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Recall that a category is a class of objects X, Y , ...
(eg. sets, vector spaces, manifolds, groups, ...) with
prescribed sets Hom(X, Y ) of (homo-)morphisms be-
tween them, regarded abstractly as maps f : X → Y
and ultimately defined by their composition law,

(-) ◦ (-) : Hom(Y, Z)×Hom(X,Y )→ Hom(X,Z)

X Y Z
f

g ◦ f

g
, (1)

which is required to be associative and unital. The
point of category theory is to reason about (func-
tors, natural transformations and then) dualities in
the form of adjunctions (e.g. [Schreiber 2018]).

The most basic understanding of these notions
should be sufficient to appreciate this entry. An intro-
duction to categories aimed at mathematical physi-
cists may be found in [Geroch 1985], for further basic
exposition we recommend [Awodey 2006].

Make place for mathematical physics. A topos
is a category inside of which the core machinery
of mathematics can take place (whence the name
τ óπoς, for “place”, plural: τ óπoι). For instance,
the usual category of sets is a topos, and most
of the rigorous mathematics of the 20th century
(tacitly) takes place in this default topos of sets.
But there are other toposes. Traditional expositions
highlight the petit toposes of sheaves (see below)
on the open subsets of a fixed topological space
or on the affine patches of a scheme — but these
traditional examples are not instructive for the main
application of higher topos theory in physics: In-
stead, practicing mathematical physicists are mostly

working (mainly unknowingly) inside gros toposes of
sheaves on a category whose objects are all the probe
spaces on which a given notion of geometry is mod-
eled. We discuss this by way of the key examples:
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The local algebraic coordinate manip-
ulations used so successfully but often
informally in physics may be regarded
as defining generalized coordinate charts
which serve as “probes” for the actual
global geometric spaces in which physics
takes place. The theory of (higher, gros)
toposes may be understood as making
this precise: Probes form a (higher) site
and global spaces form the (higher) sheaf
topos on such a site.

Probing space. Where traditional smooth mani-
folds are sets equipped with a smooth structure which
is locally diffeomorphic to Cartesian spaces Rn, we
may more generally ask only that a smooth set X be
whatever may consistently be probed by plotting out
Cartesian spaces inside it – the idea being that such
a plot is a smooth map “Rn → X ”, only that at this

point of bootstrapping X into existence we are yet to
say what this means. But first, for consistency the
system of sets of n-dimensional plots

space

X :
probe

Rn 7→
set of plots

Plt(Rn, X)

ofX (the latter to be defined thereby) should, clearly,
satisfy the following consistency conditions:
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(1.) precomposition of plots (pre-sheaf condition)
For ϕ ∈ Plt(Rn, X) and smooth f : Rn′ → Rn, the
would-be composition “ Rn′ f−→ Rn ϕ−→ X ” should
exist as ϕ◦f ∈ Plt(Rn′

, X), such that ϕ◦ id = ϕ
and (ϕ◦f)◦f ′ = ϕ◦ (f ◦f ′). In category theoretical
language this says that Plt(−, X) is a presheaf of sets
on the category CrtSp of smooth Cartesian spaces.

(2.) gluing of plots (sheaf condition)

Given an open cover
{
Ui

ιi
↪−→ Rn

}
i∈I which is dif-

ferentiably good — meaning that the patches Ui and
their non-empty intersections Ui1 ∩ · · · ∩ Uin are all
diffeomorphic to Rn — those I-tuples of plots ϕi by
the Ui which coincide on all overlaps Ui ∩ Uj should
be in natural bijection with the global plots by the
full Rn:

Plt(Rn, X)
{(
ϕi ∈ Plt(Ui, X)

)
i∈I

∣∣ ∀
Ui ∩ Uj

ϕi = ϕj

}
ϕ

(
ϕ ◦ ιi

)
i∈I

∼

In topos-theoretic language, this says that the
presheaf Plt(−, X) of plots of X must be a sheaf
with respect to the coverage (aka: Grothendieck pre-
topology) of differentiably good open covers on the
site CartSp of smooth Cartesian spaces.

It just remains to similarly characterize the smooth
maps between such smooth sets:

(3.) postcomposition of plots (sheaf morphism)
A smooth map F : X → Y between such smooth
sets should be whatever consistently takes plots ϕ ∈
Plt(Rn, X) to their would-be composites

“ Rn ϕ−→ X
F−→ Y ” being plots F ◦ ϕ ∈ Plt(Rn, Y ),

consistency requiring that for smooth f : Rn′ → Rn
we have (F ◦ϕ) ◦ f = F ◦ (ϕ ◦ f). In category/topos-
theoretic laguage this says that smooth maps F are
the morphisms of sheaves over the site CartSp.

In short, these three consistency conditions say
equivalently that the following diagrams commute:

(1.)

Rn

Rn′
X

Rn′′

ϕ

f

ϕ ◦f

f ′

(ϕ ◦ f) ◦ f ′

f
◦
f
′

(2.)

U1

U1 ∩ U2 Rn X

U2

ι1

ϕ1

ϕ

ι2

ϕ2

(3.)

Rn

X Y

Rn′

ϕ

F ◦ ϕ

F

ϕ ◦
f

f

F ◦ (ϕ ◦ f)

This is all fairly self-evident, and yet it means ex-
actly that smooth sets form the sheaf topos on the
site CrtSp over the base topos of sets:

SmthSet
:= Sh(CrtSp,Set)

with gluing condition

↪→ PSh(CrtSp,Set) .
without gluing condition

(2)

For example, a Cartesian space Rn and generally a
smooth manifoldM is seen as a smooth set by taking
its plots to be the ordinary smooth functions into it:

CrtSp SmoothMfd SmthSet

M Plt(−,M) := C∞(−,M) .

(3)

Under this Yoneda embedding we now do have
a notion of smooth maps Rn → X from a Carte-
sian space into any smooth set. Consistency of the
above “bootstrap”-definition now demands that the
prescribed plots naturally coincide with these actual

smooth maps. This crucial self-consistency demand
on our bootstrap-definition of smooth sets happens to
be satisfied due to the general fact of category theory
famous as the Yoneda lemma:

HomSmthSet

(
Rn, X

)
Plt(Rn, X)

F 7→ F ◦ idRn .

∼
(4)

In particular the embedding (3) of ordinary smooth
manifolds into our generalized context is fully faithful.

Another basic result of topos theory gives that a
smooth set is determined already by the germs of its
plots, i.e. their equivalence classes under restriction
to small neighbourhoods of any point (say 0 ∈ Rn):
PltGrm(Rn, X)

:= Plt(Rn, X)
/(
ϕ ∼ ϕ′ iff ∃

Rn ι
↪→
opn

0∈ι(Rn)

Rn)

(ϕ ◦ ι = ϕ′ ◦ ι)
germ relation

)
.

(5)

2



Namely, maps F : X → Y in PSh(CrtSp,Set) restrict
to germs of plots

F◦ : PltGrm(Rn, X)→ PltGrm(Rn, Y ) (6)

and the localization L at (forcing the invertibility of)
the local isomorphisms

X Y
liso

local
isomorphism

⇔ ∀
n
PltGrm

(
Rn, X

)
PltGrm

(
Rn, Y

)iso

isomorphism
(bijection)

yields an equivalent category:

SmthSet ≃ LlisoPSh
(
CrtSp,Set

)
. (7)

This reflects the intuition that arbitrarily small
probes (of any dimension) are sufficient for explor-
ing the smooth structure of a smooth set.

Toposes as categories of probe-able spaces. In
conclusion so far, it is remarkable how the funda-
mental concepts of topos theory naturally align with
physical intuition of “space” as whatever is witnessed
by “probing” it (cf. the notion of probe branes in
string theory, whose worldvolumes play much the role
of the above plots, now for probing “D-geometry”).

In fact, that is already the definition: A topos (here
short for: Grothendieck topos, as usual) is a category
T for which:
(1.) there exists a category S consisting of a set (in-
stead of a proper class) of “probe”-objects, which is
a site in that it is
(2.) equipped with a consistent notion (coverage or
Grothendieck pre-topology) of what it means for any
such probe object to be covered by other probes,
(3.) such that T is equivalently the category of ob-
jects consistently probeable by these probe objects,
in immediate generalization of the example (2), called
the category of sheaves on S:
(Grothendieck-)

topos T ≃ Sh(S,Set) category of
sheaves on site S.

(8)

For further introduction to sheaf toposes see e.g.
[Schreiber 2018] [Schapira 2023].

Where field spaces take place. As a first exam-
ple of the power of topos theory in physics, notice
that much of the subtlety of field theory in contrast
to “point mechanics” goes back to the fact that phys-
ical field configurations Φ are (smooth) maps from a
(spacetime) manifold X to some coefficient space F

physical
field

Φ : X
spacetime

−−−−−→ F
field values

, (9)

so that spaces of field histories are mapping spaces
(generally: spaces of sections of F -fiber bundles over
X). These are at best infinite-dimensional Fréchet
manifolds (under the unrealistic assumption that X
is compact) and in general fall entirely outside the
scope of traditional differential geometry.

In contrast, the topos of smooth sets – like every
topos – is cartesian closed, meaning that

(1.) Cartesian products exist, immediately so by (4):

Plt
(
Rn, X × Y

)
:= Plt

(
Rn, X

)
× Plt

(
Rn, Y

)
,

(2.) there is guaranteed to be a smooth set

Fields := Maps(X,F )

of smooth maps (between any two smooth sets X, F )
such that there are natural bijections of maps

U → Maps(X,F )
map to mapping space

↔ U ×X → F
map on product space

.

Concretely, plotting out a probe U inside the space
of maps from X → F — which one may think of as
X-parameterized elements of F — should just be a
U -parameterized family of such maps, hence a U×X-
parameterized family of elements of F :

Plt
(
U, Maps(X,F )

)
:= Hom

(
U ×X, F

)
U Fields
u Φu7→

↔ U ×X F

(u, x) Φu(x) .7→
(10)

This tautological and intuitively transparent pre-
scription defines the mapping space Maps(X,F ) as
a smooth set, and yet subsumes all the traditional
definitions whenever they happen to be applicable:

Namely, also infinite-dimensional Fréchet mani-
folds are faithfully included among smooth sets — via
the analogous formula (3), as are diffeological spaces
(11), cf. Figure 1. — and when the mapping space
exists in these subcategories it agrees with (10).

For more on smooth sets in field theory see
[Schreiber 2017] [Giotopoulos & Sati 2023].

Where anomaly polynomials take place. Con-
trary to tradition in differential geometry, smooth
sets are defined “operationally” and not as sets
equipped with extra structure, though this case is
subsumed: A smooth set X is concrete (as a sheaf
on CrtSp) – also called a diffeological space [Iglesias-
Zemmour 2013] – if there exists a plain set Xs such
that the plots of X are natural subsets of the maps
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of plain sets into Xs:

Plt(Rn, X) HomSet

(
Rn, Xs

)
. (11)

For example, smooth manifolds (3) are among con-
crete smooth sets, but also (Delta-generated) topo-
logical spaces X ∈ DTopSp are faithfully subsumed,
via DTopSp DifflgSp SmthSet

X Plt(−,X) := C0(−,X) ,7→
(12)

cf. [Sati & Schreiber 2023, Prop. 3.3.19].
Among non-concrete smooth sets are the “smooth

classifying spaces” Ωp
dR, of differential p-forms:

Plt
(
Rn, Ωp

dR

)
:= ΩpdR(R

n)
set of smooth

differential p-forms
on Cartesian space.

These are classifying in that smooth maps from a
smooth manifold X into them are in natural bijection
with smooth differential forms on X:

Hom
(
X, Ωp

dR

)
≃ ΩpdR(X) .

Remarkably, if X is an n-manifold, then the smooth
mapping space (10) into, say, Ωn+2

dR is still non-trivial:
It contains differential forms that appear only in fam-
ilies parameterized by some manifold U :

U → Maps(X,Ωn+2
dR ) ↔ ωU ∈ Ωn+2

dR (X × U) .

In field theory this is the case for (Green-Schwarz-
type) “anomaly polynomials” In+2 = jeln−k ∧ j

mag
k+2 ,

whose mathematical home, traditionally left vague,
is the following diagram of smooth sets (the integral
assuming compact support, as usual):

Map(Xn, F ) Map(Xn,Ωn+2
dR ) Ω2

dR

(
probe

U ×Xn Φ−→ F ) In+2(Φ)
∫
Xn In+2

(Φ)
U -parameterized
family of fields

anomaly polynomial
in Ωn+2(Xn × U)

local anomaly
in Ω2(U)

I
n+2

curvature of anomaly line bundle on field space∫
Xn

7→ 7→

Constructivism and instanton sectors. A fun-
damental result of (“elementary”) topos theory is

that mathematical definitions and theorems may be
transported from plain sets to any other topos – if
only they are constructive, meaning essentially that
they do not invoke the usual “axiom of choice”. This
is not mysterious but another example of physical in-
tuition aligning with topos theory:

Namely, in the default topos of sets, the axiom
of choice says equivalently that every surjective map
E ↠ B (“epimorphism”) admits a choice b 7→ σ(b) ∈
Eb of elements in the fiber Eb over each point b ∈ B
in the base, forming a commuting diagram of this
form: E

B B

∃ ?σ

a c
ho
ice

Whatever one may think of this axiom in the case
of plain sets, it is clearly unjustified for smooth sets,
where a surjection as above is a smooth bundle, such
as a fiber bundle or a principal bundle. Even if we
assume (as one usually does) that we can choose ele-
ments σ(b) in each fiber of the bundle separately, for
a non-trivial principal bundle there is in general no
way to make theses choices smoothly (or even contin-
uously) to arrange into a smooth map σ : B → E.

Therefore the failure of the axiom of choice in the
topos of smooth sets is, in a sense, the reason why in
physics one sees crucial phenomena like flux quantiza-
tion, soliton/instanton sectors or fermionic anomalies
– all of which reflect the existence of non-trivial fiber
bundles (for more see [Sati & Schreiber 2024]).

Hence reasoning in mathematical physics is nat-
urally reflected in constructive mathematics, and
toposes are essentially the possible models of such
constructive or physical reasoning. There are many
topos models relevant for the discussion of physics:

DTopSp

SmthMfd FrchtMfd DifflgSp

ungauged bosonic
field spaces take place here

SmthSets

ungauged fermionic
field spaces take place here

SupSmthSets

LieGrpd DifflgGrpd

field space of pure
Yang-Mills takes place here

SmthGrpd

SupLieGrpd
BRST complex of

QCD takes place here

field space of
QCD takes place here

SupSmthGrpd

SupSmthGrpd∞
field space of higher

supergravity takes place here

(higher)
toposes −→

Figure 1. Part of the system of categories of generalized spaces needed in mathematical physics.
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Where variational calculus takes place. Infor-
mal physics texts often refer to variables whose value
is non-vanishing but “so tiny” that their square may
be neglected, ϵ2 = 0. This naive coordinate expres-
sions – which algebraically means that ϵ ∈ R[ϵ]/(ϵ2) –
may be understood as describing simple infinitesimal
probe spaces, from which topos theory immediately
provides us with rigorous models of global differen-
tial geometry containing actual infinitesimal quanti-
ties (historically known as “synthetic differential ge-
ometry”):

Namely, a fundamental (if maybe underappreci-
ated) fact of differential geometry is that smooth
functions between smooth manifolds are fully faith-
fully reflected in the homomorphisms of real algebras
of smooth functions which they induce:

HomSmthMfd

(
X, Y

)
HomCAlgR

(
C∞(Y ), C∞(X)

)
f f∗

≃

exhibiting a full embedding into the opposite cate-
gory of commutative real algebras:

CrtSp SmthMnfd CAlgop
R

X C∞(X) .

C∞(−)

7→
Reading this backwards – just as familiar from al-
gebraic geometry – we may declare infinitesimally
thickened Cartesian spaces to be that whose algebras
of smooth functions, by definition, contain nilpotent
monomials, defined as forming this full subcategory:

ThCrtSp CAlgopR

Rn×Dmk C∞(Rn)⊗R R[ϵ1, · · · , ϵm]
/(
ϵk+1

)C∞(−)

7→
(13)

which becomes a site via coverings of the form{
Ui × Dmk

ιi×id−−−→ Rn × Dmk
}
i∈I

for (ιi)i∈I a differen-

tiably good open cover as before. Therefore we obtain
(8) the topos

FrmlSmthSet := Sh
(
ThCrtSp,Set

)
(14)

of (synthetic-)differential smooth sets. Smooth man-
ifolds X are still faithfully included here, by defining
their plots algebraically

Plt
(
Rn × Dmk , X

)
:= HomCAlgR

(
C∞(X), C∞(Rn × Dmk )

)
,

(15)

and hence exist now alongside the infinitesimal halos

Dmk . Notice that these contain only a single actual
point ι : ∗ = R0 ∃!−→ Dmk
and yet are larger than that point (have more plots,
namely by other infinitesimals).

This topos (15) is a most convenient environment
where näıve differential geometric intuition becomes
a rigorous reality. E.g., for X a smooth manifold, its

tangent bundle TX
p−→ X (also a smooth manifold)

is just the mapping space out of the infinitesimal in-
terval: Map

(
D1

1, X
)

TX

Map(∗, X) X .

≃

Map(ι,X) p

≃

(16)

Proceeding in this spirit, one finds that tradi-
tional variational calculus on jet bundles, hence all
of classical Lagrangian field theory, takes place in
FrmlSmthSet where the notorious technical subtleties
are naturally being taken care of.

For more see [Dubuc 1979] [Kock 1986] [Kock &
Reyes 1987] [Schreiber & Khavkine 2017].

Where classical fermion fields take place. It
is commonplace that operator products of fermionic
quantum fields satisfy Clifford algebra relations, but
it may be less widely appreciated that (therefore)
already classical fermion fields are “anti-commuting
variables” subject to the algebraic relation

ψ ψ′ = −ψ′ ψ , (17)

which is necessary for the usual Dirac-Lagrangian of
fermion fields to make algebraic sense

Lψ(x) ∝ ψ(x)Dψ(x) dvol ,

since otherwise it would be a total derivative.
But beyond such formal algebraic manipulations,
what is a classical fermion field? Remarkably, the
naive algebraic coordinate-manipulations common in
physics are again perfectly valid as statements about
fermionic probe spaces, from where topos theory takes
automatic care of providing a good notion of general
fermionic (field) spaces:

Concretely, a simple finite-dimensional Cartesian
fermionic space with n bosonic and q fermionic co-
ordinate functions – a “super-space” Rn|q – ought to
be fully characterized by the fact that its “algebra of
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smooth functions” C∞(Rn|q) is (defined to be) the
Z/2-graded commutative (super-commutative) alge-
bra (we write sCAlgR for their category) which is the
plain tensor product of the ordinary smooth functions
on Rn with the “odd functions” on Rq, the latter de-
fined to form the Grassmann algebra ∧•(Rq)∗ of the
linear dual space:

C∞(Rn|q) := C∞(Rn)⊗R∧•(Rq)∗ ∈ sCAlgR . (18)

As before for bosonic infinitesimals (13), we may de-
fine smooth maps of Cartesian super-spaces to be the
reverse homomorphisms of their super-commutative
function algebras:

f : Rn|q −→ Rn
′|q′ ↔ f∗ : C∞(Rn

′|q′) −→ C∞(Rn|q) .
This means to define the category of smooth Carte-
sian super-spaces as the full sub-category of the op-
posite of the category sCAlg

R
of super-commutative

algebras on those of the form (18):

SupCrtSp sCAlgopR

Rn|q = Rn×R0|q 7→ C∞(Rn)⊗R∧•(Rq)∗ .

C∞(−)

(19)

Declaring the coverings of Cartesian super-spaces to

be of the form
{
Ui × R0|q ιi×id−−−→ Rn × R0|q

}
i∈I

for

(ιi)i∈I a differentiably good open cover as before, we
readily obtain the topos of super smooth sets:

SupSmthSet := Sh(SupCrtSp, Set) . (20)

For example, given a smooth spinor bundle S → X,
it becomes a super smooth set ΠS by:

Plt
(
Rn|q, ΠS

)
:=

{
ϕ : Rn → X

}
× ∧qΓ

(
ϕ∗S

)
, (21)

from which one finds that spinor fields are the odd
points in the super smooth function set out of ΠS:

Φevn : R0|0 → Map(ΠS,R) ↔ ϕ ∈ C∞(X)

Φodd : R0|1 → Map(ΠS,R) ↔ ψ ∈ Γ(S∗) .
But under the following faithful embedding of super-
commutative algebras into commutative algebras of
super sets, the super smooth function set (21) is iden-
tified with the Grassmann algebra on spinor fields:

sCAlg(Set)R ↪−−→ CAlg(SupSmthSet)R

A 7→ A : Rn|q 7→
(
A⊗ C∞(Rn|q)

)
evnin that

Γ
(
∧• S∗

)
7→ Γ

(
∧• S∗

)
≃ Map

(
ΠS, R

)
.

This exhibits the anticommutation relation (18).
Cf. [Konechny & Schwarz 1998] [Sachse 2008].

Where discrete gauge fields take place. We
may read the gauge principle in physics as saying that
in gauge field spaces the very notion of equality is
relaxed: Two (plots/families (10) of) gauge fields

Φ,Φ′ : Rn|q −−−→ Fields

may be nominally distinct and yet identified via
gauge transformations:

Rn|q Fields

Φ

Φ′

g∼ (22)

that may be composed

Rn|q Fields

Φ

Φ′′

h
◦g

∼

Φ′

g

∼

h

∼ (23)

and reversed

g : Φ⇒ Φ′ implies


g−1 : Φ′ ⇒ Φ,

g−1 ◦ g = idΦ

g ◦ g−1 = idΦ′ .

This means that the plots of gauge field spaces no
longer form plain sets, but groupoids: sets of objects
with invertible maps (gauge transformations) making
them a category (1).

Furthermore, for higher gauge fields, two such
gauge transformations, in turn, may be nominally
distinct and yet identified by “gauge-of-gauge trans-
formations”

Rn|q Fields

Φ

Φ′

∼∼ ⇒∼ (24)

satisfying a 2-dimensional analog of composition and
associativity, as schematically indicated here:

(∆0) Φ

(∆1) Φ Φ′

Φ′

Φ Φ′′

g

h(∆2) g

h◦g

µ(g,h)

Φ′

Φ Φ′′′ ,

Φ′′

(∆3)

(25)
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and so on to ever higher order gauge transformations,
now making the plots form higher groupoids.

Traditional physics literature describes this phe-
nomenon mostly infinitesimally, where it is cap-
tured by the homological algebra of BRST complexes:
Here the infinitesimal gauge transformations appear
as “ghost fields” and the infinitesimal higher-gauge
transformations as “ghost-of-ghost fields”.

The topos theory for going beyond the infinitesi-
mal higher gauge transformations is again via probes:
We detect the nature of a higher gauge groupoid
X by recording the system of sets Plt(∆n,X ) of
n-dimensional higher gauge transformations of the
shape indicated for low n in (25) – called the n-
simplices ∆n. Equipped with the fairly evident cell-
preserving maps, these n-simplices form a site (with
trivial coverage) denoted ∆ (the “simplex category”),
so that higher groupoids should be found in the cor-
responding (pre-)sheaf topos of “simplicial sets”,

Sh(∆,Set)Kan ↪→ Sh(∆,Set) ,

as those simplicial sets all whose higher gauge trans-
formations have composites, if suitably consecutive,
in a manner that is suitably associative, unital and
invertible up to further gauge transformations. All
this turns out to be neatly encoded by the Kan con-
dition, which demands simply that whenever we find
(probe) in a simplicial set X the boundary of an n-
simplex except the kth (n − 1)-face – called a horn
Λnk ↪→ ∆n – then we may also find the missing face
and the interior n-morphism:

X ∈ Sh(∆, Set)Kan ⇔
∀ Λnk X

∆n .
∃

Some important examples:

(1.) Given a discrete group G, there is a groupoid

BG =
“
{

pt

g
∣∣∣∣∣ g ∈ G

}
”

(26)

with a single ∆0-plot pt, one ∆1-plot pt
g−→ pt for

each group element, ∆2-plots given by pairs of group
elements and witnessing the group operation

Plt(∆2, BG) =


pt

pt pt

g2g1

g2·g1

∃!

∣∣∣∣∣∣∣∣
(g1, g2)

∈ G×G

 , (27)

and generally Plt(∆n,BG) = G×n

. This groupoid
appears as the field fiber F of G-Dijkgraaf-Witten
theory.
(2.) For a topological space X ∈ Top, its singular
simplicial complex is Kan, representing the higher
path groupoid SX (also “fundamental”- or “Poincaré”-
groupoid):

Plt
(
∆n, SX

)
:= HomTop

({
x⃗ ∈ (R≥0)

n+1
∣∣∑

ixi = 1
}
, X

)
.
(28)

(3.) Given a chain-complex in non-negative degrees

V• =
[
· · · V2 V1 V0

∂2 ∂1 ∂0 ]
(29)

it becomes a Kan-simplicial set HV by

Plt
(
∆n, HV

)
:= HomCh•

(
N•Z[∆n], V•

)
, (30)

where we probe V• with the normalized chains com-
plex N•(−) of cellular singular chains on ∆n.
In particular, when V• = A[n] is concentrated on

an abelian group in degree n, then

BnA := HA[n] =: H(A,n) (31)

is known as the nth Eilenberg-MacLane space of A.
One readily checks that the maps between Kan

simplicial sets form themselves Kan simplicial sets

X , Y ∈ Sh(∆)Kan ⇒ Map(X , Y) ∈ Sh(∆)Kan .

For example, the maps from SX (28) to BG (26) form
the groupoid of gauge fields and their gauge transfor-
mations in Dijkgraaf-Witten theory on X:

Map
(
SX, BG

)
≃ FlatGBundX .

Moreover, these higher mapping groupoids have
canonical composition operations

(-) ◦ (-) : Map(X , Y)×Map(Y, Z)→ Map(X , Z)
which are associative and unital. Hence in gauge-
theoretic enhancement of the base topos of

• sets

with sets of maps between them,

we have now

• Kan-simplicial sets

with Kan-simplicial sets of maps between them

behaving like higher (gauge) groupoids with higher
groupoids of maps between them and forming what
is called a category enriched in simplicial sets, to be
denoted:

Grpd∞ := Sh(∆,Set)Kan ∈ Sh(∆)-Cat . (32)
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This is (one incarnation of) the default higher topos
of higher groupoids or higher homotopy types.

In particular, a gauge equivalence (math jargon:
homotopy equivalence) of higher groupoids are maps

ϕ : X heq←−→ X ′ : ϕ′ which are inverses up to gauge
transformations in that there exists:

g : ∆1 → Map(X ,X ) , g′ : ∆1 → Map(X ′,X ′)

X ′

X X

ϕ′ϕ
g

∼

X ′ X ′

X
ϕ′ ϕ

g′

∼

(33)

E.g. there are homotopy equivalences exhibiting (31)
as a based loop space (of basepoint-preserving maps
and higher homotopies inside the mapping space)

BnA ΩptB
n+1A := Mappt/

(
SS1,Bn+1A

)
.

heq
(34)

One may equivalently understand the Kan-
simplicial enrichment in (32) as the universal way of
turning classes W of maps that ought to be such ho-
motopy equivalences (33) – but cannot be in an or-
dinary category – into actual homotopy equivalences
in a simplicially-enriched category, a process known
as simplicial localization LW :

Grpd∞ ≃
DK

Lheq Sh(∆)
Kan

. (35)

Where smooth gauge fields take place. Via the
paradigm of probes, it is now immediate that higher
(super-)smooth groupoids X (faithfully subsuming Lie
groupoids and diffeological groupoids) are whatever
when probed with Rn|q exhibit a Kan-simplicial set
of plots (22):

PSh
(
SupCrtSp, Sh(∆)Kan

)
= X : SupCrtSpop Sh(∆)Kan

Rn|q Plt(Rn|q,X )7→

 (36)

In gauge-theoretic enhancement of (7), gauge equiv-
alences between smooth higher groupoids should be
local homotopy equivalences:

X Y
lheq

local homotopy
equivalence

⇔ ∀
n,q

PltGrm
(
Rn|q, X

)
PltGrm

(
Rn|q, Y

)heq

homotopy
equivalence

and the higher topos of (super) smooth ∞-groupoids
(aka ∞-stacks, here incarnated as a simplicially en-
riched category) is the simplicial localization of (36):

SupSmthGrpd∞

:= Llheq PSh
(
SupCrtSp, Sh(∆,Set)Kan

)
.

Important examples:

(1.) For a (super-)Lie group G, the analog of (27) is

Plt
(
∆2, Plt

(
Rn|q,BG

))
=


pt

pt pt

g2g1

g2·g1

∃!

∣∣∣∣∣∣∣∣
(g1, g2)

∈ C∞(
Rn|q, G

)×2


(37)

which exhibits the super smooth groupoid that de-
loops the Lie group G.

In slight variation, for g denoting the (super-)Lie
algebra of G we now also have the smooth groupoid
BGconn whose plots are g-valued connection forms A
(vector potentials) with their usual gauge transfor-
mations:

Plt
(
∆2,Plt(Rn|q,BGconn)

)
:=


A1

A0 A2

g2

g2·g1

g1
∃!

∣∣∣∣∣∣∣∣∣
Ai ∈ Ω1(Rn|q)⊗ g,

gi ∈ C∞(Rn|q, G)
Ai = giAi−1g

−1
i

+ gidg
−1
i


(2.) For V•(−) a sheaf of chain complexes (29) on
SupCrtSp, such as the dth Deligne complex

Deld• :=
[
Z Ω0

dR(−) Ω1
dR(−) · · · Ωd−1

dR (−)d d
]

we get the (super-)smooth versionHV•(−) of the cor-
responding higher groupoid (30), which we may de-
note BdU(1)conn := HDeld

(3.) For X a smooth manifold and any good open

cover
{
Ui

ιi
↪−→ X

}
i∈I , its Čech nerve X̂ has as probes

the smooth maps to the Ui and as (higher) gauge
transformations the maps into (higher) intersections:

Plt
(
∆k,Plt(Rn|q, X̂)

)
:= C∞

(
Rn|q,

∐
i1,··· ,ik

Ui1 ∩ · · · ∩ Uik
)
. (38)
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This is locally homotopy equivalent to X:

X̂ X(
Rn|q → Ui1

) (
Rn|q → Ui1 ↪→ X

)lheq

7→

and hence a gauge-equivalent incarnation of X, but it
is a “good” (namely projectively cofibrant) represen-

tative, implying that the mapping spaces out of X̂
into the above classifying objects B(−)(−) exhaust
the gauge equivalence classes of the corresponding
maps.

The maps between these objects are (modulate)
(higher) gauge fields, classified by higher cohomology:

Map
(
X̂,BGconn

) {
G-Yang-Mills fields

(A-fields)

}
π0Map

(
X̂,BG

)︸ ︷︷ ︸
=H1(X;G)

{
G-instanton sectors

}
=

=

Map
(
X̂,B2U(1)conn

) {
B-fields

}
π0Map

(
X̂,B2U(1)

)︸ ︷︷ ︸
=H3(X;Z)

{
string

charge sectors

}
=

=

Map
(
X̂,B3U(1)conn

) {
C-fields

}
π0Map

(
X̂,B2U(1)

)︸ ︷︷ ︸
=H4(X;Z)

{
membrane

charge sectors

}
=

=

(39)

Beyond these examples, consider the countably
infinite-dimensional complex Hilbert space H with
its topological space of Fredholm operators Frd(H),
which is a classifying space for topological K-theory.
Then a cocycle in differential K-theory is a homotopy
in SmthGrpd∞ of the following form∏

kΩ
2k
clsd

smth
mfd

X̂
∏
kB

2k R♭

SFrd(H)

RR-field

de Rhammap
RR-

flux

dens
ities

K-cocycle Che
rn

cha
rac

ter

(40)

Generally, every notion of generalized differential co-
homology (classifying generalized higher gauge fields)
takes place in SmthGrpd∞ in an analogous way.

Where singularities take place. While smooth,
spaces in physics famously may have singularities, by
which we shall mean orbi-singularities: A cone such
as the quotient R2/(Z/n) of the plane (by rotation
along an angle 2π/n about the origin) is smooth ev-
erywhere except at the tip, where the Z/n-action ap-
pears to have “shrunken away” to act only “inside
the singular point”, appearing much like the groupoid
BZ/n (26).

Z/n

Cf. [Sati & Schreiber 2020][2021]:

Such an orbifold is hence a smooth set which more-
over responds to probes by orbi-singularities, whose
higher site may be understood to be the full simpli-
cial subcategory on the delooping groupoids of finite
groups: Snglr Grpd∞

≺

G BG .7→

With the gauge equivalences of orbi-singular
(smooth) higher groupoids being the singularity-wise
equivalences sngeq (notice that the trivial singular-
ity is included as pt = B1 ∈ Snglrt) we obtain the
higher topos of singular smooth higher groupoids:

SnglrSupSmthGrpd∞

:= LsngeqPSh
(
Snglrt,SupSmthGrpd∞

)
For G ↷X a group action in smooth sets, the homo-
topy quotient X�G is

Plt
(
∆2,Plt

(
Rn|q, X�G

))
:=


g1 · ϕ

ϕ g2 ·g1 · ϕ

g2g1

g2·g1

∃!

∣∣∣∣∣∣∣∣
ϕ ∈ Plt

(
Rn|q, X

)
gi ∈ Plt

(
Rn|q, G

)


and its orbi-singularization ≺(−) is given by

Plt
(
Rn|q × ≺

G, ≺

(
X�G

))
:= Plt

(
Rn|q,Map

(
BG, X�G

))
For example, let G ↷H be a stable representation

of a finite group, then a cocycle in the G-equivariant
K-theory ofX is a map in SnglrSmthGrpd∞ of this
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form:

≺

(
X�G

)
S ≺

(
Frd(H)�G

)
.

≺
G

equivariant
K-cocycle

From this one obtains, in analogy with (40), equivari-
ant differential K-theory, thought to modulate both
RR-fields on orbifold spacetimes as well as ground
states of topological phases of crystalline quantum
materials (where the orbifold is the Brillouin torus
quotiented by the point group of the crystal lattice).

Where quantum physics takes place. Indeed,
physics is ultimately quantum, where quantum state
spaces are linear spaces, varying over classical param-
eter spaces.

Linearity means abelian group structure and in
higher gauge theory (homotopy theory), a higher
group is the more abelian the more de-loopings (34)
it admits. Hence fully linear structure on a pointed
higher groupoid E0 should be a sequence of ever
higher deloopings (called a spectrum) exhibited by
a sequence of maps

E0 ΩE1 Ω2E2 Ω3E2 · · · ,σ̃0
Ω(σ̃1) Ω2(σ̃2) Ω3(σ̃3)

which are homotopy equivalences up to suitable
gauge equivalence of spectra, called stable homotopy
equivalences (steq).

Since maps into the looping of a higher groupoid
are equivalently homotopies of this form,

X −→ ΩptY ↔
X pt

pt Y

∼

a parameterized spectrum is a space that may be
probed by objects behaving like spheres of negative
dimension, forming a higher site of this form:

Lin :=


pt pt pt

S0 S−1 S−2 S−3

pt pt pt

∼ ∼ ∼


Quite remarkably, parameterized spectra still form a
higher topos, the higher tangent topos:

LinSnglrSupSmthGrpd∞

:= LsteqPSh
(
Lin,SnglrSupSmthGrpd∞

)
.
(41)

In this higher topos (41) takes place, for example:
(1.) The non-perturbative (“geometric”) quantiza-
tion of Poisson manifolds, exhibited here by the push-
forward of K-module spectra parameterized (via a
choice of higher prequantum line bundle) over the cor-
responding symplectic groupoid to its leaf space (cf.
[Nuiten 2013] [Schreiber 2014], also [Sati & S. 2023]).
(2.) The circuit logic of quantum informa-
tion/computing with classical control and dynamic
lifting of quantum measurement results, exhibited
by the base-change yoga of Real HC-module spec-
tra, among whose “heart” are the finite-dimensional
Hilbert spaces (cf. [Sati & Schreiber 2023]).
(3.) The construction of Hilbert spaces of anyonic
quantum ground states of topologically ordered crys-
tals, in the guise of su(2)-conformal blocks with KZ-
connection, exhibited here as sections of equivari-
ant parameterized spectra over smooth configuration
spaces of points in the crystal’s Brillouin torus orb-
ifold, cf. [Sati & S. 2024] [Myers et al. 2024].

Conclusion. Quite contrary to superficial percep-
tion, higher topos theory provides just the mathemat-
ical context that physicists are often intuitively but
informally assuming anyway. Realizing the higher
topos theory yields a wealth of new powerful mathe-
matical tools addressing many of the notoriously sub-
tle issues in mathematical physics and opening the
door to rigorous attacks on some of the outstanding
open problems of the field.

There clearly remains a large gap between the lan-
guages that the communities speak, but this is a his-
torical artefact which is increasingly being bridged.

However, this also means that, despite some his-
tory and considerable work, the application of higher
topos theory in physics is still in its infancy. Our
account here is by necessity a progress report more
than the survey of a mature field.

† Center for Quantum and Topological Systems,
Division of Science, New York University, Abu Dhabi,
email: us13@nyu.edu

Keywords: topos theory, higher topos theory, physics,
mathematical physics, field theory, gauge theory, quan-
tum theory, diffeology, groupoids, orbifolds, sheaves,
stacks, higher structures
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