
The phase space. Abstractly, the phase space of a field theory is nothing but the space of all those field histories
that satisfy the given equations of motion (the “on-shell” field histories). Phrased this way, this is sometimes called
the covariant phase space ([Wi86, p. 314][ČW87][HT92, §17.1]; see [Kh14][GiS23] for rigorous discussion) to
emphasize that no choice of foliation of spacetime by Cauchy surfaces has been or needs to be made.

The more traditional canoni-
cal phase space is instead a
parameterization of the covari-
ant phase space by initial value
data on a given Cauchy sur-
face, after choosing a foliation
of spacetime by spatial hypersur-
faces (cf. [SS23-FQ, p. 5]). This
choice breaks the “manifest co-
variance” of the covariant phase
space. Nevertheless, if a Cauchy
surface exists at all (hence on
globally hyperbolic spacetimes),
then both these phase spaces
are equivalent, by definition, the
equivalence being the map that
generates from initial value data
the essentially unique on-shell
field history that evolves from it
(possibly up to gauge transfor-
mation).
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Solution space of on-shell flux densities. At this point in our discussion, we do not yet know what the full field
content of our field theories really is – this will be implied by a choice of flux quantization in §1.2 – we only know
the corresponding flux densities. To remember this, we shall call the space of flux densities solving their equations
of motion the solution space, and we are after its incarnation as a canonical solution space of initial value data on a
Cauchy surface. But the canonical phase will simply consist of all flux-quantized gauge potentials compatible with
these flux solutions (cf. p. 21).
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Proposition 1.1 ([SS23-FQ]). On a globally hyperbolic spacetime XD ≃ R0,1 ×Xd, the solution space to higher
Maxwell-equations of motion brought into the duality-symmetric form (15) is isomorphic to the solution of the
Bianchi identities on any Cauchy surface ι : Xd ↪! XD, then to be called the higher Gauß law:
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Gravity “decouples” on canonical phase space.
As above, the inverse isomorphism (16) is given by time
evolution of initial value data. Notice that the back-
ground metric (the background field of gravity) enters
only in determining the nature of this isomorphism ι∗,
but does not affect the nature of the initial value data
(of the canonical phase space) as such (cf. [SS23-FQ]).

It is this “decoupling” on the canonical phase space of
the gravity/metric effects from the phase space Gauß
law constraint which allows to gain plenty of insight into
brane configurations from purely cohomological analy-
sis of fluxes on Cauchy surfaces, disregarding the full
solution of the coupled (super-)gravity equations of mo-
tion, cf. the examples in §1.1.3 and §2.
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