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topological quantum computing
on “FQH-platforms” aims to manipulate

exotic quantum states of magnetic flux

largely escapes traditional tools of physics
but novel approach shows it admits
description via classifying spaces

⇒ theorems in low-dim AlgTop
provide otherwise elusive analysis

of tech-relevant quantum effects
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We are concerned with algebro-topological phenomena arising
when magnetic flux penetrates a semi-conducting surface Σ2.

The “gauge group” of the electromagnetic field is G ≡ U(1)
and ordinarily such flux is classified by maps to BU(1) ≃ CP∞.

Precisely, when quantum-effects are being resolved, then:

Theorem [7] (Yang-Mills flux quantum observables):
For ordinary gauge fields on a spacetime ≃ R1,1 × Σ2

the quantum observables of field flux through Σ2

form the group-convolution C∗-algebra C
[
C∞(

Σ2, G⋉ (g/Λ)
)]

quantum flux observablesfor Λ ⊂ g an Ad-invariant lattice.
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surfaceΣ 2

G Lie group (“gauge group”)
g its Lie algebra

Commercial-value quantum computing will require
robust quantum observables, insensitive to local fluctuations,
only depending on topological sectors of field configurations.

C
[
C∞(

Σ2, G⋉ (g/Λ)
)]

all quantum flux observables

C
[
π0 C

∞(
Σ2, G⋉ (g/Λ)

)]
robust topological observables

[−]∗

C∞(-, -) manifold of smooth functions

(-)⋉ (-) semidirect product via adjoint

C[−] group convolution C∗-algebra

π0(−) path-connected components

Proposition [7] (topological sector observables):
The topological flux quantum observables form the homology
Pontrjagin algebra of maps from space to classifying space.
(shown now assuming Λ = 0, for simplicity):

topological flux quantum observables

C
[
π0 C

∞(
Σ2, G

)]
≃ C

[
π0 Maps

(
Σ2, G

)]
≃ C

[
π1 Maps

(
Σ2, BG

)]
group algebra of fundamental group

of maps to classifying space

≃ H0

(
Maps∗(

(
R1 × Σ2

)
∪{∞}, BG); C

)
homology Pontrjagin algebra of

soliton moduli space

soliton
on X

=
topological field configuration
that vanishes at the ends of X

⇒
classified by pointed map
X∪{∞} −→ BG
from one-point compactification

Example: C
[
π0 Maps

(
Σ2

g, U(1)
)]

≃ C
[
H1(Σ2

g; Z)
]
≃ C

[
Z2g

]
Σ2

g orientable surface of genus=g

Effective flux of “fractional quantum Hall systems”(FQH).
But, at very low temperature, experiment suggests

instead of Z2g its 2nd integer Heisenberg extension Ẑ2g

being the observables of an “effective Chern-Simons field”,

where the center Z ↪→ Ẑ2g observes an anyon braiding phase.

Question: Is there classifying space A for this effective CS field?

Answer: Yes! The 2-sphere S2 ≃ CP 1 ↪→ CP∞ ≃ BU(1)
Theorem [2][4]: The cofiber presentation of the surface

S1
∨

g(S
1
a ∨ S1

b ) Σ2
g S2

∏
i[ai,bi]

induces short exact sequence exhibiting the Heisenberg extension:

1 π1Maps
(
S2, S2

)︸ ︷︷ ︸
Z

π1Maps
(
Σ2

g, S
2
)︸ ︷︷ ︸

Ẑ2g

π1Maps∗
(∨

2gS
1, S2

)︸ ︷︷ ︸
Z2g

1

sphere

Σ2
0 ≃ S2

torus

a

bΣ2
1 ≃ T2

2-
ho
le
d

to
ru
s

a1

b1

a2

b2

Σ2
2

Ẑ2g :=


(
a⃗, b⃗, n

)
∈ Zg × Zg × Z(

a⃗, b⃗, n
)
·
(
a⃗′, b⃗′, n′

)
=(

a⃗+ a⃗′, b⃗+ b⃗′, n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗
)


twice the unit
central extension

Question: Can we identify the center Z as arising from braiding?
Answer: Yes!
Theorem [8]: Maps∗(S2, S2) is configurations of charged strings
such that ΩMaps∗(S2, S2) is framed links subject to cobordism,
π1Maps∗(S2, S2) generated from framed unknot with 1 braiding

ΩMaps∗
(
S2, S2

)
π3(S

2) ≃ Z
L #L

framed link
linking + framing

number

[−]

is CS observable
(“Wilson loop”) #

( )
= +1 , #

( )
= −1 ,

Ergo: Remarkably, topological quantum observables of effective
flux in quantum Hall systems is algebro-topologically described by

{
replacing the classifying space BU(1) ≃ CP∞

with its 2-skeleton S2 ≃ CP 1

Question 1: Is there rationale for such replacement? Answer: Yes [9][10][11]: Hypothesis H...
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Question 2: Does this new model make novel predictions? Answer: Yes – defect anyons in FQH-systems.

With the classifying space identified for known situations,
we find its implications for previously inaccessible cases:

Namely generalize now to n-punctured surfaces Σ2
g,n ,

reflecting n defect points in the semiconductor
where the magentic field is expelled
(type-I superconducting spots). field solitons:

Pontrjagin submanifolds
flux-expelling defects:

punctures

Proposition.
The observables are,
in this generality:

Obs0 ≃ C
[
π1Maps∗(

(
Σ2

g,n

)
∪{∞}, S

2)
]

≃ C
[
π1Maps∗(Σ2

g ∨
∨
n−1
S1, S2)

]
≃ C

[
π1Maps∗

(
Σ2

g, S
2
)
× Zn−1

]
≃
g=0

C
[
Zn

]

puncture

pu
nc
tu
re

Σ2
0

(Σ2
0,2)∪{∞} =

Σ2
0 ∨ S1 =

∼

∼
∞
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[3
,
p
1
1])
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subject to the
diffeomorph.
action by:

1 −→ Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) −→ 1

surface braid group
mapping class group
of punctured surface

mapping class group
of plain surface

Therefore the equivariant quantum states (jargon: “generally covariant”)

on Σ2
0,n are representations of the wreath product of solitonic and defect phases:

Z ≀ Brn(Σ2
0) =

solit
onic

anyo
ns

Zn ⋊
defe

ct anyo
ns

Brn(Σ
2
0) ↠ Zn ⋊ Symn

Such braid representations for defects
have not previously been derived for
FQH systems –
but are just what is needed for the grand
goal of topological quantum gates:
programmable unitary transformations
of quantum systems,
insensitive to continuous deformations
(hence to noise!)

anyonic
defect

parameter
braiding

k
I

k
I

some quantum state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉
∣∣ψ(t2)〉

another quantum state for
fixed defect positions
k1, k2, · · · at time t2

unitar
y adiab

atic transp
ort

Concretely, the worldvolume domains with n defects re-
tract onto those with a single defect, whence so do the
corresponding quantum observables and quantum states:

HΣ2
0,n

≃ Cn ≃ C⊕ ∈ SymnRep

Obs•

(
(Σ2

0,1)∪{∞} (Σ2
0,n)∪{∞} (Σ2

0,1)∪{∞}

)
Z Zn Z ,

id

This yields what are known as controlled qdit-rotation gates ,

the workhorse of quantum algorithms
& the bottleneck for noise-protection,
now topologically protected
as cylic defect braidings:

e.g.: ≃

{
(213) 7→

Z︷ ︸︸ ︷[
1 0
0 −1

]
, (231) 7→

Ry(2α)︷ ︸︸ ︷[
cos(α) −sin(α)
sin(α) cos(α)

]
where
α = 4π/3

}
,

. . .

Conclusion & Outlook:
With non-linear flux-quantization laws taken into account in physics,
substantial Algebraic Topology reveals previously unrecognized phenomena
potentially visible in experiment and relevant for quantum technology.
(Potentially a much more fruitful commercial AlgTop-application than TDA!)
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Vistas. With this map from AlgTop to quantum effects established, there is opportunity to make AlgTop research
inform quantum technology. Concretely:

Open problems in low-dim AlgTop. Relevance for quantum system.

describe the Brn(Σ
2
g>0)-action on π1Maps∗

(
(Σ2

g>0,n)∪{∞}, S
2
) novel exotic

topological quantum gates

higher degree homology H•>0

(
ΩMaps∗

(
(Σ2

g,n)∪{∞}, S
2
)
; C

)
“higher order” effects
in topological phases

generalize to allow b > 0 boundary components Σ2
g,n,b

small b > 0 is experi-
mentally most accessible case

If there is time left – let’s shift gears:

We have seen that:

topological quantum states HΣ

of solitonic field fluxes
with classifying space A
on spacetime domain R1,1 × Σ

form representations of π1
of the soliton moduli space

FieldsΣ := Maps∗
(
Σ, A

)
�Aut∗(Σ)

This is remarkable
because

such representations are equiv.
vector bundles HΣ on FieldsΣ
with flat connections ∇
a.k.a.: local systems on moduli

( qua
ntu

m sta
tes

HΣ,
& obs

erv
abl

es

∇
)

Mod
C/
C

FieldsΣ ModC

(pb)

⊢HΣ

with the homotopy type of FieldsΣ
understood as an ∞-groupoid,
(physics newspeak: generalized symmetry)
flat vector bundles are equivalently
functors ⊢ HΣ to the groupoid ModC

which is the special case
of ∞-local systems [6]:
chain complex-bundles
with flat ∞-connection

higher quantum states
& higher observables

Mod
HC/
HC

FieldsΣ ModHC

(pb)

⊢H∞
Σ

which are equivalently FieldsΣ-
parameterized module spectra
for the E∞-ring HC
hence HC[ΩFieldsΣ]-modules

detecting higher structure
in the moduli space:

here HC denotes the
homotopy complex numbers:
the EM-ring spectrum of C

and HC[ΩFieldsΣ] is the
homotopy Pontrjagin algebra
whose π• is Obs•

These objects form the tangent ∞-topos TGrpd∞ (over HC), which is [5][6]:
(i) the arena of parameterized stable homotopy theory,
(ii.) categorial semantics of a novel quantum programming language

Remarkably, this provides an AlgTop angle on
an ill-understood but central physics aspect:

What exactly is quantum measurement
of anyonic topological order?

Fact. [5]
Given quantum states H ∈ ModFieldsC ,
- a quantum measurement basis is
- a choice of space W (of “possible worlds”)

- a map W
i−→ Fields whose

- base change is ambidextrous:

ModWC ModFieldsC

i! ≃ i∗

⊥ ⊤

i∗

- a V ∈ ModWC which (co)induces H ≃ i∗V ,

- the measurement & collapse operation is is

the counit i∗H ≃ i∗i∗V V .
retiV

Example.
Focusing on Fields := ∗ � π0Homeo(Σ2

g,n,b),
then such measurement bases are given by
finite index subgroups of π0Homeo(Σ2

g,n,b).

There is a rich theory of these,
potentially of direct relevance for
realizing topological quantum computing...

More on these
quantum-information theoretic
aspects next week in [12]
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[arXiv:2312.13037], [doi:10.1007/s00023-024-01517-z].

[8] Sati, H., Schreiber, U., Abelian Anyons on Flux-Quantized M5-Branes, [arXiv:2408.11896].

[9] Sati, H., Schreiber, U., Flux quantization, Encyclopedia of Mathematical Physics (2nd ed.) 4 (2025), 281-324,
[doi:10.1016/B978-0-323-95703-8.00078-1], [arXiv:2402.18473].

[10] Sati, H., Schreiber, U., Anyons on M5-Probes of Seifert 3-Orbifolds via Flux-Quantization, Letters in Mathe-
matical Physics (2025) [arXiv:2411.16852].

[11] Sati, H., Schreiber, U., Engineering of Anyons on M5-Branes via Flux-Quantization, Srńı lecture notes (2025)
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