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Abstract

The classical notion of principal connections is fundamental in mathematics (Lie theory, Chern-Weil theory,
Cartan geometry) and in quantum physics (gauge theory, Dyson series, Berry phases).

This survey reviews motivations and constructions for higher-structure enhancements of this notion that are
finally finding attention (categorified symmetries, higher dimensional holonomy, higher gauge fields), amplifying
that there are two nominally different higher generalizations in use, modeled alternatively on:

(i) Chern-Weil theory of connection forms,
(ii) Chern-Dold theory of character forms.

In the “ordinary” abelian case, these perspectives coincide and are well-studied (Deligne cohomology, Cheeger-
Simons characters, ordinary differential cohomology), but crucial applications require their non-abelian gener-
alizations which have received less attention.

We motivate and survey both directions of nonabelian higher connection theory, with reference to our models
of

(i) Čech cocycles for differential characteristic classes ([41][13], which underlies our original take on stringy
gauge fields and branes) and

(ii) the character map on non-abelian cohomology ([16], which underlies our current take via non-abelian flux-
quantization).
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1 Introduction and Overview

Our topic is — as we explain and make precise in a moment — nothing less than a unification of

infinitesimal analysis and spatial analysis,

both going back to Leibniz, the former famously so and the latter (Leibniz’s analysis situs) revived by Poincaré
[36] to become the modern

differential geometry and algebraic topology,

which we may usefully think of as the

local and global

aspects of the subject of non-discrete mathematics: continuous, cohesive and smooth space.

This already makes plausible the relevance to physics — though the intimacy of the relevance to fundamental
physics has been a source of wonder in the past 1 and appears to only be strengthened by the further developments
that we aim to review here. In short the above dichotomy in physics is [40] fundamentally that between

flux and charge.

More technically, these two aspects are respectively exhibited by imposing

differential equations and simplicial identities.

More precisely, we will explain that for our purposes this means to consider:

Differential generalized
nonabelian cohomology

Higher Lie-algebra valued
differential forms satisfying

Maurer-Cartan PDEs
and

Cocycles
in generalized

nonabelian cohomology

flu
x

charge

In full detail, we will explain that this means to consider the homotopy fiber product of the corresponding
“moduli stacks”, which in §2 will be expressed by the following symbols:

H1(−; ΩA)dff

Ω1
dR(−; lA)flat H1(−; ΩA)

S
(
Ω1

dR(−; lA)clsd
)

flux
charge

η
S

shape unit

ch

charac
ter map

The elements of this homotopy fiber product are the higher analogs of the familiar connections on (or “in”)
fiber bundles. Seen this way, connections are — by a happy coincidence of terminology — literally what connects
local differential geometry with global algebraic topology.

In fact, this is how connections were historically motivated in classical Cartan-Chern-Weil theory (cf. the history
recalled in [16, Rem. 8.1] 2): as an intermediate means to the end of computing characteristic classes via local
differential data – this we recall on the following pages.

1C. N. Yang said [52], about discovering that nuclear gauge fields “are” principal connections (cf. [51, Tbl. 1]): “What could be
more mysterious, what could be more awe-inspiring, than to find that the basic structure of the physical world is intimately tied to
deep mathematical concepts, concepts which were developed out of considerations rooted only in logic and in the beauty of form.”

2The numbering in [16] we refer to is that of the published version, which differs from the numbering in the preprint version; see
[ncatlab.org/schreiber/show/The+Character+Map+in+Non-Abelian+Cohomology].
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We set the scene by briefly recalling some classical constructions in streamlined form.

Ordinary Principal Bundles. For G a Hausdorff-topological group, a principal G-bundle P over a base space X

is a map P −→ X such that there exists an open cover C :=
∐

i Ui
ι
↠ X over which P is identified with the trivial

fibration C×G in a way that the fibers are identified by G-valued transition functions g : C×XC −→ G on double
overlaps of charts, C ×X C =

∐
i,j

Ui ∩ Uj :

A map p
is a principal
G-bundle...

P C×G

X C

p
(pb)

t

prC

ι

...if its pull-back to
an open cover ι is

the trivial G-fibration
such that...

{xi}×G {xj}×G

Px

ti(x)

· gij(x)

tJ (x)

...the induced transition
functions act by

group multiplication.

These transition functions clearly satisfy on triple overlaps C ×X C ×X C the Čech cocycle condition

gij · gjk = gik

{xj}×G

Px

{xi}×G {xk}×G

g
jk (x)

tj(x)

g i
j
(x
)

ti(x)

gik(x)

tk(x)

and transform under a principal bundle isomorphism P
ϕ−→ P ′ by the Čech coboundary relation

g′ij = h−1
i · gij · hj

{xi} ×G {xi} ×G

Px P ′
x

{xj} ×G {xj} ×G ,

ti(x)

hi(x)

gij(x)

t′i(x)

g′
ij(x)

ϕx

hj(x)

tj(x) t′j(x)

whence the isomorphism classes of principal bundles map to the Čech cohomology of the base space:

PrncplGBndl(X)/
∼

H1
(
X; G

)
.∼

As indicated, this map is in fact a bijection (for well-behaved X, such as smooth manifolds), as one finds effectively
by reading the above construction in reverse. The outer parts of these diagrams then also show that if we write

(i) BG for the topological groupoid with a single object and G worth of morphisms,

(ii) X̂ for the topological groupoid with C as its space of objects and C×XC as its space of morphisms,

for C
ι−→ X a good open cover (over which every G-bundle trivializes),

then the groupoid of principal G-bundles is identified with the groupoid of continuous functors g : X̂ −→ BG with
continuous natural transformations between these:

groupoid of
principal G-bundles

PrncplGBndl(X) Fnct
(
X̂, BG

)
groupoid of Čech

co-cycles & co-boundaries

isomorphism classes of
principal G-bundles

PrncplGBndl(X)/
∼

H1(X; G) Čech cohomology set

∼

∼

Ordinary Nonabelian Cohomology. A deeper but classical theorem says (cf. [SS25b, Thm. 4.1.13]) that this
situation is preserved by the “topological realization” of topological groupoids to topological spaces

| − | : TopGrpd TopSpc

under which a smooth functor g : X̂ −→ BG becomes a continuous map |g| : |X̂| −→ |BG| from |X̂| ≃ X to the
classifying space BG := |BG| – which still represents isomorphism classes of principal G-bundles:

PrncplGBndl(X)/
∼

π0 Fnct
(
X̂, BG

)
π0 Maps(X, BG) = H1(X; G)Čech

∼
|−|
∼

principal
bundles

ordinary
non-abelian
cohomology
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Ordinary Abelian Cohomology. In the special case that G ≡ A an abelian group, one readily sees that there
is a fiber-wise A-tensor product of principal A-bundles

PrncABndl(X)/∼ × PrncABndl(X)/∼ PrncABndl(X)/∼(
[P ], [P ′]

)
7−→

[
P ×A P ′]

given by 3

(P ×A P ′)x :=
{
(p, p′) ∈ Px × P ′

x

}/(
(a · p, p′) ∼ (p, a−1 · p′)

)
,

which makes the isomorphism classes naturally form an abelian group.
Under the classification of principal A-bundles by A-cohomology, this means that the classifying space BA (may

be chosen such that it) carries topological group structure itself!, so that the construction iterates:

A ∈ AbGrp(TopSpc) yields


B2A := B(BA)
B3A := B

(
B(BA)

)
...

B1+n := B
(
BnA

)
.

For a discrete abelian group A (such as A = Z) these higher-order classifying spaces are also denoted “K(A,n)”
and called “Eilenberg-MacLane spaces”:

A ∈ AbGrp(Set) yields K(A,n) := BnA .

But this means that for abelian group coefficients A there is higher-degree A-cohomology appearing as a special
case of non-abelian cohomology, as follows:

H1+n
(
X; A

)
:= H1

(
X; BnA

)
:= π0 Maps

(
X, B1+nA

)
.

Of course, when A is discrete then there is also Čech cohomology and singular cohomology with coefficients in A.
A classical theorem says that (on our smooth manifold domain X) all these notions of ordinary cohomology agree,
hence that

Ordinary A-cohomology has classifying spaces BnA = K(A,n).

Ordinary characteristic classes. Thereby we obtain an immediate means to approximate non-abelian cohomol-

ogy by abelian cohomology: Every map of classifying spaces c : BG −−→ BnA, hence every universal characteristic
class

[c] ∈ Hn
(
BG; A

)
,

induces a cohomology operation from non-abelian to abelian cohomology, simply by composition of classifying maps:

H1
(
X; G

)
= π0 Maps

(
X, BG

)
π0 Maps

(
X, BnA

)
= Hn

(
X; A

)
nonabelian

cohomology class
[ϕ] :=

[
X

ϕ−→ BG
]

7−→
[
X

ϕ−→ BG
c−→ BnA

]
=: c[ϕ] characteristic

class

For example, for the unitary and orthogonal Lie groups there are universal characteristic classes for n ∈ Z
universal

Chern classes
cn ∈ H2n

(
BU(d); Z

)
, pn ∈ H4n

(
BO(d); Z

)
universal

Pontrjagin classes

(non-trivial for sufficiently small n and large d) and since, for instance, the frame bundle FrX of a Riemannian
manifold X is a principal O(d)-bundle, there are induced Pontrjagin classes of X, etc.:

Pontrjagin class of
frame bundle of manifold

pn[X] := pn[TX] := pn[FrX ] :=
[
X

⊢FrX−−−→ BO(d)
pn−→ B4nZ

]
∈ H4n(X; Z) .

We see that
In terms of classifying spaces,

cohomology and characteristic classes
become conceptually nicely transparent.

Of course, what remains to discuss are methods for actually computing these classes. One such method (among
many, but pivotal in its way) is to equip the principal bundles with connections and then compute these topological
characteristic classes by means of differential geometry. This is what we discuss next.

3This tensor product of fibrations exists also for non-abelian G, but the commutativity of A is needed for principality, namely for
the resulting transition functions to again by given by group multiplication.
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Ordinary Character Map. One more notion of cohomology available on smooth manifolds X is de Rham
cohomology Hn

dR(X), which we may understand – non-traditionally but equivalently [16, Prop. 6.4] – as equivalence
classes of closed differential forms modulo concordance of closed forms:

Hn
dR(X) = Ωn

dR(X)clsd
/(

ω(0) ∼ ω(1) iff ∃ ω̂ ∈ Ωn
dR([0, 1]×X)clsd s.t. ω̂|0 = ω(0), ω̂|1 = ω(1)

)
.

By the de Rham isomorphism, this, too, coincides with a special case of our general notion of cohomology, namely
with abelian cohomology for coefficients the real numbers R (regarded as a discrete topological group).

Combined with the cohomology operation induced by extension of scalars Z ↪→ R, hence by the induced
BnZ −→ BnR, this gives a map from integral to de Rham cohomology, which we call the ordinary character map

Hn(X; Z) Hn(X; R) Hn
dR(X) .

(Z↪→R)∗
extension of scalars

chZ

ordinary character map

∼
de Rham isomorphism

Beware that this character map is not in general injective, in fact it forgets exactly the torsion subgroups of the
integral cohomology group. Nevertheless — or rather: therefore! — the ordinary character map provides the first
approximation to integral cohomology, which is generally more readily computed than the full integral cohomology.

In consequence, when applied to integral characteristic classes then the ordinary character gives a useful first
approximation to ordinary non-abelian cohomology. Specifically for unitary principal bundles we obtain a sequence
of Chern-de Rham classes:

PrncUBndl(X)/∼ H1
(
X; U

) ∏
k H

2k
(
X; Z

) ∏
k H

2k
dR

(
X
)∼

Chern-de Rham classes

c•

Chern classes

chZ

ordinary character

But since de Rham cohomology is a local differential-geometric notion, the question arises:

Is it possible to construct the Chern-de Rham classes
directly by differential geometry on principal bundles
without going through these topological constructions?

Connections are the answer to this question.

Ordinary connections. For G a Lie group and g its Lie algebra, we denote the (functor assigning) flat g-valued
differential forms by

Ω1
dR

(
−; g

)
flat

:=
{
A ∈ Ω1

dR(−; g)
∣∣∣ dA+ 1

2 [A ∧A] = 0
}
.

There is a universal such flat form, called the Maurer-Cartan form θ ∈ Ω1
dR(G; g)flat, in that the flat forms on

any Cartesian space Rn, n ∈ N, are the pullbacks of the MC-form along smooth maps ϕ : Rn −→ G, unique up to
rigid translation along the group:

C∞(Rn, G
)/

G Ω1
dR

(
Rn; g

)
flat[

Rn f−→ G
]

7−→ f∗θ .

∼

Hence on a trivial G-bundle P = X × G we have a flat form A := pr∗Gθ which restricts on each fiber to the
MC-form. On a non-trivial principal G-bundle P we still find a g-valued differential form A ∈ Ω1

dR(P ; g) that
restricts on each fiber to the MC-form, but it may not itself be flat anymore, the failure being its curvature

FA := dA+ 1
2 [A ∧A] ∈ Ω2

dR(P ; g) ,

which is therefore a measure for the non-triviality of P , at least if we also demand that it is a horizontal form in
that it vanishes on vectors tangent to the fibers – in this case A is called a principal connection.

Cartan calculus then shows that all ad-invariant polynomials ⟨−, · · · ,−⟩ ∈ Sym(g∗)g evaluated on the curva-
ture 2-form are in fact closed basic forms in that they are pulled back from closed forms on the base manifold:

MC-form
on G-fiber

G Ω1
dR(−; g)flat

connection form on
principal G-bundle

P Ω1
dR(−; g)

characteristic form
on base manifold

X Ω2k
dR(−)clsd

ix

θ

restricts on
each fiber to

curvature invariants
descend to

p

A

⟨F∧k
(−)⟩

⟨F∧k
A ⟩

Thus: Connections on principal bundles extract de Rham classes on their base space measuring their non-triviality.
That these de Rham classes indeed give the above Chern-de Rham classes is the content of the Chern-Weil theorem.
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With the last diagram we have tacitly introduced a non-classical tool for differential topology: The category of:

Smooth sets. In order to conceive of “smooth spaces” X more general but as useful as smooth manifolds, consider
that whatever X may be, we should be able to probe it by Cartesian spaces Rn in that we know what counts as
an Rn-plot of X , namely as a smooth map Rn −→ X . For the information about these plots to be consistent,
they should functorially precompose with ordinary smooth maps Rn′ −→ Rn and compatible probes by open balls
covering Rn should uniquely glue to a single probe by all of Rn. But this makes (the system of plots of) X a sheaf
of sets on the category CartSp ⊂ SmthMfd, with respect to the Grothendieck pre-topology of good open covers,
whence we say that [25][44]

SmthSet := Sh(CartSp; Set) .

For example, smooth manifolds X are smooth sets via the ordinary smooth functions Rn −→ X. But there are now
also classifying spaces of differential forms among smooth sets, whose sets of Rn-plots are defined to be the sets of
smooth forms on Rn. Then a Yoneda argument shows that a map of smooth sets

X
⊢ω−−−−→ Ω2k

dR(−)clsd corresponds to ω ∈ Ω2k
dR(X)clsd

and precomposition of such maps

P
p−−→ X

⊢ω−−−−→ Ω2k
dR(−)clsd corresponds to p∗ω ∈ Ω2k

dR(P )clsd etc.

The role of principal connections. We have thus found that ordinary connections complete the following
commuting diagram

principal connections

PrncUConn(X)/∼

differential
forms

∏
k Ω2k

dR(X)clsd H1(X; U) nonabelian
cohomology∏

k H
2k
dR(X)

de Rham cohomology

class ofunderlyingbundle
curvat

ure

invaria
nts

⟨F∧•
(−)

⟩

de Rham
classes

Chern-d
e Rham

classe
s

In this sense principal connections connect ordinary non-abelian cohomology to differential form data. But does
this characterize principal connections?

In order to approach the answer to this question we need to retain more gauge information: Instead of just the
above diagram of isomorphism classes of connections and of cohomology classes of their underlying bundles etc.
we need to look at the groupoids that these structures form, and generally the smooth higher groupoids that they
form.

Smooth 2-Groupoids. We assume now that the reader knows 2-groupoids or can pretend to. We try to use
suggestive notation. For instance, with A a discrete abelian group, we indicate its double delooping 2-groupoid by:

B2A :=



∗ ∗

∗ ∗

∗

a1

∗a2
∗

∗

∗ ≡

∗ ∗

∗ ∗

∗

∗a4
∗

a3

∗

∗

∣∣∣∣∣∣∣∣∣∣∣
ai ∈ A
a1 + a2 = a3 + a4


.

Just as with smooth sets, we take smooth 2-groupoids to be the systems of 2-groupoids (of plots) indexed by
(probe) Cartesian spaces

SmthGrpd2 := Sh(CartSp, Grpd2) .

For example, with C :=
∐

i Ui
ι
↠ X a (good) open cover, its Čech 2-groupoid X̂ is the smooth 2-groupoid given as

follows:

{
Rn −→ X̂

}
:=



xj xk

xi xl

xjk

xijk

xklxiklXij

xil

xik ≡

xj xk

xi xl

xjk

xjlxijl
xkl

xjkl

Xij

xil

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ui

Rn Ui ∩ Uj

Uj

xij

xi

xj

pr1

pr2

etc.


It is now manifest that maps X̂ −→ B2A are Čech 2-cocycles and that their homotopies are Čech coboundaries:{

X̂ −−→ B2A
}
/∼ ≃ H2(X; A) .
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First to see these notions at work for abelian cohomology:

Ordinary differential 2-cohomology. We thus have an evident map between the cocycle 2-groupoids of integral
and real cohomology, respectively, but we need to find an analogous 2-groupoidal refinement of the de Rham
isomorphism in order to map differential forms into the latter:

B2Z

Ω2
dR(−)clsd B2R♭

e
x
te
n
sio

n
o
f
sc
a
la
rs

?

would-be
de Rham map

This works by finding different but equivalent 2-groupoids: A map of smooth 2-groupoids is an equivalence if
on all 2-groupoids of plots it induces isomorphisms on homotopy groups of plain 2-groupoids:

f : X ∼−−→ Y if ∀
n∈N

(
π•
{
Rn −→ X

} f∗−−→
∼

π•
{
Rn −→ Y

})
.

For instance, a simple check reveals the following equivalences, which allow for the desired inclusion of closed forms:

B2Z =


∗

∗ ∗

∗
n∗

∗

∣∣∣∣∣∣∣ n ∈ Z



BU(1)conn −−−−−→ B̂2Z :=


A+ dλ+ a

A
A+ dλ+ a
+ dλ′ + a′

(λ ′
,a ′

)
(n,κ)(λ

,a
)

(
λ+λ′+n−κ, a+a′+dκ

)

∣∣∣∣∣∣∣∣∣∣∣∣
A, a ∈ Ω1

dR(−)
λ, κ ∈ Ω0

dR(−)
n ∈ Z



Ω2
dR(−)clsd −−−−−−−→ B̂2R♭ :=


F + da

F
F + da

+ da′

a ′

κa

a+a′+dκ

∣∣∣∣∣∣∣∣∣∣∣
F ∈ Ω2

dR(−)clsd
a ∈ Ω1

dR(−)
κ ∈ Ω0

dR(−)


B2R♭ :=


∗

∗ ∗

∗
κ∗

∗

∣∣∣∣∣∣∣ κ ∈ R



∼

re
so

lv
e
in
te
g
e
r

c
o
e
ffi
c
ie
n
ts

fi
b
ration

re
so

lv
e
d

e
x
te
n
-

sio
n

o
f
sc
a
la
rs

∼

re
so

lv
e
re

a
l

c
o
e
ffi
c
ie
n
ts

desired inclusion
of closed forms

resulting
fiber product

In fact, this also “resolves” the above map to a fibration, implying that the homotopy fiber product is given by

the ordinary fiber product BU(1)conn, which one sees is just the restriction of B̂2Z to a, κ = 0:

BU(1)conn =


A+ dλ

A
A+ dλ
+ dλ′

λ′

n
λ

λ+λ′+n

∣∣∣∣∣∣∣∣∣∣∣
A ∈ Ω1

dR(−)
λ ∈ Ω0

dR(−)
n ∈ Z


∼←→


A+ dλ

A
A+ dλ
+ dλ′

[λ′]
[λ]

[λ+λ′]

∣∣∣∣∣∣∣∣∣∣∣
A ∈ Ω1

dR(−)
[λ] ∈ C∞(-,U(1))


But this is evidently the coefficient object for U(1)-connections, in that:{

X̂
(A,λ)−−−→ BU(1)conn

}
≃

 Connection 1-forms Ai on each Ui, related

by gauge transformations λij on Ui ∩ Uj

satisfying charge quantization on Ui ∩ Uj ∩ Uk

 ≃ PrncU(1)Conn(X) .

In this sense of a homotopy fiber product, principal U(1)-connections are exactly the connection between integral
2-cohomology and closed differential 2-forms.
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Revisiting ordinary connections. It is straightforward to write down the smooth groupoid BGconn which
generalizes the previous BU(1)conn to any Lie group G with Lie algebra g: Namely

BGconn :=



g−1(A+ d)g

A
(gg′)−1A(gg′)

+ (gg′)−1d(gg′)

g′

gg′

g

:=

Adg(A) + g∗θ

A
Adg′g(A)

+ (g′g)∗θ

g′

gg′

g

∣∣∣∣∣∣∣∣∣∣∣∣
A ∈ Ω1

dR(−; g)
g ∈ Ω0

dR(−;G)


is evidently such that maps X̂ −→ BGconn are Čech cocycles for principal G-connections, in fact we have an
equivalence of groupoids: {

X̂ −→ BGconn

}
≃ PrncGConn(X) .

However, for non-abelian G, these groupoids are not evidently homotopy fiber products of a de Rham map with a
character map anymore, hence they are not evidently the universal answer to the problem of constructing differential
form representatives of characteristic classes.

On the other hand, BGconn in itself may naturally be addressed as the groupoid of Lie algebra-valued differential
forms, which may sound like a good construction principle in itself.

Therefore, it is at this point that the topic of – certainly the previous literature on — higher connections
bifurcates, depending on which of these two aspects of ordinary connections is taken to be the characteristic one:

(i) Differential Cohomology:
the homotopy fiber product of a
non-abelian de Rham- and character-map

(ii) Principal Connections:
the globalization of higher
Lie-algebra valued differential forms

But because, until recently, the character map was only understood for abelian generalized cohomology or for
non-abelian ordinary cohomology, previous approaches have considered either the abelian sector of (i), or low-
dimensional instances of (ii):

Abelian differential cohomology Low-dimensional principal connections

Previous exposition of generalized differential
cohomology focuses on abelian (Whitehead-
generalized) cohomology theories with classi-
fying spectra of spaces:
[10] Bunke 2012, [3] Amabel et al.: 2021
and with application to higher gauge theory:
[20] Freed 2002, [47] Szabo 2013

Previous exposition of higher principal con-
nections focuses on low-dimensional examples
(2-form or at most 3-form connections):
[4] Baez & Huerta 2011
[1] Alfonsi 2024
[6] Borsten el al. 2024

Nonabelian differential cohomology

The combination of nonabelian differential cohomology that we survey
here has been in the making for a long time, starting with [39][43][42],
gaining more shape in [15], but was fully developed only with the con-
struction of the non-abelian character map in [16].
The closest to a previous survey is:
[40] Sati & Schreiber 2025

A central theme in developing this, which remains under-appreciated, is that there are:

Two different roles for L∞-algebra valued differential forms. The joint non-abelian and higher generaliza-
tion reveals that also the approach (i) crucially involves higher Lie algebra valued differential forms, but here they
appear as curvature forms (flux densities) instead of as connection forms (gauge potentials)

(i) Differential Cohomology (ii) Principal Connections

L∞-valued forms curvature forms connection forms

math jargon Chern-Dold characters Ehresmann connections

physics jargon flux densities gauge potentials

MC-condition
Bianchi identities

(generic)
flatness

(non-generic)

We will try to explain this in the following.

8



2 Nonabelian Differential Cohomology

In §2.1 we highlight the notion of generalized nonabelian cohomology,

in §2.2 we explain the all-important character map in this generality,

in §2.3 we use this to explain generalized nonabelian cohomology.

2.1 Nonabelian Cohomology

Cohomology via classifying spaces. It is a classical and yet possibly undervalued fact that reasonable coho-
mology theories have classifying spaces (and more generally classifying stacks). To quickly recall (more details and
pointers in [16, §2] ):
– Ordinary cohomology. This begins with the observation that (reduced) ordinary singular cohomology, with
coefficients in a discrete abelian group A, is classified in degree n by Eilenberg-MacLane spaces K(A,n) – in that
on well-behaved topological spaces X, notably on smooth manifolds, there are natural isomorphisms between the
ordinary cohomology groups and the connected components of the respective (pointed) mapping spaces:

Hn(X; A) ≃ π0 Maps
(
X, K(A,n)

)
, H̃n(X; A) ≃ π0 Maps∗/

(
X, K(A,n)

)
. (1)

This equivalence makes manifest the characteristic properties of cohomology: homotopy invariance, exactness and
wedge property, since these are now immediately implied by general abstract properties of mapping spaces.

Moreover, these EM-spaces are in fact loop spaces of each other, via weak homotopy equivalences

σn : K(A,n) ΩK(A,n+ 1)∼ (2)

that thereby represent the suspension isomorphisms between ordinary cohomology groups, as follows:

H̃n(X;A) Maps∗/
(
X, K(A,n)

)
Maps∗/

(
X, ΩK(A,n+ 1)

)
Maps∗/

(
ΣX, K(A,n+ 1)

)
H̃n+1

(
ΣX; A

)
.≃

(1)

(σn)∗

(2)
≃

adjunction

≃
(1)

– Ordinary non-abelian cohomology. Note here that it is the loop space property (2), and hence the corre-
sponding suspension isomorphism, which reflect the fact that the coefficient A has been assumed to be an abelian
group: For a non-abelian group G, an Eilenberg-MacLane space K(G, 1) ≃ BG still exists, but is not a loop space.

While the suspension isomorphism is thus lost for non-abelian coefficients, the assignment

X 7−→ H1(X; G) := π0 Maps(X, BG) ∈ Set∗/ (3)

still satisfies homotopy invariance, exactness and wedge property, just by the general properties of mapping spaces,
and hence has all the characteristic properties of ordinary cohomology – except for its abelian-ness. Accordingly,
(3) is known as non-abelian cohomology, famous from early applications in Chern-Weil theory.

– Whitehead-generalized cohomology theory. But if or as long as we do insist on abelian cohomology groups
related by suspension isomorphisms, we may still immediately generalize ordinary cohomology in the form (1),
simply by using any other sequence of classifying spaces (En)

∞
n=0, being successive loop spaces of each other as in

(2),
σn : En ΩEn+1 ,

∼

as such called a sequential Ω-spectrum of spaces, or just a spectrum, for short. The Brown representability theorem
says that the resulting assignments

X 7→ En(X) := π0 Maps(X; En)

are equivalently the generalized cohomology theories as introduced by Whitehead, including examples such as K-
theory, elliptic cohomology and cobordism cohomology.

– Non-abelian generalized cohomology. But as we just saw, suspension isomorphisms are to be regarded as
extra structure on cohomology. Not necessarily requiring them leads to consider any pointed space A (which we may
as well assume to be connected) as the classifying space of a non-abelian generalized cohomology theory, defined
in evident generalization of (3) simply by

H1(X; ΩA) := π0 Maps(X, A) . (4)

Here the notation on the left is suggestive of the fact that any loop space ΩA canonically carries the structure of a
higher homotopy-coherent group – a groupal A∞-space or ∞-group, for short – whose de-looping is equivalent to
the connected component of the original space:

A ≃ B ΩA . (5)

9



For instance, in the archetypical case where A ≡ Sn is the n-sphere, then the non-abelian generalized coho-
mology theory that it classifies is known as (unstable) Cohomotopy πn

H̃1
(
X; ΩSn

)
≡ π0 Maps∗/

(
X, Sn

)
≡ πn(X) , (6)

in dual reference to the familar homotopy groups

πn(X) ≃ π0 Maps∗/
(
Sn, X

)
.

Another example of non-abelian generalized cohomology is unstable topological K-theory [29], whose classify-
ing spaces are taken to be finite stages U(n) of the sequential colimits which construct the classifying spaces of
topological K-theory.

Classifying spaces for generalized cohomology. It is a classical fact of algebraic topology — which may have
remained somewhat underappreciated in mathematical physics — that reasonable generalized cohomology theories
have classifying spaces A, in that the sets of cohomology classes assigned to a given domain space (which we take
to be a smooth manifold Xd) are in natural bijection with the homotopy classes π0Map

(
X, A

)
of continuous maps

from X into A. (Throughout, it is only the homotopy type of A that matters.)

The archetypical examples are Eilenberg-MacLane spaces
like K(Z, n) which classify ordinary cohomology such as
integral cohomology, in any degree n. As n ranges, these
EM-spaces happen to be loop spaces of each other, up to
weak homotopy equivalence: K(Z, n) ≃ ΩK(Z, n+ 1).
Generalizing from this classical example, one considers
Whitehead-generalized cohomology theories which are clas-
sified by any sequences of pointed topological spaces
{En}n∈N equipped with weak homotopy equivalences En ≃
ΩEn+1, called a spectrum of spaces.
This implies that each En is an infinite-loop space, which
makes them be “abelian∞-groups”, reflecting the fact that
the homotopy classes of maps into these spaces indeed have
the structure of abelian groups.
Perhaps the most familiar example of such abelian gener-
alized cohomology is topological K-theory, whose classify-
ing space KU0 may be identified with the space of Fred-
holm operators on an infinite-dimensional separable com-
plex Hilbert space.

While Whitehead-generalized cohomology theory has re-
ceived so much attention that it is now widely understood
as the default or even the exclusive meaning of “general-
ized cohomology”, historically long preceding it is the non-
abelian cohomology of Chern-Weil theory, classified by the
original classifying spaces BG of compact Lie groups G.
Unless G happens to be abelian itself, this nonabelian co-
homology does not assign abelian cohomology groups, nor
even any groups at all, but just pointed cohomology sets.
Nevertheless, as the historical name “nonabelian cohomol-
ogy” clearly indicates, these systems of cohomology sets
may usefully be regarded as constituting a kind of coho-
mology theory, too.

In this vein one may observe [16, §2] that (the homotopy type of) every connected space A is equivalently the
classifying space of an infinity-group ΩA, namely of its own loop space regarded as an A∞-space under concatenation
of loops), so that homotopy classes of maps into any connected space are examples of an evident generalization of
Chern-Weil-style nonabelian cohomology.

A fundamental and historical example of such “truly-generalized” nonabelian cohomology is CoHomotopy, whose
classifying spaces are the (homotopy types) of spheres. Notice that “generalized nonabelian cohomology” is really
“not necessarily abelian”. It subsumes all the other cases: For E• a spectrum we have: En(X) ≃ H1(X; ΩEn)

10



Developing non-abelian cohomology. Fundamental, elementary, and compelling as the notion of non-abelian
generalized cohomology in (2.1) is, it has long remained underappreciated. For example, none of the original
authors [7][37][46] on Cohomotopy (6) address their subject as a cohomology theory, instead the early development
revolves around partial fixes for the perceived defect of co-homotopy sets to not in general carry group structure.
The situation does not improve with the early development of “non-abelian gerbes”, whose original description [27]
appears unwieldy.

Explicit acknowledgment of (stacky) non-abelian generalized cohomology in the transparent guise (2.1) appears
only in a lecture [48] (possibly following [45]). Two independent developments in 2009 finally put non-abelian
generalized cohomology into fruitful context:

• The discovery of non-abelian Poincaré duality [32, §3.8], relating non-abelian cohomology (later made explicit
in [33, Def. 6]) of manifolds to “non-abelian homology” in the guise of “factorization homology” (which, in
contrast to non-abelian cohomology, takes work to define);

• The observation in theoretical physics [39][43][42] that charge/flux-quantization laws [40] for higher gauge fields
are generally in non-abelian cohomology.

11



2.2 The Character Map

Approximating Homotopy Types by Differential Equations. Consider spaces A which are connected,
simply connected and of “rational finite type”, the latter meaning that the rational homotopy- and cohomology
groups are degreewise finite-dimensional.

Consider the R-linear duals to the homotopy groups as cochains for singular rational cohomology supported
on these spherical chains. Choosing a graded linear basis f⃗ := (f (i))i∈I , the cochain differential of these basis

elements is equal to graded-symmetric polynomials P (i) in these variables, d fi = P (i)
(
f⃗
)
, and as such extends

uniquely to make the graded-commutative algebra spanned by the f⃗ into a differential such algebra (dgc-algebra),
which we denote as follows [16, Prop. 5.11]:

minimal
Sullivan model

CE

C
hevalley-E

ilenb
erg

dgc-algebra

(
l
(

R
-W

hitehead
bracket

L
∞
-algebra

A

hom
otopy

typ
e

(1-cnct
&
R
-finite)

))
:=

(
∧•R

G
rassm

ann

algebra

(
π•(ΩA)⊗ZR

rationalized

hom
otopy

groups

)∨

degree-w
ise

R
-dualized

, d

cochain

diff
erential

)
≃ Rd

[
f⃗
]

freely
generated

dgc-algebra
/

m
odulo

(
d f (i) = P (i)

(
f⃗
))

i∈Idiff
erential

ideal

.

A classical theorem by Sullivan says that the cochain cohomology of this dgc-algebra coincides with the rational
cohomology of A: cochain cohomology

of CE-algebra of
Whitehead L∞-algebra

H•(CE(lA)) ≃ H•(A; R) real cohomology
of the space

and that this condition uniquely characterizes its differential. As such, CE
(
lA
)
is known as the minimal Sullivan

model of the homotopy type of A
For example, the 2-sphere A ≡ S2 has non-torsion ho-
motopy groups in degree=2 (generated by the identity
map — f2) and in degree=3 (generated by the complex
Hopf fibration — h3), but its ordinary cohomology is
concentrated in degree (0 and) 2, so that the differen-
tial must make f2 a non-exact cocycle while removing
both h3 as well as f2 f2 from cohomology.
This is accomplished by:

CE
(
lS2
)
≃ Rd

[
f2

h3

]/( d f2 = 0

dh3 = f2 f2

)
.

For the 4-sphere we have the analogous situation with
non-torsion homotopy groups in degree=4 (generated
by the identity map — g4) and in degree=7 (genrated
by the quaternionic Hopf fibration — g7) but with or-
dinary cohomology concentrated in degree (0 and) 4,
so that the differential must remove g7 and g4 g4 from
cohomology.
This is accomplished by:

CE
(
lS2
)
≃ Rd

[
g4

g7

]/( d g4 = 0

d g7 = g4 g4

)
.

Rational Nonabelian Cohomology. The fundamental theorem of dgc-algebraic rational homotopy theory (cf.
[16, §5]) says that the homotopy theory of such dgc-algebras coincides with the R-rational homotopy theory of these
spaces: where a map f : A −→ B is regarded as an equivalence if f∗ is an iso on all rationalized homotopy groups.

For us, thinking of the homotopy type A as the classifying space for generalized cohomology, this defines rational
nonabelian cohomology [16, §6]:

nonabelian
rational cohomology

rational homotopy
classes of maps

dg-algebra homs
modulo concordance

nonabelian
de Rham cohomology

H1
(
X; ΩAR) := π0 Maps

(
XR, AR) π0 Hom

(
CE(lA), Ω•

dR(X)
)

=: H1
dR

(
X; lA

)
nonabelian de Rham isomorphism

∼

fundamental theorem of
dgc-algebraic rational homotopy

Generalized Character Map. But this makes immediate the character map in the generality of generalized
nonabelian cohomology [16, Def. IV.2]: It is the cohomology operation induced by the the universal comparison
map to the rationalization of the classifying space:

A AQ AR

generalized
nonabelian
cohomology

H1
(
X; ΩA

)
H1
(
X; ΩAR) H1

dR

(
X; lA

) nonabelian
de Rham

cohomology

ηQ
A

Q-rationalization

⊗QR

extension of scalars(
(⊗QR) ◦ ηQ

A

)
∗

generalized non-abelian character map

nonabelian
de Rham

isomorphism

∼
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Examples of character maps.

Ordinary
integral cohomology

Hn(X; Z) Hn
dR(X) ≃ HomdgAlgR

(
R[ωn], H

•
dR(X)

)
differential forms

in degree n

Traditional
nonabelian cohomology

H1(X; G) HomdgAlgR

(
inv•(g), H•

dR(X)
)

differential forms for
g-invariant polynomials

Topological
K-theory

K0(X) HomdgAlgR

(
R[ω0, ω2, ω4, · · · ], H•

dR(X)
)

differential forms
in every even degree

abelian Whitehead-
generalized cohomology

En(X) HomdgAlgR

(
∧•(π•(E)⊗Z R)∨, H

•+n
dR (X)

) differential forms for
rational homotopy groups
of the classifying space

Generalized
non-abelian cohomology

H1
(
X; ΩA

)
H1

dR(X; lA) := HomdgAlgR

(
CE(lA), Ω•

dR(X)
)/

∼
differential forms with

coefficients in
Whitehead L∞-algebra

de Rham map

Chern-Weil homomorphism

Chern character

Chern-Dold character

nonabelian
character

(7)
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Generalized Gauge Potentials. We have seen/recalled that for ordinary principal U(1)-connections there is a
single characteristic form F2 (the 1st Chern form) whose closure is witnessed by the existence of a local (meaning:

on a cover C
ι
↠ X) coboundary A – which in application to electromagnetism is the gauge potential:

F2 ∈ Ω2
dR(X)clsd

ι∗−→ Ω2
dR(C)clsd , A ∈ Ω1

dR(C) , dA = ι∗F2 .

In order to generalize this to higher connections, recall that de Rham coboundaries are equivalently null-concordances:

ordinary
de Rham

coboundaries

{
A ∈ Ω1

dR(C)
∣∣∣ dA = F2

}
electromagnetic
gauge potentials

F̂2 ∈ Ω2
dR

(
[0, 1]× C

)
clsd

∣∣∣∣∣∣ F̂2

∣∣
1

= F2

F̂2

∣∣
0

= 0

 ordinary
de Rham

null-concordances

A 7−→ F̂2 := t F2 + dt A

∫
[0,1]

F̂2 =: A ←− [ F̂2

(Where “t” denotes the canonical coordinate on the interval [0, 1] and we leave implicit the pullbacks of differential

forms along the projections [0, 1]× C
pr2−−→ C

ι−→ X.)
In the guise of null-concordances gauge potentials make immediate sense also for generalized nonabelian coho-

mology. For example, gauge potentials in 4-Cohomotopy are found to be of the following form ([26, Prop. 2.48]
coinciding with the gauge potentials as known for the duality-symmetric C-field in 11D supergravity):

lS4-valued de Rham
coboundaries

lS4-valued de Rham
null-concordances C3 ∈ Ω3

dR(C)

C6 ∈ Ω6
dR(C)

∣∣∣∣∣∣ dC3 = G4

dC6 = G7 − 1
2C3 G4

 C-field
gauge

potentials

 (Ĝ4, Ĝ7) ∈
Ω1

dR

(
[0, 1]× C; lS4

)
clsd

∣∣∣∣∣∣ (Ĝ4, Ĝ7)
∣∣
1

= (G4, G7)

(Ĝ4, Ĝ7)
∣∣
0

= 0



(C3, C6) 7−→

{
Ĝ4 := tG4 + dt C3

Ĝ7 := t2 G7 + 2tdt C6

C3 :=
∫
[0,1]

Ĝ4

C6 :=
∫
[0,1]

(
Ĝ7 − 1

2

( ∫
[0,−]

Ĝ4

)
Ĝ4

)
 ←− [

(
Ĝ4, Ĝ7

)

Generalized Gauge Transformations. Similarly, gauge transformations of ordinary gauge potentials are equiv-
alently concordances-of-concordances with fixed endpoints. Applying this principle to the above gauge potentials
for 4-Cohomotopy yields (still by [26, Prop. 2.48], now reproducing the gauge transformations as known for the
duality-symmetric C-field in 11D supergravity):

lS4-valued
gauge transformations

lS4-valued
concordances-of-concordances B2 ∈ Ω2

dR(C)

B5 ∈ Ω5
dR(C)

∣∣∣∣∣∣ dB2 = C ′
3 − C3

dB5 = C ′
6 − C6 − 1

2C
′
3 C3

 C-field
gauge trans-
formations

 ( ̂̂G4,
̂̂G7) ∈

Ω1
dR

(
[0, 1]2 × C; lS4

)
clsd

∣∣∣∣∣∣ ( ̂̂G4,
̂̂G7)
∣∣
1

= (Ĝ′
4, Ĝ

′
7)

( ̂̂G4,
̂̂G7)
∣∣
0

= (Ĝ4, Ĝ7)



(B2, B5) 7−→

{ ̂̂G4 := tG4 + dt C3 + sdt(C ′
3 − C3) − dsdtB2̂̂G7 := t2 G7 + 2tdt C6 + 2stdt(C ′

6 − C6) − 2 ds tdt(B5 +
1
2B2 C3)

B2 :=
∫
s∈[0,1]

∫
t∈[0,1]

Ĝ4

B5 :=
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

( ∫
t′∈[0,−]

Ĝ4

)
Ĝ4

)
− 1

2B2 C3

 ←− [
( ̂̂G4,

̂̂G7

)
Generalized Higher Gauge transformations.
And so on: Higher gauge transformations are given
by higher order concordances. For subtle techni-
cal reasons it is more useful to, equivalently, pa-
rameterize these not over the higher cubes [0, 1]n

but over higher simplices ∆n — the higher dimen-
sional continuation of the progression starting with
points, lines, triangles, tetrahedra, ... — given by

∆n :=
{
x⃗ ∈ (R≥0)

n+1
∣∣∣ ∑n

i=0 x
i = 0

}
⊂ Rn+1
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Therefore the collections of
- flux densities and their
- generalized gauge fields,
- & their gauge transformations
- and higher gauge transformations

(the integrated version of what in physics jargon is the BRST complex with higher “ghost fields”) constitute:

Simplicial Sets (cf. [19][28]) – systems of sets that capture the idea of sets of (n + 1)-transformations between
n-transformations, for all n ∈ N, built by successively attaching to each other: edges, triangles, tetrahedra, and
their higher dimensional analogs.

simplicial set set of points set of edges set of surfaces · · ·

X

(
X0 X1 X2 · · ·

)
endpoints

constant edges

boundary edges

thin surfaces

=
d0

s0

d1

d0

s0

d1

s1

d2

Moduli of flux deformations. Or rather, we have a system of such simplicial sets for each base manifold (−) –
thus called a smooth ∞-groupoid or smooth moduli stack, which we denote as follows:

SΩ1
dR

(
−; lA

)
clsd

Smooth ∞-groupoid of
moduli/deformations

of lA-valued flux densities

=



3

1

20

deformation paths
of deformation paths
of deformation paths

of flux densities

Ω1
dR

(
−×∆3; lA

)
clsd

1

20

deformation paths
of deformation paths

of flux densities
Ω1

dR

(
−×∆2; lA

)
clsd

0 1
deformation paths
of flux densities

Ω1
dR

(
−×∆1; lA

)
clsd

{
G⃗[0]

C⃗[0,1]−−−−→ G⃗[1]

}

flux densitites satisfying
their Bianchi identities

Ω1
dR(−; lA)clsd

{
G⃗
}

(−)[1,2,3] (−)[0,2,3] (−)[0,1,3] (−)[0,1,2]

(−)[1,2](−)[0,2](−)[0,1]

≡

(−)[0]
take starting point
of deformation path

(−)[1]
take endpoint of
deformation path

≡

≡
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2.3 Differential Cohomology

(...)

Hence A-quantization of flux means first of all that flux densities F⃗ are to be accompanied by total charges [χ]

such that their lA-valued de Rham class [F⃗ ] coincides with the character of the total charge:

H1(X; ΩA)

∗ Ω1
dR(X; lA) H1

dR(X; lA) .

chA
X

character
map

[16, Def. IV.2]

F⃗

flux density

[χ]

tota
l ch

arge

total flux

(8)

Stated in more detail [40, §3.3], the character map lifts from cohomology classes to moduli stacks and A-flux
quantization means that non-perturbative gauge field configurations are triples consisting of:

(i) flux densities F⃗ ∈ Ω1
dR

(
X; lA

)
clsd

satisfying their pre-metric Bianchi identities;

(ii) local charges χ : X → A representing classes in A-cohomology;

(iii) deformations Â : ch(χ)⇒ η S(F⃗ ) of the flux densities into the character fluxes sourced by the local charges.

The last component Â turns out to be equivalently the global form of the gauge potential which constitutes the
actual flux-quantized higher gauge field:

Classifying space

of quantized charges
subject to

lA ∼= lA

A

X
spacetime
manifold

Ω1
dR(−; lA)clsd
Smooth set of

duality-symmetric
flux densities

SΩ1
dR(−; lA)clsd

their deformation
∞-groupoid

chA
X

differential
character

[16, Def. 9.2]

F⃗

flux density

χ

(Ex.
2.1)

loca
l cha

rge

η
S

up to
deformations

Â global gauge potential

(9)

For example, this procedure (9) recovers [40, Ex. 3.10 & §4.1] the following familiar examples of globally well-defined
flux-quantized higher gauge fields:

• Maxwell field: global gauge potentials are connections on U(1)-principal bundles, for the choice A ≡ B2Z×B2Q
(as proposed by [12]

and recast in modern language by [2][9, §7.1][17, §16.4e])

or rather on electro-magnetic pairs of U(1) principal bundles, for the choice A = B2Z×B2Z
(as considered in [18][5, Rem. 2.3][30, Def. 1.16][31, (3)])

• B-field in 10d: global gauge potentials are connections on U(1)-bundle gerbes, for the choice A ≡ B3Z×B3Q
(as proposed by [24][22][11], review in [23]),

• RR-field: global gauge potentials are cocycles in twisted differential K-theory, for the choice A ≡ KU0 � B2Z
(as proposed in various forms by [34][50][35][21][8] and established in full form in [GrS22]);

and it seamlessly generalizes further to the case of interest here:

• C-field in 11d: global gauge potentials are cocycles in (twisted) differential Cohomotopy, for the choice A ≡ S4

(“Hypothesis H”, proposed in [38, §2.5], checked in [FSS20][14][15] to reproduce the expectations from the
M-theory literature, reviewed in [16, §12][40, §4.3]).

(...)
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3 Higher Chern-Weil Theory

(...)

4 Conclusion and Outlook

(...)

A Background

(...)
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[48] B. Toën: Stacks and Non-abelian cohomology, lecture at Introductory Workshop on Algebraic Stacks, Inter-
section Theory, and Non-Abelian Hodge Theory, MSRI, 2002,
[perso.math.univ-toulouse.fr/btoen/files/2015/02/msri2002.pdf].

[49] A. Valentino: Differential cohomology and quantum gauge fields (2008),
[ncatlab.org/nlab/files/Valentino-DiffCohAndQuantumGauge.pdf].

[50] E. Witten, D-Branes And K-Theory, J. High Energy Phys. 9812 (1998) 019, [arXiv:hep-th/9810188],
[doi:10.1088/1126-6708/1997/11/002].

19

https://doi.org/10.1007/JHEP07(2024)082
https://arxiv.org/abs/2403.16456
https://link.springer.com/book/10.1007/978-3-662-62103-5
https://link.springer.com/book/10.1007/978-3-0346-0189-4
https://dx.doi.org/10.4310/ATMP.2022.v26.n5.a2
https://arxiv.org/abs/1903.08843
https://doi.org/10.1215/kjm/1250283560
https://dx.doi.org/10.4310/ATMP.2022.v26.n7.a5
https://arxiv.org/abs/2101.07236
https://doi.org/10.1007/s11005-022-01626-y
https://arxiv.org/abs/2101.07778
https://arxiv.org/abs/0911.0018
https://ncatlab.org/nlab/files/Lurie-NonabPoincareDuality.pdf
https://doi.org/10.1088/1126-6708/1997/11/002
https://arxiv.org/abs/hep-th/9710230
https://doi.org/10.1088/1126-6708/2000/05/032
https://arxiv.org/abs/hep-th/9912279
https://ncatlab.org/nlab/show/Analysis+Situs
https://doi.org/10.1063/1.5007185
https://arxiv.org/abs/1310.1060
https://www.math.uni-hamburg.de/home/schreiber/nactwist.pdf
https://doi.org/10.1016/B978-0-323-95703-8.00078-1
https://arxiv.org/abs/2402.18473
https://arxiv.org/abs/2112.13654
https://doi.org/10.1007/978-3-7643-8736-5_17
https://arxiv.org/abs/0801.3480
https://doi.org/10.1007/s00220-012-1510-3
https://arxiv.org/abs/0910.4001
https://doi.org/10.4171/owr/2009/28
https://arxiv.org/abs/2311.11026
https://www.intlpress.com/site/pub/pages/books/items/00000089/index.php
https://arxiv.org/abs/math/9902067
http://www.jstor.org/stable/1969362
https://arxiv.org/abs/1209.2530
https://doi.org/10.22323/1.175.0009
https://perso.math.univ-toulouse.fr/btoen/files/2015/02/msri2002.pdf
https://ncatlab.org/nlab/files/Valentino-DiffCohAndQuantumGauge.pdf
https://arxiv.org/abs/hep-th/9810188
https://doi.org/10.1088/1126-6708/1997/11/002


[51] T. T. Wu and C. N. Yang: Concept of nonintegrable phase factors and global formulation of gauge fields,
Phys. Rev. D 12 (1975) 3845,
[doi:10.1103/PhysRevD.12.3845].

[52] D. Z. Zhang: C. N. Yang and contemporary mathematics, The Mathematical Intelligencer 15 (1993), 13–21,
[doi:10.1007/BF03024319].

20

https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1007/BF03024319

	Introduction and Overview
	Nonabelian Differential Cohomology
	Nonabelian Cohomology
	The Character Map
	Differential Cohomology

	Higher Chern-Weil Theory
	Conclusion and Outlook

