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topological quantum computing
on “FQH-platforms” aims to manipulate
exotic quantum states of magnetic flux

largely escapes traditional tools of physics
but novel approach shows it admits
description via classifying spaces

Synopsis

= theorems in low-dim AlgTop
provide otherwise elusive analysis
of tech-relevant quantum effects
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We are concerned with algebro-topological phenomena arising
when magnetic flux penetrates a semi-conducting surface 2.

The “gauge group” of the electromagnetic field is G = U(1)

and ordinarily such flux is classified by maps to BU(1) ~ CP®.
Precisely, when quantum-effects are being resolved, then:
Theorem [7] (Yang-Mills flux quantum observables):
For ordinary gauge fields on a spacetime ~ R x %2

the quantum observables of field flux through >

form the group-convolution C*-algebra (C[C‘X’ (2%, G x (g/A))]
for A C g an Ad-invariant lattice. quantum flux observables
Commercial-value quantum computing will require

robust quantum observables, insensitive to local fluctuations,
only depending on topological sectors of field configurations.

cle=(2, G x (/M) A Clmo C=(22, G x (a/0))]
all quantum flux observables robust topological observables

Proposition [7] (topological sector observables):

The topological flux quantum observables form the homology

Pontrjagin algebra of maps from space to classifying space.

(shown now assuming A = 0, for simplicity):
topological flux quantum observables

(C[ﬂ'o C> (32, G)} ~ (C[ﬂ'o Maps (%2, G)}

~ (C[m Maps (X2, BG)} ~ H, (Maps*((]R1 X EQ)U{OO}, BG); (C)

group algebra of fundamental group homology Pontrjagin algebra of
of maps to classifying space soliton moduli space

Example: C[mo Maps(X2, U(1))] ~ C[H'(32; Z)] ~ C[Z*]
Effective flux of “fractional quantum Hall systems” (FQH).

But, at very low temperature, experiment suggests

instead of Z29 its 2nd integer Heisenberg extension 729
being the observables of an “effective Chern-Simons field”,
where the center Z < Z29 observes an anyon braiding phase.

Question: Is there classifying space A for this effective CS field?

Answer: Yes! The 2-sphere S? ~ CP! — CP* ~ BU(1)

Theorem [2][4]: The cofiber presentation of the surface
sty (s1vsh) 2 s?

induces short exact sequence exhibiting the Heisenberg extension:
1~>7T1Map8(52, 52)%7T1Maps(23, 52)%7r11\/[aps* (\/2g517 52)=1

Z

729 29

Question: Can we identify the center Z as arising from braiding?
Answer: Yes!

Theorem [8]: Maps*(5?,S?) is configurations of charged strings
such that QMaps*(S2, 5?) is framed links subject to cobordism,

m1Maps* (52, 5?) generated from framed unknot with 1 braiding 72,

OMaps® (52, §?) — 1 73(8?) ~ Z

L #L

linking + framing
number

is CS observable
(“Wilson loop”)

framed link

Ergo: Remarkably, topological quantum observables of effective
flux in quantum Hall systems is algebro-topologically described by
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{ replacing the classifying space BU(1) ~ CP

with its 2-skeleton S2 ~ CP!

Question 1: Is there rationale for such replacement? Answer: Yes [9][10][11]: Hypothesis H...



Question 2: Does this new model make novel predictions? Answer: Yes — defect anyons in FQH-systems.

With the classifying space identified for known situations, e -
we find its implications for previously inaccessible cases: e .
4 7
. - - ’
Namely generalize now to n-punctured surfaces Eg’n , - - 7
reflecting n defect points in the semiconductor e P S y
. . p ;
where the magentic field is expelled p y
(type_l superconductlng SpOtS)' field solitons: flux-expelling defects:
Pontrjagin submanifolds punctures

go
~ * 2 2 S &
Obsy = C[mMaps (ORI )} : ‘5 o BT
) 2 579
‘ “, F9 &
Proposition. ~ C [mMaps*(ZfI v \/SL, 52)] = /A =58
The observables are, nl (Z32)uo0) = S OE
. . . S =5
in this generality: ~ (C[mMaps (2!2]’ 52) « anl} \ E g 2
EE
~ C[Z"] zg%
g=0 EZ\/S]’X/B é”%
; ® PRP @ ®
subject to the 1 _, By (5:2) —y moHomeos, ((2,,)00)) —» MCG(T2) — 1
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. . . maj 1ng class grou maj 1Nng class grou;
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Therefore the equivariant quantum states (jargon: “generally covariant”) é‘
on X, are representations of the wreath product of solitonic and defect phases: _,:_
S [
\tol“c ;Ge £ aﬂyoﬂ |
71 Br,(32) = Z” x Br,(33) — Z" x Sym,,
Such braid representations for defects
have not previously been derived for ( -
FQH systems — -
but are just what is needed for the grand [
goal of topological quantum gates:
programmable unitary transformations
F)f qua.n‘.cum system.s7 . ’ w(t2)>
insensitive to continuous deformations come quantum state for another quantum state for
(hence to noisel) e deecpions [$(t1)) Py e, s
Concretely, the worldvolume domains with n defects re- ( . hS
tract onto .those with a single defect, whence so do the Obs.((E Dugee} = (52, ooy = (23,1)u{oo})
corresponding quantum observables and quantum states:
Hyz =~ C" ~ Co E!:D U € Sym,Rep Z Vs Z,
This yields what are known as controlled qdit-rotation gates z Ry (2a)
. ——
the workhorse of quantum algorithms 10 cos(a) —sin(a) ] where
& the bottleneck for noise-protection, ©-8: (213) 0 -1 (231) = sin(a) cos(a) | o= 4n/3

now topologically protected

as cylic defect braidings:
O O O O

Conclusion & Outlook:

With non-linear flux-quantization laws taken into account in physics,
substantial Algebraic Topology reveals previously unrecognized phenomena
potentially visible in experiment and relevant for quantum technology.
(Potentially a much more fruitful commercial AlgTop-application than TDA!)




Vistas. With this map from AlgTop to quantum effects established, there is opportunity to make AlgTop research

inform quantum technology. Concretely:

Open problems in low-dim AlgTop.

Relevance for quantum system.

22

g>0

describe the Br,,(

2
g,n

higher degree homology He~g (Q Maps™ ((E )U{oo}

: 2
generalize to allow b > 0 boundary components X7

)-action on 73 Maps™ ((Zgwm)u{m}, 52)

b

novel exotic
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9 “higher order” effects
$2); C) . ;
in topological phases
small b > 0 is experi-
mentally most accessible case

If there is time left — let’s shift gears:

We have seen that:

topological quantum states Hy
of solitonic field fluxes

with classifying space A

on spacetime domain R5! x ¥

of the soliton mo

form representations of

duli space

Fieldsy, := Maps™ (%, A) /Aut*(2)

This is remarkable
because

3
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such representations are equiv.
vector bundles Hy, on Fieldsy
with flat connections V

a.k.a.: local systems on moduli

(pb)

higher quantum states
& higher observables

L

Fieldsy ——=
here HC denotes the

which is the special case
of co-local systems [6]:
chain complex-bundles
with flat oo-connection

—

(pb)

detecting higher structure
in the moduli space:

(7‘[2, V) — Mod

Fieldsy, ——2 Mode

homotopy complex numbers:
the EM-ring spectrum of C

with the homotopy type of Fieldsy
understood as an oo-groupoid,
(physics newspeak: generalized symmetry)
flat vector bundles are equivalently
functors - Hy to the groupoid Modc
Modg g/ which are gquivalently Fieldsy-
parameterized module spectra

l for the E-ring HC

MOdHC

¢/
C

hence HC[QFieldsy]-modules

and HC[QFieldsy)] is the
homotopy Pontrjagin algebra
whose 7o is Obs,

These objects form the tangent co-topos T'Grpd,, (over HC), which is [5][6]:

(i) the arena of parameterized stable homotopy theory,

(ii.) categorial semantics of a novel quantum programming language

Remarkably, this provides an AlgTop angle on
an ill-understood but central physics aspect:

Fact. [5]
Given quantum states H € Mo
- a quantum measurement basis is

- a choice of space W (of “possible worlds”)

Fields
de =,

- amap W - Fields whose
- base change is ambidextrous:

igﬁi*

Mod(‘év 1T Modglelds

“——
i*

-a Ve Mod? which (co)induces H ~ i,V,
- the measurement & collapse operation is is

. . e . ret!
the counit *H ~ i*i,V —> V.

What exactly is quantum measurement
of anyonic topological order?

Example.

Focusing on Fields := * // 7T0HOIHGO(Z§7n’b),
then such measurement bases are given by
finite index subgroups of myHomeo(X? ;).

There is a rich theory of these,
potentially of direct relevance for
realizing topological quantum computing...

More on these
quantum-information theoretic
aspects next week in [12]
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