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INTRODUCTION

The basic idea of these Lectures Notes is to consider the
tensor product of an arbitrary family of vector spaces (Ei)iel
as the inductive limit of the finite tensor products @ Ei y
J finite subset of I ; to this end we suppose that we Els.i'g given

for each i, a non zero vector ti in Ei and we define, for JcK,

a mapping LJ K : & E, —>» ¢ E, by writing
]

ieJ * jex 1

® E. = ( ® EVe ( @ E.)
jegk 1 ieg 1 ieK-d
L (x) = xo( @ t.) ;
JyK iek-g 1

we thus obtain an inductive limit which we denote by @tEi .

If each Ei is a Banach space ti must have norm one ; if Ei

is a # - algebra ti must be hermitian and idempotent.

If now we have C*— algebras Ai with non zero projections
e; we can define two tensor products éeAi and éeAi , wWhich
are identical if the Ai are postliminar. Our main results
concern the irreducible representations and the characters
of 'feeAi where oo = v or # ; for instance if each ey is
central every finite character of 391'-.1 is a tensor product
of characters and we get a precise description of the topolo-
gical space 01( éeki) (see n.14.3). As for the irreducible
representations of 3 eAi we examine two thoroughly diffe-
rent particular cases : if e; is"large" in the sense that Ai

admits sufficiently many irreducible representations % with

rank ‘F(ei) > 2 384&1 ig antiliminar and, with some further
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assumptions, admits an irreducible representation which is
not a tensor product (see § 11). On the contrary if e; is
"small’ , i.e. if for each - inlii we have rank'w(ei)$1and
if moreover each Ai is postliminar, then 5 eAi is postli-
minar, each irreducible representation of it is a tensor pPro-
duct and’EE\get a precise description of the topological

space éeﬂi (see n.13%.2).

In § 8 we introduce the notion of infinite tensor product
of Hilbert algebras, which gives us a very simple method to
determine the type of certain infinite tensor products of

type I factors (see § 9).

In § 1 we introduce a notion which plays a basic role
throughout these lectures : the restricted product of a family
of sets Xi with respect to a family of subsets Yi ; this is
the subset H(YE)Xi of F]Xi consisting of all families
(xi) such that X; € Yi except for a finite number of indices
i ; if each Xi is a topological space and Yi is open in Xi R
the restricted product becomes a topological space in a natu-

ral way.

" »*
Given a set I we denote by ?-(I) the set of all finite

subsets of I ; we say that a property P of an element i of I

holds for almost every i or almost everywhere if P holds for

every 1 lying outside some finite subset. If i is an element
of T we denote by &, the real function on I which takes the

value 1 at i1 and O at each other point.

If X is a topological space we denote by 'K(X) the space

¢f all continuous complex functions on X with compact support.
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If A is a x - algebra every hermitian idempotent element in

A will be called a projection. We recall the following result

concerning infinite products of complex numbers : given a

family (x of non zero complex numbers, the product

i)ieI
M ox, is convergent and non zero if and only if we have
i€l

2 Ix, =11 <o,

ier 1t

We finally recall the associativity property for finite

tensor products : given a finite family (Ei)iGI of Banach
spaces and a partition I =A:1 IA y there exists an isomor-

phism F of @ E, onto @( @ E;) such that F( & x,)
i€l AeL i€, iel

¢( @ xi) for each family (x.) in 1 E. . Similar
del i€l * il *

»
results hold for the v and * tensor products of ¢ - algebras.



§ 1. Restricted products of sets and topological spaces,

Definition 1. Given a family (){i)i ¢1 0Of sets and for each

i a subset Yi of Xi, we call restricted product of the family

(Xi) with respect to the family (Yi) the set of all families

(x.) ¢ TTx, such that  x, € Y, for almost every i ; and
i iep 1 (1) i i
we denote it by ‘CL . X, » If Y, is reduced to some point as
vE L
(a ({8'1})
X

we write I 1

a
Xi or F) Xi instead of [ 5

For each firnite subset J of I we denote by X(J) the set

of all families (xi) ¢ rlxi such that x; € Y, for i¢ J,

X = n . ﬂ Y. ;
() leg Y ey
(Y.)

then the X(y)y are subsets of ot X; which is their

union, and X(J) < X(K) if JcK

Suppose now that each Xi is a topological space and that

(Y,)

17 x,

Y; 1s open in X, ; we shall define a topology on Il i

i
in the following way : we endow each X(J) with the product

topology ; then for J ¢ K, X(J) 1s an open topological

Y.)

subspace of X(K) ; we say that a subset U of J] I X; is

open iff for each J , Uf\X(J) is open in X(J) ; we get a
topology which is the inductive limit of those of the X(J) y

and is stronger than the product topology ; each X(J) appears
(Y.)

1 X.

as an open topological subspace of [] 5



Particular cases.

(1) If Yi = X; » the restricted product is identical to the
crdinary product.

(ii) If for each i, X; is locally compact and Y. compact,
the restricted product is locally compact since each X(J)
is locally compact.

(iii) If X4 is discrete and Yi is reduced to some point &,
the restricted product is discrete since each X(J) is
discrete.

(iv) If X, is a locally compact group and Y, a compact open
subgroup, the restricted product is, in a natural way, a
locally compact group ; this construction is used in order
to define the so called " adele groups " : in the simplest
case [ is the set of all prime numbers, the Xi are the p-
adic fields Qp and the Yi ~ there rings of integers Zp
(see for instance [37], ch. III, § 1).

(v) If X; is a discrete gfoup and Y, is reduced to the neu-

(Y;)
tral element, f] X; 1is nothing but the usual restric-
ted product ﬂ'Xi .
(vi) If Xi is a compact group and Yi = X. the restricted

1

product is identical with the ordinary product nxi .



Restricted products of Rorel spaces.

We now suppose that each Xi is a Borel space and Yi a Borel
subset of Xi 3y put on each X(J) the product Borel structure ;
then for Jc K , X(J) is a Borel subspace of X(K) ; we define

{Y,)
a Borel structure on X = 1 % X; by saying that a subset
U of X is Borel iff for each J, Ur\X(J) is Borel in X(J) H

then each X(J) appears as a Borel subspace of X.

Restricted products of measures.

Suppose that each Xi is locally compact, Yi compact and

open, and that we have a positive Radon measure p. on Xi

i
with pi(Y;) =1 5 set v, = m,|Y, ; for each J € ¥ (I)

we can form the product measure

o= L E el rerg P
if J€é€K we have F(K) )X(J) = f(J) , hence there exists
a unique positive Radon measure p# on TﬁYi)Xi such that
e IX(J) = F(g) + 1t will be called restricted product of

the measures )‘i

If in particular Xi is a locally compact group, Yi a compact

open subgroup and r, oa left Haar measure on Xi’ M is a left
(Y;)

Haar measure on Xi

Finally if Xi is a Borel space, Yi a Borel subset and My oa

positive Borel measure on X; with ri(Yi) = 1, the same cons-

truction applies and yields a positive Borel measure



§ 2. Infinite tensor products of vector spaces.

)

Let us consider an arbitrary family (E of vector

i'ie€l

spaces and for each i a non zero element ti in Ei ; denote

by t the family (ti) ; for each finite subset J of I we set

E(J) = '®J Ei ; for J¢ K we define a linear mdpping
i€
Lk * By — By
by writing
By = By @ kg
= ® . . ;
LJ,K(x) X @ (ieK—J tl) ¥ x ¢ E(J) 3

the mappings LJ g are injective and form an inductive system,
¥

which means that for JC KM we have LJ,M = LK,M"LJ,K .
(t;) .
Definition 2. We shall denote by ® E; or @ By
ieT iel

the inductive limit of the above inductive system, and by LJ

t

the canonical mapping E(J) —_ g Ei ; the LJ will sometimes

allow us to consider the E(J) as subspaces of @t E.

i » which

is then their union ; if J is reduced to a point i we shall
write L, instead of L{i}' For each family (xi) c ljt E;, we

denote by @ X; the element LJ( ® xi) where J is an arbi-
ied

trary finite subset verifying x; =ty Y i ¢ J ; every element

of @t Ei is a linear combination of elements of the form

® x, ; the mapping (xj) —— ® x. 1is multilinear.



Properties of the infinite tensor product.

(i) Universal property.

Proposition 1. For every multilinear mapping u of Iﬁt E;

into a vector space F there exists a unique linear mapping
v o @t E;, — F such that v(ie xi) = u((xi)) for each
(xi) e Nt E, 5 in this way we get a bijective correspondance

between the multilinear mappings F]t Ei — F and the linear

mappings @t Ei —a F

Proof. Choose a finite subset J of I ; for each family (xi)

ied
define a family (xi)iel where
. ) X4 if i1e¢d
* t,  if  i4d

the multilinear mapping

nEi—-—-—-—pF
ied

gives rise to a linear mapping
vy o E(J) — > P
® x5 ——s ul{x}i)) ;
ied

the Vs form an inductive system and v is their inductive limit.

(i1) Associativity.

For each partition I = AULI* there exists an isomor-
&
t (v*) ua
phism @ "E;, — ® ( @ Ei) taking each element

iel Ael iGI\



of the form x,; into ®( @ xi) ; here we have pet u,. =

Nel iel, A
(t.). and v = ® t. .
i 1613 A ifIA 1

(iii) Punctorial property.

Let us also consider vector spaces Fi and non zero elements

u; in Fi H let‘Vi be a linear mapping Ei “__’Fi with

vi(ti) = u; ; there exists a unique linear mapping ®v,
t u
® Ei —_—— Fi such that
— t L3

if the v, are injective, @ v; 1s injective too.

(iv) Bases of @t E; .

Suppose that for each i we have a basis of Ei of the form

(e, ) where the index X, runs over some set X.,, and that X.
i,xg i i i
contains)an element ¥4 with ei’yi = ti ; for each X = (xi)
Y.
in 1Y x, we set e = @ e. ; then it is easy
: (x) ieI ¥

to verify that the vectors € (x) constitute a basis or Qt Ei .

Bibliography [9].

N.B. There is no pages 7,8,9.
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§ 3. Infinite tensor products of algebras.

)

Let us consider a family of algebras (A and for

i7iel
each 1 , a non zero idempotent e, in Ai ; the finite tensor
products A(J) are algebras and the mappings LJ,K are mor-
phisms of algebras ; by endowing ¢ge Ai with the inductive
limit structure we get an algebra whose multiplication is

characterized by

— e
® &y - Qbi = 88y bi ¥ (ai) y (bi) e Tl Ai .

Let us now suppose that for each i, Ai is a »- algebra and

e; a projection (i.e. hermitian idempotent) ; then the A(J)

are » - algebras and the LJ x are morphisms of » - algebras
¥

we get a structure of x - algebra on ®° Ai characterized by

* x
(Glai) = ®a; .

The reader will easily state the properties similar to {(ii)

and (iii) of § 2.

A particular case. Suppose that e is a unit element for Ai H
we then write Q‘Ai instead of @° Ai H G:ei is the unit ele-
ment of @.Ai 3 the LJ are mutually commuting morphisms of
unitary « - algebras ; moreover ®JAi has the following uni-
versal property

Given a unitary « - algebra B there exists a bijective corres-

pondance between the morphisms (of unitary » - algebras) u :
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& Ai — B and the families of mutually commuting morphisms

u; s Ai —— B ; this correspondance is given by

u( @ ay) = N ui(ai) Y (ai) e N° Ay .

Infinite tensor products of representations.

Preoposition 2. Let, for each i, A; an algebra, e, a non zero

idempotent in Ai, E.

j @ vector space, ti a non zero element of

B.y W,

5 i @ representation of A, in Ei such that Wi(ei).ti = t..

1

Then there exists a unique representation 7 of @°F Ai in the

space @t Ei such that

Y(a)) e n® a5, (x;) e n® E,.

—_ - Yy

Proof. Take a family (ai) ¢ Nt A; and a finite subset J wath

a. = e, ¥ ieI-J ; write
i i
°© s = (e Ble( @ ‘&) ;
i€l ied ie I-J

we have an operator @ 'F.(ai) in the first factor and, by

ieg
property (iii) § 2, an operator ® ‘Fi(ai) in the second
ieI-J
factor ; whence an operator in g Ei which we denote by
ieT
u((a;))
_ ot )
u((ai))-@axi = @7, (a;).xy Y (x;) ¢ 1 E; 3

the mapping u ; N° Ay ‘___ﬁﬁf(cst Ei) is multilinear, hence

defines a linear mapping

oo @eAi _9,(7(®t E;)

T(@ al)‘oxl = & 'Tfl(al)-xl H
finally it is easily seen that ¥ is a representation.
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§ 4. Infinite tensor products of Banach spaces.

Let us consider a family of Banach spaces Ei and for each
i, a unit vector ti in Ei 3 let us endow each finite tensor
product E(J) with the A crossnorm ; if J¢ K. the isomor-
hi E E E is isometric, th th
phism (K)fv (J)@ (K-J) e y us e LJ,K are
isometric ; we put on @t Ei the inductive limit norm, so

that each mapping LJ becomes isometric ; we have
@ x, Il = Nnx, V(x)éﬂtE..
i i i i

Definition 3. We shall denote by E&E Ei the completion of

® " E, with respect to the norm defined above ; this is also
Fay

the inductive limit of the Banach spaces ® Ei .
ied

Definition of ® x; for certain families (x.).

Proposition 3. Let (xi) be a family of vectors X5 ¢ Ei such

that 2 | x; - t, 1< e2 5 the product T?nxin exists, and it

is null iff one of the X5 is null ; the family of the vectors

LJ( ® xi) has a 1imit in St Ei y whose norm is equal to
ied
T xsh.

Proof. The proposition being trivial if one X5 is null, we

can suppose x, # 0 Vi ; then

H

anxiu-u Z?:-‘xiu—utiuf

[N

N
x
]
ot
~
g
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whence JTHxil exists and is not null ; the finite products

Y I x; i are bounded by some constant k ) 1 . We must now
ied

prove that the vectors X, = L ( ® x.) forma Cauchy
J J ieg 1
family, i.e. that for every £ > 0 there exists K «F (1)

with the following property :
take K such that

.JnK =.d=;2ﬂx.

< i bl < e/k g
t.eJ [

in order to prove (1) we can suppose Jicdy 5 set J = do=d, 3

we have |
Yoy ey T by i?Jz i i?J1 el g %)
"Xy, Ty i}e_IJ.I B
denoting by i1, . in the elements of J we can write
i?J X, - ifa ti = xi1o "f & xin - ti1®. cer @ tin
= (xl1 - t11) © x12 @ oo @:xi;u.+ tl1@ . tln_1a(xln-t1 )

whence

“XJ _XJ‘|“ £ k.&/k = £ .
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Definition 4., Given a family (xi) we set

X. = lim L. { @ x.)
i dJ ieJ 1
whenever the righthand side makes sense ; this is the cage if

2 X, - tif{ { oo ; in any case we have mxiu = ﬂ!fxiy.

Bibliography 97 .
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§ 5. Infinite tensor products of Banach % - algebras.

Suppose we are given a family of Banach x - algebras Ai

and for each i, a projection ey of norm 1 in Ai ;s then &c Ai

is a Banach » - algebra, the inductive limit @&f the finite

tensor products 6 Ai
i€J
A; » which will be denoted & A; , has the follo-

1

.&e
for Ai, &

wing universal property : given a unitary Banach x - algebra
B and mutually commuting morphisms (of unitary « - algebras)
continuous and with norm 1, u; Ai —» B , there exists a

unique continucus morphism u ;: ® Ay, — B such that
- ) e
u( @ ai) = ui(ai) Y (ai) € N A .

Example 1. We consider the situation of § 1, (iv), set Ay =
L1(Xi) and denote by e; the characteristic function of Y, s

this is a projection of norm 1 if the Haar measure K on Ii

is chosen so that "(Yi) =1,

3 3 » 3 . N
Theorem 1. There exists an isometric isomorphism w of ®° A.

i
(Y.)
onto LT(IW t X;) with the following property : for every
family (ai) in n A, wie ai) is the function f on R
defined by
Na.(x.) if x = (x,) ¢ X
£(x) = { 1t i (J)
0 in the opposite case

(we have set J

fila, #e.}).

If in particular e. is a unit element

X,

1
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tric isomorphism

A 1
ur: : @ A, — 3 L( M x.)
LY B jeg 1

which transforms each element ® ai into the function
ied

(xi)ieJ ,__,.;(I_IJ ai(xi) ; then an isometric morphism

vi: ® A —» LA x)el'( I Yy) ~ L‘(x(J))

ied ied i€¢I-J

a »—— us(a) @1

(Y.)
finally extending v;(a) to a functionon X = M X,

which is zero outside of X(J). we gel an isometric morphism

g L
w. & @ A, —— L (X)
J . i
ied
As easily cheked the W form an inductive system and we get

an isometric morphism

Lo -

w: 84, 1t

which transforms @a; as indicated in the statement. It re-
mains to be shown that Im w is dense in L1(I), or that
each function f in K(X) is a 1imit.of elements in Im w ;
the support of f is included in some X(J) ; by the Stone-
Weierstirass theorem we can suppose that f depends only on a
finite number of coordinates, i.e. that there exists some

J'¢ ¥ (I) such that £ = g @1 with g ¢ K( iﬂJ' X))
€



17

we can also suppose that J'y; J , but in this case f ¢ Im Wie o

Corollary t. The L1.algebra of the restiicted product of dis-

crete groups G; is canonically isomorphic to 3IL1(Gi) .

1 ;
Corollary 2. The L algebra of a produect of compactsgroups Gi
Fal
is canonically isomorphic to ®°€ L1(Gi) where e; is the func-

tion 1 on Gi'

Example 2. We first define the symmetric algebra of a Banach

space Consider a Banach space E and set, for each integer n vy o

&n . .
E - E e LI I I @ E n—times ;

every permutation s of the set {1,... n3gives rise to an

&n
automorphism Us n of E such that
¥
the operator P = = (n") ! = U, , 1is a projection of norm
¥

n ° ®n
1 ; we set SE = Im Pn = the set of all elements in F
which are invariant by all US n finally we denote by SE

L

the Banach direct sum of all S™E for n = 0,1,2,... , i.e.

the set of all sequences x = (xn) where X, € S"E and

hxt = Z Wx N < oo ; by definition S°E = C .

It is proved in the courses of Algebra that there exists on

oo en
the algebraic direct sum A = e E a structure of
n=o
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commutative algebra such that

.
(xy), = g_:o Pp(xp0 ¥, ) (2)
for every x = (xn) and y = (yn) in A ; we then have
i .
(x y) b « EO RS RN}
txyn = 2 hxyi ¢ Zhx,). Ryt = Wxp.nyl

y X

hence the multiplication can be extended to SE which becomes

a commutative Banach algebra ; (2) is still valid for x and

y € SE 3 SE admits a unit element ¢ = (1,0,0,...).

For each a €E it will be convenient to denote by exp a the

following element of SE :

® 2 ®n
BXPa = (1, &,& /21,0.0,& /Il-,,...) H
we have
nan
I exp a It = e
and
exp({a+b) = exp a . exp b.

Each Banach space s"E is generated by the particular tensors
@n
X ; then the algebra SE is generated by £ and E identi-

fied with the set of all elements (0, x, 0,0,...).

Proposition 4. The Banach algebra SE possesses the following

universal property : given a commutative Banach algebra B with

unit, by associating with each morphism of unitary algebras



19

ViSE~—= B with v ¢ 1 y 1ts restriction to E one gets

a bijective correspondance between such morphisms v and ail

the continuous linear mappings E —. B of norm (£ 1

Proof. We have to show that every continuous linear mapping
u: E —s B of norm < 1 can be extended to a morphism v ;

we have for each n a multilinear mapping of norm ¢ 19

M
E —+ B

(8.1,... an) P U(&.I).... u(an)
whence a linear mapping of norm ( 1
®n

Vn:E —> B

8,® +.. ® a, k__,u(a1).... u(an) H

it suffices to set, for each x = (xn) € SE
L
vix) = ,fi,vn(xn)
QED
u(a)
Note that viexp a) = e

Corollary 3. Let (Ei)ieI be a family of Banach spaces, E
its Banach direct sum, i.e. the set of all families x =

(xi)eDEi with Jxy = anin ¢ oo , Then SE is cano-

| nically isomorphic to SSEi i this isomorphism carries each

exXp x 1into @exp xi .

The proof is purely categorical : it suffices to remark
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that SE and 6 SEi are solutions of the same universal

problem ; note that @ exp X; exlsts because Zllexp X; - & H

hx.1

' _ 1 _ ~

{ s since } exp X; - &, I = e 1 hx; M.
oe?

Remark 0. For ae¢E , exp a is nothing but Z an/n!, the
n=o

image of a in the exponential map which can be defined in any

Banach algebra.
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§ 6. Infinite tensor products of Hiibert cpaces.

n.6.1, Definition and first properties.

Let us consider a family (Hi)iGI of Hilbert spaces and

for each i, a unit vector ti in Hi ; endow each H( with

J)

its usual prehiibert structure 3 the mappings LJ K are iso-
7
metric and we can put on @t Hi the inductive limit prehil-

bert structure ; each H(J) appears as a subprehilbert space

of @t Hi and we have

(©x; | oy;) = Mix;)y,) Vo(x),(y;) e n® g,

| h
Definition 5. We shall denote by @ ' H. the Hilbert comple-

1

tion of the prehilbert space @t Hi 3 1t is also the induc-

h
tive limit of the finite tensor products @ Hi
ied
by
It is easy to construct orthonormal bases of @ Hi : choose
for each i an orthonormal basis (ei,j)jéJi of Hi with
ei'0 = ti ; for each element f = (f(i)) in 1° Ji set
ep = equf(i‘ ; then it is easy to verify that the ey cons-
h
titute an orthonormal basis of @ t Hi .
Aggsociativity. For each partition I = ;ﬁ_IA there exists
h & h (V,\) h u,
an isomorphism of @ Hy onto @® ( ® Hi) with
iel rel ieIA

the same properties as in § 2 (ii).

Bibliography [9] .
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n.6.2. Definition of ® x; for certain families (xi).

As in § 4 we set ®x, = 1lim L.( ® x.) whenever this
i Jro. i
ied
limit exists ; one c¢an proVe exactly as in prop.3 that it does

exist if Z H,xi - till { & ; but it still exists under more

general conditions

Proposition §. Let (xi) be a family of vectors satisfying

ZllNx H-11 < oo (3)
Z x50 t) - 1] < o ; (4)

then 11||xii| exists, and it is null iff one of the x; is null,
h
The family of the vectors LJ( ® xi) has a limit in & ° Hi
ied

whose norm is ] Hxiﬂ ; moreover we have

lim | & xi—® ti|l=0.
J i€I-Jd ieI-J

Proof. As in prop. 3 we can suppose Xx; #0 ¥V i ; then Dﬂ:xiu
exists and is non null by virtue of (3) ; set ¢ = TTHxil2 ;

the finite products Tl j§ x.

i ¥ are bounded by some k > 0 ; on
ied

the other hand we have (xii ti) # 0 almost everywhere and

we can suppose (x| t,) #0 Y i ; by (4), N (x4 t;) has a

value d # 0 .

Take a number & > O ; there exists J €% (I) such that K>Jd

implies

P HxiH2 -c ) & sc /{4x+s)
i¢k

and
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1M (x;1%) -a ) ¢ e1dr (8kee)
i¢K
getting L = K - J we have
F® x; - @ t, n = f® x. u + 1 -2 Re( @ x; | @ ty)
i¢L ie L ieL iel iel
2
< T aax s =1)+2 N (x,)t,) =11
11eL - 'ieL ol
N nx;n® - 1) = | N Ix % - c+c- I xg 0% |/ INEN.
ie L ieK ied ied
< (2ec /(4k+e)) /(ceec /(4k+e)) = £/2k
PR (xg ) t) -1 ) = 1M (xat) —a+d- O (x 0t )40 (x,0t,)
fe1, T ek 401 ieg + 1 /ieJ 11
¢ (2ga1/(8k+e)) /(4 -€d1l (Bk+e)) = &/4k
e x;- @ tll $ &k (5)
i¢ L iel
then
JJL(@x)—L(o;a x)lf=l}®x.-L (.. x.) 1
K iex ied iek 1 dHK'ied i
= T axgn.p @ x5 - & t;
ieg *t iel 1 ielL d

< k(e/0)F - (s00b

this proves that (L ( @ xi)) is a Cauchy family. Finally
ied

our last assertion is a consequence of (5).
by

n.6.3. Relations between the various tensor products ® Hi .

We shall prove that if two families (ti), (ui) are suffi-
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h h
ciently close, @& t Hi and ® 4 Hi are canonically isomor-

phic.
Lemma 1. The following relations between families (ti),(ui)
of unit vectors

_2}1-(tiiui)1 < oo (6)

+

Z (1 -1 lu))) < oo (7)

are equivalence relations ; if we write them respectively
tAu and ta~ u, we have t .. u if and only if there
exists a family of complex numbers *i. with I(ii = 1 and

t.) .

Proof. These relations are trivially reflexive and symmetric F
let us show that the first one is ermmwerd transitive : suppose

(u;) ~ (vy) 5 then

1 - (tijvi) = 1 - (ti}ui) + 1 - (uilvi) + (ti-ui]ui-vi)

SNt - .l = Z(2 -2 Re(tilui))

-2 - (tyuy) ) < oo

and similarly

2
s bu, ~ vy < oo

hence

fl(ti-uijui—vi)[ £ Z'Nti-ui be HUuy-vi < oo

Z|1-(tilvl), < oo,

We now prove the last assertion ; if (ui) ::(di t;) we have
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2O -iGgau) ) = 20 -ty lu)l)
\< Z |1 - (‘(itilui)ll < oo H

conversely suppose t A 1 and set

; ) {l(tilui)l/(tilui) if (tjuy) # 0
i - '
1 in the opposite case ;
then
211 - (atydugdl = 20 <1(tu)l) < s

The transgitivity of ~ is now immediate.

Theorem 2. Let us suppose t ~u and more precisely (ui) x

h
(Aiti) ; there exists a unique isomorphism F : @ t Hi E——
h u
@ Hi with the following property : if ® X, exists in the

first space, @d X, exists in the second space and is equal

tO F(@ xl)‘
Proof. The unicity is clear since the ® X; with (xi) el1tHi
generate the first space. Por each J ¢ ¥(I) we define a mul-

tilinear mapping

h u h h h u
I Hy ® H. = (e Hi)o ( @ Hy)
ied ieT ieJ je I-J

@
X3 )ieg —= (Z545x5) @ (8 %4ts)

which makes sense by prop. § ; it gives rise to a linear map-

ping
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A ho,
i€d ielI

@ X; ——>( @ 4. x.)®( ® «.t.)
jeg 1 teg 11 ieg-g 11

which is easily seen to be isometric ; since the FJ form an

inductive system we get an isometric linear mapping

h h
. t u
1
® X3 =gy X, V(xi) ¢ nH;

Let us prove that F is onto ; if (yi) € I'IuHi we have, for

J sufficiently large

® Y, (e y)e( @ u)

ied 1€I-J

lim ( @ y.,) & ( ® «.t.)
jeg "1 jer-g 11

by the last assertion of prop. § ; since

(@ y.) @ ( @ d.t.) ¢ ImF
jeg 1 jer-g t 1% ’

we see that Im F is dense, hence equal to the whole space.

h

let us now suppose that @xi exists in @ s Hi ; then

F(@xi) F(lim LJ( ® xi))

ieJ

lim P { ® «x.)
" 4eg 1

f

lim ( ® «.x.) @ ( @& d.t.) 3
jeg 171 i€I-g 117 °

and this is equal to lim ( w a(ixi) ® ( @ ui) gince
ied 1eI-J

I{ @ dix;) © (@ d5t,) - ( o W X

Je( @ u)l =
ied i€ I~J i€ d

* i€ I-J
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N NX.l o ® <.t - & oy, |
ieJg t i€I-J * 1 ye7-g 1

which tends to O by the last assertion of prop. & ,

Remark 1. The infinite tensor products of Hilbert spaces
have been introduced by von Neumann in [44 ] 3 the space

® H;, 1is denoted by him ﬂq{;&: H_{ where € is the class of
t with respect to the relation = i if we take one element
t in each class and the sum of the eorresponding tensor pro-
ducts, we get T @ H 3 finally if we take only elements t

LET

which 1lge in some class with respect to ~ , we get N @w H‘.
« €T

n.6.4. Infinite tensor products of operators.

Proposition &. Suppose we have for each i =a continuous linear

operator T, in Hi such that ﬂHTi:‘r exists and

ZLAT; il -1] < oo (8)

i
fl(Titilti)—Tl < oo ; (9)

. h t
there exists a unique continuous linear operator T in @ Hi

with the following property : if ® X, exists, ® Tixi exists

and is equal to T(@xi).

Procf. First take an element x of the algebraic tensor product

@t Hi and write

®t Hi (

. t
® H)e ( o Hy)
ied ieT-J
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X = x. @ ( @ t.) ;
J je1-g I '

by prop. & we can consider the vector
T x = ( @ T..x;)e( @ T,t.)
' jeg 1Y ie1-g 11

. ; t . . .
and we get a linear operatofrln [“:] Hi ; T is continuous since

I T x U < oyr.d o txp . KT Tt |
ied i Jn i€ I-J i“i

« Jx¥. ”“Till ;

hence it can be extended tc a continuous linear operator T in
h t
@ H. . Suppose now that @:xi exists ; then

T x.) = T(lim L,{ & x.))
@ 4y ¥ J ied i
= 1 T(( @ x)e( ® t))
J ied ieI-J

= lim { ® Tixi)@ ( @ T.t.)
3 ied 1e]-J

and this is equal to lim { & Tixi)@ ( ® ti) by the
J ied ieI-J
same reasoning as in the end of th. 2.

Befinition 6. Given a family (Ti) of continuous linear ope-

rators in Hi’ we set

® T, = wstr.lim. ( @ P)@T
ieJ

whenever this limit exists ; it does exist under the hypothe-

sis of prop. §.
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h

Proposition . In the situation of th. 2, if @ © T, exists
h u h t 1
then @& T, -exists too and is equal to F. ® Ti.F'

In fact it is easy to see that for each finite J, P carries
h
{ ® Ti)@>I into the analogous operator in @ 4 Hi
ied

n.6.5. Distributivity of tensor products with respect to Hilbert

sums and integrals.

In the following theorem we suppose I countable.

Theorem 3. Let us consider for each i, a standard Borel space

Ii, a Borel subset Yi’ a positive Borel measure H; on Xi with

Pi(Yi) =1, a »; - measurable field of Hilbert spaces X ——
Hi,xi s and a square integrable vector field ti,xi € Hi,xi
where t. is of norm 1 if x.e¢ Y. and O in the opposite

1yxy i i

case. For each i let us set

@
Hy = f By, x, -4 Kylx;)
X, i
i
@
t, = /fX ti’xi.d)Ai(xi) (unit vector in H;) 5
i
(Yi)
let us set X = [ Xi and deffine « on X as in § 1 ;
finally for each x = (xi) ¢ X we set
( h ) h( ho(t, )
H = ® H. ® ® *4e |, )
(x) ieJ 10%y ieI-J LaXy
where J = {1 x;4Y; Y. Then one can put on the field

X h——ﬂlH(x) a structure of p - measurable field such that
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h " &
® H, is canonically isomeorphic to /‘ H(x).dy(x).
ied X

Sketch of the proof. For J &% (I) we have, by § 1.3 of Part

I, an isomorphism

h @ h
u : ¢ H. _, X = ~/" ® H, Al @ 4L )(x)
J ieg 1 X, i€y 10Xy qeg 1
S
— ] REIEIRIEY
1€J 1 X €J
©
where a; = j; ai,x.'dri(xi) ; then we have an isometric map-
i
ping ; @ ‘tl "
ut K 5L =K 0./ H. A{ @ r*)(x)
J ny, 1eIJ BXy ie1-g
161]
@
b +—s b @/‘ ® ty . Ad( e rin) ;

ieI-g i ieI-J

then an isomorphism
@
u3 : L —s /X H(x).dr‘(J)(x} ;
(J)
and finally an isometric mapping
@

L4 .
H(x)od}‘(J)(X) -—_._;./X H(X)-d)‘(x)

U.:]'-' : /X(J)

consisting in extending each vector field by O outside of

K(J) 3+ the mappings u&'ach,th form an inductive sys-

tem, hence define an isometric mapping

By

u © Hi —_ /X H(x)-d}‘(x) 5

one proves that it is surjective by a reasoning similar to

that of theorem 1.
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Coroliary 4. If Ky has total mass t and Yi = Xi we get an

isomorphism
ot [ u iy ~f )y e,y
@ . e & ~~ & T . Al 4. )(x).
ier  “x, X oot NY, del LrXy :
Corollary 5. If Hi,xi = € ang ti,xi = 1 or 0 depending on

whether X5 belongs to Yi or not, we get an isomorphism

oy

o
®  L°(

2
Xi’ri) ~ 1 (X;f‘)
where ti is the characteristic function of Yi'

Corollary 6. Assuming the hypotheses of both corollaries 4
and 5 we have an isomorphism

h
t 2(

2
® " L°(X;, ry) v T UWXi,ﬁri)

where ti is the function 1 on Xi.

Suppose now that each ¢ has the mass 1 at each point
and that Yi is reduced to some point a; ; the reader will be
able to state a result similar to th. 3 ; strictly speaking
this is not a corollary of th. 3 since ig our particular case
we have not to assume I countable and Xi gtandard ; we shall

only state the following corollary, analogous to cor. 5
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Corollary 7. Suppose we have for each i, a set Xi and a point
(a.)

X)) is canonically isomorphic to

2
a; of X; ; then < i

h (4, )
& & Cg(xi)'

n.6.6. The Hilbert symmetric space of a Hilbert 3pace.

We shall introduce a notion similar to that of " symmetric
algebra of a Banach space " (see § 5, ex. 2), but conveniently
adapted to the category of Hilbert spaces. Let H be some Hil-
bert space ; for each integer n > 0 we can consider the
Hilbert space

oy h h
H = H o .... ® H n - times

and then the closed subspace 37H consisting of those elements
which are invariant by all permutations ; we denote by SH

the Hilbert sum of all 8§ y = 0,1,2,... ; an element of

SH is a sequence X = (Xn) with X e s"H  and we have
VXIE = ZaX 12 ¢ oo
n
(Xty) = Z(x iy

For every x in H we denote by exp x the following element

of ©SH : ,
exp x = (1, x, x Jen¥, .. <, )

so that we have
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(x1y)
(exp x| exp y) = e

2 I )CH2
il eXp X = e
whence it follows that the mapping exp is continuous.

Lemma 2. The elements exp x are total in SH.

It is sufficient to prove that each element of the form

on
8 belongs to the closed linear subspace K generated by the

exp X ; let us set for each real number t

f{t) = exp t a

an easy computation shows that

(n) @n
£ (o) = (nht a

now the relation

(n)
£ (0) = 1i L 4™ (£(t) - £(0) -v.. - t2 Y1) 1)~ .
(0) = lim n (£(t) - £(0) (-7

{ (n-1)
~ f (o))

(n)
proves by induction that f (0) ¢ X .

Proposition &. Let H be the Hilbert sum of a family of Hilbert

= =—
spaces Hi 3 there exists a unique isomorphism F of Eg%
h (€.)
SH onto @ SHi with the following property : for each
h (&)
X = (xi) ¢ H, ®exp x; exists in @ SH; and is equal

to P(exp x).

Proof. The unicity is clear. Now if (xi) ¢ H we have

2
iﬂxiu

2
e -1 ~ % Hxiﬂ

| exp xiﬁ -1
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(exp x, ) -1 = 0

il

i

so that exp X.

N exists by prop. 5 3 we have

il

rn
(® exp X; 1 ® exp yi) eXp Xx; ) exp yi)

= ﬂ G(Xi]yi)

Z{(x4lyy) (xly)
= e = e

(exp x Jexp y)

thus there exists an isomorphism F of SH onto the closed
h ¢

linear subspace of ® SHi generated by the elements @ exp x.

with F(exp x) = ® exp X4
he
® SHi

; but the @ exp X; are total in

Remark 2. The space SH is used in Quantum Field Theory for
the so called Representations of Commutation Relations ; see

for instance {321,[34],[%9].

1



§ 7. Infinite tensor products of von Neumann algebras.

n.7.'. The concrete tensor product.

Let us consider a family of Hilbert spaces Hi and for each

i, 2 unit vector t; in H, and a von Neumann algebra di in H,.

c

Definition 7. We shall denote by @ t&i the von Neumann

h
algebra in the space H = @& ¢ H; which is generated by all
operators of the form ® T, where T, € C?i and T, =1

almost everywhere.
c

Clearly @ tai also contains every operator ®T, with

Ti ¢ &i in the sense of definition 6 ; and in particular

every operator ® T, where Ti € di , T Tiu exists,
i’i

c o, c

tuation of th. 2, ® &i and @

zZ | NT;tili-1] <00 and 2 |(T.t. | ti) -1 1 <ea | In the si-

uﬁi are spatially isomor-

phic ; more precisely we have

¢t -1 S u
F. @ "Q,.F = ® di ;

c
we shall see later (see § 9) that the type of ® tai depends

strongly on the choice of t.

c

Proposition 9. We have ® td; = (® tdi)' ,  Arrerwbiey
L

i i i . e, ! ' .= T! =
First assertion : if T, € i Tl ¢ al and T T! I

almost everywhere we have
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r — 1 —_ L] _
#Ti-@T; = @TyT! = @TLT. = ®T!.@T

i i

c ]
Second assertion : take some operator S in (® tdi) y SOme

weak neighbourhood V of S
v ={S' H((S'-S).xnlyn)]<1 sy = 1,,.. N 3-
and some ¢ > 0. There exists J ¢ ?(I) with the following

property

iIP.xn—xn b e, HP.yn—ynH £4 ,n=1,...%

: . . . @ .
where P is the projection onto the subspace K = (@ Hi) ® (iéI-Jti)’

i¢d
we can write P = IeQ where Q is the projection onto the
vector ® ti
1eT-J
c ]
We claim that Sp ¢ ( ® A.) I ; in fact for T, ¢ Q.
. i i i
ied
and xiGHi with ié¢J gTizI. xi=1:__.L , we have

SP.QoTi.@xl P.S.@Ti.@xi

I@QOQTi.SCe xi

GTi.I@ Q.S.exi

@ Ti.P.S. ® X,

Since our assertion is true for finite tensor products {see

[{‘EJ ‘f,- C o j:'_ - “ s

== ), this implies Sp € ( @di)&I ; NOW
i€d

Spy operator in K, has the form R®I where Re¢ @ (X' ;

ied
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h
we can consider the operator Rel in ¢ ¢ Hi where
h 1
I is the identity operator in ® Hi ; we have
ieI-J

c Cyt
ReIl e ( 00l)el ¢ ® ai ;
ied
on the other hand if ¢ is sufficiently small we have Re I

¢ Vv since

|((R®I-8).x ly )< iR @I.x,)y,) - (ReI.Px IPy )|

+ ) (R eI.Pxanyn) - (S.Pxanyn)l

+ l(S.Pxanyn) - (S.xnlyn)l :

the second member of the righthand side is null while the

other two are less than ¢ |8 H-(ﬂxn)t + Hyn]).

c
Theorem 4. The von Neumann algebra @ tdi is a factor if

and only if each &i is a factor ; it is equal to _.P(H) if

and only if Q. = F(Hi) Yi

Second assertion : if for some j, Q"]. contains a non scalar

c 1
operator Tj’ ( ® tai) contains the non scalar operator

@Ti where Ti=1‘j if i=j,Ti=I if 14

La(Hi) ; by the preceding proposi-

Conversely suppose ai
tion we have

¢
(@ tai) = @ td; = scalars.

Pirst assertion : if for some j the center of aj contains a
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C
non scalar operator Tj’ the center of @ Cti contains the
above operator @ Ti' Conversely suppose &i is a factor ; by
the preceding proposition the von Neumann @& generated by
c

¢
o di and ( ® t&i)l contains all operators @ T,T} where

= I almost everywhere, hence all

Tiedi ’ T'iéﬁi ’ Ti =Ti

operators @ Si where Eii e[(Hi) s Si = I almost every-
where ; by the first part of the proof we have & = .(o(H),

c
and @ tdi is a factor.

n.7.2. The abstract tensor product.

Civen a family (ai)ieI of von Neumann algebras and,
for each i, a projection e; in fii, we shall construct a von
a
Neumann algebra e © &i which admits as quotients the various

c

concrete tensor products e td‘.i .

Let us first define the inductive limit of an inductive

system of von Neumann algebras ; let I be a filtering ordered

set, (& .)

itier 2 family of von Neumann algebras, and for

igd, M j 8 normal morphism ai — dj (by convention
¥
all morphisms of-von Neumann algebras preserve the unit ele-—

ments) such that N oM, . = M for i g j <k ;

drk )] i,k
denote by ./4 the algebraic inductive limit of this inductive
system, by Mi the canonical morphisms tﬁi ——+ A and by

% ‘the direct sum of all eyclic representations ¢ of A such
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that P"Mi is normal for each i ; the von Neumann @ gene-

rated by ¥ (A ) will be called the inductive limit of our

inductive sygstem ; note that it exists if and only if there
exist representations ¢ of the above type ; it has the fol-
lowing universal prpperty : given a von Neumann algebra B R
by associating to each normal morphism v : & ___;}5 the fa-
mily (Volli), we get a bijective correspondance between the
normal morphisms v and the families of normal morphisms Vi

ﬁj____,§5 such that vjor1i’j = vy for i ¢ j (indue-
tive systems of normal morphisms).

a

We are now in a position to define @ °© by realizing

i H
each Cii in some Hilbert space we can define the finite ten-

c
gor products @ cﬁi s, which are independant of the chosen
i¢ d
realizations and form an inductive system : for J ¢ K we

write

c c c
(e d;)e( e a,)
ied i€ K-J

@
S
]

and define MJ,K by

M (a) = ae®e{ ® e.)
I, K icK-g 1
2 ¢
Definition 8. We denote by ® di the inductive limit of
ieI
a
the above inductive system. If e = I we write ® 4, .

i€I

Proposition 1¢. Let, for each i, Hi a Hilbert space, ti a

unit vector in Hi,'ri a normal representation of (21 in Hi
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with *‘;Ti(ei).ti = t; ; there exists a normal representation
2 ¢ : by
T of ® di in @ " H, such that 7 (@ ai) = @Ti(ai)
e
for each family (a,) er“ledi . Moreover Im v = ® © Ip 4
h t
Proof. Set H = ® "H; ,®, = Im%, = von Neumann alge-

r\h
bra in Hi ; take gsome J in + (I) ; by [1], p. 60 we have a
normal morphism
¢ e

: ® a. — & B.
J ieg 1 1ed

u
ea; +—— o,(a;) ;

on the other hand we can define a normal morphism

e
uj 0?)1—:--8(}1)

i€ dJ
by writing
h h h &
H = ( @ Hi) e ( @ Hi)
ied ie I-d
uf(b) = be@®( © g.(e.)) ;
J i€I-d ivvi
we get normal morphisms
c
Vy = ujouy ®di —-—bf(H)
ied

which form an inductive system and define a normal morphism

a o
T o ® (ii .____,,f(H) such that

'il'(@ ai) = 9171(3-1) V (al) € neai .

c
Last assertion : clearly we have Im v ¢ @ kK Ja)i ; to prove
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the converse inclusion it suffices to prove that @ bi € Im w
for each family (b;) with b, ¢ $, and b, = I almost

everywhere, i.e. for 1i¢J ; for each 1ie¢J there exists

a, in c?i with ‘Tl'i(ai) = b, 3 take K>J and define an

i i
; a
element a in @ . by
() i€k *t

]

(@ a)e ( e )

a
(K) i€d i€ K-J

since VK(a(K)) belongs to Im w , it suffices to show that

vK(a(K)) converges strongly to @b, , i.e. that
. ®b..
VK(a(K))) X —>®b,.X

for each x in H ; by equicontinuity and linearity we can

suppose X =@ x, , X; = t; for i¢K ; then
v, {(a Yox = (@ w.(lay).x, )@ ( @ x;)e (@& w.{e.).t.)
K =(K) ieg * b 1 i€xk-g * ie-k t 101

ieg 1 jex-g 1 jeI-Kk ¢
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§ 8. Infinite tensor products of Hilbert algebras.,

Let us consider for each i, a Hilbert algebra "41 with
Hilbert completion Hi’ and a projection of norm one ey “Ai H

then the left multiplication operator Ue is a non zero
i
. : . A = e A .
projection. The algebraic tensor product = @ ; 1s a

* — algebra and at the same time a prehilbert space whose

h
Hilbert completion is H = @ € H., ; we claim that A is a

i
Hilbert algebra : the axioms (i),(ii),(iv) of {11, p. 66

are trivially verified ; as for (iii), take an element a =

® a in Jq ; by prop. 6 we can form the continuous operator

©® U, in H and we have, for (by) ¢ A
i
h e
( ® Uai)(fobi) = ®a,b, = ®aj.eb, ;
h e
this proves that ® Ua = U@a and that the mapping
i i

b —» ab of ./4 intc itself is continuous for each a of

the form ®a; ; the same property holds by linearity for each
a ¢/

We shall denote by Ui , ’U'i » U, V" the von Neumann algebras

canonically associated with Ai and A.
c g c
® U, , = e )y

Proposition 11. We have U = E

1

c
We nave U ¢ ® °© ui since U is generated by the ope-

h c
rators U = %y which belong to e © U, ; in the
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c
- e
same manner V¢ @ ‘Vi ; then we have

c c g c g ! .
U ¢ @ ui=w ’Uic(w Ui) ¢ V= U,

Example 3. We take for A, the algebra of all Hilbert-Schmidt
cperators in some Hilbert space Ki whose dimensdon r. is finite
or infinite but > 1 ; define the scalar product in 'Ai by

SET Tr ab

(ai b)

where 85 is some integer verifying O < 8; LTy finally we

take for e; a projection of rank Sy -

Proposition 12. If I is infinite, the type of the factor W is

(i) I, if s; = 1
(ii) II1 if 8, =T, (which implies r; < oo )
(iii) IIm if 1« 8; <ry

Proof. We first remark that rs infinite implies W infinite.

Now choose an orthonormal basis ( ?d }  of l(i such that Im ey

is the subspace generated by F‘ yere % ; there exists an
. 1 Si
isomorphism F : Ai -—..g,Ki ® Ki with the following proper-
ties : for each a in qu with matrix (a‘ﬁ) we have
- -% .
Fla) = s ﬁ a‘ﬁ .5 ® ?ﬁ ;
3§
Fle,) = 8.2 2. % o% ;
1 - n=1 d n ‘n ’
al - ta g1

F.Ua.F
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Suppose now 8, = 1 3 we can write

h
Hy = A i = Hi’1 ® Hi’2 with Hi’j = Ky
®1 T %4,1 @ ;0

then using the associativity of the tensor products

h h (e, } h h (e. )
e _ i1 i,2
@ Hy = ( ® Hi,l) @ (& Hi,2)
h h (e, ,)
e ~ i,17 ¢
® Uai = (e ai)@ I
U h (e )

which proves (i).

of

Now suppose 8, > 1 ; denote by cy the projection onto ? 3
1

we have

- -1 .
(cjley) = 8] < ;

then for each J ¢ % (1)

2 -1
H{ @ c,)e ( @ e. ) N s3 ;
ijed 1 jer-g 1 ieg 1

the left multiplication operator corresponding to the element

( @ ci)a ( ® ei) is a trace class projection in U,
ied i€1-J

whose trace is arbitrarily small ; hence M is continuous.
In case (ii), e, i1s a unit element for 441 s @e.ﬁi has a
unit element, W is finite and consequently of type 11, .
Finally consider the situation (iii) ; if r; is infinite, U

is infinite, continuous and also semi-finite, hence of type
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I, 5 if r. is finite, Ai has a unit element 1, with

(1i|1i) = I‘./S. H

by a reasoning quite analogous to the above we can construct

projections in W whose trace is finite and arbitrarily large,

80 that W is of type IIM
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§ 9. The type of certain infinite tensor products of von

Neumann algebras.

We suppose I countable ; for each i€ I we set Hi =

h

Hi,T ® Hi,2 where H and Hi,2 are Hilbert spaces having

the same dimension Ty 1 < Ty kY }(0 ; every element ti of Hi

can be written

;-4
D T t
i n=o i,n i,1,n @ i,2,n
where (ti,j,n) is an appropriate basis of Hi,j and *i,n a
positive number with
2
di,o > di,1 Y eeane and g?sii’n = 1

The aim of this paragraph is to determine the type of the

¢t
factor @ di where di =‘!(Hi1)91'
4

n.9.1. Pirat method.

We shall use prop. 12 ; we first suppose that for each i,

the strictly positive Ji n 8are equal, let
’
o
-¥
%- = - 08 = d = g .
i,o 1’311 i
where S, is some integer £ L and
di,n = 0 for nys;

Denote by Jli the Hilbert algebra of the Hilbert-Schmidt ope-

rators in Hi » endowed with the scalar product

o 1

-1

*
8. , Tr ab 3

(al b) i
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and by € the projection corresponding to the subspace of

generated by t. t

i,1,0 *°°
)

A . — H. . @ H. described in § 8 gives rise to an
i i, i,2

h
isomorphism of the Hilbert completion of @e_ﬁi onto @ v H

Hi,l 1,1,8,-1 3 the isomorphism

i
c

which carries U( @e.ﬂi) into @ tzfi ; thus the type of

¢
@ t dj_ is given by prop.12.

Suppese now the d:i arbitrary ; we can replace the family

11

(ti) by an equivalent family without changing the type of

c
@ t(ﬁi (see § 7 after defin. 7) ; if we set

] —_
Y50 51,09 %50,

we have (t,1t!) = dj o + thus if £2(1 - «i’o) is finite,

¢
t is equivalent to t' and @ tcfi is of type I, i one can

get in a similar way the other results contained in the

¢
Theorem 5. The type of & tCﬂi is

(i) I, if ?(1-«1’0) { a0
,érﬂ*4

(i1) II, if r, <¢e0 and 2 (1 -r. 2 4, ) < oo

i $ i 1 i,n
{(iii) IT,, if there exist integers s with 1 < 8; < ry
-4 A
and Z(1-8; 2 a4, ) (oo
M n=o i,n

n.9.2, Second method.

¢

In this number we shall prove that e ttii can be ob-
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tained by the method used by Murray .and von Neumann to cons-
truct examples of factors (see [ 1], p. 132), which will allow
us to establish the converses of (i) and (ii) in th. 5. It

will be more convenient to write

t = E: . 1%

X . t
i nGNi i,n i,1,n ® i,2,n
where N, is equal to Z if r, = Ho and to Z/riz if
r. is finite ; we can suppose
Yi,0 2 %i,1 Ay 2Ay 0 YAy 5 oy o= Hy
Jim }41” ) N z*iu&-1 if r. < Ho'
a) Particular case.
We suppose Ji n > 0 for each 1 and n . Let us denote
¥
2

by }*i the measure on Ni having the mass 4 at each point

i,n
n , by d. the Dirac function at n ; set
i,n

K. = L2(

i,1 Ni”‘i)

em)

=
AV
|

-1
the elements 4 . . J: @(J constitute an otthonormal

i,n in i,n-p
basis of K. @ K. ; define an isomorphism
i,1 i,2 .

h n
My = Hj,@H », —s K ;@K ;5

by -1
Myt im @bi,0,p) = dyn -9 0d; 0

then
Mi(ty) = ZJi,n 0di, o = 113°ri,o '

e
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The von Neumann algebra .f(H ) is generated by, on the one

)y

hand, the diagonal operators with respect to the basis (ti 1n
] r

and on the other hand the shift operator
vi : ti,1,n = ti,1,n+1 i
if Tf is the diagonal operator of multiplication by some func-

tion T, Mi carries Tfaj[ into Tf@fI; on the other hand

Mi carries Vi@ I into W, defined by

wi(éi,n@‘ji,p) = di,n /"(i,n+1 . Ji,n+1 G“J:[,p+‘i '
The restricted product ﬂ'Ni acts in the space NN, by com-
ponentwise addition ; consequently it acts in L2(T1Ni,®f3)
by unitary operators Um for m « H'Ni 3 similarly ﬂ'Ni acts
in ?2(11'Ni) by unitary operators U; . Now we have an iso-

morphism
h h h
@D

h (mJi )
® Mi : @ HA =

t h o
(Hi1 @ Hyp) —> o ST SPY

then by the associativity property, an isomorphism

) h h h  h({, )

h (1@&
1,0 1 K. )® ( @ 1,0

finally by corollaries 6 and 7 an isomorphism
h h h(J, ) h
i,o 2 2 !
by composing these three isomorphisms we get a new isomorphism
by 2 - P

M carries each operator of the form @(Tf @ I) into Tef ® I ;
i i
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m.
gach operator @ (Vila I}, where m = (mi) € H'Ni, into the

' c
operator Um@ Um ; hence M carries @ tai into the von Neu-

mann algebra generated by the operators cho I with f e

fars) ] 1
L (n Ni,@)ai) y and U @ U, with m en N,

c

Suppose @ td?i is of type I ; by [43], ®r 5 is atomic ;

gince the point in ﬂNi which has the largest measure is the
point with all components null, we must have na/i 6> 0
¥
or equivalently 2 (1 - A, o) <02
¥
C

Suppose now @ d’i is of type II, ; by [43], 8y, 1is equi-

]
valent to some finite Borel measure, invariant under T1 Ni H
on the othet hand all r, are finite , ﬂNi is a compact

1

group for the product topology, and Tl Ni is a dense sub-
group acting by translations ; each finite Borel measure on

¥
R N; 1is a Radon measure, and being invariant under T L
it will be invariant by all translations, i.e. equivalent to
the Haar measure ; the Haar measure is the product of the
measures v ; which have a mass rET at each point ; by [41]

_% 1 -4

@/"‘iv@vi implies ?(1 - Iy Pl q’in) < o0

n=o0 '

b} General case.

The previous results still hold since we can make all

i n strictly positive by modifying them sufficiently little
]

to not change the eguivalence class of (ti) nor the nature
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of the families (1 - «. ) - thus we

have proved the following

Theorem 6. With the notations of the beginning of § 9, the

¢
type of the factor @ v di is

(1) I, if and only if 2 (1 -d; ) < o

- -
(i1) II, if and only if r;, <e® and Z (1 - r, X 4 )<
‘ n=o

Remark 3. It is more difficult to distinguish the types II
and III , C.C.Moore proves in L 42 ] the f llowing result, by
means of a deeper analysis of the infinite products of mea-
sures : suppose q)i,o > k ¥ i for some k > O , then qac tc?&

is of type III1 if and only if

2

i,n

2 2 2 2

(inf( 4. /o “1,¢) ) = oo

d |
i,n i,o 1,n

for some (or equivalently for all) constants ¢ > 0 ; he
also states without proof on p. 458 a result equivalent to
the third assertion of our th 5 . E.StOormer has proved by

another method (see [ 46)]) some results contained in th. 5

and also the following (contained in Moore's theorem) : sup

c

independant of i § then ¢ ttﬁ. is of

pose rj; and di, i

n

type III iff there exist at least two distinct and non null

o

i,n °



o1

c
Remark 4 (On the isomorphisms between the various factors ) t(ﬁi).

In [ 35] Araki and Woods study systematically the set E of

¢
the isomorphism classes of the factors g tcﬂi which can be

obtained by wvarying the r.

i and ti ; E can be divided into

five mutually disjoint subsets E E

pre=+ Bg

E contains only one factor, which is of type I

1
E2 contains only one factor, which is of type IIT and hyper-
finite.
E3 contains exactly the factors .ﬁl, de lo,4[, constructed
in the following way : AA= g t&i where r. =2,
i1 = 1- A ; these factors are of type III ;
it had beeb proved earlier that they are mutually non
isomorphic ([45]).
4 contains factors of various types and among others an

uncontable family of type III factors.

E contains exactly one factor, which is of type III.
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*
§ 10. Infinite tensor products of ¢ - algebras. Definition

and first properties.

Let us consider a family (Ai)iiI of ¢ = algebras and
for each i, a non zero projection e, in Ai ;s 1f we endow each

finite tensor product ® Ay with the v crossnorm (resp.
ied

the * crossnorm), the morphisms L are isometric, so that

J,K

we can define the v and x norms on g° A; i clearly these are

®
respectively the largest and the smallest ¢ -~ crossnorms 3

# . i Ve *"e
the C completions will be denoted by ¢ Ai and @& A.i H

they can also be considered as the inductive limits of the

v #
finite tensor products @ Ai and ® Ai ; if each Ai
- ) ied . i€d
has property (T), ®° Ai and @° Ai are identical.
v +#+
The tensor products ®° A, and 6% 4. possess properties

i i
of associativity similar to that of § 2.

-

~
If ey is a unit element for Ai, we write QbAi and @ Ai

w » v
instead of ©° A; and @° A; 3 ® A, has the following

*
universal property : given a € - algebra B with unit,there
is a bijective correspondance between the unitary morphisms
u:o@ Ay —= B and the families of commuting unitary mor-

phisms  u, : A ——> B ; it is given by u(® ai) =11ui(ai)

for each (ai) in N°¢ Ay .
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Propogition 13. . Consider a family of Banach x - algebras Ai

1th projections e; of norm t ; denote by ei the canonical

n C*(Ai) and suppose ei # 0 . Then Cd'r(ge AL)

image of e. i

1

is canoni. 1ly isomorphic to @ © C*(Ai).

In fact we have

Ue' * . * o A~
8 c (Ai) = lim ® (Ai) = 1limC ( ® A.)
T jed —> ieg *t
»
and it is easy to ee that the functor commutes with the

inductive limits.

i Cor llary B, Let (Xi) be a family of locally compact groups
(Y, -
1

Y * .
with compact open subgroups ; then C (}7 X.) 1is canoni-
v
cally isomorphic to @ C‘(Xi) where e, is the characte-

ristic function of Yi‘
This 8 a consequence of th. 1 and prop. 13.

Example . TLet (Xl' be a family of locally compact topolegi-
(¥,)
cal spaces with compact open subsets Y. ; then 22( n Xi)
*
is canonically isomorphic to g° EB(Xi) where e; 8 the
characteristic function of Yi. The proof i3 quite similar

to hat of th., 1.
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§ 11, Infinite tensor products of .epresentations of C*;algebras.

*—
Proposition 14. Let us consider for each i, a C - algebra

A a non zero projection e, in A , a Hilbert space Hi' a

19

unit vector ti in Hi and a representation Tfi of Ai in Hi such

that

201 ~dx (et n) < oo, (10)

e .
A. in

»
Then there exists a unique representation * of @& i

h
PO H; such that T(® ai) = ®1Q(ai) for each family (ai)

. e
in 1N Ay
Proof The unicity is clear. To prove the existance take an

element in @°¢ A, of the form

a = a. ®( ® e, )
J ieI-J %
where J ¢% (I) and a; € ® A; ; write
ied
h N h h h %
id ieI-J

(107 implies Z|1 - (my(e )t ] t,) | < 8O and by prop. 6 we
) h

can consider the following continuous lin ar operator in @ k Hi

T {a)

h
t
( i;@J vi)(a;) @ ( iE?_J wileg))

one can easily check that -t is a representation and moreover

by prop 6 we have

b (a) I g Fagll = Wall ;
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x*
then A extends to a representation of ¢°F Ai which has the

required properties.

Definition 10. The representation % defined in prop. 14 will

be denoted by 58 t‘ri - The von Neumann algebra it generates

c "
is identical with 2 t Wi(Ai) {(the proof is the same as for

e,t

X
prop. 10) ; thus @& . is factoria or irreducible if

1

and only if each ﬁ'l has the same property.

te,t

The kernel of & ﬁi depends only on the kernels of the

W ;3 in particular & Ti is faithful if and only if each

., is faithful.

¥
On the other hand by prop. 7 if t~t', & e’t'ﬁi and

* 1
p ¢t W, are equivalent ; the following proposition is a

partial converse of this result.

Proposition 15. We suppose each « i is irreducible ; then

se,1 * e,t!

& . and & w®, are equivalent if and only if we

have A~ t .

Proof. We suppose L P and prove that the two represen-

tations are not equivglent.

a) Particular case.

We suppose A, = g?(Hi),‘ﬁi = identity. Since t = t',

we have Z2 (1 -i(ti ti)i) = o0 ; there exists a countable
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subset I ¢ I such that 2 (1 -1t 1E)1) =0 ; it is
iel
° -
sufficient to prove that the representations ® e’t‘ﬁ
iel
0

Wy are not equivalent, s8¢ that we are led back to

i and

® e, t!
iGI0

the case where I is countable, say I ={1,2,... }. Denote by

Pi the projection operator in Hi onto ti and set

Tn = P1@P2®...®Pn®en+1@en+2®... ;

*e,t’
we shall prove that (@ 7" T ,)(Llconverges strongly to 0

L)
while ( @%*7

?‘iﬂtjdoes not, which will establish our result.
"o prove that

(%'* x )1 ).x —s O Y xe@  H

we can take x in the algebraic tensor product at'Hi since

our operators have norms { 1 ; then by linearity we can take

t

]
X i i

® X, where Xx if i is larger than some number j ;

then for n ) j
*e,t! 4 -
(@' ! Ti)(Tn)'x = (121 Plxi)e (i=%+1 Plti)w(i?n ti'i.)
fe,tt = ; .
(e .;i)(Tn),xH < bxi. i=!'J"l+1|(t1|ti)] :
i - =4
i Z (1 -lede) =, T (s 081 = 0,
since S A2 e N

st

n I(tilti)f-——; 0 and we are done.
i=j+1

b) General case.

Set f. = Wi(ei) : ﬁfJ?(Hi) is included and weakly dense



a
in the tensor product @ I..((Hi) defiwed in n.7.2 ; we have

a morphism @F¥, : ®° Ay ey ef,f(!di) whose image is weakly

dense aince each LI is irreducible ; by prop. 10 we have

a 5 h 1
representations u and u' of @& Z(Hi) in @ " H. and

i
h
® v Hi ;3 by the first part of the proof the restrictions of

u and u' to @° Ai are not equivalent, but these restrictions

e,t e, t’ P

N a
1

are nothing but e L and @

Theorem 7. If I is infinite and if each A; admits sufficiently
many irreducible representations ¥ with rank*ﬂ(ei) > 2,

»
then @° A, is.antiliminar.

i
Proof. For each i1 thers exist a set Xi and for sach point Xy

of Xi an irreducible representation 'Fi % of Ai in soma
-

i
Hilbert space Hitxi such that rank'ﬁi’xi(ei) > 2 and
@ v is faithful. We choose a point vy, in X, and
i,x% 1 i
X,eX i
177
vectors ti,x ; ti,x. in Im‘Ti’X_(ei) such that
i i i
1. % =
( 1,xiE 1,xi) 0
1 if x, =y
Bty W o= Htr oy o= { 178
s i 0 ctherwise
(yi)
for each x = (xl) in X =T X; we set
xe (t ) se (%! )
_ 14X; = S R
"(x) = @ Ti oo 'th) = B 4
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which makes sense because t. and t! are unit vec-
i,x. i,xi

i
tors for almost all 1 ; ?T(x) and ’th) are irreducible re-
presentations of <59 Ai y have the same kerne]l and are unequi-
valent by the preceding proposition ; it suffices now to prove
that ® .ﬁ(x) ang¢ & T(x) &are faithful. Consider the

XeX XeX
first : as indicated in n.6.5 we have an isomorphism

o ( )
xeX (x) ieI xisX. TrXy
i
as easily verified this isomorphism carries qa'w(x) into
XeX

*
@ e’t( @ T ) ; since the second representation is
i€l xiGXi i

faithful, so is the first.

Corollary 9. If T is infinite, ey = unit element, and Ai has
*
no nonzero commutative two sided closed ideal, @ Ai is anti-

liminar.

Corollarxl10. We suppose that I is infinite countable, Ai is
postliminar separable and admits sufficiently many irreducible
representations % with rankm'(ei) > 2 ; then ;e A; admits
an irreducible representation which is not equivalent to a

tensor product of representations.

Proof. Take a partition I = I1u I2 with I1 and 12 infi-
. . t g * * L
nite and write @~ A, = B.@B where B. = & A, ;
i 1 2 J je1. 1

J



by Part I, prop. 7, B1 and 282 have property (T} and we can

also write ée Ai = 315 32 ; B., and B2 being separable and
antiliminar, by Part I, th. 6 the algebra B,¢ B, admits
an irreducible representation which is not a tensor product
of representationg of B1 and B2 » and consequently it is not

a tensor product of representations of the Ai :

Bibliography [9] .
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§ 12. Infinite tensor products of positive functionals on

*
c - algebras.

*
We consider C - algebras Ai with non zero projections e,

Proposition 16. Let fi be a positive functional on Ai such

that fi(ei) = and | HfiH < oo (note that WEsn 3 1),
Then there exists a unique positive functional f on (58 Ai

verifying

f(@ay) = If.(a,) V(a;) € P4,

its norm is equal to f1lfiﬂ 3 finally the representation

—

*
associated with f is equivalent to Qe,t Wy where L is

the representation associated with fi and ti the correspon-

ding cyclic vector multiplied by HfiH

Proof. The unicity being trivial we shall prove the existence
of £ ; we have a multilinear functional on lTeAi : (ai) _—
f1fi(ai) s Whence a linear functional f on ®°¢ A; such that
fle ai) = Tl fi(ai) i £ is positive since its restriction to
any finite tensor product is positive ; moreover if a is an

element of ® Ai we have
i€d

If(a) ) ¢ .ﬂJ[fiH chan, < U NE a1
1€

»
hence f extends to a positive functional on ®° Ai

We now denote by Hi the space of Tii, by x. the corresponding

1
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cyclic vector and set ti = Xy Hfiu ; we have

fi(al) = (’n’l(al)'xll xi) V aie Ai

- I 2 -1
I = x| .Hfiu

#l
—

Ity

2
ﬂ’fi(ei).tiﬂ (ﬁ'i(ei),ti} ti)

KE 7 (R yle)exy T xg) = wgat

Ml

i i
since f?Hfiﬂ > 0 we have
-3
2(1-lfiH ) < o2
2(1-lwi(ei).tin) < @

by prop. 14 we can form the representation -« = *e’t’ri i
since

hx, o= (xyft.) = e,
we have

2 (Uxgn - 1) < oo
and we can consider the vector X = @X; ; it is eyclic for
« and we have f(a) = (% (a).x)x) for each a of the

>
form @ 8 hence for each a in @e Ai

We finally prove that £l = Iy f40 & by (11) we have MU fi
Tl Hfiﬂ 3 to prove the converse inequality take an & > O ,

f"'h
a Je¢T(I) such that

owen y mnfn . (1ve)7'
i€ d
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and for each 1i¢dJd an element ai in Ai such that

-1/n

fajn = 1 and [fi(ai)l > Hfi n.(1+%)

where n = card J ; set
a = (@ a,)e ( e =e.) :
1eJ ¢ ie1-g t

then fkal = 1 and

b fd 2 | f{a)l = N Jft.(a)!

jeg L1

-1
y  {(1+8) . N oy
i€¢d
=2
(1+£) .Flﬂfiﬂ .

N

Definition 11. The positive functional f defined above will

be denoted by 5631& 3 it is factorial or pure if and only
if each fi has the same prpperty ; it is a state if and only
if each fi is a state. In particular if €y is the identity
of Ai one can form the tensor product of an arbitrary family

of states.

ke 4
Proposition 17. Let us consider a ¢ - algebra AO , & nonzero

projection e, in A and two distinct pure states fo and 8,

0
ith f (e ) =g (e ) =1; let t A= &°
on AO wi ol€g) = 8yle,) = ; let us se = @ Ai
¥
where Ai = Ao y €4 = € f = @:efi where fi = fo s £ =

éegi where gi = 8y - Then the representations associated

with f and g are uneguivalent.
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Proof. Suprose they are equivalent ; denote by H1,1Tj, Xy

and K.y £, ¥ the objects associated with fi and g; respec-

i

tively ; by hypothesis there exists an isomorphism

h < h y
F o ® Hi —_— Ki
with
-1
~€
F.@w,(a;).F = ®p,(ay) V (aj)e T4
if a, = ey except for one index j, @ﬁ?i(ai) and @pi(ai)

are multiples of Tj(aj) and pj(aj), so that W, and ¢
have a common multiple ; since they are irreducible they must
be equivalent and we can realize them in some common Hilbert
gpace HO with two vectors X and Yo which are nonproportional

* E,¥

e, X )
i Ty and ® fi are

gince fo # 8y by prop. 15, @

unequivalent, which is a contradiction.

Remark 5. E.Stormer proves in [ 467 that the above result still
holds when f0 and g, are not pure, and that one can replace

in the conclusion the word " unequivalent " by " non quagi-
equivalent ". In the same paper he alsc studies the states

of a Ai which are " symmetric %, i.e. invariant by all the
automorphisms of & A determined by permutations of I ; he
proves in particular that the extremal symmetric states are
exactly the states ;’fi where fi = fo ’ fo a state of A  ;

+*
and he determines the type of such a state ®i}_when fo is

factorial.
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In [40 ] A.Helanicki and R.R.Phelps prove the following result

I
consider some group G0 of automorphisms of A, ; then G0 acts

*
by automorphisms in @& A; 5 let G be the group of automorphisms

*
of ®A; generated by G

i and the permutation automorphisms ;

then the extremal G-invariant states are exactly the states

"

@ fi where fi = fo s fo a Go—lnvarlant state of AO.



§ 13. Study of the case where e, has rank ( 1

n.13.1. Definitions and examples.

In the preceding paragraphs we have seen several proper-
ties of 56 Ai in the case where e is Ylarge® in a certain
gense {for instance prop. 17, th. 7, cor. 9 and 10); in this
paragraph we shall be concerned with the thorcughly different

case where e, is "small®.

*
Definition 12. Given a C - algebra A, a projection e in A& is

said to have rank ¢ 1V 1if for every irreducible representa-

tion 7 of A the projection w{e) has rank ¢ 1.

By [2], 4.2.6 each projection of rank { 1 1is contained in
the largest liminar ideal of A ; consequently it must be O
if A is antiliminar. On the other hand if a projection e lies
in some closed two sided ideal T of A, it has rank ¢ 1 in I
iff it has rank ¢ 1 in A (in fact for each irreducible re-
presentation w of A, w|I is either null or irreducible);
finally if f is a projection of rank ¢ 1 in A, its canoni-

cal image in A/I has also rank £ 1 .

Example 5.
(i) If A is commutative every projection has rank ¢ 1.

(1i) If 4 is elementary (i.e. of the form Ze(H)y with H

o Hilbert space), every projection which has rank § in
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the usual sense has rank ¢ 1 in our sense. If we set
Ay = op‘f'(Hi) and take e; of rank 1, ®° A; 1is nothing
by
vut F¥( @ Hy) where t;¢Ime; ; in fact if (a,) e
e h t
n A; , ®a;, belongs to j?( @ Hi) since it is of

the form ( @& a&) @ é ei) where both factors are
ied 1€I-J
compact ; it follows that &°¢ Ai is included in
h t
ff’( ® Hi) y but being irreducible it must be equal

to it.

(1iii) Let A be the ¢ - algebra defined by a continuous field
of ¢ - algebras (A(t),® ) (seel2], 10.4.1); e = (e(t))
an element of A such that each e(t) is a projection of
rank ¢ 1 in A(t). Then e is a projection of rank R I
in fact one obtains all irreducible representations 77
of A in the following manner : taking an index t and an

irreducible representation ¢ of A{t), and setting
m{a) = pla(t)) for each a¢ A .

In particular if the A(t) are elementary one can take

e = (e{t)) where rank e{t) =0 or 1.

(iv} Let G be a locally compact group containing a compact
open subgroup K with the following property : for each
irreducible representation 7 of G in a space H, the

space of all vectors in H invariant by 7 (X, has dimen-
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sion { 1 . Then the characteristic function e ¢f K has
rank ¢ 1 in C*(G) 3 in fact it is known that w(e) =
j;ﬁr(s).dk is the projection onto the apace of all vec-
tors invariant under % (K). Here dk is the normalized

Haar measure of K.

(v) 1let p and q be two projections in a Hilbert space H ;
.1
then the sub-C - algebra A of £ (H) generated by p and
q is postliminar and p and q have rank £ 1 in A (G.XK.Pe-

dersen, Oral communication).

n.13.2. Irreducible representations of 38 Ai

-
In this number we consider a tensor product & = @°© Ai

where each ey has rank ( 1 in Ai 3+ we denote by Yi the set

A
of all « in A; such that ‘r(ei) # 0 ; it is open in A;.

We define a mapping

F Ai —_— A

in the following manner : take an element M = (Wi) in
(Y,)
n A; and a finite subset Jc¢ I such that 1¢J implies

W, €Y, 5 then for id¢J , Fi(ei) has rank 1, we can take

a unit wvector ti in Im Ti(ei) and form the representation

® e’t*wi » which is independant of tne choice of ti in
ieI-J
<+ L *~
Im Ti(ei) i now by writing A = ( @ AJe( ®° 3
ieJ iel-g
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# * .y
we can form the representation ( @ W.)eo( & % x.)
ied ieI-J +
A
of A ; this is an element of A which is independant of the

choice of J (easy verification) and which we shall denote by

F().

»
Lemma 3. Denote by A a C - algebra, by e a nonzero projection
in A, by 5 the set of all pure states f on A verifying f(e)
= 1, by Y the set of all w in A verifying w(e) # 0 , by

M the canonical mapping f —s 7 of P(A) onto A . Then

f

M|S maps S onto Y and is open.
Proof. We have M(S)<¢Y since
1 = f(E) = ('W f(e).xf ‘ Xf) _ Tf(e) # O H

we have M(S) = Y : in fact if ® belongs to Y we can take a
unit vector x in Imw(e) and setting f = w_ oW we
have f(e) = 1 and T = ’rrf . To prove that MIS is open,

denote by T the set of all f in P(A) verifying f(e) # 0 ;

to each f in T we associate the state L(f) defined by

L(f){a) f(eae)/f(e) ;

]

then L is a continuous mapping of T into S ; if f is in S we

have L(f) = f since writing f = w_ oW  we have

fle) = 1 (7t(e).xlx)

T(e).x = x

L(f)(a) = (7 (eae).x|x) = (7 {(a).x]x) = f(a) ;
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this proves that L maps T onto S. Let U be an open set in S ;
L“’(U) is open in T, hence in P(A) since T is open ;
M(L”1(U)) is equal to M(U) since we have M(f) = M(L(f))
for each £ in T ; since M is open, M(U) is open and MIS 1is

open.

(Y)) A ~
Proposition 18. The mapping F : N A, —» A is in-

jective and bicontinucus.

Proof of the injectivity. Suppose F(F1) = F{(1') and take

j in I ; there is J ¢ ¥(I) such that je J and
1¢J @Ti and T;‘Yl H

we can write

Pn) = (( ® v)e( & 5

and similarly for F(J]') ; since the assertion is true for

o
the finite tensor products we have @ Wy = @ 1Ti and
ie€d ied
then T.o= Wk
J d

Proof of the continuity. It is sufficient to prove that for

each J, P | X(J) is continuous ; but PF| X(J) is the compo-

sition of the following mappings

a b x et
(T 3)ier —> (Tidieg o (Tilierg) s ((i?JTi’i?I—J Ty)
o « ®
(@ THEl & " W)
i€J i€ 1-J
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a is trivially continuous, c¢ is continuous by Part I, prop. 5

as for b, (ﬂ.i)icJ — -; w3 18 continuous by the same re-

ied
sult, and it remains to be shown that (’ﬁ'i)ieI_J —
»
® e’t'ri is continuous ; in other words we are led back
i€ I-J

to prove the continuity of the mapping F in the case where
‘ﬁi(ei) # 0 ¥V i. Denote by S; the set of all pure states
f of A; verifying f(ei) = 1 ; by lemma 3 the mapping M, :
S; —=7Y; 1is open ; then the mapping M = (Mi) N8, —

n Yi is open 3 consider the following diagramm

G

ns, —» P(A)

Fal

Y, — s A
b F

since it is commutative we have only to show that the mapping

E.3
G : (fi) e @e fi is continuous, i.e. that for each a

. . TN * e . .
in A the mapping (fi; — (@ fi)(a) is continuous ;

since all our positive functionals have norm 1, by equicon-

tinuity we can suppose a€o° Ai , then by linearity a =

® a; , (ai) elﬂeAi ; then the assertion is trivial.

Proof of the bicontinuity. Take J e % (I) ; an element T of

(Y,)
n ot A; belongs to X 5y iff F(#/1) is not identically

Zero on & 4. ; thus we see that F(X ) 1is open in Im F
ieg (J)

¥
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it suffices to prove that Pl s continuous on F(X(J)), or

that each mapping PF(M) — r is continuous on F(X(J)) ;

3

we can suppose Jj€ J and write

* ¥
M) = (e v06( 8 =% )
i¢d ie1-g

o
by Part I, th. 5, ® %, 1s a continuous function of F(M )
ied
¥
and %. a continuocus function of ® W. .
J ieg 1

Theorem 8. If each Ay is postliminar and ey has rank ¢ 1,

the mapping F is a homeomorphism of A; onto ®° Ay

* e . .
moreover @ ﬁi is postliminar.

Proof. We shall prove that each factor representation % of
A 1s of type I and also that if % is irreducible, it is equi-
valent to a tensor preduct of representations. There exists

L3
a Je%(I) such that ) e A, # 0, i.e.
i€d

T laggy @ iEO}_J e )} # 0
for some a(J) in jéJ Ai ; since this algebra is postliminar
we can write by Part I, prop. 2, % = ﬁTT 5172 where T4 is
some factor representation of .éJ Ai and ‘Fz some factor
i
X

representation of ® © Ai 3 T‘1 is of type I and if moreover
i€ 1-d
F is irreducible, '71 is irreducible too and is a tensor

product of irreducible representations of the Ai, ied ; on

the other hand
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'n(a(J)®( ie?_J e;)) = ’u".,(a(J)) ® T, ith e;)

implies 'KQ( ® ei) # O ; we are thus led to prove the
i€ I-J
feollowing assertion :

If 7v(® ei) # 0, is of type I ; if o is irreducible

it i1s eguivalent to a tensor product of representations.

We denote by H the space of % and choose a unit vector u in

Im % (@ ei) ¢ H; for each je¢ 1 we can write (since Aj is

postliminar)
K 4 Kt
H = j ® i
T - P, eP!
T(®e;) = Pj(ej)®“’3( ® e)

1# ]

where ¢, is a factor representation of Aj in Kj H Pj is a
o

multiple of some irreducible representaticn ‘Tj in a space

Hj and we can write

H H : : K
= . L. 4
3% %R
¥ L
T = 'ﬁjﬁlept
T(®e;) = T (e)oI@pi( ® e.) :
) L
setting H3 = Lj ® Kj and 173 = I @ p& we obtain
= . '
H HJ ® H
*
T = T, & T
J J
T (@e;) = 7. (e)owt( & e.)
1 J d7 iy 1 ’
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gince 'wj(ej) has rank 1, u has the form tjetﬁ where tj

is some unit vector in Im Tj(ej).

Consider now a finite subset J of T ; by the same procedure

as before we can write

h
Ho= gy e By
T T T

where T is an irreducible representation of ; A, in
(J) ieg I
H(J) 3 'W(J) is a tensor product of irreducible representa-

tions Fj of the Aj’ j€d 3 for each je€ J the restriction

| W to A, i ltiple of €. ; it
EJ of :(J) o j iz a multiple ji write

- -
A = A.®( e A) e @eAi)
d ied-] ieI-J

and choose approximate identities (us) and (Vt) of the second
and the third factors in the righthand side ; for each aj in

Aj we have

'T(aj ® U, ® vt) = ﬁj(aj) ® w&(us ® Vt)
h
which converges strongly to Tj(aj) ® I in Hj ® Hj i we
have also
w (ajo ug ® Vi) = W(J)(aj@us)@wEJ)(vt)
h

. t 3 1 -
which converges strongly to dj(aj)@ I in H(J) ® H(J) 3
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this proves that ’Nj and t?j have a common multiple ; conse-

quently ‘Fj ig equivalent to 55 3 we thus can write

h h
H = ( @& H.)® H (12)
ieg 1 (J)
»
T o= (@ 7,) emyy ' (13)
ie d
T(®@e.) = ( @ w.(e.))® 7! ( @ e.)
i jeg 101 (J) jel~g 1 '
u o= ( @ t.)e t!
ieg 1 (J)
where ttJ) is some unit vector in Im'wEJ)( i:}—J ei).
If K>J we have
u = (@ t.)e t!
jex 1! (K)

( @ ti)@( ® ti)mtzx)

ieJ ie K=-J
whence
£ = ( @ t.)e t! : (14)
(1) i€k-g 1 (X)
h
Define an isometric linear mapping UJ : @ Hi'“_* H by
ied

writing (12) and

the various UJ form an inductive system : in fact denoting

h h
by LJ K the canonical mapping ® Hi ——> @ H. we have
’ i€ iek *
UK(LJ’K(x)) = x & ( ieg_J t) ® iy
= Xt (by (14))

I

[
e

L
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this inductive system gives rise to an isometric 1inear map-
h

ping U : © " H, — » H . We now prove that U intertwines
e, b __ .
the representations g Wy and ¥ , i.e. that
e, d
U({e ~? ﬂfi)(a).x) = %w(a).U.x
by
for each a in A and x in & H; 5 we can take a = @ a;
. e ~ : t .

with (ai) €f° A, and x = ®x; with (xi) ¢ NV H; ; we
have a; = e, and x; = ti if i belongs to the complement

of some finite J , then

U((§% "7 ) (a).x)

H

U(ew, (a;).x,)

= Il g ) 2 @TE‘”_( 1&g B2t
= Tl lle x)e ti)) (by (13))
= 7 (a).U.x.

*
Thus U intertwines ae’t'wi and W ; since the first repre-

sentation is irreducible and the second is factorial, it is

of type I ; if moreover 7 1is irreducible, it is equivalent

Corollary 1'1. Let for each i, Gi be a postliminar locally
compact group containing a compact open subgroup Ki with
the property indicated in example 5 (iv). Then the locally

(X,)
compact group nt Gi is postliminar and 1ts spectrum



is homeomorphic to I G, where Y, is the set of all =

o~
in G; such that the space of all vector invariant by 77(Ki)

has dimension 1.

Interesting applications of this result to adele groups can

be frund in [37], ch.III, § 3, n.3.

Corollary 12. If Gi is a commutative locally compact group

(K,)
and K a compact open subgroup, the dual group of JI Gi
(L) A

is isomorphic and homeomorphic to N 1 Gi where Li is the

subgroup orthogonal to Ki

In fact a character x of Gi verifies /ﬁ x(k).dk = 0

Ks

if and only if it is trivial on Ki'

Another corollary has been stated in example 4.
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=t 6. .

n.13.3. The Plancherel measure class of [ 5

Tn this number we suppose I countable and consider for
each i a separable postliminar locally compact group Gi with
compact open subgroup Ki such that for each « 1n‘ai the space
of all vectors invariant under Tr(Ki) has dimension £ 1 ;
we denote by Yi the set of all w such that the above space
(Y;) ~

X = G.

(K,)
1 g, ,
1 1

has dimension 1 ; we set G =

We recall that given a separable postliminar group G, the
™~
Plancherel measure class of G is the measure class on G cor-

responding to the central desintegration of the left regular

representation of G .

Proposition 19. One can choose for each i , a measure li in

the Plancherel measure class of G, in such a way that Ai(Yi)
. Pl

= 1 and that the homeomorphism F : X —s G of corollary

11 carries the restricted product of the Xi (see definition

in § 1) into a measure belonging to the Plancherel measure

class of G .
We shall need the following lemma :

Lemma 4. Let G be a separable locally compact group, K a
compact open subgroup, e the characteristic function of K

considered as an element of L1(G), t the same “unction . on-

2

gidered as an element of 1° G) = H , ™ the left regular
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representation of G in H ; let us write the central desinte-

grat on of W

)
tl

&
f)( Hx.dy\(x)

]
L R S PR
where pm 1is some Borel measure on some standard Borel space

@
¥ ; t admits a decomposition /-tx.d)A(x) ; then the sets

X, fx 17 (e)#0}

fx 1t, 30 }
are identical up to negligible sets.

Proof of the lemma. Since T (e).t = t we have Trx(e).tx

= tX almost everywhere and X2 is almost contained in X1.

To prove the converse inclusion deno.e by % the algebra of
all diagonalizable operatcrs, by ' the algebra of all de-
composable operators, by & the von Neumann al_ebra generated

by T (G), by f the right regular representation ¢f G in H -
%
(plg).f)(g") = A(g) .flgg) ;
set L = Im%w(e) ; we can write
@
o= [ 1.ap(x) with T = Imw (e) ;

L, is the set of all f in H which are constant on the righ
cosets Kg ; since G is separable and X :pen these cosets

form a ccuntable set, say Kgo, Kg1.... with 8y = neutral
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element ; L has an orthonormal basis ¥or Wey... where W
is the characteristic function of Kgn, W, = t ; W admits

g
a decomposition,‘/ wn(x).dr(x) ; we have

% -1
Ae,) - plgy) ¢ &' ¢ &

3 -1 v
hence A.(gn) . p(gn) admits a decomposition /-Tn(x)'d’(x) :

on the other hand we have

1

3 - X
a (gn) . f(gn) . WO = wn

hence for almost every x we have

Tn(x).tx = wn(x) Y n;

since for almost every x the wn(x) generate Lx’ we see that

for almost every x

tx=O=>Lx=0:'ﬂ'x(e)=0.

Proof of the proposition.

Denote by Ty and 7 the left regular representations

. 2 l 2
of G; in H; = L°(G;) and of ¢ in H = L°(G), by t; the
-characteristic function of Ki considered as an element of
Hi» by »; a left Haar measure on G; with ri(Ki) = 1 ;

by § 1 the restricted product m of the »; 1s a.left Haar

measure on G ; by corollary 5 we have an isomorphism
U: oF
- Hi —li H

with the following property : if fie Hi and fi = ti almost
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everywhere, Uf is the function defined by Uf(g) = Flfi(gi) t
it is easy to check that U carries @'Wj(gi) inte % (g) for

each g - (gi) in G

Take an arbitrary measure Ai in the Planeherel c¢lass oOg Gi i

we can write the central desintegration of ifi 3
@

H, /’d Hi,{i-dJ:(Pi)

de
@
w =/ Ti,(i.dli(pi)

where T, is some multiple of Py by lemma 4, ti admits

e,

®
a decomposition /’ 5y P .d)i(pi) such that ¢ ¢4 0 1iff
'y

i’Fi
f.€Y. ; then we can replace A . by an equivalent measure
it i i

which we still denote by Ai’ and suppose | t, =1 for

l’Pi

each f,€ Y, ; since Nty - 1 we have )i(yi) = 1 and

we can form the resiricted product A of the )i :

By theorem 3 we have an isomorphism

h @ n(t, ,)
t lrf"i
vV: @ H. / H. .dA
i — ), © i (¢) 3

as easily seen V carries the representation @t'ﬂi into

® (t, )
/ @ 10 Vs / .dA(p) , the proof will be complete if
X i

T, iz a multiple

we show that for each f¢ X , ©® i,p
s P
i

of F(p). Since T, is a multiple of ¢, we can write

’Fi



B ,
Hl’?i = Kl,Pi@ Kl’?i
Lo p = Pi @I
then
gince tivPi € Im 7i’€i(ei) and rank ﬁi(ei) £ 1 we

can write

1. = s a!
1,04 isfi - 1,65
with s, p. € Im p;(e;) , then by virtue of the associativity
P
i
(%, ) (s, ) h h (s} )
1, ¢ _ 1,6 i,e:
& ' H. = @ e K. @ Lo ¢!
ey ( 1'F1) @ ( 1’"’1)
(¢ ) (s, )}
10 " + _ 1,8
® v o, = ® x plj ® I

Il
=
o
@
-



—

il

§ 14. 1Infinite tensor products of traces on C - algebras.

n.14,.1., Definition.

Let us consider for each i a C*- algebra Ai y & non zero
projection &5 in Ai and a semi-finite lower semi-continuous
(s.f.1 s.c.) trace f; on A; such that fi(ei) = 1 ; denote
by m;, Ny, Ny the associated ideals (ef.[2], 6.1.2 and
6.2.1). by A, the Hilbert algebra n;/ N, , by a the cano-
nical image in qu of any element a in n; , by Hi the Hil-
bert completion of qu s by ui the left von Neumann algebra
associated with Ai » by t; the natural trace on Ui » by W,
the representation of Ai in Hi defined by fi iy is a pro-
Jection of norm 1 in 'Ai and we can form the Hilbert algebra
b ()

H.

A (el)
= @ Ai s 1ts Hilbert completion is H = i

c (e,)
and the left von Neumann algebra of A is U= @ 1 ’ui ;

denote by t its natural trace and by T the ideal of Hilbert-
Schmidt operators for t ; since ’r(i(ei).é. = e, we can

1 1

form the representation T = Oe(e‘ )‘T?’i which generates
the von Neumann algebra W ; for each family (ai) in ﬂeAi

with aif n1 we have

'ﬂ‘(eai) = U | ¢ F(A) W ;
®a,

gince the operators T{® ai) generate Y s We see that the



pair (< ,t) 1is a traced representation ; hence it defines

a s.f.l.s.c. trace f on A = &° Ay f =1t om ; if (ai) €
e + . _ .2 +
n Ai and a;€m, we can write a; = bi where bie n,
and we have
2 _ — 2
f@a;) = f({eb;)7) = t(7v (& b.)%))
2 . -
= (U .)%) = (@b, leb,)
® b,
i
_ - L] _ 2
= M (o;11p;) = ﬂti((Uﬁ') )

1

fl

— 2

1l

Let us now suppose that the fi are finite and TTHfiH < 6o
the definition ideal m of f contains each element ®a,
with (ai) ¢ n° A; , hence contains g° A; ; on the other
hand, by prop. 16, f is continuous on ° A; ; since it is

l.s.c., it must be finite and hence equal to the positive

functional ‘;e fi . Thus we have proved the following

Proposition 20. Given for each i a s.f.l.s.c. trace fi on

Ai such that flaei) = 1 we can construct canoniecally a

L 3
s.f.l.s.c. trace f on ® ° Ai with the following properties

(i) flea,) = T1f. (a,) if a.e¢ AT , a, - e. almost
1 i‘%i i i i i

everuwhere and fi(ai) ¢ oo

(ii) the representation associated with f is quasi-equivalent
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-
ed-
H o=

¥ . . .
to @e’ . Where ’Ti 1s the representation associated
4

wi.th fl and éi the canonical image of e; in the space

of oy

If each f, is finite and ﬂl.'fiil oo , f is nothing but the

central positive functional ®° fi

Suppose now that fi(ei) = 1 only for almost all i ;
taking J in ¢ (I) such that idd =>fi(ei) =1 we
can write

» ¥ #
A = (@ aA)e( @ %)
1 . Jl

ied i€I-
and consider the tensor prcduct of the traces % fi (defi-
ied
ned in Part I, prop. 21) and f (defined in prop. 20)

Definition 13. The above &.f.l.s.c. trace on 58 Ai will be

* e
denoted by ® ~ f.

i 1t is a character if and only if each

fi is a charaecter. If each fi is f'nite and F?Hfiﬂ <o ,
ée f. is nothing but the central positive functional ’ée fi

By composing with the canonical morphism ée Ai - 58 Ai

Ye

v
we also get a trace @° fi on  @" A, which has the same

properties.

In the remainder of tnis paragraph we shall prove that cer-

. + W
tain s.f.l.58.c. traces on @e Ai or ®e Ai are tensor

products of traces.
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n.14.2, Type I characters of 68 Ai .

Theorem 9. We suppose each Ai postliminar ; let f be a cha-
racter on & © A; which is of type I and satisfies the fol-

lowing condition : there exists a family (ai) in n° A; such

that 0 < f(e ai) <o . Then f is a tensor product.

Proof. Let J = §{i} a;# ei} ; we can write

» # o
A= %4 = (8 A ( @ °ay)
i¢J i€ I-J
a, = ( @ a,)e ( e e.) 3
1 ieg t ie1-g 1’

by Part I, prop. 22, f is the tensor product of two charac-
’.
ters fT s f2 of @ Ai and e © Ai respectively, and
ied ie I-J
f1 is a tensor product of characters of the Ai, ied ;3 on
the other hand we have 0 < f2( ® e.) <o© , so that
. i
ieI-J
we are led back to prove the theorem in the case where

0 < f(@ei) < oo

Let o be an irreducible representation of A in a space H
such that f = Tr % where Tr is the usual trace in H ; for

each ] we can write
h
H = H, ®

H!
J J

*
o o= Tjo'ﬂ".

where Tj and @ 5 are irreducible representations of Aj and
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5e A, ; then

i#]
*{@ e, = %.(e, it e.
( 1) J( g) ® nJ( @ J) (15)
Fuld 1§ = Trw.{e.).Tr w! . :
Trw(®@ ei) r :J(ea) Tr J( _@j eJ) ;

hence Tr %.(e.) is a strictly positive integer.

-

Consider now a finite subset J of I ; by the same procedure
as in th. 8 we can write

H

h
( @ H.) ® R!
jed * (3)
* *
fﬂ' = “""' P | »
( 1?‘]' } i) @“(J) 3

then

Pro(® e

i) Mn o ‘Wi(ei). Tr‘)‘c’zJ)( i(& ei) ;

ied I-J
the second ftactor in the righthand side is a strietly positive
integer, so that

MM Try . (e.) ¢ Trwi{® e,) }
i€d 171 =

gince J is arbatirary Tr‘ri(ei) must be equgl to 1 for almost
every 1 ; by taking off again a finite set of indices we can

suppose Tr-w4(ei) =1 ¥ i . Then 'ﬁi(ei) is a one dimen-

sional projection ; we choose a unit vector u irn Im ¥ (@ ei) ;

by (15) u is of the form u = ti° t& where tj 18 a unit

vector in Im Tj(ei) ; now the same reasoning as in th. 8

eyt 5

*
applies to prove that ¥ 1is equivalent to @ i3 each

pair (ﬂi,Tr) is a traced representation since Tr‘ri(ei)
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*
= 1 ; set fi = Tr e‘rri ; we shall prove that f = ®° fi 3

fi defines a Hilbert algebra Ai’ and a representation f'i'

—

of Ai in Ki = ‘Ai ; let e be the canonical image of ey in

A ; & we can identify ‘Ai with a dense subalgebra of the al-

gebra of all Hilbert-Schmidt operators in Hi, K; with the

h L
space Hi ® Hi ' €y (the projection onto ti) with tia ti ’

Pi with Ti @I ; then @ © Ki is canonically isomorphie

h % h h %
to (@ Hi) @ (@ Hi) ; the representation associated
X *a . . *eo e
with Oi‘i is quasi-equivalent to @™’ Pi , hence to

re,t

(o et

L]
Ti)@I , then to @ L and to % ; but the re-
presentation associated with f is also quasi-equivalent to

, and this shows that f = 59 fi.

™

Corollary 13. Consider a family of postliminar locally com-
pact groups Gi with compact open subgroups Ki’ and an irre-
ducible representation W of W(Ki) G, ; suppose that there
exists an integrable function f on [l i) Gi of the form
f=@®f, such that 0 < Tr¥(f f) < and that for almost
every i, fi is the characteristic function of Ki . Then W
is equivalent to a tensor product of irreducible represen-

tations -« i and for almost every i the space of all vectors

invariant by ’rri(Ki) has dimension 1.

Interesting applications of this result to adele groups can

~ be found in [37]1, ch.III, § 3, n.5.
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n.14.3. Characters of ée Ai when e; is central.

In this number we suppose that for each i, ey belongs to

the center of Ai ; then if o is a factor representation of

A ﬁ(ei) must be equal to 0 or I ; if f is a character of

i!

A; and O < f(ei) (oo , f is finite ; if moreover f is nor-

med we have f(ei) = 1.

Example 6. If G is a locally compact group and K an invariant
compact open subgroup, its characteristic function is central
in ¢ (G).

Proposition 21. Let f be a character of ée Ai (a = ¥ or

% ) with the following property : there exists a family (ai)
in N°¢ A; such that 0 < f(® ai) (o . Then f is a tensor

product in the sense of definition 13.

Proof. For the same reason as in th. ¢ we can suppose that
0 < f(e@ ei) <02 ; since @ e; belongs to the center of

A
A = ®° Ai » £ is finite and we can suppose it is normed ;

it defines a representation % in a space H and a finite

1t

normed trace t on the factor & = %(A) ; we have T(e@ ei)
= I. The canonical morphisms Lj : Aj.___, A are commuting ; -’
set 'lj = MW oij sy representation of Aj ; the von Neumann

algebras ':TJ.(A.)“ = aj are included in A and commuting .
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Consider a family (ai) in fje A; with a, = e; for i4J

1
we have
N 1.(a;) = ( & a2.e.)o( e e, )
ieg 1 jeg 11 ieT-J 1
hence
® %.{a;,) = T{(@a,).T(ee,) = 7 (®a,) ;
ied itTi i i i

then the ai generate a4 and consequently are factors ; the
von Neumann algebra d(J) generated by the ‘Qi wiith i€ J

is also a factor ; set t, = t | dj_, t(J) =t !(i(J) ,

fi = tio 1‘1 y» character of Ai ; we want to prove that f =

®° £, ; it suffices to prove that flea;) = MNf.(a,)

with a; = ey for 14¢dJ ; then

fleoay) t(v(eay)) = t( M 74(a;))

ied

ied
by Part I, lemma 13 we get
flea,) = T t (7. (a;)) = M £ (a,)
i jeg 11 ieg 1

QED

We shall now investigate the finite characters of A ; we
denote by U; the set of all f¢ 01(Ai) such that f(ei) =

" 3 U; is open since for each f in 01(Ai) we have f(ei)

(u,)
=0 or 1 . For each family F = (fi) in 17 & CT(Ai)’
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of
we denote by T(F) the character @° £

(U,
Theorem 10. The mapping T is a homeomorphism of N 1! C1(Ai)

€ A) .

o
onto 01( & i

T is injective : suppose T(F) = T(F'), take Jj in I and J

in #(I) such that jedJ and fie,) = fi(ey) = 1 for

ot
id4J ; for each a in @ A; we have
ieJ
of
(e fr)(a) = (T(F))(a@( @ e))
i€d i€I-J

(2(F))(ae( @ e,))
ie I-J

il

( iﬂfJ £i)(a)

and this implies fj e fj .

T is surjective by prop. 21.

T is continuous : we must prove that for each J G;h(I), T

is continuous on X(J) = A 01(Ai) x U, ; then T
ied ieI-J
is the composition of the following mappings
a b o “ e
P ((Ti)ieg » Uidjergl—"s L @ £, @ 1))
4 £ o4 @
i€d i€l~J

a is clearly continuous ; b is the direct product of two

mappings b1 ' b2 3 b1 and ¢ are continuous by Part I, prop. 5 ;
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the proof of the continuity of b2 is the same as for the con-

tinuity of G in prop. 18.

T is bicontinuous : T(X(J)) is open in 01(A) since a

o
character f = @ ° f; belongs to T(X(J)) iff fi(ei) =0
V ie I-J , which is equivalent to f non zero on the subal-
. o
gebra ( @ Ai) e( @ ei) . Thus it is sufficient to
i€ d i¢I-Jd
prove that F_1 is continuous on T(X(J)), i.e. that for
a
each j, the mapping ®° fi —_— fj i3 continuous on this

subset ; we can suppose Jje€J ; then our mapping is the com-

position of the following ones

< a A { { z ¥
f = ( @ f.)e( e f.) —s e f, . L f.
: ieg 1 i€1.g 1 ieg 1 J

and both are continuous by Part I, th. 10,

) <
Corollary 14. If ey is the identity of A, 01(°‘Ai) is

canonically isomorphic to f1 C1(Ai).

Corollary 15. We suppose Ai separable and I countable ; then

e (Y.) —

(® A;)¢ 1is Borel isomorphic to I 1 (A;); where Y, is
Ve

the set of all F in (Ai)f with ’F(ei) # 0.

e o
In fact it is easy to see that the mapping (@ ‘Ai)f >
N (Ai)f 1s Borel ; on the other hand both spaces are
standard.

QED
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Given a locally compact group G we denote by E{(G) the
set of all extremal continuous positive definite functions
¢ on G with ¢(eo) = 1, e, = neutral element ; there is
a bijection E{G) «—» 01(0*(G)), to each ¢ in E(G) corres-
ponding the character a ,—» f¢(a) = J/ a(g).¢(g).dg.
If K is a compact open subgroup of G and e the characteris-
tic funetion of K, we have f?(e) =1 iff /‘?(k).dk = 1
where dk is the normaliaed Haar measure of K ; and this is

equivalent to y¢{(k) =1 ¥ ke¢K since |Je¢{g)} &1 for

each g in G.

Corcllary 16. Consider for each i a locally compact group Gi

(K.}
1°6.)

and an invariant compact open subgroup Ky then E{ i

is in a canonical bijection with + E(Gi) where Yi ig

the set of all ¢ in E(Gi) verifying (k) =1 ¥V ke Ky

Corollary 17. 1If G, is compac? a?d K; = G,, E(rlGi) is in
€.

a canonical bijection with n t E(Gi) where Ei is the

function 1

Corollary 18. If Gi is discrete and K, is reduced to the
neutral element, E(lj‘Gi) is in a canonical bijection with

N E,) .
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