
Fundamental weight systems are quantum states

David Corfield, Hisham Sati, Urs Schreiber

May 10, 2021

Abstract

Weight systems on chord diagrams play a central role in knot theory and Chern-Simons theory; and more
recently in stringy quantum gravity. We highlight that the noncommutative algebra of horizontal chord diagrams
is canonically a star-algebra, and ask which weight systems are positive with respect to this structure; hence we
ask: Which weight systems are quantum states, if horizontal chord diagrams are quantum observables? We ob-
serve that the fundamental gl(n)-weight systems on horizontal chord diagrams with N strands may be identified
with the Cayley distance kernel at inverse temperature β = ln(n) on the symmetric group on N elements. In
contrast to related kernels like the Mallows kernel, the positivity of the Cayley distance kernel had remained
open. We characterize its phases of indefinite, semi-definite and definite positivity, in dependence of the in-
verse temperature β ; and we prove that the Cayley distance kernel is positive (semi-)definite at β = ln(n) for
all n = 1,2,3, · · · . In particular, this proves that all fundamental gl(n)-weight systems are quantum states, and
hence so are all their convex combinations. We close with briefly recalling how, under our “Hypothesis H”, this
result impacts on the identification of bound states of multiple M5-branes.
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1 Introduction

In investigations of problems in string/M-theory ([SS19b], surveyed below in §4), we encountered the following
question at the interface of quantum topology and quantum probability theory:

Question 1.1. Which weight systems on horizontal chord diagrams (Def. 2.2) are quantum states (Def. 2.15) with
respect to the star-operation of reversal of strands (Prop. 2.9)?

It is known that all weight systems are generated, in a sense ([BN96, Cor. 2.6], review in [SS19b, §3.4]),
from Lie algebra weight systems w(g,V) induced by a metric Lie module (g,V) ([BN95, §2.4], review in [CDM11,
§6][SS19b, §3.3]), and in fact from just those with g := gl(n) and V := n the fundamental representation (in the
sense of [BN96, Fact 7]). Here we prove that all these fundamental weight systems (Def. 2.4) are quantum states:

Theorem 1.2. The fundamental gl(n)-weight systems w(gl(n),n) for n ∈N+ are quantum states on horizontal chord
diagrams on N strands, for all N ∈ N+; hence so are the mixtures (Ex. 2.16) of their operator images (Ex. 2.17).

This turns out to be a consequence of the following more general theorem in geometric group theory:

It is well-known that the value of a fundamental Lie algebra weight system w(gl(n),n) depends only on the
permutation induced (5) by a horizontal chord diagram ([BN96, Prop. 2.1], review in §2.1 below). More concretely,
we highlight (Prop. 2.25) that this is the special value at inverse temperature β = ln(n) of the Cayley distance kernel
(Def. 2.23) on permutations of N elements:

w(gl(n),n)
fundamental

weight system

[
e−β ·dC

]
for β = ln(n)

Cayley distance kernel at
log-integral inverse temperature

Prop. 2.25

Positive (semi-)definite kernels are of interest notably in geometric group theory (e.g. [DK18, §2.11]) and in ma-
chine learning (e.g. [HSS08][MV17]). While related kernels have recently been proven to be positive-definite
[JV18], the archetypical Cayley distance kernel was known to become indefinite at sufficiently low inverse tem-
perature β , while its general behavior with β had remained unknown (Rem. 2.24). Here we prove:

Theorem 1.3 (Phases of the Cayley distance kernel). The Cayley distance kernel e−β ·dC on the symmetric group
on N elements is:

indefinite for eβ ∈ [1,N−1]\{1,2, · · · ,N−1}

positive semi-definite for eβ ∈ {1,2, · · · ,N−1}
 ⇒ fundamental weight systems

w(gl(n),n) are quantum states
positive definite for

 eβ ∈ {N,N +1,N +2, · · ·}

eβ > N−1
N√2−1

Proof. This is the content of Prop. 3.9, Prop. 3.13, Prop. 3.16, and Prop. 3.17 below. A slick proof for just the
cases β = ln(n), n ∈ N+, follows, alternatively, by invoking Schur-Weyl duality; this is shown in Prop. 3.15.

For illustration, the blue graph in Figure 1
shows, vertically, the value of the smallest
eigenvalue (rescaled by e3β , for visibility) of
the Cayley distance kernel on the symmetric
group Sym(4), in dependence of the exponenti-
ated inverse temperature eβ (running horizon-
tally). This means: where the graph is neg-
ative/zero/positive, the Cayley distance kernel
is indefinite/positive semi-definite/positive def-
inite, respectively. See also [BN21] for more
such computer algebra analysis of the situation.

min
(
EigVals[e−β ·dC ]

)
· e3β

eβ

w(gl(2),2)w(gl(1),1) w(gl(3),3)

Figure 1. Smallest eigenvalue of the Cayley distance kernel on Sym(4).

Acknowledgements. We thank Abdelmalek Abdesselam, Dror Bar-Natan, Carlo Collari and Jean-Philippe Vert
for comments and discussion.
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2 Weights, states and kernels

We briefly recall relevant definitions and facts, and then point out some close relations between the following
topics:

- §2.1 – Weight systems on chord diagrams.
- §2.2 – Quantum states on quantum observable algebras.
- §2.3 – Cayley distance kernels on symmetric groups.

Notation 2.1. Throughout we consider the following parameters:

(i) N ∈ N+ the number of strands in horizontal chord diagrams (Def. 2.2), equivalently:
the number of elements on which permutations act;

(ii) n ∈ N+ labels the fundamental weight systems w(gl(n),n) (Def. 2.4);

(iii) β ∈ R≥0 an inverse temperature parameter (Def. 2.23),
often specialized to β = ln(n) (Prop. 2.25).

The ground field is the complex numbers C, in which the complex conjugate of z is denoted z̄.

2.1 Weight systems on chord diagrams

Definition 2.2 (Horizontal chord diagrams and weight systems ([BN96][CDM11, §5.11][SS19b, §3.1])).
(i) The monoid of horizontal chord diagrams is the free monoid on the set of pairs of distinct strands

D
pb

N := FreeMonoid
({

(i j) |1≤ i < j ≤ N
})

, (1)

where the generator (i j) is called the chord connecting the ith and jth strand. Hence a general horizontal chord
diagram is a finite list of chords

D = (i1 j1)(i2 j2) · · ·(id jd) , (2)

possibly empty, and the product operation “·” on horizontal chord diagrams is concatenation of these lists, the
neutral element being given by the empty list. For example:

(ik) · (i j) = (ik)(i j)


i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


· i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


=



i j k

· · · · · · · · · · · ·

· · · · · · · · · · · ·


(3)

(ii) The map that sends the chord (i j) to the permutation transposing the ith and jth of N ordered elements

ti j :=
(

1 2 · · · i · · · j · · · N−1 N
1 2 · · · j · · · i · · · N−1 N

)
(4)

extends uniquely to a monoid homomorphism from horizontal chord diagrams (1) to the symmetric group on N
elements:

D
pb

N Sym(N)

(i1 j1) · · ·(id jd) 7−! ti1 j1 ◦ · · · ◦ tid jd

perm

(5)
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A crucial role in the following discussion is played by the number of cycles in the permutation underlying a chord
diagram:

set of
horizontal chord diagrams

with N strands

D
pb

N
perm

take chord ti j
to transposition i ↔ j

and consecutive chords to
composition of transpositions

//

set of
permutations of

N elements

Sym(N)
#cycles

number of
cycles (orbits)

of a permutation

// {1, · · · ,N} ⊂ N (6)

(iii) The algebra of horizontal chord diagrams

A
pb

N := C[Dpb
N ]/(2T,4T) (7)

is the associative unital algebra, graded by number of chords, which is spanned by the monoid of horizontal chord
diagrams (1) and then quotiented by the ideal generated by:
(a) the 2T relations:

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


∼



· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


(8)

(b) the 4T relations:



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


+



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


∼



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


+



· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


(9)

(iv) The complex vector space of weight systems on horizontal chord diagrams is the graded linear dual space

W
pb

N :=
(
A

pb

N
)∗

to (7); hence a weight system is a complex-linear map

w : A
pb

N −! C (10)

and is of degree −d if it is supported on chord diagrams of degree d.

Remark 2.3 (Dependence on algebra structure). The definition of weight systems (10) according to Def. 2.2 does
not depend on the algebra structure on the space of chord diagrams (7), but the specialization of weight systems to
quantum states (Def. 2.12) does.

Fundamental Lie algebra weight systems. Recall from [BN96] (reviewed in [SS19b, §3.4]) that the main source
of weight systems on horizontal chord diagrams (Def. 2.2) are metric Lie representations ρ : g⊗V−! V of metric
Lie algebras g

MetricLieModules
w(−) // W

pb

N , (11)
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where the Lie algebra weight system w(g,V) sends a chord diagram D∈D
pb

N to (see (18) for illustration): the number
obtained by labelling all strands by V , all vertices by ρ , all chords by g, then closing all strands to circles using the
metric, regarding the result as Penrose notation for a rank-0 tensor in the category of finite-dimensional complex
vector spaces and evaluating it as such to a complex number.

Definition 2.4 (Fundamental gl(n)-weight system). For n ∈ N+, we write

w(gl(n),n) : A
pb

N −! C (12)

for the normalized Lie algebra weight system (11) induced by the defining complex n-dimensional Lie representa-
tion n of the general complex-linear Lie algebra gl(n) equipped with the metric given by the trace in n'C Cn.

Example 2.5 (Fundamental metric on gl(2)). For n = 2 and with respect to the complex linear basis of gl(2) given
by {

x0 :=
[

1 0
0 1

]
, x1 :=

[
1 0
0 −1

]
, x+ :=

[
0 0
1 0

]
, x− :=

[
0 1
0 0

]}
(13)

the metric on gl(2) according to Def. 2.4 has components

(
gi j := g(xi,x j)

)
i, j∈{0,1,+,−} =


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0

 . (14)

Lemma 2.6 (Fundamental weights and braiding [BN96, Fact 6]). The fundamental metric on gl(2) (Ex. 2.5) has
the special property that it makes the value of the fundamental gl(2)-weight system (12) on a single chord be the
braiding operation:

Metric
Lie algebra

(g,g)

Metric contraction of fundamental action tensors

fu
nd

am
en

ta
l

re
pr

es
en

ta
tio

n

V V

V V

virtual gluon line
quark line

ρ ρ = gi jxi⊗ x j ∈ End(V ⊗V )

(
gl(2), tr2(−·−)

) V V

V V

=
1
2 x0⊗ x0 +

1
2 x1⊗ x1

+ x+⊗ x−+ x−⊗ x+

(15)

Proof. By explicit computation in the canonical linear basis (13) with its metric components (14). For example:

gi jxi⊗ x j

([
1
0

]
⊗
[

0
1

])
= 1

2

[
1
0

]
⊗
[

0
1

]
+ 1

2

[
1
0

]
⊗
[

0
−1

]
︸ ︷︷ ︸

=0

+

[
0
1

]
⊗
[

1
0

]
+

[
0
0

]
⊗
[

0
0

]

Corollary 2.7 (Fundamental weight systems in terms of permutation cycles ([BN96, Prop. 2.1])). The value of the
fundamental gl(2)-weight system w(gl(2),2) (12) on a horizontal chord diagram D ∈A

pb

N equals, up to normaliza-
tion, 2 taken to the power of the number of cycles (6) in the permutation perm(D) (5) corresponding to the chord
diagram:

w(gl(2),2)([D]) =

normalization︷︸︸︷
2−N ·2#cycles(perm(D))

= eln(2)·
(

#cycles(perm(D))−N
)
.

(16)

Generally, the analogous statement is true for the fundamental gl(n)-weight system (Def. 2.4) for all n ∈N, n≥ 2:

w(gl(n),n)([D]) = eln(n)·
(

#cycles(perm(D))−N
)
. (17)
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For example:

1 2 3

n3·w(gl(n),n)(−)
7−−−−−−−!

fundamental
gl(n)-weight

system

n n n

ρ ρ

ρ ρ

ρ ρ

close

=

n n n

close

=

n n

= n2

(18)

2.2 Quantum states on quantum observable algebras

Quantum observables. The following Definition 2.8 is often considered for Banach algebras, where it yields
the concept of C∗-algebras (e.g. [Me95, §A4][La17, Def. C.1]. We need the simple specialization to finite-
dimensional star-algebras (e.g. [BGQR13, §II]), or rather the evident mild generalization of that to degreewise
finite-dimensional graded algebras:

Definition 2.8 (Star-algebra). A star-algebra, for the present purpose, is a degreewise finite-dimensional graded
associative algebra A over the complex numbers, equipped with an involutive anti-linear anti-homomorphism
(−)∗ (the star-operation), hence with a function

A
(−)∗ // A

which satisfies:

(0) (degree): deg(A) = deg(A∗) for all homogeneous A ∈A
(1) (anti-linearity):

(
a1A1 +a2A2

)∗
= ā1A∗1 + ā2A∗2

for all ai ∈ C, Ai ∈A(2) (anti-homomorphism):
(
A1A2

)∗
= A∗2A∗1

(3) (involution): ((A)∗)∗ = A

where āi denotes the complex conjugate of ai.
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We highlight the following example:

Proposition 2.9 (Star-structure on horizontal chord diagrams). The algebra of horizontal chord diagrams (7)
becomes a complex star-algebra (Def. 2.8) via the star-operation

A
pb

N
(−)∗ // A

pb

N

a1 ·D1 +a2 ·D2 7−! ā1 ·D∗1 + ā2 ·D∗2 ,
(19)

where

D
pb

N
(−)∗ // D

pb

N (20)

is the operation that reverses the orientation of strands in a chord diagram (1), hence which reverses the ordering
of the corresponding lists (2).

For example: 

a ·


1 2 3 4 5





∗

= ā ·


1 2 3 4 5


Proof. The statement evidently holds before quotienting out the 2T-relations (8) and 4T-relations (9) in (7); and
the reversal operation manifestly preserves these relations, hence preserves the ideals they generate, hence passes
to the quotient.

More abstractly, this star-involution is the involutory antipode of the Hopf algebra structure on the homology
of loop spaces ([MM65, p. 262]) under the identification of horizontal chord diagrams with the homology of the
loop space of configuration spaces of points ([Koh02, Thm. 4.1]); see around (51) in §4 below for more on this
perspective.

Proposition 2.10 (Reversed chord diagrams give inverse permutations). The function (5) that sends horizontal
chord diagrams to permutations sends reversed chord diagrams (20) to inverse permutations:

D
pb

N Sym
(
N
)

D
pb

N Sym
(
N
)

perm

(−)∗ (−)−1

perm

perm(D∗) =
(
perm(D)

)−1 (21)

Proof. This follows immediately from the definition (2) and the fact that any transposition is its own inverse.

Example 2.11 (Perm is a star-monoid homomorphism). Since perm is a monoid homomorphism by construction
(5) in Def. 2.2, Prop. 2.10 may be read as saying that it is in fact a star-monoid homomorphism. In particular, we
have:

perm
(
D∗1 ·D2

)
= perm(D1)

−1 ◦perm(D2) .
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Quantum states. The following is the standard mathematical formulation of what are often called mixed states or
density matrices in quantum physics, subsuming, as a special case, the traditional pure states that may be identified
with elements of a Hilbert space.

Definition 2.12 (State on a star-algebra. e.g. [Me95, §I.1.1][La17, Def. 2.4]). Given a star-algebra (A ,(−)∗)
(Def. 2.8), a state is a complex-linear function

ρ : A −! C (22)
which satisfies:

(1) (positivity): ρ
(
A∗A

)
≥ 0 ∈ R⊂ C for all A ∈A ;

(2) (normalization): ρ(1) = 1 for 1 ∈A the algebra unit.

Remark 2.13 (S-Matrices – part of the GNS construction, e.g. [KR97, Prop. 4.5.1 & p. 270][BGQR13, (II.5)]).
Given a star-algebra (A ,(−)∗) (Def. 2.8), we may identify any linear form ρ (22) on the underlying vector space
A with the following sesquilinear form

A ⊗A C

(A1,A2) 7−! ρ
(
A∗1 ·A2

)
.

ρ((−)∗·(−))

(23)

Observe that a linear form is a state (Def. 2.12) precisely if its induced sesquilinear form is (normalized to ρ(1∗ ·
1) = 1 and) positive semi-definite or positive definite:

ρ(−) is a state ⇔ ρ
(
(−)∗ · (−)

)
is normalized and positive (semi-)definite.

Remark 2.14 (Positivity). The point of Def. 2.12 is the positivity condition (which might rather deserve to be
called semi-positivity, by Rem. 2.13; but positivity is the established terminology here) while the normalization
condition is just that: If ρ is a (semi-)positive linear map with ρ 6= 0 then 1

ρ(1) ·ρ is a state.

Definition 2.15 (Weight systems that are quantum states). Here we say that a weight system on horizontal chord
diagrams (Def. 2.2) is a quantum state if it is a state (Def. 2.12) with respect to the canonical star-algebra structure
on horizontal chord diagrams from Prop. 2.9.

We will show that the fundamental weight systems (Def. 2.4) are quantum states (Def. 2.15) by regarding them
as kernels in geometric group theory, in Prop. 2.25 below. Notice that from any set of quantum states like this, we
obtain at least a convex hull of all their operator images as further states:

Example 2.16 (Convex combinations of quantum states). For k ∈ N+ the mixture of a k-tuple
(
ρi : A ! C

)
1≤i≤k

of quantum states (Def. 2.15) for probability distribution
(

pi ∈ R≥0
)

1≤i≤k, ∑
i

pi = 1 is the quantum state given by

the convex linear combination ∑
i

pi ·ρi ∈ A ∗ .

Example 2.17 (Operator-state correspondence). For ρ : A ! C any quantum state (Def. 2.12), every non-null
observable O ∈A , ρ(O∗O) 6= 0 induces another state ρO given by ρO

(
A
)

:= 1
ρ(O∗O) ·ρ

(
O∗ ·A ·O

)
.

2.3 Cayley distance kernels on symmetric groups

Cayley distance metric on symmetric groups. The following is at the heart of geometric group theory (e.g.
[DK18]).

Definition 2.18 (Cayley distance (e.g. [Di88, p. 112])). The Cayley graph of the symmetric group Sym(N) is the
undirected graph whose vertices are the group elements and which has exactly one edge between any pair of group
elements if they differ by composition with a single transposition (4) on the right:

σ σ ◦ ti j

8



We denote the corresponding Cayley graph distance function by

dC : Sym(N)×Sym(N) N ,

hence:

dC(σ1, σ2) = dC(e, σ
−1
1 ◦σ2) =


minimal number k of transpositions{

ti1 j1 , · · · , tik jk ∈ Sym(N)
}

such that
σ
−1
1 ◦σ2 = ti1 j1 ◦ · · · ◦ tik jk .

(24)

Example 2.19 (Cayley graph of Sym(3)). The Cayley graph of the symmetric group on N = 3 elements, with
edges for arbitrary transpositions, looks as follows:

123 132

321
231

213 312

(25)

Here, e.g., “231” is shorthand for the permutation σ ∈ Sym(3) with σ(1) = 2, σ(2) = 3, σ(3) = 1. If we order
these 6 permutations to a linear basis for C[Sym(N)] as follows[

123, 213, 132, 321, 312, 231
]
,

then the matrix of Cayley distances (24) between these is

[
dc
]

=



0 1 1 1 2 2
1 0 2 2 1 1
1 2 0 2 1 1
1 2 2 0 1 1
2 1 1 1 0 2
2 1 1 1 2 0

 . (26)

For later reference, we record the basic properties of the Cayley distance:

Lemma 2.20. The Cayley distance (24) is left invariant: ∀
σ∈Sym(N)

dC
(
σ ◦ (−), σ ◦ (−)

)
= dC

(
−,−

)
.

Lemma 2.21 (Cayley’s formula, e.g. [Di88, p. 118]). The Cayley distance function (24) equals N minus the
number of cycles in the permutation:

dC(σ1,σ2) = N−#cycles(σ−1
1 ◦σ2) . (27)

Proof. Since both sides of the equation are invariant under left multiplication (Lemma 2.20), it is sufficient to show
the statement for σ1 = e, hence for any σ = σ2. Here, notice first that any cyclic permutation of k+1 elements is
the product of no fewer than k transpositions:(

1 2 3 · · · k+1
k+1 1 2 · · · k

)
= tk,k−1 ◦ · · · ◦ t3,2 ◦ t2,1 ◦ t1,k+1︸ ︷︷ ︸

k transpositions

, (28)

where we understand that for k = 0 the composite on the right is the neutral element. But every permutation σ

is the composite of such cyclic permutations, one for each of its cycles, with those in different cycles commuting
with each other. Since (28) has one transposition fewer than the number of elements, this implies that for every
cycle the minimum number of transpositions needed is reduced by one.
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Lemma 2.22 (Cayley distance is preserved by inclusion of symmetric groups). The canonical inclusion of sym-
metric groups

Sym(N) Sym(N +1)i

preserves Cayley distance (Def. 2.18):

∀
σ1 ,σ2
∈Sym(N)

dC(σ1,σ2) = dC
(
i(σ1), i(σ2)

)
.

In other words, the Cayley distance matrix [dC] of Sym(N) is the principal submatrix of that of Sym(N +1) on the
permutations in the image of the inclusion i.

Proof. Observing that #cycles
(
i(σ1)

−1 ◦ i(σ2)
)
= #cycles

(
σ
−1
1 ◦σ2

)
+ 1 , the claim follows by Cayley’s formula

(Lemma 2.21).

Cayley distance kernels on symmetric groups. We now consider the corresponding kernels.

Definition 2.23 (Cayley distance kernel). The Cayley distance kernel at inverse temperature β ∈ R≥0 is the func-
tion on pairs of permutations that is given by the exponential of the Cayley distance (Def. 2.18) weighted by
−β :

e−β ·dC(−,−) : Sym(N)×Sym(N) R .

Understood as a matrix, we naturally conflate this with its induced sesqui-linear form:

C[Sym(N)]⊗C[Sym(N)] C(
∑

σ1∈Sym(N)
aσ1 ·σ1, ∑

σ2∈Sym(N)
bσ2 ·σ2

)
7−! ∑

σ1 ,σ2
∈Sym(N)

āσ1 ·bσ2 · e−β ·dC(σ1,σ2) .

〈−,−〉β

(29)

Remark 2.24 (Related literature). The Cayley distance kernel (Def. 2.23) is mentioned, for instance, in [FV86,
§4][DH92, §4][FV93, p. xx], but has received less attention than related kernels in geometric group theory. Notably
the closely related Mallows kernel (see, e.g., [Di88, §6B]), which is instead formed from the Kendall distance dK

given by the minimum number of adjacent permutations, is widely studied and has recently been proven [JV18] to
be positive definite, generally. In contrast, the Cayley distance kernel may become indefinite for small β (Example
3.1) and its general dependency on β had remained unknown.

We now relate Cayley distance kernels to the weight systems from §2.1:

Proposition 2.25 (Fundamental gl(n)-weight system is Cayley distance kernel at β = ln(n)). The fundamental
gl(n)-weight system w(gl(n),n) (Def. 2.4), regarded as a sesquilinear form (23) on horizontal chord diagrams of
N strands, equals the Cayley distance kernel (Def. 2.23) at inverse temperature β = ln(n) on the corresponding
permutations (5) of N elements:

wn

((
∑

i
ai[Di]

)∗
·
(
∑

j
b j[D j]

))
= ∑

i, j
āib j · e−ln(n)·dC

(
perm(Di),perm(D j)

)
. (30)

Proof. We compute as follows:

wn

((
∑

i
ai[Di]

)∗
·
(
∑

j
b j[D j]

))
= ∑

i, j
āib j ·wn

(
D∗i ·D j

)
= ∑

i, j
āib j · e

ln(n)·
(

#cycles
(

perm(D∗i ·D j)
)
−N

)

= ∑
i, j

āib j · e
ln(n)·

(
#cycles

(
perm(D∗i )

−1◦perm(D j)
)
−N

)

= ∑
i, j

āib j · e−ln(n)·dC

(
perm(Di),perm(D j)

)
.

(31)
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Here the first step is sesqui-linearity, the second step is Cor. 2.7, the third step is Ex. 2.11, and the last step is
Lemma 2.21.

It follows immediately that the fundamental gl(n)-weight system on A
pb

N is a quantum state precisely if the
Cayley distance kernel on Sym(N) is positive (semi-)definite at β = ln(n):

w(gl(n),n) is a quantum state ⇔ e−ln(n)·dC is positive (semi-)definite . (32)

Therefore we now turn to analyzing the positivity of the Cayley distance kernel.

3 Positivity of the Cayley distance kernel

We discuss the (non-/semi-)positivity of the Cayley distance kernel (hence of its lowest eigenvalue) in dependence
of the inverse temperature parameter β .
Throughout, we take semi-definite to imply that there is at least one vanishing eigenvalue.

To start with, it is instructive to look at the first non-trivial case:

Example 3.1 (Cayley distance kernel on Sym(3)). In the case N = 3, with the matrix of Cayley distances given
by (26) in Example 2.19, the eigenvalues of the corresponding matrix

[
e−β ·dc

]
representing the Cayley distance

kernel (29) are readily computed to be
e2β ±3eβ +2

e2β
and

e2β −1
e2β

,

where the first two have multiplicity 1, while the last has multiplicity 4. For the given domain of the parameter
β ∈ R≥0 all these eigenvalues are always positive, except for one which may change sign as β varies:

e2β −3eβ +2 is


= 0 for β = ln(1),
< 0 for β ∈

(
ln(1), ln(2)

)
,

= 0 for β = ln(2),
> 0 for β > ln(2).

It follows for the Cayley distance kernel on Sym(3) that:

[
e−β ·dC

]
is


positive semi-definite for β = ln(1),

indefinite for β ∈
(
ln(1), ln(2)

)
,

positive semi-definite for β = ln(2),
positive definite for β > ln(2).

(33)

In general, the spectrum of the Cayley distance kernel has an explicit expression in terms of the representation
theory of the symmetric group:

Definition 3.2 (Irreducible characters of the symmetric groups). For λ a partition of N ∈ N, hence a weakly
decreasing sequence of positive natural numbers that sum to N:

λ = (λ1 ≥ λ2 ≥ λ3 ≥ ·· ·) , ∑
i

λi = N , λi ∈ N+ , (34)

we write
χ
(λ )(−) := Tr

(
ρ
(λ )(−)

)
: Sym(N)−! C (35)

for the irreducible character corresponding to the irreducible complex linear representation of Sym(N)

ρ
(λ ) : Sym(N)−! GL(N,C) (36)

which is the Specht module labeled by λ (e.g. [Sag01, §2.3]).
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Observing that the exponentiated Cayley distance function from the origin

σ 7−! e−β ·dC(e,σ) = e−β ·Neβ ·#cycles(σ)

is a class function (manifestly so by Cayley’s formula (27) used on the right), the following Prop. 3.3 is the special
case of a general character formula for kernels on finite groups [RKHS02, Thm. 1.1][Ka02, Cor. 5.4] (for just the
eigenvalues this is due to [DS81, Cor. 3], with a streamlined derivation given in [FG15, Thm. 4.3], generalizing a
classical result for abelian groups [Ba79, Cor. 3.2] following [Lo75]):

Proposition 3.3 (Character formula for spectrum of Cayley distance kernel). For all N ∈ N+ and β ∈ R≥0, the
eigenvalues of the Cayley distance kernel

[
e−β ·dC

]
are

(i) indexed by the partitions λ of N (34);
(ii) given by the formula (

EigVals[e−β ·dC ]
)

λ
=

e−β ·N

χ(λ )(e) ∑
σ∈Sym(N)

eβ ·#cycles(σ) ·χ(λ )(σ) , (37)

where χ(λ ) is the corresponding irreducible character (35);

(iii) appearing with multiplicity
(
χ(λ )(e)

)2 (the square of the dimension of the λ th irreducible representation);
(iv) whose corresponding eigenvectors are the (complex conjugated) component functions(

EigVects[e−β ·dC ]
)

λ ,i, j =
(
ρ̄
(λ )
i j (σ)

)
σ∈Sym(N)

∈ C
(
Sym(N)

)
of the irreducible representations ρ(λ ) (36) for all 1≤ i, j ≤ χ(λ )(e).

Example 3.4 (Eigenvalues of unit multiplicity). The Cayley distance kernel on Sym(N) has exactly two eigenval-
ues of multiplicity 1, namely the homogeneous distribution (corresponding to the trivial irrep of Sym(N)) and the
signature-distribution (corresponding to the sign irrep) whose eigenvalues are the sum (necessarily positive) and
the signed sum (for sgn(σ) the signature), respectively, over any one row of the Cayley distance kernel matrix:

λ
(
EigVects[e−β ·dC ]

)
λ

(
EigVals[e−β ·dC ]

)
λ

(N)
(
1
)

σ∈Sym(N) ∑
σ∈Sym(N)

e−βdc(e,σ) > 0

(1≥ ·· · ≥ 1)
(
sgn(σ)

)
σ∈Sym(N) ∑

σ∈Sym(N)
sgn(σ) · e−βdc(e,σ)

(38)

This follows from Prop. 3.3 since symmetric groups have exactly these two 1-dimensional irreps (e.g. [Sag01,
Ex. 2.3.6, 2.3.7][Di88, §7.B(2)]), but in these simple cases the eigenvalues are also readily seen using the left-
invariance property of the Cayley distance kernel (Lemma 2.20).

3.1 Indefinite phases

Lemma 3.5 (Cauchy interlace). Let N1 < N2 ∈ N and β ∈ R≥0.
(i) If

[
e−β ·dC

]
is indefinite on Sym(N1) then it is indefinite on Sym(N2).

(ii) If
[
e−β ·dC

]
is positive definite on Sym(N2) then it is positive definite on Sym(N1).

Proof. Since the Cayley distance kernel on Sym(N1) is a principal submatrix of that on Sym(N2), by Lemma 2.22,
this follows from the general fact that for A1 a principal submatrix of a symmetric hermitian matrix A2, their lowest
eigenvalues satisfy

min
(
EigVals(A2)

)
≤ min

(
EigVals(A1)

)
(a direct consequence of min

(
EigVals(A)

)
=min
|v|=1
〈v̄,Av〉, and a simple case of Cauchy’s interlace theorem, e.g. [Hw04]).
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Proposition 3.6 (Cayley distance kernel indefinite for 0 < β < ln(2)). For all N (Nota. 2.1), the Cayley distance
kernel ceases to be positive semi-definite as soon as β < ln(2):

0 < β < ln(2) ⇒ ∀
N≥2

e−β ·dC is indefinite on Sym(N) .

Proof. Use Example 3.1 in Lemma 3.5.

To proceed further, we need the following curious result from enumerative combinatorics:

Lemma 3.7 (First polynomial relation, e.g. [St11, Prop. 1.3.7]). The following holds as an equation of polynomials
in eβ :

∑
σ∈Sym(N)

eβ ·#cycles(σ) =
N−1

∏
k=0

(
eβ + k

)
.

Proof. Identify permutations with the marked lists underlying their unique representatives in cycle notation for
which heads of cycles are the smallest elements in their cycle and cycles are ordered by their heads. Then observe
that, in this guise, permutations are manifestly enumerated, starting from the empty such list, by iteratively, over
k = 1,2,3, · · · ,N, including the element k+1 into the list, either adjoined to the right of the list if it is the head of
a cycle (in which case it contributes a factor eβ to eβ ·#cycles), or else inserted after one of the k elements already in
the list (in which case it contributes a factor of 1).

We also need this direct variant of Lemma 3.7:

Lemma 3.8 (Second polynomial relation). The following holds as an equation of polynomials in eβ :

∑
σ∈Sym(N)

sgn(σ) · eβ ·#cycles(σ) =
N−1

∏
k=0

(
eβ − k

)
,

where sgn(σ) denotes the signature of a permutation.

Proof. We compute as follows:

N−1

∏
k=0

(
eβ − k

)
= (−1)N

N−1

∏
k=0

(
− eβ + k

)
= (−1)N

∑
σ∈Sym(N)

(−eβ )#cycles(σ)

= ∑
σ∈Sym(N)

(−1)N+#cycles(σ) · eβ ·#cycles(σ)

= ∑
σ∈Sym(N)

(−1)#cyclesev.length(σ) · eβ ·#cycles(σ)

= ∑
σ∈Sym(N)

sgn(σ) · eβ ·#cycles(σ) .

Here the second step is Lemma 3.7. The fourth step observes that if N is even/odd, then there must be an even/odd
number of permutations of odd length, so that the sign that remains is given by the number of permutations of
even length. But this is the signature, since the number of transpositions making a cycle is one less than its length
(28).

Using this we can improve the characterization of indefiniteness in Proposition 3.6:

Proposition 3.9. The Cayley distance kernel on Sym(N) is indefinite for eβ below N−1 and non-integer:

eβ ∈ (0,1)∪ (1,2)∪·· ·(N−2,N−1) ⇒ e−β ·dC is indefinite. (39)
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Proof. Observe that the Cayley distance kernel has the following eigenvalue(
EigVals[e−β ·dC ]

)
(1≥···≥1) = e−β ·N

∑
σ∈Sym(N)

sgn(σ) · eβ ·#cycles(σ)

= e−β ·N
N−1

∏
k=0

(
eβ − k

)
.

(40)

Here the first line is Example 3.4 expressed using Cayley’s formula (27), and the second step is Lemma 3.8. Hence
we find that the Cayley distance kernel always has an eigenvalue of the following sign:

N−1

∏
k=0

(
eβ − k

)
is


> 0 for eβ > N−1,
= 0 for eβ ∈ {0,1, · · · ,N−1},
< 0 for eβ ∈ ·· ·(N−4,N−3)∪ (N−2,N−1).

(41)

Here the first two lines are immediate from the form of the polynomial; and with this the third line follows by
observing that all roots of the polynomial have unit multiplicity, so that its sign must change whenever eβ crosses
one of its zeros.

This shows that the Cayley distance kernel on Sym(N) has a negative eigenvalue at least on every second of
the open intervals claimed. But the same argument applies to the kernel on Sym(N− 1), to show that this has a
negative eigenvalue on every other, remaining, open interval. Since the latter kernel is (by Lemma 2.22) a principal
submatrix of the former, Lemma 3.5 implies that the kernel on Sym(N) has a negative eigenvalue on all the open
intervals (39), as claimed.

3.2 Semi-definite phases

For our proof of the exceptional positive semi-definite phases of the Cayley distance kernel in Prop. 3.13 below,
we will need Frobenius’ character formula for Schur polynomials, recalled as Prop. 3.11 below, and we will need
to know that all coefficients of monomials in Schur polynomials are non-negative, which is manifest from the
following form of their definition.

Definition 3.10 (Schur polynomials (e.g. [Sag01, Def. 4.4.1])). For λ a partition (34),
(i) a semistandard Young tableau (ssYT) T of shape |T |= λ is sequence T = (Ti, j)1≤i,1≤ j≤λi of natural numbers

1≤ Ti, j ≤ N such that j1 < j2⇒ Ti j1 ≤ Ti j2 and i1 < i2⇒ Ti1 j < Ti2 j. We write

ssYTN ⊃ ssYTN(n) (42)

for the set of all ssYT with N = ∑i λi entries, and for its subset of those ssYT with labels Ti, j ≤ n.
(ii) The monomial corresponding to a ssYT in the polynomial ring on a countable number of generators is

xT := x#1s(T )x#2s(T ) · · ·
with #1s(T ) denoting the number of entries of T labeled with the value 1, etc.

(iii) The Schur polynomial sλ indexed by the partition λ is the sum of these monomials over all semistandard
Young tableaux T whose shape |T | is λ :

sλ

(
x1,x2, · · · ,xN

)
= ∑

T∈ssYTN
|T |=λ

xT . (43)

Proposition 3.11 (Character formula for Schur polynomials [Sag01, Thm. 4.6.4]). For N ∈ N+ and λ a partition
of N (34), the Schur polynomial sλ (43) may be expressed as follows:

sλ

(
x1,x2, · · · ,xN

)
= 1

N! ∑
σ∈Sym(N)

χ
(λ )(σ) ·

(
x`1(σ)

1 + · · ·+ x`1(σ)
N

)(
x`2(σ)

1 + · · ·+ x`2(σ)
N

)
· · ·
(
x
`#cycles(σ)(σ)

1 + · · ·+ x
`#cycles(σ)(σ)

N

)
, (44)

where χ(λ ) denotes the λ th irreducible character (35) and `k(σ) denotes the length of the kth longest cycle of σ .
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Lemma 3.12. For eβ ∈ {1,2, · · · ,N − 1} all eigenvalues of the Cayley distance kernel e−β ·dC on Sym(N) are
non-negative; while for eβ = N they are all positive.

Proof. We observe that the eigenvalues
(
EigVals[e−β ·dC ]

)
λ

(37) at these particular values of β appear, up to a
positive multiple, as coefficients of monomials in Schur polynomials, which, by Def. 3.10, are manifestly non-
negative. Namely for λ a partition of N (34) with corresponding Schur polynomial sλ (43) and irreducible character
χ(λ ) (35) we have the following sequence of equalities, for any n ∈ {1,2, · · · ,N}:

sλ

(
x,x, · · · ,x︸ ︷︷ ︸

n args

,0,0, · · · ,0︸ ︷︷ ︸
N−n args

)
=

1
N! ∑

σ∈Sym(N)

χ
(λ )(σ)(nx`1(σ))(nx`2(σ)) · · ·(nx`#cycles(σ)(σ))

=

(
1

N! ∑
σ∈Sym(N)

χ
(λ )(σ)n#cycles(σ)

)
· xN

=

(
χ(λ )(e)

N!
eln(n)·N(EigVals[e−ln(n)·dC ]

)
λ

)
︸ ︷︷ ︸

∈N .

· xN ,

where the first step is the character formula for Schur polynomials (Prop. 3.11), while the last step uses the
character formula for kernel spectra (Prop. 3.3).

As a result, the expression over the brace is a non-negative integer, whence the eigenvalue must be non-negative,
at least. Finally, in the special case that n = N, none of the contributing monomials vanishes, and it is clear from
(43) that the coefficient over the brace, and hence the eigenvalues, must in fact be positive.

As a first conclusion of this Lemma, we have:

Proposition 3.13. For eβ ∈ {1,2, · · · ,N−1} the Cayley distance kernel e−β ·dC on Sym(N) is positive semi-definite.

Proof. By Lemma 3.12, all its eigenvalues at these temperatures are non-negative, while by (41) at least one of
them takes the value 0.

We give a sharpening this conclusion via the following Lemma, which is a consequence of Schur-Weyl duality
(e.g. [FH91, §6.1]):

Lemma 3.14 ([GGK13, Prop. 2.4]). For n ∈ N, the exponential of n to the number of permutation cycles has an
expansion in terms of irreducible characters (35) weighted by numbers of semistandard Young tableaux (42):

n#Cycles(−) := ∑
T∈ssYTN(n)

χ
|T |(−) .

Proposition 3.15 (Eigenvalues of Cayley distance kernel at β = ln(n) count Young tableaux). At β = ln(n), the λ th
eigenvalue of the Cayley distance kernel (according to Prop. 3.3) is proportional to the number of semistandard
Young tableaux (42) of shape λ with entries ≤ n:

EigVals[e−ln(n)·dC ]λ =
n!

nN ·χ(λ )(e)
·#ssYTλ (n) .

In particular, for the Cayley distance kernel at β = ln(n):

1. all eigenvalues are non-negative;

2. for N ≤ n−1 there exists at least one vanishing eigenvalue;

3. for n≥ N all eigenvalues are positive.
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Proof. We compute as follows:

EigVals[e−ln(n)·dC ]λ = 1
nN ·χ(λ )(e) ∑

σ∈Sym(N)

n#Cycles(σ) · χ̄(λ )(σ)

= 1
nN ·χ(λ )(e) ∑

T∈
ssYTN (n)

∑
σ∈

Sym(n)

χ
|T |(σ) · χ̄(λ )(σ)

= n!
nN ·χ(λ )(e) ∑

T∈
ssYTN (n)

δ
|T |,λ .

Here the first line is the character formula (37) from Prop. 3.3, shown under complex conjugation (which does
not change the real eigenvalue). The second step inserts Lemma 3.14 and the last step applies Schur orthogonality
(e.g. [FH91, Thm. 2.12]).

With this, the final conclusion follows from observing that a partition (Young diagram) admits at least one
labelling in {1, · · · ,n} to a semistandard Young tableau if and only if it has no more than n rows.

3.3 Definite phases

We have obtained the following statement already in the last clause of Prop. 3.14, using Schur-Weyl duality. Here
is a more elementary proof:

Proposition 3.16. For eβ ∈ {N,N +1, · · ·} the Cayley distance kernel e−β ·dC on Sym(N) is positive definite.

Proof. By the last clause in Lemma 3.12 the Cayley distance kernel on Sym(N +K) is positive definite at eβ =
N +K, for all K ∈N. Since the Cayley distance kernel on Sym(N) is a principal submatrix of that on Sym(N +K)
(by Lemma 2.22) the claim follows by Lemma 3.5.

Finally, we establish existence of a lower bound for the inverse temperature β above which the Cayley distance
kernel is always positive definite (see Rem. 3.18 for sharper bounds):

Proposition 3.17 (Lower inverse temperature bound of positive definite phase). For eβ ≥ N−1
N√2−1

the Cayley

distance kernel e−β ·dC on Sym(N) is positive definite.

Proof. Using that, by left invariance of the Cayley distance kernel (Lemma 2.20),
(i) its diagonal entries are all equal to 1 = e−β ·0,

(ii) the sums over its rows are all equal to each other,

the Gershgorin circle theorem ([Ge31], review in [Va04, §1.1]) says that all its eigenvalues are contained in the
single Gershgorin interval [

1− r(β ),1+ r(β )
]
⊂ R , (45)

around 1 and of radius equal to the sum of the non-diagonal entries of any row. We compute this Gershgorin radius
of the Cayley distance kernel as follows:

r(β ) = ∑
e6=σ

∈Sym(N)

e−β ·dC(e,σ)

=

(
∑

σ∈Sym(N)

e−β ·dC(e,σ))

)
−1

= e−β ·N
(

∑
σ∈Sym(N)

eβ ·#cycles(σ)

)
−1

= e−β ·N
( N−1

∏
k=0

(
eβ + k

))
−1 .

(46)
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Here, after the Gershgorin circle theorem in the first line, the second step adjoins the diagonal element e−β ·dC(e,e) =
1 to the sum; the third step uses Cayley’s formula (Lemma 2.21), and the last step is Lemma 3.7.

In the special case when β = ln(n), the last expression in (46) becomes

r
(
β = ln(n)

)
=

n · (n+1) · · ·(n+N−1)
nN −1

≤
(

n+N−1
n

)N

−1

=

(
1+

N−1
n

)N

−1 .

(47)

Therefore, a sufficient condition for the Gershgorin interval (45) not to contain negative numbers, and hence for
the Cayley distance kernel to be positive definite, is that

r
(
βN = ln(nN)

)
< 1 ⇐

(
1+

N−1
nN

)N

−1 < 1 ⇔ nN >
N−1
N
√

2−1
. (48)

This establishes the statement.

Remark 3.18 (Improving the lower inverse temperature bound of the positive definite phase). The lower bound
β > N−1

N√2−1
in Prop. 3.17 is rather loose: Computer algebra computations at least for low N indicate (as seen for

N = 4 in Figure 1) that the Cayley distance kernel becomes positive definite already for

eβ > N−1 ⇒ [e−β ·dC ] is positive definite on Sym(N) . (49)

With the proof strategy of Prop. 3.17 there are two steps at which the bound may be tightened:
(i) The Gershgorin radius may be reduced. We know from Example 3.4 that the only two eigenvectors of unit
multiplicity are the homogeneous distribution and the signature distribution, and we know from (38) and (40) &
(41) that both are positive already for all β > N− 1. Therefore, it is sufficient to find a lower bound where the
remaining eigenvectors with higher multiplicity become positive. But for such eigenvectors, and since the Cayley
distance kernel matrix has non-negative real entries, a refinement of the Gershgorin circle theorem applies, which
says ([BS17, Thm. 1]) that they are contained already in half the Gershgorin radius (46). Using this factor of 1/2
on the left of (48) turns the N

√
2 on the right into a N

√
3 and hence yields the following slightly improved lower

bound:
β >

N−1
N
√

3−1
⇒ e−β ·dC is positive definite on Sym(N) .

(ii) The estimate n · (n+1) · · ·(n+N−1)≤ (n+N−1)N in (47) may be improved. This estimate is just the most
conveniently expressed, but it is good only for n� N, hence far from the expected sharp bound at n = N−1.

In fact, A. Abdesselam kindly points out to us that a proof of the sharp lower bound (49) follows with Stanley’s
hook-content formula ([St71, Thm. 15.3][Kr98, Thm. 1]) applied to (37). Since this further strengthening of Thm.
1.3, while interesting in its own right, is not needed for our Theorem 1.2, we will not further dwell on it and instead
refer the reader to Abdesselam’s upcoming work.

4 Weight systems as quantum states

We close by briefly explaining the impact of Thm. 1.2 on current questions in string/M-theory theory, following
our discussion in [SS19b] to which we refer for full details and further pointers.

Chord diagram observables from Hypothesis H. While informal considerations of quantum physics of branes in
string theory has proven to be a rich source for mathematical insights in quantum topology, the underlying mathe-
matical formulation of non-perturbative brane physics itself (“M-theory”) has remained wide open (see [SS19b, p.
3 & 6] for pointers). Recently we have explored the Hypothesis H [Sa13, §2.5][FSS19b][FSS19b][SS19a][SS21]
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that the proper mathematical formulation of the C-field – which is the only field expected in M-theory, besides the
the field of (super-)gravity – is as a cocycle in (twisted) Cohomotopy theory. We have shown ([SS19b, §2]) how
such a hypothesis implies that (the topological sector of) the phase space of N probe D6⊥D8-brane intersections
(in an ambient flat spacetime) is homotopy-equivalent to the based loop space of the configuration space of N
ordered points in R3:

Ω

(
Conf
{1,· · ·N}

(R3)
)
. (50)

This implies ([SS19b, §2.5]) that the higher homotopical observables on such brane systems, conceptualized as
the homology of the phase space, is (by [Koh02, Thm. 4.1]) nothing but the algebra of horizontal chord diagrams
A

pb

N from Def. 2.2:

weight
systems

horizontal
chord diagrams

homology of
loop space of

configuration space of
ordered points in R3

loop space of
configuration space of
ordered points in R3

loop space of
diff. Cohomotopy cocycle space of

spacetime transversal to
intersecting codim 3/codim 1-branes

⊕
N∈N

(
A

pb

N
)∗ ⊕

N∈N
A

pb

N H•

(
t

N∈N
ΩConf
{1,· · ·,N}

(R3)

)
t

N ∈ N
ΩConf
{1,· · ·,N}

(R3) Ωππ4
diff

(
(R3)cpt∧ (R1)+

∪ (R3)+ ∧ (R1)cpt

)

(⊕
N∈N

(
A

pb

N
)∗)

normalized
& positive

quantum states

' '

quantum observables phase space (topological sector)

(51)

(Here H•(−) is ordinary homology with complex coefficients, ππ4
diff(−) is a presheaf of pointed mapping spaces

into the 4-sphere [SS19b, §2.3]; (−)cpt is one-point compactification and (−)+ is disjoint union with a base point.)

Chord diagrams in stringy quantum physics. While it was well-known that chord diagrams organize the quan-
tum observables of perturbative Chern-Simons theory (Vassiliev knot invariants, [Bar91][Ko93][BN95][AF96]
[BNS96]), we observed in [SS19b, §4] that chord diagrams moreover govern several more recent proposals for
aspects of intersecting brane physics, including:

(i) the fuzzy/non-commutative geometry of D-brane intersections seen via the non-abelian Dirac-Born-Infeld
(DBI) action functional ([RST04, §3.2], review in [MPRS06, §A][MN06, §4])

(ii) several quantum many-body models for brane/bulk holography:

(a) dimer/bit-thread models for quantum error correction codes ([JGPE19][Ya20], review in [JE21, §4.2]);
(b) scattering amplitudes in bulk duals of the SYK model ([BNS18][BINT18], review in [Na19]).

This confluence of occurrences of chord diagrams in quantum brane physics (which seems to previously have gone
unnoticed; e.g. the authors of [JGPE19][Ya20] refer to chord diagrams as “dimer” or “bit-thread” networks) finds,
assuming Hypothesis H, a natural explanation and unification from the result (51) that chord diagrams indeed
constitute the fundamental (topological) quantum observables on intersecting quantum brane systems.

Weight systems as quantum states of branes. This allows us to proceed further and next ask for a rigorous
characterization, assuming Hypothesis H, of possible quantum states of intersecting brane systems, by asking for
weight systems which are quantum states in the precise sense of Def. 2.15 – and this is our Question 1.1.

Bound state of 2 M5-branes. In particular, we may now rigorously ask, assuming Hypothesis H, whether two
M5-branes may form a bound state of coincident branes – a statement that is widely expected to be true and which
is at the heart of some of the deepest conjectures in contemporary string/M-theory, but for which no actual theory
existed.

(i) In [SS19b, §4.9] we explained how the would-be bound state of N(M5) coincident M5-branes (specifically:
transversal M5-branes in a pp-wave background) should correspond, under (51), to the Lie algebra weight
system w(gl(2),N(M5)) (11) for the N(M5)-dimensional irrep of gl(2), whence the would-be bound state of 2
M5-branes corresponds to the fundamental weight system w(gl(2),2) from Def. 2.4.
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(ii) That this be a bound state of M5-branes – as opposed to an unstable tachyonic “ghost” state – means to ask
whether it is positive as a linear functional on observables (Def. 2.12) and hence whether it is a quantum
state in the precise sense of Def. 2.15. That this is the case is the result of our Thm. 1.2! – which we thus
may think of as a no-ghost theorem for bound M5-brane states.

This establishes the result announced in [SS19b, §3.5].

Bound state of N(M5) M5-branes. The natural next question to ask is whether N(M5) coincident M5-branes form
bound states, in this same sense, for any N(M5)≥ 2, hence whether the non-fundamental Lie algebra weight systems
w(gl(2),N(M5)) are quantum states on chord diagrams for N(M5) > 2. We will discuss this question elsewhere [CSS21].
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