special case
of oriented differences of extended worldvolumes being the 7-sphere and for vanishing topological twist 1

4 p1
(Remark 2.2). Finally we establish a twisted/parametrized generalization of the integral Hopf invariant in Theorem
4.8, which proves the anomaly cancellation condition (2) generally.

Definition 4.1 (Hypothesis H [FSS19b]). In the situation of Def. 2.1 we say that:
(i) the background fields (G4,2G7) (7) satisfy Hypothesis H if they are classified as in [FSS19b, Def. 3.5] by an
actual cocycle c in twisted Cohomotopy [FSS19b, Section 2.1], hence if their classifying map in rational twisted
Cohomotopy from Remark 3.3 factors, up to homotopy, through the homotopy quotient S4�Sp(2) of the 4-sphere
canonically acted on by Sp(2)' Spin(5) (see [FSS20b, Prop. 2.1]), followed by the rationalization map (29);
(ii) the (extended or not) higher gauged sigma-model fields ( f̃ , H̃3) (11) satisfy Hypothesis H if the corresponding
lift (38) through the rationalized parametrized quaternionic Hopf fibration, which classifies them by Theorem 3.4,
factors as a lift through the actual parametrized quaternionic Hopf fibration hH�Sp(2) ([FSS19b, Prop. 2.22]):

Σ̃7

f̃

��

ĉ◦ f̃ //

rational Hopf-WZ term

2S̃(H̃3,G4 2G7)
,,

S7�Sp(2) rationalization //

Sp(2)-parametrized
quaternionic Hopf fibration

hH�Sp(2)

��

LR
(
S7�Sp(2)

)
LR(hH�Sp(2))

��

lift to actual
twisted Cohomotopy

rational
twisted Cohomotopy

X

τ

''
(G4,2G7)

cocycle in rational
twisted Cohomotopy

22
c // S4�Sp(2) rationalization //

vv

LR
(
S4�Sp(2)

)

BSp(2)

H̃3

~�
(43)
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Hopf-WZ term in terms of Fivebrane-extended Sp(2)-structure For transparent formulation of the proof of the
following integrality theorem (Theorem 4.8 below), it is useful to re-cast the result of Theorem 3.4 in terms of the
Fivebrane-extended Ŝp(2)-structure from Example 3.2:

Definition 4.2 (Quaternionic Hopf fibration parametrized over Fivebrane-extended Sp(2)). Consider the homo-
topy pullback (e.g. [FSS20c, Def. A.23]) of the Sp(2)-parametrized quaternionic Hopf fibration (43) along the
Fivebrane-extension Ŝp(2)! Sp(2) (Example 3.2). By the pasting law and the homotopy-restriction map on
∞-actions (see [SS20b, Prop. 2.23, 2.85]), we may denote this as follows:

S7�Ŝp(2)

(pb)

//

Sp(2)-parametrized
quaternionic Hopf fibration

hH� Ŝp(2)

��

S7�Sp(2)

hH�Sp(2)
Sp(2)-parametrized

quaternionic Hopf fibration
��

S4�Ŝp(2)

(pb)ρ̂S4

��

// S4�Sp(2)

ρS4

��
classifying space for

Fivebrane-extended Sp(2)-structure
BŜp(2)

hofib(χ8)
// BSp(2) classifying space for Sp(2)-structure

(BPS M2-brane backgrounds)

(44)

Notice, by Example 3.2, tat the minimal relative Sullivan model for the Ŝp(2)-parametrized quaternionic Hopf
fibration on the left of (44) is just like that of the Sp(2)-parametrized Hopf fibration on the right of (44), as given in
(38), except that all entries have the generator θ7 adjoined, with dθ7 = χ8 (universal rational Fivebrane-structure).

Remark 4.3 (The Hopf-WZ term in terms of Fivebrane Ŝp(2)-structure ). In terms of the Ŝp(2)-parametrized
quaternionic Hopf fibration from Def. 4.2, the content of Theorem 3.4 becomes the following transparent state-
ment:

By the assumption (32) that the Euler 8-class of X8 is equipped with a trivialization, hence that we have Ŝp(2)-

structure τ̂ (33) on X8, we may pull back the situation in (38) along BŜp(2)
hofib(χ8)// BSp(2) and regard the twisted

Cohomotopy classes c and ĉ◦ f̃ as having local coefficients in the Ŝp(2)-parametrized quaternionic Hopf fibration
from Def. 4.2.

In this formulation, Theorem 3.4, says equivalently that there is a single rational 7-class on the total space of
the universal Ŝp(2)-parametrized 7-sphere fibration, represented by the sum of the generators (37) and (28):

univers
al

Hopf-W
Z ter

m

2S̃ :=

fiberw
ise

volume form
on S7

ω̃7 +

univers
al

Fivebrane str
uctu

re

θ7 ∈ CE
(
l
(
S7�Ŝp(2)

))
,

[
S̃
]
∈ H7

(
S7�Ŝp(2); R

)
(45)

which is the universal avatar of the Hopf-WZ term (Def. 2.6, under H7
dR

(
Σ̃7
)
' R):

Σ̃7 ĉ ◦ f̃ //

f̃

��

LR
(
S7�Ŝp(2)

)
,

LR
(

hH�Ŝp(2)
)

��

Ω•dR

(
Σ̃7
)
oo

Hopf-WZ term

2S̃(H̃3,G4,G7)  [

universal
Hopf-WZ term[
2S̃:=ω̃7+θ7

]
OO

f̃ ∗

(
d θ7 = χ8

d ω̃7 =−χ8

)
OO

X8

τ̂

Fivebrane
structure

��

c

cocycle in rational
twisted 4-Cohomotopy

// LR
(
S4�Ŝp(2)

)

��

Ω•dR

(
X8
)
oo

fluxes

2G7−Θ7  [ ω7

G4  [ ω4__


d θ7 = χ8

d ω7 =−ω4∧ω4 +
(1

4 p1
)2

−χ8

d ω4 = 0


88

�+

BŜp(2)

 d θ7 = χ8

d χ8 = 0

d 1
2 p1 = 0



x�
H̃3

08

y�

(46)
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The plain Hopf invariant via homotopy Whitehead integral.
Before analyzing the implications of Hypothesis H in the full twisted case, we recall the definition of the plain

Hopf invariant (e.g. [MT86, p. 33]) and discuss how this follows from the untwisted Hopf-WZ term:

Definition 4.4 (Hopf invariant). For k ∈ N with k ≥ 1, let

S4k−1 φ // S2k (47)

be a continuous function between higher dimensional spheres, as shown. Then the homotopy cofiber space of φ

has integral cohomology given by

H p(cofib(φ),Z
)
'

{
Z | p ∈ {2k,4k}
0 | otherwise

Hence, with generators denoted

ω2k := ±1 ∈ Z ' H2k(cofib(φ),Z
)
, ω4k := ±1 ∈ Z ' H4k(cofib(φ),Z

)
,

there exists a unique integer
HI(φ) ∈ Z , s.t. ω2k∪ω2k = HI(φ) ·ω4k (48)

relating the cup-product square of the first to a multiple of the second. This integer is called the Hopf invariant
HI(φ) of φ . It depends on the choice of generators only up to a sign.

We make the following basic observation:

Lemma 4.5 (Recognition of Hopf invariants from Sullivan models). The unique coefficient in the minimal Sullivan
model for a map φ of spheres as in (47) is the Hopf invariant HI(φ) (Def. 4.4):

S4k−1 φ // S2k

(
d ω4k−1 = 0

)
oo HI(φ) ·ω4k−1 − [ ω4k−1

0 − [ ω2n

(
d ω4k−1 = −ω2k∧ω2k

d ω4k = 0

)
.

(49)

Proof. The homotopy cofiber is represented by the ordinary pushout of topological spaces as shown in the follow-
ing diagram on the left. This is algebraically represented by the pullback of dgc-algebras as shown on the right:

cofib(φ)

(po)S2k

;;

D4k

dd

S4k−1

φ

dd ::


d ω2k = 0

d ω4k−1 =−ω2k∧ω2k

+h ·ω4k

d ω4k = 0



(pb)

ω2k  [ ω2k

ω4k−1  [ ω4k−1

0  [ ω4k

yy

ω2k 7! 0

ω4k−1 7! ω4k−1

ω4k 7! ω4k

$$(
d ω2k = 0

d ω4k−1 = −ω2k∧ω2k

)
ω2k 7! 0

ω4k−1 7! h ·ω4k−1 ))

(
d ω4k−1 = ω4k

d ω4k = 0

)
ω4k−1  [ ω4k−1

0  [ ω4kvv
(d ω4k−1 = 0)

One reads off the pullback dgc-algebra at the top by inspection, with the coefficient h as shown, inherited from
the Sullivan model for φ in the bottom left. By the fact that Sullivan models compute the non-torsion cohomology
groups, comparison with (48) shows that h = HI(φ).
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Using this, we obtain the following corollary of Theorem 3.4:

Proposition 4.6 (Recovering the homotopy Whitehead formula). In the situation of Def. 2.1, consider the special
case when:
(i) the background C-field (7) satisfies Hypothesis H (Def. 4.1);
(ii) the extended worldvolume is the 7-sphere Σ := Σ̃7 := S7 (as in Lemma 2.3 and Example 22);
(iii) the Spin(8)-bundle over X is trivial, as well as the Spin(8)-connection ∇, and the trivial trivialization Θ7 = 0
of χ8(∇) (32) is chosen.
Then twice the Hopf-WZ anomaly functional 2S̃ (Def. 2.9, Lemma 2.10) is equal to the Hopf invariant HI

(
c ◦ f̃

)
(Def. 4.4) of the composite

S7 f̃ // X c // S4

of the extended sigma-model field f̃ (11) with the (untwisted) Cohomotopy cocycle c (43) that classifies the back-
ground fields:

2S̃
(

f̃ , H̃3
)
=
∫

S7

(
H̃3∧ f̃ ∗G4 + f̃ ∗2G4

)
= HI

(
c◦ f̃

)
∈ Z . (50)

Proof. Under the given assumption, the diagram (38) in Theorem 3.4 reduces to

Σ̃7 = S7

f̃

��

HI(c◦ f̃ ) // S7

hH

��

Ω•dR(S
7) oo

2S̃ ·volS7  [ ω̃7

gg

H̃3  [ h3

f̃ ∗G4  [ ω4

f̃ ∗2G7  [ ω7

OO

f̃ ∗

(
d ω̃7 = 0

)
OO

'
0 0 ω̃7

7! 7! 7!

h3 ω4 ω7
d h3 = ω4

d ω4 = 0

d ω7 = −ω4∧ω4


OO

ω4 ω7

7! 7!

ω4 ω7� ?

X c
// S4 Ω•dR(X) oo

G4  [ ω4

G7  [ ω7

(
d ω4 = 0

d ω7 = −ω4∧ω4

)
'

H̃3

|�

@H

'
η∗

(51)

This identifies the top horizontal map with the Hopf invariant, as shown, by Lemma 4.5.

Remark 4.7 (Whitehead integral formulas in the literature). The statement of Prop. 4.6 is essentially that of
[Ha78, p. 17] [GM81, §14.5], the integrand being the functional cup product-expression of [St49], recalled as a
homotopy period-expression in [SW08, Exmple 1.9]; but the proof as a special case of Theorem 3.4 is new and
more conceptual. In the special case that G7 = 0 (which is given if the classifying map X c

! S4 (43) is a smooth
function) the statement of Prop. 4.6 further reduces to that of the classical Whitehead integral formula for the Hopf
invariant [Wh47] (see [Ha78][BT82, Prop. 17.22]).

Our second Theorem 4.8 generalizes this integral situation to arbitrary oriented differences Σ̃7 of extended
worldvolumes and to non-trivial topological twists:
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Theorem 4.8 (6d Hopf-WZ anomaly functional is integral). Let target space X = X8 be an M2-brane background
for M-theory on 8-manifolds (Example 3.3), hence a smooth spin 8-manifold equipped with tangential Sp(2)-
structure (31) and with vanishing Euler class (33).

Then Hypothesis H (Def. 4.1) implies that the general 6d Hopf-Wess-Zumino anomaly functional of the M5-
brane (Def. 2.9, Lemma 2.10) takes values in the integers

π0

(
Mapsggd

smth

(
Σ̃7,X

)) 2S̃

,,// Z �
� // R[

f̃ , H̃3
]

7−!
∫̂
Σ7

(
H̃3∧ f̃ ∗

(
G4 +

1
4 p1(∇)

)
+ f̃ ∗2G7

) (52)

and hence that the exponentiated action (2) of the 6d WZ term of the M5-brane (Def. 2.6) is well-defined.

Proof. Recall that,

(a) by Theorem 3.4, the anomaly term is characterized as a homotopy lift through the rationalization LR
(
hH�

Sp(2)
)

of the parametrized quaternionic Hopf fibration,

(b) by Hypothesis H this comes from a lift through the actual Sp(2)-parametrized Hopf fibration hH�Sp(2) (43),

c) by (33) this, in turn, comes from a lift through the Ŝp(2)-parametrized Hopf fibration hH�Ŝp(2) (Def. 4.2).

Therefore it is now sufficient to show that the rational class (46) of the universal Hopf-WZ term on the total
space of the universal Ŝp(2)-parametrized 7-sphere fibration (44) is the rational image of an integral cohomology
class.

First, consider the Gysin sequence (see e.g. [Sw75, 15.30]) for the universal 4-spherical fibration in the bottom
right of (44)

S4 hofib(ρS4) // S4�Sp(2)
ρS4 // BSp(2) .

Observe that the integral cohomology groups of the classifying space (see e.g. [Pi91][Ka06, (12)])

H•
(
BSp(2),Z

)
' Z

[1
2 p1,χ8

]
(53)

are non-torsion groups concentrated in even degrees. Hence the 5-class controlling this Gysin sequence vanishes,
and so the long exact sequence breaks up into short exact sequences of this form:

0 // H•
(
BSp(2); Z

) ρ∗
S4 // H•

(
S4�Sp(2); ,Z

) ∫
S4 // H•−4

(
BSp(2); Z

)
// 0 . (54)

Moreover, since the integral cohomology groups (53) have no torsion, these short exact sequences imply that also

H•
(
S4�Sp(2); Z

)
are non-torsion groups. (55)

Now observe, by [FSS19b, Prop. 3.13], that

Γ̃4 := ω4 +
1
4 p1 ∈ H4(S4�BSp(2); Z

)
−! H4(S4�BSp(2); R

)
(56)

is an integral class, being the universal integral shifted C-field flux density (9). Hence, by (55), the rational
trivialization from (38)

dω7 =−ω4∧ω4 +
(1

4 p1
)2−χ8

=−
(
Γ̃4∧ Γ̃4− 1

2 p1∧ Γ̃4
)
−χ8

implies that also the following integral cohomology class vanishes:[
Γ̃4∪ Γ̃4− 1

2 p1∪ Γ̃4 +χ8

]
= 0 ∈ H8(S4�Sp(2); Z

)
. (57)

Consider next the integral Gysin sequence corresponding to the 3-spherical fibration which is the parametrized
quaternionic Hopf fibration in the top right of (44):

S3 hofib(hH�G) // S7�Sp(2)
hH�Sp(2) // S4�Sp(2) . (58)
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Since, rationally, S7�Sp(2) is obtained from S4�Sp(2) by adjoining the relation

dh3 = ω4− 1
4 p1

= Γ̃4− 1
2 p1 ,

(59)

by (38), it follows from [FSS19b, Prop. 2.5 (44)] that ω4− 1
4 p1 is the rational image of the integral Euler class of

(58). Consequently,
Γ̃4− 1

2 p1 ∈ H4(S4�Sp(2); Z
)

(60)

is the integral 4-class controlling the Gysin sequence of (58), which therefore reads:

· · · // H7
(
S4�Sp(2); Z

) (hH�Sp(2))∗ // H7
(
S7�Sp(2); Z

) ∫
S3 // H4

(
S4�Sp(2); Z

) ∪(Γ̃4− 1
2 p1) // H8

(
S4�Sp(2); Z

)
// · · ·

(61)
Now consider pulling back this situation along the homotopy fiber of χ8 (28) to yield the sequence of spherical

fibrations on the left of (44). After this pullback, the Euler class summand in (57) disappears, and we obtain this
vanishing class: [

Γ̃4∪ Γ̃4− 1
2 p1(T X)∪ Γ̃4

]
= 0 ∈ H8(S4�Ŝp(2); Z

)
. (62)

With this, the integral Gysin sequence of the 3-spherical fibration in the top left of (44)

S3 hofib(hH�G) // S7�Ŝp(2)
hH� Ŝp(2) // S4�Ŝp(2)

is seen to be of the following form:

· · · // H7
(
S4�Ŝp(2); Z

) (hH� Ŝp(2))∗ // H7
(
S7�Ŝp(2); Z

) ∫S3 // H4
(
S4�Ŝp(2); ,Z

) ∪
(

Γ̃4− 1
2 p1(T X)

)
// H8
(
S4�Ŝp(2); Z

) // · · ·

2S̃ � // Γ̃4
� // Γ̃4∪ Γ̃4− 1

2 p1(T X)∪ Γ̃4︸ ︷︷ ︸
=0

(63)

Here, in the bottom row, we have observed that the image of Γ̃4 (56) under forming cup product with the 4-class
(60) is just the vanishing class (62), which by exactness of the Gysin sequence implies that there exists an integral
7-class

2S̃ ∈ H7(S7� Ŝp(2); Z
)
, (64)

whose integration over the S3-fibers is Γ̃4, as shown. Since, by (59) and [FSS19b, Prop. 2.5 (45)], the fiberwise
volume form is h3, this is, rationally, the same fiber integration as that of (46), which by the exactness of the Gysin
sequence (63), now with rational coefficients

· · · // H7
(
S4�Ŝp(2); R

) (hH� Ŝp(2))∗ // H7
(
S7�Ŝp(2); R

) ∫
S3 // H4

(
S4�Ŝp(2); R

)
// · · ·

D � //
(

h3∧(ω4+
1
4 p1)+ω7+θ7

−2S̃

)
� // 0

(65)

implies that the integral class 2S̃ (64) differs from the rational class (46) by a 7-class D pulled back from S4�Ŝp(2),
as shown. But by (53) and (38) there is no non-trivial 7-class on S4�Ŝp(2). Hence the equality

2S̃ = h3∧ Γ̃4 +(ω7 +θ7)

holds, and so the anomaly integrand (46) is indeed the rational image of an integral class (64) and hence has itself
integral periods:

2S̃_

��

H7
(
S7�Ŝp(2); Z

) (
ĉ◦ f̃

)∗
//

��

H7
(
Σ̃7; Z

)
��

∫
Σ̃7 // Z

� _

��
H7
(
S7�Ŝp(2); R

) (
ĉ◦ f̃

)∗
// H7
(
Σ̃7; R

) ∫
Σ̃7 // R

h3∧(ω4+
1
4 p1)

+ω7+θ7

� // H̃3∧ f̃ ∗G̃4

+ f̃ ∗2G7

� // 2S̃ M5
WZ

(
f̃ , H̃3

)
= S̃ 1M5

WZ

(
f̃ , H̃3

)
.

(66)

21



References
[Ad60] F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20–104,

[jstor:1970147].
[Ah96] O. Aharony, String theory dualities from M theory, Nucl. Phys. B476 (1996), 470-483,

[arXiv:hep-th/9604103].
[Ar18] A. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L∞-

algebroid, [arXiv:1804.07303].
[BLNPST97] I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Sorokin and M. Tonin, Covariant Action for

the Super-Five-Brane of M-Theory, Phys. Rev. Lett. 78 (1997) 4332-4334, [arXiv:hep-th/9701149].
[BB96] K. Becker and M. Becker, M-Theory on Eight-Manifolds, Nucl. Phys. B477 (1996) 155-167,

[arXiv:hep-th/9605053].
[BT82] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics 82, Springer,

1982, [doi:10.1007/BFb0063500].
[BG76] A. Bousfield and V. Gugenheim, On PL deRham theory and rational homotopy type, Mem. Amer. Math.

Soc. 179 (1976), [ams:memo-8-179].
[Du96] M. Duff, M-Theory (the Theory Formerly Known as Strings), Int. J. Mod. Phys. A11 (1996), 5623-5642,

[arXiv:hep-th/9608117].
[Duf99] M. Duff, The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP 1999.
[Du19] M. Duff, in: G. Farmelo, The Universe Speaks in numbers, interview 14, 2019,

[grahamfarmelo.com/the-universe-speaks-in-numbers-interview-14]
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