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Abstract

Following arguments that the M-algebra — both in its basic version and via its “hidden” extension — serves
as the maximal super-exceptional tangent space for 11D supergravity, we here make it explicit as a (super-Lie)
group equipped with a left-invariant extension of the “decomposed” M-theory 3-form, such that it constitutes
the Kleinian space on which super-exceptional spacetimes are to be locally modeled as Cartan geometries.

As a simple but consequential application we highlight how to describe lattice subgroups Z¥<°2® of the hidden
M-group which allow to toroidially compactify also the “hidden” dimensions of a super-exceptional spacetime,
akin to the familiar situation in topological T-duality.

In order to deal with subtleties in these constructions, we (1.) provide a computer-checked re-derivation of
the “decomposed” M-theory 3-form, and (2.) present a streamlined conception of super-Lie groups, that is both
rigorous while still close to physics practice.

Thereby this article is mostly a combined review of some modernized super-Lie theory along the example
of the hidden M-algebra, with an eye towards laying foundations for super-exceptional geometry. Among new
results is dimensional reduction of the hidden M-algebra to a “hidden IIA-algebra” which in a companion article
[GSS24e] we explain as the exceptional extension of the T-duality doubled super-spacetime.
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1 Introduction

The problem of formulating M-theory (cf. [Du99a]) remains open [Du96, §6][Du20], but considerable attention
has been paid — and convincing progress has been made — towards its structure visible locally, in the (infinitesimal)
neighborhood of any spacetime point. This concerns (1.) brane-extended super-symmetry (e.g. [To99]) and
(2.) exceptional duality-symmetry (e.g. [Sam23]), which (3.) may be argued [We03, §4][GSS24d] to be neatly
unified, locally, via the maximal super-exceptional tangent space to be identified with the “M-algebra” (recalled in
a moment) equipped with its “brane-rotating automorphy” via the slza-quotient of the local Lorentzian form £ 19
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But the hallmark of non-perturbative physics in general and hence of M-theory in particular should be visible
globally in topologically stabilized field configurations (solitons, skyrmions and anyons, cf. e.g. [Ra84][Zeel0,
§V.6]), which in discussion of M-theory have received less attention. Global effects arise particularly due to com-
pletion of dynamics by fluz/charge quantization laws [Fr02][MaSa04][SS25] for the (higher) gauge fields: This is
classical for the electromagnetic field (where Dirac charge quantization in ordinary cohomology stabilizes Abrikosov
vortex solitons in type-1I super-conductors, recalled in [SS25, §2.1]), famous for the RR-fields (where, conjecturally,
twisted K-cohomology stabilizes D-branes, recalled in [SS25, §4.1]) and as has been hypothesized for the M-theory
C-field [DFMO7][FSS20b] (reviewed in [SS25, §4.2], where twisted Cohomotopy stabilizes M-branes subject the
notorious half-integral shift of the 4-flux and the tadpole cancellation of the 7-flux).

Global topology of super-exceptional geometry. While flux-quantization is ordinarily considered on ordinary
supergravity spacetimes (e.g. [LS22][GSS24a]) or on brane worldvolume submanifolds (e.g. [FSS21b][GSS24b]), the
same process should be applied after geometrically manifesting hidden duality-symmetries, but now on the vastly
higher dimensional (super-)exceptional geometric enhancement of spacetime, whose (choice of) global topology
thereby gains physical significance: Solitonic field configurations that are ordinarily localized in spacetime now also
depend on and may be localized along the exceptional geometric spacetime directions!

This effect may not before have received due attention in generality (we will discuss it further in [GSS25b]), but
it is apparent in the more well-studied special case of T-duality, where “doubled spacetime” (e.g. [HLZ13]) globally
has the structure of a torus-bundle (the “correspondence space” in topological T-duality, cf. e.g. [Wa24, §1]).

Toroidal M-geometry. Towards a discussion of such toroidal (and eventually other) global topological structure
for super-exceptional geometries, we here consider globalizing the (hidden) M-algebra to a super-Lie group — the
(hidden) M-group

super- super-

Lie groups super-Lie Lie algebras
. differentiation .
sLieGrp sLieAlg
hidden M-group M N  hidden M-algebra
basic M-group M N basic M-algebra

such that there are lattice subgroups, quotienting by which yields toroidally compactified super-exceptional geome-

tries:
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It is worthwhile and our aim here to dwell on the details of this construction, because it plays such an interesting
role for the physics while being simple (namely: nilpotent, see Rem. 3.11 below) as far as examples of super-Lie
groups go, thus potentially enriching both the supergravity literature (which tends to shun super-manifold theory,
cf. [CDF91, §11.2.4, p. 338]) as well as the mathematical super-geometry literature (e.g. [Va04], which in turn is
short of more cutting-edge physics examples).



To say this in a little more detail before we get to the full development:

The M-Algebra in some generality was named by [Se97], but in its “basic” form it was already highlighted in
[T095, (13)] (further so in [To98, (1)][To99]), and in its subtle “hidden” extension of the basic form it actually
goes way back to [DF82] (later generalized by [BDIPV04], and reviewed many times, e.g. [AD24, §5]), discovered
already with the ambition to identify hidden symmetries of 11D SuGra.

The basic M-algebra 91 (as we shall call it here, just for disambiguation from its further extensions) is the
maximal extension of the (translational) 11D super-symmetry algebra by central charges identifiable (e.g. [SS17])
with conserved charges of probe M2- and M5-branes, the non-trivial super-Lie bracket having the emblematic form
(10):

— a a1az ajy---as
[Qa, Qs] = —2T%; Po +2T04" Zayay, —2005"" Zay.as -
N’ \,-/ N~ N—_——
super-bracket of space-time M2-brane M5-brane

super-charges momenta charges charges
It is exceedingly useful to re-express this (and all other finite-dimensional super-Lie structure) equivalently in terms

of the linear-dual free graded super-algebra (the CE-algebra, recalled in §4) on which the above super-Lie bracket
is incarnated as the differential given on generators by (see §4 for our Clifford algebra conventions):

de® = +(¢pT9), de® = —(pT*2 ), de®o = 4(pTH% )

Here we are to think of the ordinary translational super-symmetry algebra as being super-Minkowski spacetime

R:10132 equipped (just) with its infinitesimal super-translational structure, and so the basic M-algebra may be

thought of as an extended super-spacetime with no less than 11+ (121) + (151) = 11 4+ 517 = 528 bosonic dimensions
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We are going to be very explicit (in §3) about what this means for the finite super-translation group structure, first
in this basic case and then for its further hidden extension.

The hidden M-algebra M itself is not hard to describe, either: It is a fermionic (meaning: odd) extension of
the basic M-algebra by one further spinor-valued generator ¢ on which the differential is given by (19)(22)

do = 2(1+5)Tatp e + TP g0, + 25T €4y,

for any s € R\ {0}; a standard exercise with Fierz identities checks that this differential really squares to zero (see
Prop. 2.5). But it is only through a heavy (and error-prone, Rem. 2.11) computation (see Prop. 2.10) that one
finds the crucial and maybe surprising property of 9%: There exists a rich super-invariant (32) on 90,

Py o egya, €t €* + several more terms,

which is a coboundary ~ ~ 1 —
dP; = ¢*Gy, where Gy := 5(¢Taya, ¥)e™ e, (2)

for the super-avatar G4 of the super 4-flux density in 11D SuGra (e.g. [DF82, (3.15d)][DNP86, (2.2.7)][GSS24a,
®)))-

U
Since this coboundary relation looks like the relation satisfied locally, namely on any super-chart U A x110]32
by a C-field gauge potential C{ (the original “3-index photon”) for vanishing bosonic 4-flux, original authors [DF82]
(cf. also [Se97, pp 9][Var06, §6.5-6]) thought of Py as a “decomposition” of the gauge potential 3-forms CY into a
wedge product of the 1-form generators of (the CE-algebra of) the hidden M-algebra. However, we caution that
there are alternative interpretations which are not unrelated but different: Namely, given a 1/2BPS super-embedding

M5
$1,5]2:8 ¢ x1,1032
of an M5-brane super-worldvolume [HS97][So00] [GSS24b] into a fluxless background, then the flur density Hj
of the (non-linearly) self-dual tensor field on X also is a coboudary for (¢M%)*G4. Under this interpretation, as

the Hjs-factor in the Mb5-brane action functional, the “decomposed” 3-form ]33 has been discussed in [Se97, p
10][FSS20c¢][FSS21a].

Yet an alternative interpretation of ﬁg is suggested by [GSS24e], where ﬁg is shown to be an M-theoretic lift
of the “Poincaré 2-form” P, that controls T-duality on doubled 10D super-spacetime via the coboundary relation
dP, = H{* — H3.



We will further discuss these interpretations of ﬁg elsewhere [GSS25b]; here our focus is on laying some super-

geometric groundwork, namely to give a careful treatment of the global extension of ﬁ3 to a left-invariant super
3-form on the hidden M-group M.

rlying 'on 1 .
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Proper super-geometry. Historically, the proper mathematical formulation of global differential super-geometry
[Be87] (super-manifolds, super-Lie groups and super-differential forms on them, cf. [DM99], hence what should
ultimately be the very foundation for formulations of supergravity on “super-space” [WZ77][Ho82][CDF91]) had
had a bit of a rough start, with competing definitions arguably tending to look a little clunky (such as in working
over infinite-dimensional Grassmann algebras [DW84] even for finite-dimensional manifolds, or resorting to the
notion of locally ringed spaces, [BL75], cf. [Ro07]), which may have discouraged (cf. [CDF91, §I1.2.4, p. 338]) its
wide adoption in the supergravity literature, of all places.

As a consequence, authors in supergravity theory tend to either work with super-matrix groups only, or else
write symbolic exponentiations of super-Lie algebra elements. While this is useful as far as it goes, imagine the
analogous hypothetical situation where all that general relativists would know about manifolds were that, locally,
they may be parameterized by symbolic exponentials of vector fields.

Luckily, there is a rigorous, powerful, and slick ' modern formulation of super-geometry which is secretly the
most abstract-general ([SS20b, §3.1.3]) but which neatly blends into the actual physics practice [GSS25a]. By way
of developing the example of the hidden M-group in §3, we mean to give a lightweight explanation also of this
underlying super-geometry.

Acknowledgements. We thank Zoran Skoda for pointing out the historical references for the coordinate expres-
sions of Maurer-Cartan forms mentioned in the proof of Lem. 3.15.

2 The M-algebra

Here we recall the basic M-algebra (§2.1), re-derive its “hidden” extension (§2.2) with its “decomposed” 3-form
and discuss various related issues, such as phenomena at special values of the parameter that the hidden M-algebra
depends on.

2.1 The base case

The super-Minkowski algebra. By the (D = 11, N' = 1) super-Minkowski Lie algebra we mean the super-
translational super-Lie sub-algebra of the super-Poincaré algebra ® (commonly known as the supersymmetry algebra)
whose underlying super-vector space is (cf. our super-algebra conventions in §4)
RMOI22 o R((Qu)i, , (Pa)ily ) (3)
N— e’ N— —

deg = (0,0dd) deg=(0,evn)
with the only non-trivial super-Lie brackets on basis elements being *
[Qa; Qs] = —2T443Pu . (4)

INamely,

(1.) To avoid the notion of locally ringed spaces one may observe that smooth super-manifolds X are faithfully characterized already
by their super-algebras C>°(X) of global super-functions, > and by Batchelor’s theorem these are always the Grassmann algebras of
smooth sections of a smooth vector bundle over an ordinary manifold.

(2.) To avoid infinite-dimensional Grassmann algebras one may observe that what is really needed at any given time are finitely
many but arbitrary Grassmann variables such that all constructions are covariant under their choice. This is clearly not unlike the
situation with choosing ordinary coordinates, and indeed the most general smooth super-space may hence be characterized by the
covariant system of generalized super-coodinate charts that it admits.

3The full super-Poincaré super Lie algebra (aka: “supersymmetry algebra”) is the semi-direct product R0 x so(1,10) of the
super-Minkowski algebra (3) with the Lorentz Lie algebra so(1,10) acting on R{(P,)1% ) as its defining/vector representation and on
R{(Qa)32 ) =~ 32 as its irreducible Majorana spin representation (111). Similarly, there is the semidirect product with so(1,10) of
the basic M-algebra (9) and the hidden M-algebra (24), which may be regarded as the full M-symmetry algebra, see Table 1. But since
no further subtleties are involved in forming these semidirect products with the Lorentz algebra, we do not further dwell on them here.

4 Qur prefactor convention in (4) — ultimately enforced via the translation (138) by our convention for the super-torsion tensor in
(136), cf. [GSS24a] and [GSS24a] — coincides with that in [DF99, (1.16)][Fr99, p. 52].



Its Chevalley-Eilenberg algebra (138) therefore has the underlying graded super-algebra

CERM?1%2) ~ R[ (¢*)2Zq , (¢")alg | ()
—— ~——
deg = (1,0dd) deg=(1,evn)
with the differential given on generators by
dy = 0
— 6
det = (Prog). ©)

For the following, it is instructive to note that the 2-forms (¢ ') € CE(R°!%2) are non-trivial 2-cocycles on

the purely fermionic abelian subalgebra R°132 — the super-point — whence (6) exhibits the super-Minkowski algebra
as a central extension of the superpoint (cf. [Chr™00, §2.1][HS18]):

0 —s RLIO R1,10]32 ROI32 _ 0. (7)

The basic M-algebra. Concerning (@I‘“ 7,[1) in (6) being a 2-cocycle, it is obvious that it is closed and not
exact — since ¥ is closed and not exact (6) — but what is mildly non-trivial is that it exists as a non-vanshing
Spin(1, 10)-invariant 2-form in the first place: The only further expressions for which this is the case are

(o), (T4 ¢) € CERY™), a0, 10}, (8)
since the spinor-valued 1-forms ¢ are of bi-degree (1,0dd), hence mutually commuting (110), and since (8) are
the only symmetric Spin(1, 10)-invariant pairings (126).

Therefore the mazimal Spin(1, 10)-invariant central extension of the super-point R°!32 has further central gen-
erators Z192 7% % (gkew-symmetric in their indices), corresponding to (8),
M o= R Q)2 (Pily (2% = Zlnehl0 (gmes = gloeaho) ) ()
———— ———

deg = (0,0dd) deg=(0,evn) deg = (0,evn) deg = (0,evn)

with non-vanishing super-Lie bracket on generators now given by °
[Qa, Qp] = —2T45 Py + QFZbaz Zovay — 2Fgg”a5 Zayowas - (10)

This fully extended version of (the translational part of) the D = 11, N' = 1 supersymmetry algebra may be
understood ([To95, (13)][To98, (1)], cf. also [SS17]) as incorporating charges Z91%2 of M2-branes and Z% % of
M5-branes, whence we shall call this the basic M-algebra, following [Se97][BDPV05][Bal7, (3.1)]. ¢

Its CE-algebra is

CE(Dﬁ) =~ R{ (wa)i;)?:l ) Ee_a)zlzozg ) (eala2 = e[a1a2])111?:ov (ea1-~~a5 = e[ar“as])zlz?:o ) (11)
—— —~
deg=(1,0dd) deg=(1,evn) deg=(1,evn) deg=(1,evn)

with differential on generators given by *

dep -0
det = +(proy)

_ 12
d6a1a2 - 7(wra102w) ( )
dea1-~~a5 = +(@Fa1-~~a5w) .

Automorphy of the basic M-algera. Essentially the following Prop. 2.1 has been highlighted in [We03, §4],
following [BWO00, §5], our proof follows [BDIPV04, (26)]:

5The signs in (10) are conventional; we use a different sign for the second summand in order to, further below, match conventions
used in the literature, see footnote. 4 below.

6[Se97] uses the term “M-algebra” for a large further extension of (10) which includes the “hidden M-algebra” that we are concerned
with here; whereas other authors like [BDPV05] say “M-algebra” for just (10). Here we disambiguate this situation by speaking of the
“basic” M-algebra and its “hidden” extension, respectively, the latter term following the terminology introduced much earlier by [DF82]
(which, we suggest, nicely matches the terminology of “hidden symmetries” in generalized-geometric formulation of supergravity).

7 We have a minus sign in the equation for d eq,q, in (19) to match the sign convention in [DF82, (6.2)][BDIPV04, (17)], which is
natural in view of (13) below, and hence ultimately due to the relative sign in the formula (131) for Fierz expansion.

Alternatively one could choose any other non-vanishing prefactor. In fact, [DF82, (6.2)] choose in addition a global factor of 1/2,
while [BDIPV04, (15)-(17)] choose in addition a global factor of —1, compared to our convention in (19). But the relative prefactors
agree throughout.



Proposition 2.1 (Manifestly GL(32)-equivariant incarnation of basic M-algebra.). Unifying all the bosonic
generators of (5) into a bispinorial form like this

P = 3—12(6‘1 ref 4 %e‘“‘” Fgfa2 + %e‘“'”as I‘g‘fi___as) (13)
which is symmetric by (126),
y y (126) B — oha (14)
the differential (12) acquires equivalently the compact form
dy* = 0
15
de® = oqf (15)

which makes manifest that g € GL(32) acts via super-Lie algebra automorphisms of the M-algebra
g :CE(EITI) e CE(im)
= gy (16)
e? g gh e’

Proof. First, to see that the transformation (13) is invertible, the trace-property (120) allows to recover:

e = I‘“5 eP

(e}
ed142 = —I‘Zlﬁ‘” eP (17)
et ras  — I‘alﬁ‘“as eaB

o .

Finally, the differential is as claimed due to the Fierz expansion formula (131):
de®d = L(Te? (PT9) — 4058, (BT0% ) + 40600 (BT ) ) by (13) & (12)
P> P by (131). O

Example 2.2 (Exponentiated Clifford elements as brane-rotating symmetries). Since the I'y,..q, €
Endgr(32) for 1 < p < 10 are trace-less (120), their exponentiations constitute special linear group elements

g9 = exp (Xp_y 2 Aa, 0, T ) € SL(32) C GL(32) C Endg(32)
for all coefficients Aq,...q, € R.
Observe then that as such, their “brane-rotating” action (16) on the adapted generators (13) of the M-algebra

translates to an action by “Dirac conjugation” (124) (-)on the Clifford algebra coefficients of the original defining
generators (12), in that for any ¢, ¢ we have

(U508 05 )07 = (a8 )T (a5 o)
= —((g- )T (g-¢)) by (115)
= —(@(@@-Tm-g)9)
= (g T .g), .07 by (119),
where, just for emphasis, “” denotes matrix multiplication, hence composition in Endg(32).

Example 2.3 (Spinorial Lorentz-symmetry among brane-rotating symmetry.). Restricting Ex. 2.2 to
p = 2 makes manifest a canonical inclusion

Spin(1,10) —— SL(32)
of the ordinary local spacetime symmetry into the generalized /exceptional brane-rotating symmetry.

Example 2.4 (Mixing of T-dual coordinates among brane-rotating symmetry). Consider the special case
of Ex. 2.2 for
g = exp(rl)

= cosh(r)id + sinh(r) T .

forr € R



The resulting brane-rotating symmetry acts by (where all a;,b; < 10):

e = Fi?ﬁ eB - (exp(—rFlO)-Floexp(rF]Q)) e = Féoﬁ e®B = el
apf
er = Toze® (exp(—rF10)~F“~exp(rI‘10)) , B = (I‘“ : exp(2rf‘10)) ; e*? = cosh(2r)e® — sinh(2r) e
eV = T2l e —(exp(—rFm) -Tey ~exp(rF]Q)) 5 e = —(Fglﬁo -eXp(27T10)> 5 e*? = cosh(2r) e — sinh(2r) e®
« «
e = —1"‘;% e —(exp(rflo) -Tab. exp(rI‘m))aﬂ e = —FZ{’B e? = ea?

and similarly one finds

€™ cosh(2r) e 4 sinh(2r)gre® s V0 bse,

ay---agq 10 ay--agq 10

(& = €

To interpret this, note that (this is discussed in [GSS24e]), the generators

€a ‘= €410,
hence the “M2-brane charges wrapping the M-theory circle”, are to be understood as the type ITA string-charges
associated with “doubled” coordinates for T-duality in type ITA theory along all 10 spacetime dimensions. Also
note that NS5-branes, and hence their charges, are supposed to transform among each other under T-duality.
Therefore the above transformation may be seen to “admix” T-dual doubled coordinates. Beware that this is
not quite a T-duality transformation as such, which instead swaps e® < &,. We discuss in [GSS24e] how T-duality
proper is enacted on the M-algebra.

2.2 The hidden extension

We turn to the further extension of the basic M-algebra (9) by odd generators Z, spanning another copy of
the Spin(1,10)-representation 32. The idea and the following Propositions 2.5 and 2.10 are due to [DF82,
(6.4)][BDIPV04, (20)] (see also [BDPVO05][Az05, §5][FIdO15] [ADRI16][ADR17][Ra21][AD24]), but here we spell
out the computations in order to secure crucial prefactors (cf. Rem. 2.11) below.

Proposition 2.5 (CE-Algebra of the hidden M-algebra). The free graded commutative algebra

= ay11 11 11 32 )32
CE(EIR) = R[ (6 )a:0’ (ealag = e[alaz])ai:()’ (6a1'~~a5 = e[al“‘ag,])aizoa (110 )a:l7 (¢ )a:1 :| (18)
——— —_——— ——
deg=(1,0) deg=(1,0) deg=(1,0) deg=(1,1) deg=(1,1)
carries a differential d making it a super-DGC algebra, defined by ®
dy =0
de* = +(PTy)
dea1a2 = _(%Fauzg d)) (19)
dealmas = +(¢Fa1'~~a5w)
d¢ = Tt D99y 0y + 72 T g eg,
for any triple of parameters § ,v1,v2 € R satisfying
§+10-7; —6!-~73 =0. (20)

Proof. Direct inspection shows that the only non-trivial condition to check is d? ¢ = 0. For that we get with (19):
—d?¢ = 6Tt (YT"¢) — M Tayat (YT 9) + Y2y az (YT 4)) (21)

By the general cubic Fierz identities (134), this expression vanishes if and only if the following system of equations
holds:

80n the sign in the second line, see again footnote. 7.



§ HTT,EBY —y LTamaT,  B6Y 4y, ZADarwasy, 262 = 0

11 11
5 Fa5¢(1320) . %FalaQF[MESﬁO) +72 gFay.-asF[almmES;?O) =0
o TeERY oy 2T T, S = 0
T R e )

Here the last three equations turn out to hold identically (checked in [Anc]) for all values of 4, 71, 72, by the
irreducibility of the representations = (133). On the other hand, the first line is equivalently the claimed condition
(20). O

We consider the following parametrization of those solutions of (20) for which 77 # 0 (in which case we absorb
v into a rescaling of ¢ and hence assume without essential restriction that v, = 1, all following [BDIPV04, (21)]):
o0(s) = 2(1+s)
7m(s) =1 , seR. (22)
Y2(s) = 2(F+ &)
The single remaining solution (up to rescaling of ¢) with v; = 0 may be understood as the re-scaled limit s — oo
of this parameterization.

Definition 2.6 (Hidden M-Algebra). We write M for the super Lie algebra whose CE-algebra obtained in
Prop. 2.5 parametrized as in (22), and consider it fibered over super-Minkowski spacetime via

m Pex R1.10[32
CE(RL10182) %= R (o) (23)
ea —y ea
,l/)Ot — wa .
Concretely, M has underlying vector space spanned by
{)iﬁ ~ R< (Pa)iO:O, (Za1a2 = Z[agal])i?zoa (Zal"'as = Z[al”'as])i?:07 (Qo‘)zil’ (Oo‘)iil > (24)

deg = (0,evn) deg = (0,0dd)

and the non-trivial Lie brackets between these basis elements are found — by translating (19) via (138) — to be:

[Qa, Qp] = =208 Py + 2T05" Zaya, — 20057 Zay-was

[P., Qo] = 0T1.%,08 (25)
(Zarar» Qo] = MTayay”a0p
[Zayass Qo] = 72Ta1a5"00p .

Remark 2.7 (History and literature). For a couple of special parameter values s (22) this is the “hidden”
super-Lie algebra of [DF82, Table 4]; the general form appears in [BDPV05, (1.2-4)] following [BDIPV04], while
the first line by itself — disregarding the extra fermionic generators Op — was independently considered in [To95,
(13)][T098, (1)] by analogy with other centrally-extended supersymmetry algebras. The term “M-algebra” was
coined by [Se97] for another extension of the first line in (25) but has since come to be used (e.g. in [BDPV05]) to
refer to the first line itself (within the super-Poincaré algebra).

Note that these and authors following them ([BDPVO05][Az05, §5][FIdO15][ADR16] [ADR17][Ra21][AD24]) tend
to speak of a “super-group” instead of just a super-Lie algebra, without however stating the super-Lie group
structure. We construct this in Ex. 3.14 below.

Of course, upon setting to zero the generators Zg,ay, Za,..as and O, (24) reduces to the ordinary super-
Minkowski Lie algebra, see Ex. 3.13 below where we warm up with revisiting the Lie integration of this familiar
case.

Remark 2.8 (Trinary bracket in super-exceptional Lie algebra). A key difference between the super-
exceptional Lie algebra (25) and the ordinary super-Minkowski Lie algebra (4), for the purpose of their Lie inte-
gration (§3), is that the former has a non-vanishing trilinear super-bracket:



(@ [Qur Qal] = Qs —2T85 Pu +2 T8 Zoyay, —2T057 Zoy |

(§F o ’Y -m Fglﬁazralazé'y + 7 FZ%NQE)Faln‘ ré )05 (26)

=:[QQQI5, 4
When the parameter (22) takes the special value s = 0 (cf. §2.2.2), then equation (26) simplifies to
s=0 = (@7, 1Qa, Qsl] = 64(630a +3205), @7)

because (by a standard argument, e.g. [FvP12, (3.65)])
p(p— 1)/z
55;155 - 32 Zp 0 S p! ( "‘%) (Falmap)é’y by (130)
5 p(p—1)/2 / a1 a
2 Npeo S (0000 (Tasioa, ) ) (D200, (28)

5 _1)p(p—1)/2
= % Zp:O L ! (Fal"‘ap)ﬁa (Do ap)(;'ya

which upon lowering spinor-indices with the spinor-metric 7,5 (113) and symmetrizing the indices gives:

N5y = %(7760477[37 + 776ﬁ77cw)
= é((ra)aﬁ(ra)w - %(Falaz)aﬂ(FMGQ)vé + %(Fa1~~~a5)aB(Falmas)"ﬂs) by (28) & (126) (128) (29)

st é(a(ra)aﬁ(ra)vé -7 (Fa1a2)aﬁ(ra1a2)v5 + 72(Fa1---a5)aﬁ(ralmas)W‘s) by (22)

Therefore, for general s € R the expression (26) may equivalently be re-rewritten as
(@, [Qa» Qsl] = 65(5705 +6304) + (4sT8pT0° + £TLL*T20 , )Os. (30)

Automorphy of the hidden M-algebra. While the hidden extension breaks the GL(32)-automorphy of the
basic M-algebra (Prop. 2.1) to Pin™ (1, 10), that action is still interesting, as it captures the “parity” symmetry of
the C-field in 11D SuGra under spatial reflection (following [FSS20a, Prop. 4.26)):

Example 2.9 (Parity symmetry/MO9-orientifolding). Consider the Clifford generator I''? as an element
=T = (I'p*s) € GL(32).

Note that as such it is in fact a conformal symplectic transformation, I' € CSp(32) (41) for the spinor metric, since

it preserves the spinor pairing up to a sign:

T104, 1710 — oy o o 31
(1) = (F-I)1%) = —(39), (31)
as equivalently seen in components:
Fa/ FB’ - F /Fﬁ/ - F/F’B/ = /Fa Fﬁl = /(sa/: Iyt = — 137 .
oMo 2B [y TR ST gy TBT T () e DB Ry et O = TR Ty TR
To see its action on the bosonic generators note that
Faa’ 60/5' Fﬂgl _ _Fao/ eo‘/g/ Fﬂﬁl — _]_"ao/ eo/ﬁ/ Fﬂlﬁ
(115) (127) ’
whence the vector components of the bispinorial e*? are mapped as:
I, e® — —(Fy0-Tq - Tip)e® = +2azi0lae® —To et
1—‘a1az etz L _(Flo : Fa1a2 : 1—‘10)6(11(12 = - Zai;ﬁlo Fa1a2 etz + 2 Za;ﬁlo La10e” 10
Fal“'as et — _(Flo ' Fal“'as ' Flo)ealmas = + Zaﬁélo Fal'“as e 5 Za#lo Fal'“a4 10€%t 10,

In fact, this is an automorphism of the hidden M-algebra for all values of the parameter s, as verified by the
following computations:

(0 —_— I
gd% o gd




a T'io {+6a fOr a 7é 10 ea1a2 . T'o {_60'1112 fOr a; # 10
—e '

otherwise - +e91%2 otherwise
Ja Ja
d —|—(@Fa 1/)) for a # 10 d —|—(@F‘““2 w) for a; # 10
—(¢T*¢) otherwise — (4T ™a24)) otherwise

7 7
(T ) % (T1op T Tiop)) —(PTme2 ) 1% —(Tp T Tygy))
ai--as | T'io +e41 %5 for al#l()
- , —e%1%  otherwise

Ja
d {+(¢r “a5.4h) for a; # 10
(g1

) otherwise

7
(Frewes ) 2% (Tigg T Tyoq)
¢ = —T106
la
-6 F10Fa¢ e’
d

711000 0,0 €912
—Y2 1ol . cast €417795
7
§ Tovpet 5 (+ X4z Pal0p e = Tiolioy e'?)
+71 gy app €192 — +n (- > a0 Laran L0t €192 4 2 19I107) € 10)
+y2 Laymas ¥ €179 +72(+ g, 20 Tar-as L1080 €479 = 500, a, 10T 109 €174 10)

This reflection automorphism acts by sign inversion on Gy:

Gi = 3(YTaya,v)e™ e
g > a0 (T109 Taya, Trowh) e €2 = (T10¢ Ta, 10 F10¢)6“1 et0
_% Zai;ﬁo (EF‘HUQ 1/1)6‘“ e%? — ('IZ} Fal 10 Z/J) @ 6

= —G4

as well as on P (by similar inspection) JUN R
0 Tio 0
P3 _P3 ’

and hence must be understood [FSS20a, §4.8] as the “parity symmetry” of 11D SuGra (e.g. [DNP86, (2.2.29)]) or

equivalently as the Horava-Witten orientifolding (e.g. [Fa99, (3.1)][Ov04, p 1-2][Car06, p 94]), lifted from Minkowski
spacetime R!:10 to 9.

2.2.1 The 3-form

Next, we discuss the construction of the coboundary ﬁg (2) for the avatar super-flux density G4 pulled back to M.
The idea is that, by the nature of (19), there are two evident elements in CE(fm) whose differential contains ¢7, G4
as a summand, namely %ealaQ e%e® and %(@Fa gb) e

d(%ealaze‘“e“) = ¢5Gya+ -
A(5(PTag)e”) = ¢5Gat -

10



However, both of these expressions contain different further summands

[43 7

, and a fairly rich correction term

needs to be found to cancel these off against each other. The remarkable result of the following Prop. 2.10 is that

such a correction term exists at all (this is originally due to [DF82, (

(30)]; we aim to show the full computation in transparent form, as much as possible).

6.6)] and in more generality due to [BDIPV04,

Proposition 2.10 (The hidden 3-form). For s € R\ {0} (22), the left-invariant form ]33? € CE(ﬁ) on the

hidden M-algebra (Def. 2.6) given by
By

Q0 €ayan el e

as

a ac
T apety, e, ey,

+ ay en,1~--a4b1
a
+ Q3 €qy...agby---bsc € !

satisfies the Bianchi-equation

-eas

b-
€, 72 €boay--ay

ehlwbr, e’

ajazasdid bi1babs ,c1--
+ Q4 €a1aza3b1bobser-es €712 e g, TP €

dP) = ¢:, G

if and only if its coefficients take the following values:

Qg =

a1 =

Qo =

3 —

gy =

Proof. 1t is essentially straightforward to work out the differential of 1839 via (19) (cf.

Nl= N= N= D= N

=1 6+25+52
5 52
1 6+2s
15 52 ﬂl
1 (6+s)®
6! s2 52
1 (6+s)?

5.51.6] o2 Bs
—1 (6+s)?

9.51.6! s2

11

Cs

+ 61 (YT ¢)e
+ ﬁQ (@Fmaz ¢) araz
+ 53 (@F -as (rb)

10 v1 s2

2071 52
3 6+s

10-6!-y; 82

[DF82, p. 134]):

(33)



dﬁg? = O[U( o (@F(naz ,l/}) efte’? — 26(110«2 (/17)1—‘0‘1 w)eaQ)

1( d W T“Hu U:)e”“_,; e,“f"”l)

ai---aaby, )\, b2, (1 ba, )\ pa1-aslb
2( lr L llﬁ)”u 2(3/)3(11---(147(;( r/r‘ ( )(” ‘ “”/;yun-u‘)
2 wral -as by--bs c+ 1"( \ ,a1---as ,by---bs
a3 €ay---asby---bsc ¢ € €ay--asby---bsel €
s Tairazasdids ) bibaby _c1---cs ITCLCs Jarasazdids b1babs
+ 044(26(1“);(7;(”[1)1) 3C1 (lr He e l’)(’(lulg ! et +('(1|u»_>(7;;()|[131)3(’\--~(’r, ( Yo' Y >( ? €didy te )

36 _
@ 3€ayanagbibobgey e (@r”' 5 EJ)S”'”E["deldl ed,d, P102b3

+ 61( (L rarb ) g ('71) =+ ",1(?1—‘0 rblbg L) e’ (';]”]}2 + "/2(;1—‘&1—‘1)1-««1}3 L')(J{l ({]hmbj

5(FTapw)erer 271 (T8 )eae® B eanyngoros ($Tepng w)et e
+(9Taw) ($T°0))

c (T 2 pata 1) - T oy airaz ,biba Jaraz ,by--bs
“Fﬁ?(() (Z'F(H(Ig rbl’) g ? + /1 (l'/r(l](lg F()]hg Z') e € + ]2( rum;Fm -bs )L : e’

o (Ujfa l/)) eab gy 471 (il"“ b 1:) e, ey 10 o (il‘,, hl.,.,,u,:)v‘"‘ e b1 by
" (T ) (F10)

b A 5 ,bi1ba A o pa1 a5 ,by1--bs
+63( ( r{ll -as rb ) o ("y+",'l(1~'ru,1 r111()>~*> p@177745 @010 +",’2([w’rul“»u,srbl“-hsL/)(”“ e

) — b 0
ST €aq ... T.. ... e®1%5 % 10~y (Y Ta . cay bt )edl aace b — o .
ST€ar g berres (Pley-cs®) (VT asow) V2 €ayw-agbybse (Y Tetp) e a5 ghrbs
oy L\ (Ta1as,/ _ 200, ol TC1 e Cs ajasas dids b1bob:
+ ((Zﬁr(l,']"'(l,gq/}) (Zf)r()l “ 1?/'))7 Bl /2 Ealazaib babs c1- (wr ! 7 w)e Haeds e 6)dld 17278
L 60( ‘3(( | L ) €Y er g

(where the equalities under the braces use, unless otherwise indicated, Clifford-Hodge duality (121), Clifford ex-
pansion (118) and the symmetry properties (126) (128) of the spinor pairings).
Therefore the Bianchi identity (33) holds if and only if the constants in (32) satisfy the following system of

linear equations:
—ap+0p1 =

1

2

—2ap + 2mpP1 + 2002 =0
—3a; — 416 = 0

200 + 10793 B2 + 10183 = 0

APy = L(PTaa,0) et e o ag + 6007283 = 0 (35)
205+ B B+ 5P =0
as + 1283 =0
3()(4 — 29,0’\/23 =0
Bi+10-8s—6!-85 = 0,

where the last line follows as (20) from (21).
Using mechanical algebra, one checks [Anc| that these equations have the unique solution (34), as claimed. O

Remark 2.11 (Comparison to the literature).

(i) Essentially, the system of equations (35) was reported in [DF82, (6.6)] and in generality in [BDIPV04, footnote.
7] — except for our factor 200/5!, which there instead (after normalizing conventions) is a 5. (Incidentally, our
factor of 1/5! is not shown in [BDIPV04, footnote. 7] either, but does appear in [DF82, (6.6iv)] and later again in
[BDPVO05, footnote 11].)

(i) Accordingly, the general solution (34) is essentially that reported in [BDIPV04, (30)]: The global prefactors of
1 and —1 that we show in (34) are due to different normalization of d¢ (19) and are thus not substantial; similarly
notice from [BDIPV04, (28)] that A in [BDIPV04, (30)] is our —ayg, up to a global sign.

(iii) But this leaves one small actual difference, namely in the sign of o in [BDIPV04, (30)] compared to our (34).
Our sign comes out as shown because the second dark-orange term on p. 11 has an intrinsic sign difference to the

12



first term, since e S— o
(L'I “ Ly)(», o€ = —(1‘:1 s '1_,')(% 205 €%y -

Above, we used the following identity:
Lemma 2.12 (Mixed 5-index contractions). In CE (ﬁ), we have the following relation:

ol did bi1bobs Lc1-wc5
€ajasaszbibabscy-cs ('@[]Fmaza?’ 142 "/’) €d;ds 10208 gl

(36)
€ajazagbibabscy-cs (EFW e ?ﬂ) g?1a203d1d> €dids bibabs
P .
7“00f €ayazashybabacs - cs (@Falazae,chdz w)ed1d2b1b2b3 eC1Cs

= _éealagagblbzbgcl-~~C55a1a2a3d1d2flmf6 (arfl...fﬁ 1/))6d1d2b1b2b3 ee1es by (122)

= BRGNS (YT gy gy 1) €aya,P02be e by (109)

= () BP0 O ilercacs (VT g V) e P20 e b contraction vamishes

= 120 - (U Th,bobgereacs ¥)€dya, " P20 edrd2s¢s by (109)

= 15l10 €bybabscicaczar -ras (al“ay“as w)€b1b2b3d1d2 edrdzescs by (122). 0

Remark 2.13 (Induced 7-cocycle). Given ﬁgo on M satisfying (33), there exists a 7-form G € CE (ﬁ) of the
famous form
GY = (5GY) — 3P (¢5,G4a),  where GY := L (PTa,qy ¥)e™ ---e® € CE(RMI32) . (37)

which is closed ~
dG; =0

due to the fundamental quartic Fierz identity that governs 11D supergravity (recalled e.g. in [GSS24a])
dGY = % G4Gy.

A natural question then is whether with G4 also G- admits a coboundary on M. At least for the special
parameter value s = —1 we answer this to the negative, below in §2.2.3.

Special values of the parameter. Some values of the parameter s € R in (22) are noteworthy for special
properties enjoyed by the corresponding hidden M-algebra (19) and/or its super-invariant 3-form (32).
s =0 : At exactly this parameter value a super-invariant 133? satisfying the basic Bianchi identity (33) does not
exist. On the other hand, at s = 0 the hidden M-algebra
— carries a closed super-invariant 3-form Q (Rem. 2.18),

— has automorphism symmetry enhanced from so0; 19 to the conformal symplectic algebra csp;, (Prop.
2.16).

s =—6 : At exactly this parameter value, the differential of ¢ is independent of the M5-brane charges (the 5-index
generators €% ) as is the 3-form 133? , so that these may entirely be discarded from the discussion.

s =—1 : At exactly this value, the differential ¢ is independent of the spacetime coframe e®, so that the hidden
M-algebra in this case is the fiber product of 11D super-spacetime with an extended “pure brane charge”-
algebra.

We now discuss further aspects of these special cases.

2.2.2 s =0: CSp-symmetry

Enhanced symmetry. At generic parameter value s (22) the hidden extension M breaks the GL(32)-equivariance
of the basic M-algebra (Prop. 2.1) down to the spinorial Lorentz subgroup Pin™(1,10) C GL(32). However, at the
special parameter value s = 0 a much larger symmetry remains intact:

First, the following was noted in [BDIPV04, (26-7)]:

13



Proposition 2.14 (The hidden M-algebra at s = 0.). At parameter value s = 0 (22) and in terms of the
unified bosonic generators e®? (13), the differential (19) may equivalently be re-written as

dy> = 0
d eo‘g = wa wg (38)
de® = 64e*pe?,

which makes manifest that the hidden extension inherits from the GL(32)-equivariance (16) of the basic M-algebra
at least the symplectic subgroup Sp(32,R) C GL(32) extended to act on the new spinor ¢ in the same way as on
the original spinor Y:

S >< CE(R1’10|32) CE(R1’10|32)
e o e )
( ) | gg/ gB/ 60‘ 5

(9, szﬁ“) — g%

Proof. The first two lines in (38) are as in Prop. 2.1. From this the third line follows by

(d6), = S(Tuth)ye® + 7 (Tarasth)y €% + 7 (Dayroay )y €19 by (19
= (5 (La)ys e —m (Layaz )ve Filﬁaz + 72 (Layas)vs FZ}B”GS)WS e’ by (17)
= 6475(anp)y ¥° €’ by (26)
= 4649, e, by (14)
= —649Y“%eqy by (115)
= 46de, 00 by (14).

This makes the Sp(32)-action fairly evident, but just to make it also explicit: We extend a transformation
g € GL(32) as in (16) from the basic M-algebra to the hidden extension by letting it act in the obvious way also
on the new spinor ¢ (more generally there is also a less obvious way, to which we come below in Prop. 2.16):
g : CE(M) —— CE(M)
P — go, P ( 40)
eaﬁ — gg/ gg, ea/ﬁ/
@“ —_ gg/ (bo/ .
This preserves also the third line in (38) iff
g% — g% gl
where g denotes the inverse matrix. Now since e*g = €71,z this means equivalently that
(92 €Y gl mp = (gore™ Iyvpgy -
and hence equivalently that g preserves the spinor metric 7,4 in that g;’, ] gg, = 1yg. But since the spinor metric
is skew-symmetric (114), this means by definition that g must be an element of the subgroup Sp(32) C GL(32). O

However, we highlight that the automorphism group of M is larger than the Sp(32) of Prop. 2.14, due to the
fact there is extra freedom in transforming the new spinorial generator:

Definition 2.15 (Conformal symplectic group (e. g [MT12, p. 7])). For n € N the conformal symplectic group
CSp(2n) = {g € GL(n) [n(9(-). 9(=)) = Xg) -n(- =) , Ag) € R*} (41)

is the group of linear automorphisms of R?" which preserve the canonical (or any fixed) symplectic form up to
rescaling by a non-vanishing real number.

Extracting the rescaling multiplier A is evidently a group homomorphsism onto the multiplicative group R*,
whose kernel is the ordinary symplectic group:

0 —— Sp(2n) — CSp(2n) —2» R* —— 0. (42)

Proposition 2.16 (Enhanced CSp(32, R)-symmetry of the hidden M-algebra). At s =0 the automorphism

14



group of the hidden M-algebra contains the conformal symplectic group (41), acting on generators as

CSp(32) x CE(M) ——— CE(M)

(9, v) — g%
(g, e*?) — g gy e
(g, ¢%) — Mg) g% 6.

Proof. The CSp-property of g says in components that
9% Map 9y = Mg) Narp -
With this, we find the respect of g for the differential of ¢ as:
¢ : Ag)ge o

la

—2X(g) gar e 7 mpra )
=
g - ’

—2e%ng Y ——— —2g%e” ﬁgg, Ny 9o b7

O

Example 2.17 (Pin-action among automorphisms of hidden M-algebra). It is only the CSp(32) action
from Prop. 2.16 — but not the Sp(32)-action from (16) — which contains the reflection/parity automorphisms from
Ex. 2.9 (due to (31) there):

Pin™(1,10) «—— CSp(32) —— Aut(I)

) ) |

Spin(1,10) —— Sp(32) —— Aut(M).

The 3-Form at s = 0. The following point was amplified in [ADR17, (3.13)]:

Remark 2.18 (The closed 3-form.). While at s = 0 the super-invariant 3-form HY according to (34) is not
defined, its rescaled limit is well-defined, as follows:

Q) = igr(l) 32-13?? = - %em,,ze(“ e’
+geta, ey, ey,
+ % g1 asb 6()1b2 Choar---as
+ % €ayoanh, boc €01 sl
_ % € ananhibobacs oo ea1a2asdydy €d,dy bibzbs gei-cs

o 1i0 (Era d))@a
o % (El—‘alaa (,b) e?102
- % (J]-—‘al.,.a5 (b) ed1°as ,
and by Prop. 2.10 has differential equal to hr% s2-G4 = 0, hence is closed:
d0j =o0.

Of course, one may also find this form Qf directly by solving the system (35) of linear equations with the
“1/2” on the right replaced by “0”. The resulting matrix of coeffcients is found (cf. [Anc]) to have 1-dimensional
null-space, which shows that:

Proposition 2.19 (Space of super-Poincaré 3-forms). The space of solutions of the equation d Q3 = 0 for QY
parameterized as in (32) is (0-dimensional for parameter s # 0 and) 1-dimensional for s =0, spanned by (2.18).

2.2.3 s=—1: ITA-Algebra

This special case has not received further attenion before, we further put it into perspective in [GSS24e].
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The hidden ITA-algebra. For s = —1 (22) the differential (19) of ¢ is independent of the space-time generators
()10 ). This means that here the hidden extension exists already on sub-algebras of the M-algebra where some
or all of the space-time generators are discarded. Of particular interest are the cases of
- discarding just e from the M-algebra, because the result may be understood as the (translational) extended
ITA super-algebra,

- discarding all e*, because the result may be understood as the pure brane charge algebra

Definition 2.20 (The fully brane-extended type IIA algebra). The translational type ITA fully extended
supersymmetry algebra [T is (e.g. [ChrT00, (2.16)] ) given by '°

(¥V*)eLs dy =0
(e)ozt de® = +(¢¥I"9)
CE(IY) ~ Ry (s / aet = —(VI"Tnv) (43)
(ealag _ e[alaﬂ)gizo d o102 ( Fa1a2 1/))
(6a1-~~a4 — e[a1-~a4])2i:0 detras — ( Fal a4F10 7/’)
(eara5 = e[a1-~a5])2i20 dearas — _’_(w [ra-as 77/])

Remark 2.21 (Extended ITA-algebra and brane charges). The bosonic body of the fully extended type ITA
algebra (43) may suggestively be re-arranged as
(Hgl)bos ~ RLO &) (Rl,Q)* D /\Q(RL9)* D /\4(R1’9)* e /\S(Rl,g)*
~. RV @ (R1Y9)* @ A2(RY)* & AB(RY) @ AL(RY)* & AS(RY) @ AP (RLY)* (44)

Sp. SF e
/»,,(,,‘\ ) ‘. Do : Dy Dy Dy by Ng;s 5,
2 Ore S ore
2 r/,y,[]” Ve r/[] /,[( (//) //,{ (/’/1 W r//'_]/‘“ e
Seg Seg Qg Seg SEg

where in the second line we Hodge-dualized all temporal components (following [Hull98, (2.12)]) by the rule
AP(RYD* ~p AP(R)* @ ATTEP(RY)
ial lualized
spatia dualizec

temporal

At s = —1 this construction lifts to the hidden M-algebra, by discarding its e’-generator:

Proposition 2.22 (The hidden ITA-algebra). There exists a fermionic super-Lie algebra extention 2 of the
ITA-algebra (43) given by

dyp =0
)2 det = +(ry)
()i det = —(¥ITov)
(é“)gzl dem® = *(EFGIGQ ¢)
CB(IA) = Ra| (enes = el | /| denon = 4 (Gro-aryy) R
(emas = lor-ail)y dent o = +(GTerasq))
(emas — 6[“1""15])&:0 do = Taa, e + 2T, 99 %
CO I o Lot e

50
+ 6l Fa1-~~a4101/) eal ad

Proof. This is just the hidden M-algebra (2.5) at s = —1 (22) with the generator e discarded and the remaining

9Tn [Chrt00, (2.16)] also the DO-brane charge with differential () Ty ) — is included in the extended ITA-algebra (43). But
condensing D0-brane charge of course means opening up the 11th dimension, and hence here we regard this term instead as providing
the further extension to the M-algebra, see Ex. 2.23.

10The signs in (43) are a convention that is natural in view of the further extension by the M-algebra (11), where these signs align
with the Fierz identity (131), and makes the exceptional brane rotating symmetry in Prop. 2.1 come out naturally.
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generators decomposed into those that do or do not carry a 10-index, according to the isomoprhism
mbos o RI,IO o) /\Z(RI,lO)* @ /\S(RI,IO)*
~, R o) Rl’g D (RLQ)* o) /\Q(RLQ)* ) /\4(R1’9)* o) /\5(R1’9)*

~, R (1),

where in the second line we have decomposed into components that are parallel resp. orthogonal to the 10-coordinate

axis, by the rule AP (Rl’d)* ~ /\p—l(RLd—l)* ® /\p(Rl’d_l)* . 0

Another way to say this:

Remark 2.23 (M-Algebra as extension of ITA algebra). The basic M-algebra (11) is a central extension of
the fully extended type ITA algebra (43) by (the pullback of) the same 2-cocycle that classifies the M/ITA extension:

(¥roy)

m A bR
i i (¥T") H
m ITA bR
«—
G G (46)
ed — ed
wrapped M2- al0 ~a string charges
brane charges € e doubled spacetime
eala2 ¢ 6111(12
eal a4]O eal---a4
o105 ‘ ea1 a5

Alternatively, we may discard all the spacetime generators e® from the M-algebra, retaining only the brane
charges (equivalently the M-brane charges or ITA-brane charges, according to the above isomorphisms):

Definition 2.24 (Pure brane charge algebra). Write Btn for the super-Lie algebra given by

(¥)at dy =0
CE(Btn) ~ Ra | (Cayas = €aas)) o / dem® = —(pTn2y) |, (47)
(€a1~~a5 _ e[alm%])gzo dedras — +(EFQ1...a5 ¢)
and Brn for its hidden extension given by
(V)% d¢p =0

(eala2 _ e[maz])zlg:o / de®oz — _(al“alw w)
(ea1-~~a5 = e[a1-~a5])¢110i:0 det 9 = +(@Fa1-~a5 7/})

Y / 10 —as,
()32, do =T"""peqq, + g 7P eq, . a;

CE(Bwm) ~ Ry (48)

Dimensional reduction from the hidden M-algebra to the hidden ITA-algebra. We are going to consider
graded derivations on the underlying graded algebra of CE (im) Since this algebra is freely generated, by their
graded Leibniz rule these derivations are fixed by their value on generators, and hence the canonical linear basis of
all graded derivations as a module over CE (9171) may be written as
Der(CE(M)) ~ CEON){ 8y , Oee , Oemros ) Qparoas, Oy ),
(CE()) (Mm)( Gy, s Den b )

p / \ v
(=1,0dd) (—1,evn) (—1,evn) (—1,evn) (—=1,0dd)

where under the braces we are showing the bi-degrees. For example, the CE-differential (19) itself appears in this

notation as
d = @T9)00 — @I 9)0rira + BV ) os

(49)
+(5Fa1/) e’ + v lu a0 e + vy, . a0 eal'a5)(‘3¢ .
Definition 2.25 (Dimensional reduction derivation). We write
pM . CE(IM) —— CE(II) (50)
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for the derivation M

De = 8610 (51)
but regarded as taking values in the hidden ITA-algebra (45). We may think of this as the operation of “fiber
integration over the M-theory circle” (cf. [GSS24e]).

Example 2.26 (Some fiber integrations.). The fiber integration
- of the avatar super 4-flux density (2) is:
P Ga = pY (3(9Tuw ¥)eie™) = = 5 (FTanv)e” (52)
a<

—_——
HA

- of the hidden 3-form (32) is

pi\/lpg = —20(0 Z €410 et + a3 €ai--a5 by---bs 10 ealu~a5€b1~~b5 + ﬁl(@Flo (b) (53)
N~ a<10
- and that of its first summand alone gives, at s = —1:
pi\/l( — %ealaz 6“16“2) = > ewa€® . (54)
a<10
P.

(The symbols under the braces are explained in [GSS24e], here the reader may take them just as shorthands.)
From (49) and (51) we have that:

Lemma 2.27 (Hidden Lie derivative along M-theory circle). The graded commutator of the derivation (51)
with the CE-differential

[d,p}] = dop +plfod (55)
equals
[d,pY] = —0(Tpe)dy . (56)
It is then interesting to work out the fiber integration of the 3-form P; (2.2.1) on the hidden M-algebra. (For
completeness we first state this for general s, though only for s = —1 may the result be understood as being in
CE(I12).)
Example 2.28 (Hidden Lie derivative of the 3-form). The hidden Lie derivative (56) of Py (34) is
[dapi\/[]ﬁS = ﬂl(s (El—‘al—‘lo q/))ea + ﬁZ(s (@Fmazrlo '@[J)eallh + 636 (@Far“ararlo ,L/})ealwag)
= 516 Y (Vlanv)e® — 2626 (1) 3 (vT*%)eqwn + B30 > (¥layeagoth)e™ 7% (57)
a<10 a<10 a; <10
| —
Hgt HA = HY

where the second step follows by Clifford expansion (118) and the vanishing of resulting skew terms (128), and
where under the braces we recognized the avatar super-flux densities of the NS B-field of type ITA and type IIB,
pulled back to the M-algebra (this is explained in [GSS24e], but for the present purpose the reader may take it just
as a definition).

It follows that:

Example 2.29 (Differential of fiber integration of the 3-form). For s # 0, the differential of the fiber
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integration P, (53) of the 3-form (32) is

AP, = d(p}Py) by (53)
= —pMdPy +[d,pM] Py by (55)
= —pM¢5Ga+ [, pM] Py by (33)
= (1416 HA — 28,6 HY + 2830 HS by (52) & (57)
H3 for s = -1
= 1THE + 1—12H§ for s = —6
2 3~ S HY for s — 0
So in particular, at the parameter value s = —1 of interest, where the dimensional reduction of the hidden 3-form

exists on the hidden ITA-algebra (50), it satisfies the direct ITA-analog of the Bianchi identity of the 3-form in
M-theory:

AP, = ¢5.G, € CE(M)
dimensional {/
reduction
AP, = ¢iHff € CE(II).
The 7-Form on the hidden M-algebra.
Lemma 2.30 (Induced 7-cocycle is non-trivial). At s = —1, at least, there does -not- exists a Spin(1,10)-

invariant coboundary for the induced 7-cocycle 67 (37).

Proof. We are looking for — Svin
Py e CE()>PH10

such that
dPs = 3 (VT )€™ €™ =L L (PTaya, ¥)e e (Fe™ eqray e +--) . (58)
G Ga Py
We will use repeatedly that at s = —1 the differential does not increase the number of e*-s in monomials. Therefore

the only term which can give the first summand in (58), under the differential, is éeal..ias e ... e%. The other
summand that this term gives under the differential, shown in dark blue below, does not appear in (58) and hence
must be cancelled by a suitable counter-term. But again since the differential does not increase the order of e%-s,
the only possible counter-term is of the form (@Fal...a " (b) € ...e%. Therefore, any candidate Ps must start out

as
1
Py = 5€ar-as€’t €%

r (@Fal‘..a‘l gb) el ... 04

+ +

for some r € R. Its differential thus is:
d P

- (é (Vg a5 )€™ -+ €% — Si€hgya, (WP h)e - e“4)

+ 7"( — (VTayaa T2 ) e, e™ o€ =20 (YT, TP ) eyt €™ - €™ +4(V Ty ayaza, 8) (VT ¢)6“16“2ea3>

. e . o N\ byeebs
Doy eas byby ) €0102 e - g0 (VT ay aybyebs ) €0 P2

(¢ Lo,
g 20 (BT \ ,c1cabsbabs a3 40
12 ((‘5/’1am»"5’)5"[“f’az)f«'blbzf«'blf’bl 120 (T agaubgbabs )25 e, 0, e e
120 (’tjl‘b; 'z;‘f!)f%"l”'”'lbhzc, S,

(where under the brace we used Clifford expansion (118) and the fact (126) that (¢ Tq,..q,%) = 0if p €
{0,3,4,7,8,11}).

Again since the differential does not increase the order of the e®-s, it follows that the omitted summands do
not contain monomials of either the darkblue or the purple kind. But since the monomials of the darkblue form
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clearly do not appear in the induced 7-cocycle on the right of (58), the darkblue summands above must cancel
among each other, which is equivalent to

1200 1 _ 0 6! 1

6l 4l = T = T1%004 — " 10°

With this, the contribution of the purple monomial is fixed as

- 5 - b ba
dFPs = é(wral'”as w)eal'“eao B % %( (1/) ajaz 1/)) et 1911()61%}2 )_) + -
~—

-r

#1 Ga Py
But this has the wrong coefficient with respect to (58). Since, again, there is no other way to get this monomial
under the differential, it follows that Ps as in (58) does not exist. O

2.3 Further extensions

For completeness, we give a streamlined account of the further fermionic extensions of the hidden M-algebra,
making transparent the available choices.

To this end, note that what (20) really says is that the right hand side of the last line of (19) varies in a
2-dimensional space of 2-cocycles on the basic M-algebra. Hence instead of just extending by one of them, we may

extend by two of them at once, such as the ones for s = 0 and for s = —6:
d ¢(0) = 2(Faw et + %Fmagwealaz + érm---aswealm%) (59)
do 4, = —10Tae® + Lyyatpe®2.

While explicitly considered in this form in [ADR17, (3.6-7)], we find below in Ex. 2.34 that this further generator
is essentially implicit already in [Se97, p. 5][Casl1, (3.19)].

Further tensor-spinor generator.

Lemma 2.31 (Cubic Fierz relations). In CE(R"°132) (5) the following identities hold

0 = Fab’(/] (@Fb ¢) + Fbw<$1—‘abw> (60)
0 = Falma‘; bw (El_‘b w) - Fa1a2¢ (¢Fa3a4] w) + 6Fb¢ (@Fal--mbw) .
Proof. We are looking for coefficients solving the following equations:
= 0Ty, TP — IO (T,
0 b (VTP 9) YV D% (P Tapt) (61)

0 = 5”Fa1~~a4b'(/} (@Fblﬁ) - Vi/ralaﬂ/} (¢Fa3a4] '(/J) + 72 Fb¢ ('@ljral a4bw)

Substituting the cubic Fierz identities (134) for the (1/*) terms and using the T-tracelessness (133) of the resulting
representations Z, one finds that the summands appearing above evaluate as follows (cf. [Va07, §A], and mechanical
checks in [Anc]).

For the first equation we have

Lot (BT9) = Doy (HIPE6D 4 26200)

Tal'p—Nab

_ 107 =(32 —(320)
= 01,262 — =577,

Doy (PTapt) = T(5TapE0P — 2rE0)
—(: =(320 —=(320
= —10r,=62 _ L(r*r, + 1, %)= 410, =0
_ 10F =632 4 = (320) 0
whence the first condition is equivalently the system

(10§ +19 41) T,262 =0
(-0 - 7)) =P =0,

which is clearly solved as claimed.
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For the second equation we have
Fa1‘~'a4b¢(arb 1/)) =

a4brb —(32) +Fa1 a4b~:(320)

LT,
- —(320)
00,202 — 4T

[alaz‘—*a3a4] ’

- —_ 320 1408
F[a1a2¢(wra3a4] ¢) = F[alag (%Fag‘ad =(32) _ 21" ( ad] )+ =( ))

a3a4]
H(szo) —(1408)
- 1 Lo 262 — 71—‘[“1‘12@3 ~aa] +F[a1a2:’a3a4] )
— - =(320 —=(1408
Do (PTayasp ) = =00y 0 bZ0D + 30,0, B0 + 2T (0000, B0y
= =(320) —(1408)
_Tllral"'a4:(32) + %F[a1a2a3 4] + 6F[a1a2:¢(13a4] ’
whence the second condition is equivalent to the following system of linear equations:
(5 0"~k W~ %) TapeaZ =0
=(320) _
(=46 42 7/ +2 ) Tl agas= By =0
—(1408
( - ’Y1 +6 ’73) F[alag 513(14]) =0
whose solution space is readily seen to be as claimed. O

We now observe that given Fierz relations as in Lem. 2.31, one immediately obtains cocycles on the basic
M-algebra by replacing pairs ¢ = (¢»*1g) with the bispinorial generator e = (e%g)(13); it follows immediately
from (60) that:

Proposition 2.32 (The vector-spinor valued form generator). In CE(O) we have

d(FabGFbi/J + Fberabd)) =0
and hence there exists an extension of CE(9N) by generators (ng) ae{t,- 32y in deg = (1,0dd) with differential

ae{0,1,---,10}

dvy = F5(Tael® + Ielat)). (62)

Example 2.33 (Recovering the traditional differential of the vector-spinor valued generator). Inserting
into (62) the defining expression (13) of the generators e®” in terms of the generators e?, e®*%2 and e "%, and
then just performing the resulting Clifford contractions, we get

d g
=Tgel®y) + Tlel o
= LT (Tetp e + 30 eyth 19 4+ LT e T 4 LT (Doape® + L, yth €12 4 LT, oot €175 Tt
— Toth e — Toth e 4 0.
This recovers the equations given in [Se97, p. 5][Casll, (3.19)][Va07, (2.36)] (up to normalization conventions).

Reducibility of the extra generators. The vector-spinor valued generator from Ex. 2.32 is actually reducible
(which seems not to have been remarked before):

Generally, given a tensor spinor ., we may split it into

e its I'-trace I'*1, (a plain spinor),

e its I'-trace free part (1[1a - ﬁfafl’wb) (a vector-spinor with vanishing I'-trace).

Example 2.34. The I'-trace of the vector-spinor 1, (62) behaves just as the spinor ¢ _, (59):
d(T%p,) = 16T*(Tactpe® — Tegpe)  Ex. 2.33
= 16(10 Ty € — Toct) €°) .

Further terms in the super-invariant 3-form. With the further vector-spinor valued generator (62) included,
there is a further term that may be added to the ansatz (32) for P, namely proportional to

(BT d)er — (FTyiba)e € CE(M). (63)
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Here the relative factor between these two summands is already fixed by the requirement that in the differential
of this term the summands proportional to i, cancel out among each other, analogous to the dark-green terms
proportional to ¢ in (35). Namely by (60) the following term over the brace vanishes:

A((Farv)en — (TaTrv)e)
= (3.1 0)(FTy0) + (2 Ty0) (FT0)) — ((FTdba)ey — (FTydva)e). (64)

=0

Proposition 2.35. With the vector-spinor contribution (63) adjoined to the ansatz (32) parameterized by 35 € R

PO .
Py o=

o €qyq, €71 €72
+ o e as €a2<13 eflrj,al
+ (g e sl en, b2 €boay as
+ a3 €qyashy - bse et a5 g1 bs ge
+ Q4 €ayazazbibobse ey etrazasdid €dyds Prbabs geircs (65)
+ 61 (9. 0)e
+ 62 (@Fmaz ¢) e142

+ 63 (Eralmas ¢) et s
e ((@Fab va)e, — (T, w)eab) ,

the Bianchi identity (33) is solved, in addition to the previous solution (34) with 8] =0, by

ap = —1/20

o = —1/60

Qo = 0

a3 = 0

gy = 0 (66)
pr = 0

fa = 0

Bz = 0

61 = _1/207

and the conver combinations of these two solutions (34) and (66) exhaust the space of all solutions.

Proof. The differential of the last summand in (65) is (showing the computation in small steps in order to secure

the signs):

(DT pa)e, — (PToa)er?)
= (BT dga)er + (PTyduw)e?) by (61

— (YT (Taethe® — T9%eqe))er + (BT (Tacthe® — Fc¢eac))e“b) by Ex. 2.33

= 7($Fabracw)eceb + (Erabl"cw)eaceb + (prracw)eceab - (@Fbl—‘cu])eaceab

—(=9) (¢ Toe )

eb + (@Fa w) €ac® — (@Fa w)ebeab - (Erbc w)eaceab
_g(arbc w)ebec + (@Fa w)eabeb + (@Fa ¢)€ab€b =+ (Erbc w)ecaeab ’

where we used manipulations such as

(VTTY)eqeer, = (§ (1T = 7T +T%) )egeer, by (118)
P

= ( anFa ¢) €acCh by (128) .
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Therefore the system of linear equations (35) to be solved generalizes to picking up the following boxed terms

—ag+0p1| =98] = 3
“2ap + 2mpB1 + 25[32 0
—3a; — 47,1.32

dﬁg _ %(@FalaQ ¢) 01 02 o 200 + 1072 B2 + 107183 = (68)
20/34'%514—%53 =0
as + 728 =0
3ay — 2;0 Y2 B3 = 0
B1+10-8y—6!- 83 = 0,
By mechanical computation [Anc] this system is solved as claimed in (66). O

3 The M-group

We now turn to promoting the hidden M-algebra (§2) — which is “just” a super-Lie algebra — to an actual group,
hence to a super-Lie group (Def. 3.7), to be called the hidden M-group (Ex. 3.14 below). The main effect here
is that (in contrast to the case of the basic M-algebra) the “hidden” fermionic extension makes, via the Dynkin
formula (the Hausdorff series), a trilinear fermionic term appear, first in the group product operation (102) and
thereby in the Maurer-Cartan form (105) and thereby finally in the coordinate expression for the super-invariant
3-form.

To make this important point rigorous, we develop, along the way, the relevant notions of super-Lie group
theory in a streamlined form that should be satisfactory both for physicists and mathematicians.

3.1 Super-Lie groups
Our notation for super-geometry follows [GSS24a, §2.1], to which we refer for background and references.

Super-Manifolds. In view of Batchelor’s theorem [Ba79][Ba84, §1.1.3] and Milnor’s exercise [KMS93, §35.8-10],
we may considerably shortcut the definition of super-manifolds to the following:

Definition 3.1 (Category of supermanifolds). The category of (smooth, real) super-manifolds is the full sub-
category of the opposite of super-commutative R-algebras on those objects which are C°°(B)-Grassmann algebras of
smooth sections I'p of a smooth vector bundle V' over a smooth manifold B (the bosonic body of the supermanifold):

)

sSmthMfd sCAlgy”

(69)
X = B|Voaa - Ny DB(VF) = Tp( A5 V7).

This means that for a pair of supermanifolds X, X(?) the maps (morphisms) between them are in bijection
to reverse super-algebra homomorphisms between their algebras of smooth functions (cf. [HKST11, Prop. 2.2])

according to (69):
B to (69) (F: X0 5 x®) o {ox(x0) — 0x(x®) : f*} (70)
The archetypical examples of super-manifolds:

Example 3.2 (Ordinary smooth manifolds among super-manifolds). An ordinary smooth manifold X €
SmthMfd is a super-manifold via its ordinary algebra of smooth functions, C*°(X), regarded as a super-commutative
algebra without odd elements. This identification constitutes a full subcategory inclusion of ordinary into super-

manifolds:
SmthMfd «——— sSmthMfd

jc‘”(—) jC”(—)

CAlgYP —— sCAIgP
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Example 3.3 (Super-points). For ¢ € R, the super-point ROl9 is the supermanifold (Def. 3.1) whose bosonic

body is the point, ROla — %, equipped with the g-dimensional fermionic fiber space, so that its algebra of smooth
functions is the ordinary Grassmann algebra on ¢ generators:

C>®(R9) := AR(RY)* ~ R[¥',--- 9, V deg(¥’) = odd.

For n € N we will abbreviate

Grizin = giigizgin = giizin gly2gn e 0 (ROM9) (71)
We denote the full subcategory of super-points among all supermanifolds by
sPnt —— sMfd (72)

Example 3.4 (Super-Cartesian spaces). For p,q € N, the super Cartesian space RPl? is, as a super-manifold
(Def. 3.1), the Cartesian product of the ordinary manifold R? (via Ex. 3.2) with the super-point R%4 (Ex. 3.3)

RPle — RP x ROle
hence whose algebra of smooth functions is
C™(RP17) = C=(RP) ®, C=(R9) ~ C=(RP)[d', - ,09].

We will need a generalization of the following example (e.g. [KS05, §3.1][HKST11, Ex. 2.1, Prop. 3.1][CR12,
Ex. 5.3)):

Example 3.5 (The odd tangent bundle). For X € SmthMfd, the total space of its odd-tangent bundle is the
super-manifold whose super-algebra of smooth functions is the de Rham algebra of differential forms on X with
the even/odd degree forms in even/odd super-degree, respectively:

TX = X|TX, C‘X’( UddX) = Qi (X).
Consider more generally a super-manifold X which, just for simplicity of presentation, we take to be super-Cartesian
X = RN Then a map of super-manifolds from the point

RO — %0 X
R« ox(RY)@RO, - ,0V] (73)
g — z¢
0 — 0>

is equivalently the choice of a point zg € X =R? in the bosonic body of X, hence a d-tuple of real numbers, while

a map from the first-order super-point
(20,01)

RO X

R[9'] 220 oo RYQR]GL, -, V] (74)
g — z?

X — o

is specified in addition by an N-tuple of real numbers (90‘ € R) , to be thought of as defining an “odd tangent
vector” at zg in X. The manifold formed by these super-points in X is the bosonic body of the odd-tangent bundle

f X:
O Coo( OddelN) ~ COO(Rd+N)

coordinatized by (z§)?_, and (65 )N 1

Thereby the odd coordinates of the original super-manifold X are detected by ordinary bosonic coordinates on
the bosonic body TddX of its odd tangent bundle. However, TddX sees only the linearization of maps f : X — X'

between supermanifolds:
(w0,01) = fulwo,01)

r 1

ROI1 (20, 01) X f X
18 (xo) oo .yt — Sofe (z)- @B Bar+1 s
B1\10) Y1 kJB1 Bkt
N—— S—
Only linear contribution is Full polynomial effect of
seen on this super-point map on odd coordinates

But to detect also the higher polynomial effects of maps, there is the following evident generalization of the odd
tangent bundle to higher order in the odd coordinates (cf. also [KS05]):
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Example 3.6 (Odd higher tangent bundles). In generalization of (74), a map from the gth super-point to a
super-Cartesian manifold X = R4V

(‘Til'“iZk’Gil'”i2k+1 )kgq/z

ROl4 X
R[WL, .- 9] C>®(RY)@R[OL, -, 0N]
Ek: x?l""iZ ’19141"'1'21@ — ¢
Zk 22k+1 Z ek — 0>
is specified by tuples of real numbers x{ ., = x‘[lil___m] € R and 9?1,“1'%“ = Oﬁfl___mﬂ] € R which encode

(i) a point z in X,
(ii) an odd tangent vector #; at this point,
(iii) a (9)-tuple of actual tangent vectors z;,;, at this point,
(iv) a (2)-tuple of odd 2-jets 0;,;,;, at this point,
(v) a (1)-tuple of actual 2-jets z;,...;, at the point,
etc.

These are coordinates on the bosonic body of the odd super-geometric version of what in the terminology of [MR91,
Rem. 1.14]) is a prolongation or generalized jet bundle (cf. [KS17]) super-manifold: *

o= (T RIN) = 0 (RS (2) N T i) )

These higher order coordinates serve to detect higher polynomial components of odd coordinates under maps
between supermanifolds. For instance, the action f, of a quadratic map f : X — X on the coordinate functions

on T4, X is

q/
f* (‘Z‘ll"'iQk ’ 011---i2k +1 )]\;1:021

( ( la/2] l
Tiyriggs iy ingpir ) oo f
ROlq RAIN RAIN
2 .
fa Z}EQ/OJ ! ”i%,&zl 12k
2 b o
+fb1b2 ZM/ : Zk’ iy 22k/$122k/+1 i2k,l921 2 — fl;ll’b + fl;llngblxbz + fglﬁzeﬁl [ — x® (75)
lg/2] ~—k—1 8 8 o
+f6162 Zk Z =0 0111 ’2k/+10i22k/+2"-i2k1921 2k
fa \_Q/2J 9P Qi izk
ikl o - faeﬁ + fu xbe,{i - go
+fb,3 |_q/2j Zk’ 11'231 sz,@ZkUd Z2k+11921~~-121«-¢—1 B b3

This makes the construction of the bosonic body of the odd ¢-tangent bundle a functor from super-manifolds

to ordinary smooth manifolds.
~(q)

sSmthMfd —= ) o gnenMfd

(a)
X ,‘Z?]dd X x%mizk 9?1"'i2k+1 ( )
76
(q)
J‘f l od’f‘l f I I
(a)
Y Tsdd Y f*$?1-~i2k f*07;a1"'7;2k+1

Moreover, as ¢ ranges, these odd higher tangent bundles naturally pull back along maps between the probing
super-points,
)

(o} Todd X
sPnt®® ———— SmthMifd
j 9 00 oo (@) a a
(bzﬁ c (ROlq) C (j:dd X) Liywioy 911"'i2k+1

I o 5 I I

99 o (Ro\q’) NN Coo(”f“l/)X) 20 .. iz 9 ... Ik

Jig2k Tl W2k Jigek i i2k °

This construction is used below to recognize super-point-wise ordinary Lie groups as being represented (cf. e.g.

"' The super-algebra C'> (7;§§’X) is called in [KS05] the algebra of differential worms on X.
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[HKST11, p. 8]) by super-Lie groups, see around (98) and (102) below.

Super-Lie groups. The notion of super-Lie groups as originating around [Be87, Def. 2.1] is an instance of group
objects internal to an ambient category ([Gr61, §3|, see also [BW85, p. 123]), here: internal to supermanifolds.
Definition 3.7 (Super-Lie group (e.g. [Va04, §7.1])). A super Lie group is a group object internal to the category
of supermanifolds (Def. 3.1), hence a super-manifold G equipped with maps of supermanifolds of the form

prd

GxG-25a, x—5G, G-2,¢q (77)
making the following diagrams commute
Associativity Unitality Invertibility
GxGxq Pdxid oo GuGxx X gxa G&GXG
Z\L (inv,id) (78)
d * X G
id X prd prd prd 3! prd
J{e X id
GxG— ., q GxG prd G x —2 (G

Examples. A first simplistic but important example, showcasing how ordinary Lie groups appear in this dual
perspective when regarded as super-Lie groups (with trivial odd components):

Example 3.8 (The circle group as a super-Lie group). Consider the short exact sequence of ordinary Lie
groups

Z — R —— St
as seen in the category of super-Lie groups. First, with respect to the canonical coordinate function x € C*°(R),
the additive group operation on the real line pulls back as

RxR—— R (79)
TH+ax «— x.

Similarly, the algebra of smooth functions on the integers is of course the set of Z-tuples of real numbers

o0 ~ Z ~Y =
C=(Z) =~ R* = {f = (f(n) € R),, },
all regarded in even degree, and equipped with the index-wise addition and multiplication in the real numbers:

(f-9)(n) = f(n)-g(n), (f+9)(n):= f(n)+g(n).
We may say that a “coordinate function” on Z is any injective function f : Z — Z, and that the “canonical
coordinate function” x € C°°(Z) is the canonical injection

z(n) = n. (80)
The additive group operation on the integers is uniquely characterized by how it pulls back coordinate functions,
and for the canonical coordinate functions it has the simple form

Zx7 -7 (81)

T+ — x,

which is of the same form (79) as for the real line. This makes manifest the group homomorphism given by the
canonical inclusion of the integers into the real numbers

7Z —— R
r — T,

where the bottom line reflects simply the restriction of the canonical coordinate function z on R to the integer
points.

Forming the quotient of this inclusion of Lie groups, hence the pushout along the map to the trivial group,
means dually to consider only those functions on R whose restriction to Z is constant, hence only the 1-periodic
functions, hence those on the circle S = R/Z:

7 — R C®(Z) «—— C*(R)
Lo (T (s2)
1— 5 R ¢——— C%(R)prac = C(5),
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The following Ex. 3.9 must be well-known to experts but may not be citable in detail from the literature.'?

We make it now fully explicit in order to prepare the ground for the construction of its extension by the hidden
M-group further below.

Example 3.9 (Super-Lie group structure on super-Minkowski spacetime). Denoting the canonical coor-
dinate functions on the product super-manifold R10132 x RL10132 by (29 6%) for the second factor and (z2, 0%)
for the first factor (adapted to thinking equivalently in terms of the canonical left-multiplication action of the group

on itself), consider the following definition of group operations (77) on the supermanifold R*10132;
R1,10132 , p1,10(32 _P*d, pi10(32 £ ¢, R1,10|32 R1,10[32 _inv  p1,10|32
' 4z — (?’Fa 6’) iy x® 0 e 7@ —x¢ v @ (83)
9 +0 ey, 0 L —ge L pa

Here the second and third lines specify on coordinate functions the corresponding reverse homomorphisms of super-
function algebras via pullback, which uniquely characterize maps of super-manifolds (cf. [GSS24a, Ex. 2.13]).

The definition of e and inv (83) is obvious, while the extra summand appearing in the definition of prd is such
as to make the co-frame field

@ = da® oreds
e %+ ( ) (84)
v = db
be left-invariant, namely invariant under the operation
act*
L - A
o (R1,10\32) ®QaR(R1,10\32) Qc.iR(Rl’10|32) ®Q:1R(R1,10|32) p Q:{R<R1,10|32)
dual to the left action of the supergroup on its odd tangent bundle (Ex. 3.5):
act
[ . 1
prd,
RU10132 , 7 R110182 ¢ T, RU10132 5 R110|32 T, R-0132,
This is because
act*e® = act* (dxa + (?I’“ de)) act*y = act*dd
= dact*z® + (act*9 re dact*@) = dact*0
= d(wr+a0 = (0'T0)) + (0" +0)Te a0’ +0)) = d(6' +0) )
= dz®— (0'T*d) + (6'T*dg) + (§1*dh) = df
= da® + (6T dh) = v,
= ea 5

Here d denotes the differential on the second factor, hence acting on the un-primed coordinates only (with the
primed coordinates instead parametrizing the fixed group “element” along which to pull back).

Hence if (83) defines indeed a group structure and RV0132 then it carries a left-invariant coframe field (84)
whose de Rham differential relations (its Maurer-Cartan equations) coincide with those of the CE-algebra of the
super-Minkowski super-Lie algebra, thus exhibiting (84) as the corresponding super-Lie group.

Checking that (84) indeed does satisfy the group axioms (78) is straightforward, but it may still be interesting
to note how the bifermionic term is involved in making this work:

2424 (0'T0") + 2 + (07 +0)T90) «— 2% + 2+ (§'T°6)
z
"+ x4+ @,F“ 9) + (5,, r* (0’ +90))

I

A (?N Ire 9) |z

0" +0'+0 «—— 0'+0

0" +60 «——1 0

>
X
Z
+
e
Q
o
wn
n
<

12The base case R1:011 of Ex. 3.9 is described in terms of functorial geometry in [Va04, p. 277] and the general product law prd from
(83) appears in [ChrT00, (2.1), (2.6)].
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In the last step on the left we used that (5 re 9) = 0 because the 0% anticommute among each other, while their
pairing here is symmetric (126). O

3.2 The Lie integration

While the integration in Ex. 3.9 of the super-Minkowski Lie algebra by “educated guess followed by checking its
consistency” is efficient in this simple case, more general cases require a more systematic approach:

Integrating nilpotent super-Lie algebras. We may essentially reduce the question of integration of super-
Lie algebras (to super-Lie groups) to the classical theory of integration of ordinary Lie algebras (to ordinary Lie
groups) by regarding objects in super-algebra/geometry as systems of ordinary algebraic/geometric objects indexed
by super-points whose function algebras provide an arbitrary supply of “Grassmann variables”.

Here we focus on the nilpotent case (Rem. 3.11), which covers all super-Minkowski-like examples.

Definition 3.10 (Super-Lie algebras probed by super-points (cf. [Sac08, §3])). Given a super-Lie algebra
g € sLieAlg and a Grassmann algebra A%(R?)* ~ C° (R0|q) (Ex. 3.3), the even part of the tensor product of the
underlying super-vector spaces

0 = CF([RM,g),, = (C*R"®,9),, =~ R <19“”'i”®T neN,

evin

T € gevn for m even
T € goga for n odd > (86)

is an ordinary vector space which carries the structure of an ordinary Lie algebra, with Lie bracket given by '
[giing, 9t ] = ghemiei [ Y] (87)
(with the given super-Lie bracket appearing on the right).
This means that super-algebra homomorphisms C>(R?%) L gee (R induce Lie algebra homomorphisms

r
9(q) 9(r)

FOy QT en 9T gT

13 The sign rule of super-algebra demands that (87) be multiplied by (—1) whenever both T and 9" are in odd degree. But this
sign rule is readily seen to be equal to changing the formula (87) by pulling out the Grassmann-elements in reverse order (as in [Sac08,
(25)]), hence to modify it to

[1911.4.2'"7.,7 191’11;/,1.,/} o 191/12’"/ imein [T,Tq _ (71),’1,’1/7‘91”“4” ",17':1/ [T,Tl],

sgn °
and this is readily seen to be naturally isomorphic to our rule (87), by the transformation which reverses the order of Grassmann
generators in all products:

9t itnp oy ginccilp
(g(p)’ [_’_D ~ (E(p)a [_a_]sgn)
(9i1-in T, 91T Y — (9in 1T, 9hn Y
9 i R [, ] — R

Therefore we may stick with our rule (87), which is convenient because this is the rule actually picked up by functors on sPnt that are
represented by a super-Lie group, see (99) in Ex. 3.13 below.
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thus incarnating the super Lie algebra g as a functor from the opposite of the category of super-points (72) to
(ordinary) Lie algebras:

g : sPnt®® —— LieAlgg (88)

ROl — %9

Remark 3.11 (Nilpotent super Lie algebras). The super-translation Lie algebras that we are concerned with
here are nilpotent, meaning that their n-fold adjoint action vanishes for large enough n. (The definition of nilpotent
super Lie algebras, e.g. [FrScSo00, §26], is just as for ordinary Lie algebras, e.g. [Ser64, §V]).

Note that if a super Lie algebra g € sLieAlgy is nilpotent, then its probes by super-points (88) evidently take
values in ordinary nilpotent Lie algebras:

gesLieAlgl! = g :sPnt® — LieAlg}”.
Recall now the following classical fact (e.g. from [CG04, §1.2]):

Proposition 3.12 (Lie theory for nilpotent Lie algebras). For (ordinary) nilpotent Lie algebras g, the Dynkin
formula (aka Campbell-Baker-Hausdorff series, e.g. [Ser64, §IV.7][DKO00, §1.7]) 14

prd(Ty, o) = Ty +To + 311, 1] + %([Tb 11, T3] + [T, [TQ,Tl]]) i %[Tz 7, [TQ,Tl]H oo (89)

(which truncates and hence converges due to nilpotency) exhibits isomorphy of the exponential map onto the
corresponding connected and simply-connected nilpotent Lie group, thereby constituting an equivalence of categories
[Mil7, Thm. 14.37]:

[ LieAlgh! —~— LieGrp™P.

Example 3.13 (Systematic integration of the super-Minkowski Lie algebra). Probing the super-Minkowski

super-Lie algebra R%10132 (3) (4) with the super-point R°1? (via Def. 3.10), the underlying ordinary vector space

(86) is .
1,10132 10 12 \ 10 1 32 9 32

R(Q) —_— R< (Pa)a:(]’ (19 Pa)a:()’ (19 Qa)a:17 (7‘9 Qa)a:1> (90)

(where now the terms in parenthesis are to be regarded as primitive symbols, being the names of linear basis

elements, all in degree (0, evn)), and the non-vanishing Lie brackets on these basis elements are:

[0'Qa, Qo] = —2T%307 Py, (91)
where on the right we are using the notation 9% := 997 (71).
With R110132 jtgelf, also this ordinary Lie algebra Rgo\sz is clearly nilpotent (cf. Rem. 3.11) and hence the

corresponding 1-connected Lie group has (Prop. 3.12) as underlying manifold the vector space (90), which we think
of as parameterized as follows

¢ P, z*€R  a€{0,1,---,10}
1,10/32 o i o a
R(z) | = +xi1i2 " 2Pa ziliZ = _xiQil eR y € {1527 e 332} ’ (92)
+ 02 9Q. 02 € R idy,ip € {1,2}
with group product given by applying the Dynkin formula (89) to (91), as follows
1,10/32 1,10|32 prd(s) 1,10|32
Ry 7 xR Rz
P, L ) (¢ +2%) P (93)
bt 0P, s kel 00RR ||t at — 00T 0OF, |
+ 00 Q.+ 07 Qg + (0 + 69) D'Qq

where the extra summand in the second line is the one coming from the Dynkin formula (89):

prd(éf‘ 9 Qu , 0° ﬁjQﬁ) — 02 0Qu + 07 DQp + 0707 L [9°Qu, ¥ Qp) + ---
—2T9 , 9ii P, 0

MThe left hand side of (89) would more traditionally be written with the exponential map exp and its local inverse log as
“log(prd(exp(Tl),exp(Tg)) 7 or “log(exp(Th) * exp(T2))”. But since the exponential map exp is globally an isomorphism due to
nilpotency, by Prop. 3.12, as is hence its logarithm log, we may as well suppress them notationally. It is with this suppression that the
usual expressions in the examples of super-translation groups are obtained.
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The general case of probes by any super-point R%, ¢ € N, is not much different: In generalization of (90) we
have at any stage ¢ the vector space

1,10|32 iy iy
R(q) ! ~ R <(1911 szPa) a€e{0,---,10}, > (7911 l2k+1Qa) a€{0,--,10}, > (94)
0<k<q/2 0<k<(¢—1)/2
ije{l, - ,q} ije{l,-.q}
equipped with the Lie algebra structure whose only non-trivial brackets are, in generalization of (91),
[ 201 Qg 97 Qg] = T g, (95)

and in generalization of (92) we may coordinatize this space as
ac€{0,1,---,10}

, a€e{l,2,---,32} »,  (96)
iy €{1,2,--+ . q}

which the Dynkin formula (89) equips with the following group product, in generalization of (93):

a il---igk a — a
11032 Dk T gy v Po | @i = Tl i

(9) - oo
+Zk 0?1---i2k+1 LA Z%JrlQa 9?1"'i2k+1 = 9[6:'1~~-i2;€+1] €eR

RL10182 . 110/32 DO AR VR0 SR DN SR (LR
(q) (9) + Zk él‘almi%_*—l 9t i2k Qa ’ + Zk 0?1---2’%4_1 9i1izit Qa
prd, I (97)
1,1032 Dok (ft?lmiak + 2y, — lez:é azalz - Hz'ﬁ' g ,Fgﬁ) Yiikp,
R = 2h41 Lojgoi2k
(q) + Zk (é%“izkﬂ + 9?1‘“1.2“1) Yirize Q)

or expressed dually as:

1,10|32 1,10|32 . k1 3 )
COO(R xR ) R S -3 5. [ i Lo 05

(q) (9) L1 k=0 “lofg1 bojpai2k

Tprd;q) I I

«
i2k+1 + 9i1"'i2k+1

1,10|32
ce (R(Q) ) T i eial-~~izk+1
These formulas are clearly functorial across stages with respect to maps between the parameterizing super-points:
9 plyd

sPnt°P C> (Rl7) ! C>(ROI")
R1:10/82 I

LieAlgh! RL-10132 e e R LA 1,10/32

91k QL s <¢ji.‘.¢jz’;11)m1 J2k+1Q,
I !
T, <1>?‘-1~~¢1:?’“)x”-
. unip 1,10/32 ip-igp ( g1 ijk )1 d2k 1,10|32
LieGrp R(q) R(q)

Thereby, we have lifted the super-Minkowski super-Lie algebra R19132 to a group-valued functor by applying
ordinary Lie integration to all its ordinary Lie algebras of probes by super-points

LieGrp
o !
sPut®® LieAlgp

ROlg - R1-10/32
(a)

This functorial incarnation of super-Lie algebras and their super-Lie groups is an instance of the original definition
of internal group objects due to [Gr60, p. 270][Gr61, §3], for early discussion along these lines see also [Ya93], a
brief discussion may also be found in [DM99, §2.10], more details are in [Sac08, §3].

But we may observe now that this functor is represented by the super-Minkowski super-Lie group structure
(RY10132 prd, e,inv) of Ex. 3.9 in that we have a natural isomorphism as follows, intertwining the (dual) group
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structures:

Odd tangents of
super-Lie group structure

integration of system of Lie algebras

naturally isomorphic to of probes by any super-point

7(a) 1, ~ 1,10/32
o> (Tongl 10\32) o (R(q) )
. * (98)
l(To(gfiPrd) Jprd(cn
oo [ 7(a) 1,10(32 , 73(a) 1,10|32) ~ oo (m1,10/32 1,10|32
(TR 02 TOR o CoRgy " xR )

For instance, for ¢ = 2 the operation on the left of (98) is given, via (75), by:

((#/,212,01,05), (2,212,01,02))

ROI2 R1.10[32 o 11032 prd R1.10/32
(' + x;?ﬁ”) + (x* + xfjﬁij) — Fgﬁ(/ﬁgaﬂi)(éfﬂj) — 42t —Tog oo — % (99)
— (2 + %) + (22 + 2, — 0'°0°Ta )9
((),’L.O‘ + 9?)191’ — 0> + 0% — o«

which manifestly coincides with what we found for the right hand side in (93).

In conclusion, we have (re-)obtained the Lie integration of the super-Minkowski Lie algebra to its (1-connected)
super-Lie group by applying ordinary Lie integration to the system of ordinary Lie algebras formed by probing the
super-Minkowski Lie algebra with super-points.

This integration process may easily appear notationally more cumbersome than the alternative Lie integration
via “educated guess followed by consistency check” that we showed in Ex. 3.9; but:

(i) the functorial notation here looks heavy only superficially, in effect it just means to tensor everything with any
number of auxiliary Grassmann parameters, thereby shifting all expressions into even degree, and to check (a
simple observation) that these parameters remain mere “bystanders” in all expressions under all operations,

(ii) the functorial machinery here provides a systematic approach for Lie integration of any (nilpotent) super-Lie
algebra, even in cases where an “educated guess” does not so easily spring to mind — as is the case already for
the next example.

Thereby we come to our main example, in variation of Ex. 3.13:

Example 3.14 (Integrating the hidden M-algebra to the hidden M-group). The probes (86) of the hidden
M-algebra 9 from §2.2, by the super-point Rl¢ form the following space, in variation of (96),

S, 8 . ngllwvsza Thoiy ER a; € {0,---,10}
bbb ER {0, 32}
B - . [OAS [
Mgy = (+H bl 0T e | WG ER ij €{1,---.q} | "
L J ’ 7
+ Zk 9?1“-1'21#11911 2R Qo 9?1~-~i2k+1 <R 0<k< C]/2
+ 20k & iz 0T O i ER

which the Dynkin formula (89) equips, in variation of (97), with the group product

— — prd gy —
Mgy X Mgy ————— M(q)
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given by

Zk .;_11 ) 19i1"-i2k Pa Zk 33?1---' 9, 19i1-~'i2k Pa
+ Zk a1azl2k it izk Zaras + Zk ba1a27,2k iz Zoo
+ Zk bal Zan Yt Za1~..a5 y + Zk bal 1,(:; 9t ik Zal...a5
+ Zk Z2k+119i1“'i2k+1Q04 + Zk i]"‘i2k+119i1“.7;2k+1 Qa
T Zk 12k ﬁil"'i2k+1 O‘X + Zk %‘~~i2k+1 ﬂil"‘izk# Oa

Zk ((t‘.l + xzq “t2k Zk 0 ll Zzic+19i62ie+2'”i2krgéﬂ) gria Pa
+ Ek (balai% balazlzk + Z: 391041 Zzl’c+1aik+2"'i2krglﬂa2> ﬂilmi% Zalaz
+ Zk (bal 2(;5;@ + bal lzk : éegl 12k+1eik+2"‘i2krzlﬁé“as) ﬁilmi% Zal'“as
+ S (9'_04___1,2“1 + 9'?1“_1_2“1)191‘1...2'%“@&
+ Y0 # iy Oy i 3T
+Zk Obawzkﬂik“ i %FMGQO‘[;
+ Zk z “i2k41 + 6 izk+1+ Zk ’ bal ;:ie.ikﬂ Tk 72721—‘@ e s + - ﬁil'”izk*loa

_\h B )
Zk‘*o x’il'“izk 9i2k+1 “12k41 QF

B
- Zk 0 balaz 6 “i2k41 2 I1041(12 B

ok Yoky1
o a1 as pB Y2
Zk 0 b 12k012k+1 iogg1 2 P 5
k—1k—1 g jo 8
1 G igfg dofiyo  lajya tojqs 2k 4l ) Bl ikt
MRS 53> 3P ) [ (QQQrp 454105
k k=0k=k + “lofip1 tokig2 lofge bojtsii2k41

Here the last summand in the last row arises via the 4th summand in the Dynkin formula (89) due to the non-
vanishing trilinear bracket (26).

This group-valued functor is evidently represented — analogous to (98) — by the following super-Lie group
structure (Def. 3.7):

The underlying super-manifold is

z¢ P, z* € R
+ ba1a2 Znaz ba1 as — b[a1 as] SHIN
_ ) e {0,1,---,10}
M= RO o | g, ozoas | p = g € R, D T 101
s voas = Mareal € R 0 32) (101)
+0% Q, 0 e R
+§a Oq Sa cR
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on which the group operation is given by

i x b
v 4+ g — (71‘\(1 0) - o
b/a1CL2 + ba1a2 + (7, Fa1a2 0) — balag
b:nmas + ba1~~~a5 - (5/ Fal"'as 0) — ba1~~~a5
0+ 0 — 0 (102)

§+¢
+229T 0 + LY 992D, o, 0 + 2V 0T, L, 0
— 32T 0 — Lb12T, 4,0 — 225105y o 0
+151QQQI(',0,0) + 151QQQI(0, 6,0
This super-Lie group we call the hidden M-group.

The Maurer-Cartan form. With the super-Lie group in hand, we may explicitly construct its Maurer-Cartan
forms.

Lemma 3.15 (Maurer-Cartan forms in coordinates). Consider a Lie algebra g ~ <(Ti)?:1> with Lie bracket

1;,T;] = fi’;-Tk which is nilpotent to third order, in that [ —[—[—,—]]] =0, so that the corresponding group product
(89) 45 prd(z'' T;, 2' T;) = 2" +2' + %f;kx’jxk + %f;kfflbx’jx’klxkz + lef;kfﬁlkzxjxklx'k? (103)
Then the group’s Maurer-Cartan forms may be given in these coordinates by:
el = da' — %f;kxjdxk + %f;k,f,’fl/xjxkda:l (104)
in that
(i) (MC equation) de* = —3f7 ele",

(ii) (Left-invariance) act*e’ = e'.

Proof. Checking this directly is straightforward, if already somewhat tedious. For the terms quadratic in f the
check relies heavily on the Jacobi identity.

Alternatively, the expression follows from the general Hausdorff-like formula of [Schur1891, (34)] (see also [He0l,
§I1 Thm. 7.4 & p. 36][Mel3, Thm. C.2 & p 99]), according to which e’ is given at any point X = 2'T} € g as

et = dat (7176)({:5;(&‘”() (axk)) da®
= do (Zg‘;oﬁ(—ad)()”(axk)) da* |
Plugging in adX = (a7 fj'.) into this formula, its first three summands are as claimed in (104). O

Example 3.16 (Maurer-Cartan forms on the hidden M-group). By plugging in the structure constants
(19) (25) of the hidden M-algebra at any stage g (100) into this formula (104), we obtain a coordinate expression
for the Maurer-Cartan form on the hidden M-group (cf. also [Var06, (6.7.7.)]):

et =dz*  +(6T*de)
ef1a2  — Jparaz _(51-‘&1(12 d0)
e017°a5 — Jparas Jr(@ral...as d@)
Y =df
¢ =d¢ —15(2Tyd0 — T,0(dz"))
— 37 (29121, ,d0 — Ty, 0, 0(da192))
L (77T, d0 — Ty B(dr ™))

5

PR (T ey — T Ty + 70T Ty ) 676007

(105)

Next plugging these equations into the expression (32) for 13??, gives its globalization to a left-invariant 1-form on
the hidden M-group.
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Toroidal compactifications. The hidden M-group M in (3.14) is evidently the simply-connected Lie integration

of the hidden M-algebra M. From it we may obtain its non-simply-connected versions by quotienting out lattice
subgroups Z*. In straightforward variation of Ex. 3.8 this is now immediate, but consequential:

Example 3.17 (Fully toroidal version of the hidden M-group). Just for ease of notation, consider the case
of the inclusion of all of Z%?8 (more generally, just omit any factors of this direct product group in the following).
Denoting the 528 “canonical coordinate functions” (80) on Z°?® by the same symbols as the bosonic canonical
coordinate functions on M (101), it is readily seen from (102) that the following tautological-looking assignment
is a super-Lie group homomorphism as anticipated in (1):

7528 ¢ M\

x < x
ba1a2 — bal az
bal as bal as
0 — 0
0 — i

In fact, the same formulas show that this inclusion factors through an inclusion of R?2® and descends to an inclusion
into the basic M-group:

7,528 R528 J\//\l
|
7,528 R528 M

Hence, passing to the quotient of this group inclusion — the fully toroidal hidden M-group — means, as in (82), to

restrict the bosonic elements in C*° (/ﬂ) to those which are suitably periodic. This is, of course, just as it should
be.

4 Conclusion

Motivated by a recent re-understanding of the relevance — for potentially formulating M-theory — of the hidden
M-algebra and of the “decomposed” M-theory 3-form it carries, we have given first a careful re-derivation and
then have discussed in detail its integration/globalization to a super-Lie group, the hidden M-group, carrying a
corresponding left-invariant super 3-form. Despite the common abuse of terminology that suggests otherwise, this
seems to be the first discussion of this super-Lie group, and therefore, we took the time to review the relevant
streamlined theory of super-Lie groups along the way.

In its vanilla form, the hidden M-group is simply-connected. But with this in hand, its toroidially compactified
versions are easy to come by, which we discussed as a first simple but important example of a topologically non-
trivial super-exceptional spacetimes.

These are going to be important both in relating super-exceptional formulations of 11D SuGra to topological T-
duality, under dimensional reduction, but in particular due to the fact that the global completion of 11D SuGra by
a flux quantization law leads to new solitonic states of the C-field not only on topologically non-trivial spacetime
domains but now also on their much larger super-exceptional enhancement. Such global effects in exceptional-
geometric super-gravity seem not to have received attention before, we will discuss first examples in [GSS25b].
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A Background

For ease of reference we briefly recall and cite some notation and facts used in the main text.

Tensor conventions

Our tensor conventions are standard, but since the computations below crucially depend on the corresponding
prefactors, here to briefly make them explicit:
e The Finstein summation convention applies throughout: Given a product of terms indexed by some i € I, with

the index of one factor in superscript and the other in subscript, then a sum over I is implied: x;y* := >, ; y".
e Our Minkowski metric is “mostly plus”

d d . d
(nab)a,b:O = (nab)a,b:() = (diag(=1,+1,+1,- ’+1))a,b:O : (106)
o Shifting position of frame indices always refers to contraction with the Minkowski metric (106):
Ve = Wﬂ?aba Vo = Vbnab'

e Skew-symmetrization of indices is denoted by square brackets ((—1)°! is sign of the permutation o):

Viayway) = 2 > (DI ang, -

o€Sym(n)
e We normalize the Levi-Civita symbol to
€012.. := +1 hence "7 = —1. (107)
e We normalize the Kronecker symbol to
Oplr = ot gyl = o gy = g (108)
so that ar-a ey ai--a
Vm-'-a,ﬁbf-..b: = WVpop,) and e ae, gy, = —pl- q!5b11___bqq. (109)

Super-algebra
Sign rule. For homological super-algebra we consider bigrading in the direct product ring Z x Zo — where the
first factor Z is the homological degree and the second Zs ~ {evn,odd} the super-degree — with sign rule

deg; = (n1,01), degy = (N2, 02) € Z X Zo = Sgn(degl, degQ) = (=1)rnatovoz

(cf. ..)

For (v;)ier a set of generators with bi-degrees (deg;)ic; we write:
(i) R<(vi)i€ 1> for the graded super-vector space spanned by these elements,

(i) R[(vi)ie I} for the graded-commutative polymonial algebra generated by these elements,
hence the tensor algebra on |I| generators modulo the relation

vy vy = (—1)%enldesrdess) 4y (110)
hence the (graded, super) symmetric algebra on the above super-vector space:
R[(”i)ie[] = Sym(R<(Ui)iel>)~

Spinors in 11d

We briefly record the following standard facts (proofs and references may be found in [MiSc06, §2.5][GSS24a,
§2.2.1]): There exists an R-linear representation 32 of Pin™(1,10) with generators

r, : 32 — 32 (111)
equipped with a Spin(1, 10)-equivariant skew-symmetric and non-degenerate bilinear form
((-)(-)) : 32®32—R (112)
which serves as the spinor metric whose components we denote (r]aﬁ)iz b1’
Vi nap ¢’ = (V0), (113)
that are skew symmetric in their indices
Nag = —TBa (114)
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which together with the inverse matrix (n*?) is and used to lower and raise spinor indices by contraction “from the
right” (the position of the terms is irrelevant, since the components 7,3 are commuting numbers, but the order of
the indices matters due to the skew-symmetry):

Yo = wa/na’aa ¢a = "/)a'na/a ) ¢a¢a = _wﬂnﬂana7¢7 = _wa¢a . (115)
This representation satisfies the following properties, where as usual we denote skew-symmetrized product of k
Clifford generators by L
Taoyar =4 Y s80(0)Ta, ) *Ta, - Tay, (116)
oceSym(k)

e The Clifford generators square to the mostly plus Minkowski metric (106)

Fal“b + Fbl“a = +2 Nab id32 . (117)
e The Clifford product is given on the basis elements (116) as
min(j,k) ] k
%o Fbl'“bk = Z +! (l) (l) 5[[511::21Faj"'al+1]bl+1~~bk] . (118)
1=0
e The Clifford volume form equals the Levi-Civita symbol (107):
Fa1---a11 = Gal...anid,gz . (119)

e The trace of all positive index Clifford basis elements vanishes:

32 =0
Te(Tay.a,) = p (120)
0 | p>0.
e The Hodge duality relation on Clifford elements is:
o L eEDe=2/2
T ro= U)(llfp)!e ! » b1 1 prl"'bll—p . (121)
For instance: . -
Lo = enmiildgy, T = 45 e ®0nm Ty, (122)
1010 = ¢a1--a1b Ty Teras — _é €a1--as bi-bg Ty, -
e The Clifford generators are skew self-adjoint with respect to the pairing (112)
T, = -I', in that \ T, = —(¢(T)), 123
nthat Y (Ta)v) = —(3(Tw) (123)
so that generally
Toa, = (=1)PTPO=D/2D, (124)
e The R-vector space of R-linear endomorphisms of 32 has a linear basis given by the < 5-index Clifford elements
EndR(32) = <17 Fa17 Falaga Falazaga Fa1‘~a47 Fa1~~~a5>ai:O’1’___ ) (125)

e The R-vector space space of symmetric bilinear forms on 32 has a linear basis given by the expectation values
with respect to (112) of the 1-, 2-, and 5-index Clifford basis elements:

Homg (329 32)m, B) = ((IFa(=)s (arax(=)) s (Olaras(-)) ) (126)

a;=0,1,,
which means in components that these Clifford generators are symmetric in their lowered indices (115):
G5 = T4, Do = I, Ty = U, (127)

while a basis for the skew-symmetric bilinear forms is given by

Homz (32 © 32)uews R) = ((5)()s (Marazas(=) s (layreas(5))) (128)

a;i=0,1,--,
which means in components that these Clifford generators are skew-symmetric in their lowered indices (115):
o = —Npa, TOg2% = 9020 [awe — _pareas (129)

e Any linear endomorphism ¢ € Endg(32) is uniquely a linear combination of Clifford elements as:
5
_1)p(p—1)/2 1o
¢ =5y S Tr(goTa,.0, )T . (130)
p=0

e which implies in particular the Fierz expansion

(36) (#62) = (BT 0) (31T 2) — H(BT™% ) (B4 Tasay b) + 4 (BT%7 ) (B Ty, 62)) - (131)
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Proposition .1 (The general Fierz identities [DF82, (3.1-3) & Table 2][CDF91, (11.8.69) & Table I1.8.XI]).
(i) The Spin(1,10)-irrep decomposition of the first few symmetric tensor powers of 32 is:

(32®32) = 11 @ 55 ® 462

m
(32932®32) = 32 320 & 1408 & 4424 (132)
(32032®382®382) = 1@ 165 ® 330 & 462 & 65 © 429 © 1144 & 17160 & 32604.

(ii) In more detail, the irreps appearing on the right are tensor-spinors spanned by basis elements

CHI Eﬁll"'ap]>(lq,€{0,"~,10},(16{1,“32} € Repg(Spin(1,10)) (133)
with T9Z, 4, o = 0
(jointly to be denoted E(V) for the case of the irrep N) such that:
V(¥Tay) = FT.EE +2577,
V(PTaas¥) =  Flaa 200 = 2T, 220 +2087, (134)
Y(PTaray ¥) = ~Ela1a, B + 3T 0, EOY 4 2T 000 By + Eeiia) .

Background formulas for 11d Supergravity. Our notation and conventions for super-geometry and for on-shell
11d supergravity on super-space follow [GSS24a, §2.2 & §3], to which we refer for further details and exhaustive
referencing. We denote the local data of a super-Cartan connection on (a surjective submersion X of) (super-
)spacetime X, representing a super-gravitational field configuration, as'®

Graviton (Ea)f:_()l c Q(liR (5{" Rl,D—l)
Gravitino (\I;oz)(]j:l c Q(liR ()’Z’ Nodd) (135)
i Qe =07 e Ol (X s0(1,D — 1))

and the corresponding Cartan structural equations (cf. [GSS24a, Def. 2.78]) for the supergravity field strengths as

Swer (T = dE" - Q%E'— (¥Irew)) )
P VA B (0 P (136)
Curvature (R = dQ® — Qo 007
Finally, we denote the corresponding components in the given local super-coframe (E,¥) by [GSS24a, (127-8)]:
T = 0
p =: %pab E*E* + H,U E° (137)
Rue2 = IRme . pope 4 (JU,0)EY + (VK% T),

where all components not explicitly appearing vanish identically by the superspace torsion constraints [GSS24a,
(121), (137)]. In addition, in the main text we consider the situation that also pg, = 0 whence also J%%, =0 .

Super-Lie algebras

Our ground field is the real numbers R and all super-vector spaces are assumed to be finite-dimensional.
Given a finite dimensional super-Lie algebra g ~ geyn @ godd, the linear dual of the super-Lie bracket map
[-]: gvg—— 9
may be understood to map the first two the second exterior power of the underlying dual super-vector space, and
as such it extends uniquely to a ZxZg-graded derivation d of degree=(1,evn) on the exterior super-algebra (where

150ur use of different letters for the even and odd components of a super co-frame follows e.g. [CDF91]. Other authors write “E*”
for what we denote “¥“” e.g. [BaSo23]. While it is of course part of the magic of supergravity that E* and E*/W¥® are unified into
a single super-coframe field E, we find that for reading and interpreting formulas it is helpful to use different symbols for its even and
odd components.
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the minus sign is just a convention) 3
/\19* =[] /\29*

l l

/\.g* d /\.g*
With this, the condition dod = 0 is equivalently the super-Jacobi identity on [-,-], and the the resulting differential
graded super-commutative algebra is know as the Chevalley-FEilenberg algebra of g:
CE(g, [-]) = (A®g*, qd)
and this construction is fully faithful

sLieAlgy «———— sDCGCAlgY
in that (1) for every super-vector space V' a choice of such differential d on A®*V* uniquely comes from a super-Lie
bracket [-,-] on V this way, and (2) super-Lie homomorphisms ¢ : g — ¢’ are in bijection with sDGC-algebra
homomorphisms ¢* : CE(g’) — CE(g).

More concretely, given (T;)"_; a linear basis for g with corresponding structure constants ( Z-’; € R)jj oy then
the Chevalley-Filenberg algebra is equivalently the graded-commutative polynomial algebra
CE(g, [-.-]) ~ (R[t',---,t'],d)
on generators of degree (1, 0;) with corresponding structure constants for its differential:
Super Super
Lie algebra dgc-algebra
n ; n
Generators ( T; )i:l ( t* )i:1 (138)
deg = (0,0;) deg=(1,05)
Relations || [T3,T;] = fE T | dt* = —§fktit9

References

[AGT00] O. Aharony, S. Gubser, J. Maldacena, H. Qoguri, and Y. Oz, Large N Field Theories, String Theory and
Gravity, Phys. Rept. 323 (2000), 183-386, [doi:10.1016/S0370-1573(99)00083-6],
[arXiv:hep-th/9905111].

[Al24] L. Alfonsi, Higher geometry in physics, in: Encyclopedia of Mathematical Physics 2nd ed, Elsevier (2024),
[arXiv:2312.07308], [ISBN:9780323957038].

[A185] O. Alvarez, Topological quantization and cohomology, Commun. Math. Phys. 100 2 (1985), 279-309,
[euclid: cmp/1 103943448].

[Anc] Ancilliary

[AD24] L. Andrianopoli and R. D’Auria, Supergravity in the Geometric Approach and its Hidden Graded Lie
Algebra, [arXiv:2404.13987].

[ADR16] L. Andrianopoli, R. D’Auria, and L. Ravera, Hidden Gauge Structure of Supersymmetric Free Differential
Algebras, J. High Energy Phys. 1608 (2016) 095, [doi:10.1007/JHEP08(2016)095|, [arXiv:1606.07328].
[ADR17] L. Andrianopoli, R. D’Auria, and L. Ravera, More on the Hidden Symmetries of 11D Supergravity, Phys.

Lett. B 772 (2017), 578-585, [doi:10.1016/j.physletb.2017.07.016], [arXiv:1705.06251].

[AdR20] M. F. Araujo de Resende, A pedagogical overview on 2D and 3D Toric Codes and the origin of their topolog-
ical orders, Rev. Math. Phys. 32 02 (2020) 2030002, [doi : 10.1142/S0129055X20300022], [arXiv:1712.01258].

[BW00] O. Baerwald and P. West, Brane Rotating Symmetries and the Fivebrane Equations of Motion, Phys. Lett.
B 476 (2000), 157-164, [doi:10.1016/S0370-2693(00)00107-6], [arXiv:hep-th/9912226].

[BaSh10] A. P. Bakulev and D. Shirkov, Inevitability and Importance of Non-Perturbative Elements in Quantum
Field Theory, Proc. 6th Mathematical Physics Meeting, Sep. 14-23 (2010), Belgrade, Serbia, 27-54,
[arXiv:1102.2380].

[Bal7] I. Bandos, Exceptional field theories, superparticles in an enlarged 11D superspace and higher spin theories,
Nucl. Phys. B 925 (2017), 28-62, [doi:10.1016/j.nuclphysb.2017.10.001], [arXiv:1612.01321].

38


https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://arxiv.org/abs/2312.07308
https://shop.elsevier.com/books/encyclopedia-of-mathematical-physics/szabo/978-0-323-95703-8
https://projecteuclid.org/euclid.cmp/1103943448
https://arxiv.org/abs/2404.13987
https://doi.org/10.1007/JHEP08(2016)095
https://arxiv.org/abs/1606.07328
https://doi.org/10.1016/j.physletb.2017.07.016
https://arxiv.org/abs/1705.06251
https://doi.org/10.1142/S0129055X20300022
https://arxiv.org/abs/1712.01258
https://doi.org/10.1016/S0370-2693(00)00107-6
https://arxiv.org/abs/hep-th/9912226
https://arxiv.org/abs/1102.2380
https://doi.org/10.1016/j.nuclphysb.2017.10.001
https://arxiv.org/abs/1612.01321

[BDIPV04] I. A. Bandos, J. A. de Azcarraga, J. M. Izquierdo, M. Picon, and O. Varela, On the underlying gauge
group structure of D = 11 supergravity, Phys. Lett. B 596 (2004), 145-155, [arXiv:hep-th/0406020],
[10.1016/3 . physletb.2004.06.079).

[BDPVO05] I. Bandos, J. de Azcérraga, M. Picon and O. Varela, On the formulation of D = 11 supergravity and the
composite nature of its three-from field, Ann. Phys. 317 (2005), 238-279, [doi:10.1016/j.a0p.2004.11.016],
[arXiv:hep-th/0409100].

[BaS023] 1. A. Bandos and D. P. Sorokin, Superembedding approach to superstrings and super-p-branes, in: Hand-
book of Quantum Gravity, Springer (2023), [doi:10.1007/978-981-19-3079-9_111-1], [arXiv:2301.10668].

[BW85] M. Barr and C. Wells, Toposes, Triples, and Theories, Springer (1985); Reprints Theor. Appl. Categ. 12
(2005), 1-287, [tac:tr12].

[Ba79] M. Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329-338,
[doi:1979-253-00/S0002-9947-1979-0536951-0].

[Ba84] M. Batchelor, Graded Manifolds and Supermanifolds, in: Mathematical Aspects of Superspace, NATO ASI
Series 132, Springer (1984), 91-134, [doi:10.1007/978-94-009-6446-4 4].

[Be87] F. A. Berezin (edited by A. A. Kirillov), Lie Supergroups, in: Introduction to Superanalysis, Mathematical
Physics and Applied Mathematics 9, Springer (1987), [doi:10.1007/978-94-017-1963-6_8].

[BL75] F. A. Berezin and D. A. Leites, Supermanifolds, (Russian) Dokl. Akad. Nauk SSSR 224 3 (1975), 505-508;
English translation: Soviet Math. Dokl. 16 5 (1975), 1218-1222, [mathnet :eng/dan39282)].

[BB20] D. Berman and C. D. A. Blair, The Geometry, Branes and Applications of Exceptional Field Theory, Int.
J. Mod. Phys. A 35 30 (2020) 2030014, [doi:10.1142/80217751X20300148], [arXiv:2006.09777].

[Bot24] L. Borsten, M. Jalali Farahani, B. Jurco, H. Kim, J. Narozny, D. Rist, C. Saemann, and M. Wolf, Higher
Gauge Theory, in Encyclopedia of Mathematical Physics 2nd ed, Elsevier (2024), 159-185, [arXiv:2401.05275],
[doi:10.1016/B978-0-323-95703-8.00217-2].

[BKS19] G. Bossard, A. Kleinschmidt, and E. Sezgin, On supersymmetric E11 exceptional field theory, J. High
Energ. Phys. 2019 (2019) 165, [doi:10.1007/JHEP10(2019)165], [arXiv:1907.02080].

[Brt14] Brambilla et al., QCD and strongly coupled gauge theories — challenges and perspectives, Eur. Phys. J. C
Part. Fields 74 10 (2014) 2981, [doi:10.1140/epjc/s10052-014-2981-5], [arXiv:1404.3723].

[BH80] L. Brink and P. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. B 91
(1980), 384-386, [doi:10.1016/0370-2693(80)91002-3].

[CR12] D. Carchedi and D. Roytenberg, Homological Algebra for Superalgebras of Differentiable Functions,
[arXiv:1212.3745].

[Car06] L. Carlevaro, Three approaches to M-theory, PhD thesis, Neuchatel University (2006), [spire:1253257],
[hd1:123456789/16186].

[Casll] L. Castellani, Lie derivatives along antisymmetric tensors, and the M-theory superalgebra, J. Phys. Math.
3 (2011), 1-7. [eculid: jpm/1359468398], [arXiv:hep-th/0508213].

[CDF91] L. Castellani, R. D’Auria, and P. Fré, Supergravity and Superstrings — A Geometric Perspective, World
Scientific (1991), [doi:10.1142/0224].

[Ch18] S. Chester, Bootstrapping M-theory, PhD thesis, Princeton (2018), [ark:/88435/dsp01kw52jb833].

[CP18] S. Chester and E. Perlmutter, M-Theory Reconstruction from (2,0) CFT and the Chiral Algebra Conjecture,
J. High Energ. Phys. 2018 (2018) 116, [doi:10.1007/JHEP08(2018)116], [arXiv:1805.00892].

[ChrT00] C. Chryssomalakos, J. de Azcdrraga, J. M. Izquierdo, and C. Pérez Bueno, The geometry of branes and
extended superspaces, Nucl. Phys. B 567 (2000), 293-330, [doi:10.1016/S0550-3213(99)00512-X],
[arXiv:hep-th/9904137].

[Co07] P. Cook, Connections between Kac-Moody algebras and M-theory, PhD thesis, King’s College London (2007),
[arXiv:0711.3498].

[CG04] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications — Volume
1 Part 1: Basic Theory and Examples, Cambridge University Press (2004), [ISBN:9780521604956].

[Cr81] E. Cremmer, Supergravities in & dimensions, in: Superspace and Supergravity, Cambridge University Press
(1981), [spire:155020].

[CF80] E. Cremmer and S. Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. B
91 (1980), 61-66, [doi:10.1016/0370-2693(80) 90662-0).

[CJT9] E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979), 141-212,

[doi :10. 1016/0550—3213(79)90331—6].

39


https://arxiv.org/abs/hep-th/0406020
https://doi.org/10.1016/j.physletb.2004.06.079
https://doi.org/10.1016/j.aop.2004.11.016
https://arxiv.org/abs/hep-th/0409100
https://doi.org/10.1007/978-981-19-3079-9_111-1
https://arxiv.org/abs/2301.10668
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
https://www.ams.org/journals/tran/1979-253-00/S0002-9947-1979-0536951-0
https://doi.org/10.1007/978-94-009-6446-4_4
https://doi.org/10.1007/978-94-017-1963-6_8
https://www.mathnet.ru/eng/dan39282
https://doi.org/10.1142/S0217751X20300148
https://arxiv.org/abs/2006.09777
https://arxiv.org/abs/2401.05275
https://doi.org/10.1016/B978-0-323-95703-8.00217-2
https://doi.org/10.1007/JHEP10(2019)165
https://arxiv.org/abs/1907.02080
https://doi.org/10.1140/epjc/s10052-014-2981-5
https://arxiv.org/abs/1404.3723
https://doi.org/10.1016/0370-2693(80)91002-3
https://arxiv.org/abs/1212.3745
https://inspirehep.net/literature/1253257
https://libra.unine.ch/handle/123456789/16186
http://projecteuclid.org/euclid.jpm/1359468398
https://arxiv.org/abs/hep-th/0508213
https://doi.org/10.1142/0224
http://arks.princeton.edu/ark:/88435/dsp01kw52jb833
https://doi.org/10.1007/JHEP08(2018)116
https://arxiv.org/abs/1805.00892
https://doi.org/10.1016/S0550-3213(99)00512-X
https://arxiv.org/abs/hep-th/9904137
https://arxiv.org/abs/0711.3498
https://www.cambridge.org/us/universitypress/subjects/mathematics/abstract-analysis/representations-nilpotent-lie-groups-and-their-applications-volume-1-part-1
https://inspirehep.net/literature/155020
https://doi.org/10.1016/0370-2693(80)90662-0
https://doi.org/10.1016/0550-3213(79)90331-6

[DKNO06] T. Damour, A. Kleinschmidt, and H. Nicolai, K(E1g), Supergravity and Fermions, J. High Energy Phys.
0608 (2006) 056, [doi;10.1016/j.physletb.2006.04.007], [arXiv:hep-th/0606105].

[DF82] R. D’Auria and P. Fré, Geometric Supergravity in D = 11 and its hidden supergroup, Nucl. Phys. B 201
(1982), 101-140, [d0i:10.1016/0550-3213(82)90376-5].

[DFT79] R. D’Auria, P. Fré, and T. Regge, Geometrical formulation of supergravity as a theory on a supergroup
manifold, Supergravity Workshop, Stony Brook (1979), 85-92, [spire: 148583].

[Az05] J. de Azcérraga, Superbranes, D = 11 CJS supergravity and enlarged superspace coordinates/fields corre-
spondence, ATP Conf. Proc. 767 (2005), 243-267, [doi:10.1063/1.1923338], [arXiv:hep-th/0501198].
[dBHPO5] S. de Buyl, M. Henneaux, and L. Paulot, Hidden Symmetries and Dirac Fermions, Class. Quant. Grav.

22 (2005), 3595-3622, [doi:10.1088/0264-9381/22/17/018], [arXiv:hep-th/0506009].

[DF99] P. Deligne and D. Freed, Supersolutions, in: Quantum Fields and Strings, A course for mathematicians vol
1, Amer. Math. Soc. (1999), [ISBN:978-0-8218-2014-8], [arXiv:hep-th/9901094].

[DM99] P. Deligne and J. Morgan, Notes on Supersymmetry (following Joseph Bernstein), in: Quantum Fields and
Strings, A course for mathematicians, Amer. Math. Soc. Providence (1999), 41-97,
[ISBN:978-0-8218-2014-8].

[DW84] B. DeWitt, Supermanifolds, Monographs on Mathematical Physics, Cambridge University Press (1992),
[doi:lO.1017/CB09780511564000L

[dWN86] B. de Wit and H. Nicolai, D = 11 Supergravity With Local SU(8) Invariance, Nucl. Phys. B 274 (1986),
363—400,[doi:lO.1016/0550—3213(86)90290—7}

[dWNO01] B. de Wit and H. Nicolai, Hidden Symmetries, Central Charges and All That, Class. Quant. Grav. 18
(2001), 3095-3112, [doi:10.1088/0264-9381/18/16/302], [arXiv:hep-th/0011239].

[DFM07] D.-E. Diaconescu, D. Freed and G. Moore, The M-theory 3-form and Es-gauge theory, chapter in Elliptic
Cohomology Geometry, Applications, and Higher Chromatic Analogues, Cambridge University Press (2007),
[doi:10.1017/CB09780511721489], [arXiv:hep-th/0312069].

[DW23] R. Donagi and M. Wijnholt, The M-Theory Three-Form and Singular Geometries, [arXiv:2310.05838].

[DGP13] A. Donos, J. P. Gauntlett, and C. Pantelidou, Semi-local quantum criticality in string/M-theory, J. High
Energ. Phys. 2013 (2013) 103, [doi :10.1007/JHEP03(2013)103], [arXiv:1212.1462].

[DK00] H. Duistermaat and J. A. C. Kolk, Lie groups, Springer (2000), [doi:10.1007/978-3-642-56936-4].

[Du96] M. Duff, M-Theory (the Theory Formerly Known as Strings), Int. J. Mod. Phys. A 11 (1996), 5623-5642,
[doi:lO.1142/80217751X96002583L[arXiV:hep—th/9608117}

[Du99a] M. Duff, The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IToP Publishing
(1999), [ISBN:9780750306720).

[Du20] M. Duff, Perspectives on M-Theory, interview & opening remarks at M-Theory and Mathematics 2020,
NYU Abu Dhabi (2020), [nlab/show/Perspectives+on+M-Theory].

[DNP86] M. Duff, B. Nilsson, and C. Pope, Kaluza-Klein supergravity, Phys. Rep. 130 (1986), 1-142,
[doi:lO.1016/0370—1573(86)90163—8y

[Fa99] A. Falkowski, Five dimensional locally supersymmetric theories with branes, MSc thesis, Warsaw (19997)
[ncatlab.org/nlab/files/Falkowskilecture.pdf].

[FIdO15] J. J. Fernandez, J. M. Izquierdo, and M. A. del Olmo, Contractions from osp(1|32) @ osp(1|32) to the
M-theory superalgebra extended by additional fermionic generators, Nucl. Phys. B 897 (2015), 87-97,
[doi:10.1016/j.nuclphysb.2015.05.018|, [arXiv:1504.05946].

[FGSS20] A. Ferraz, K. S. Gupta, G. W. Semenoff, and P. Sodano (eds.), Strongly Coupled Field Theories for
Condensed Matter and Quantum Information Theory, Proceedings in Physics 239, Springer (2020),
[doi:lO.1007/978—3—030—35473—2]

[FSS15] D. Fiorenza, H. Sati and U. Schreiber, Super Lie n-algebra extensions, higher WZW models and super
p-branes with tensor multiplet fields, Int. J. Geom. Methods Mod. Phys. 12 (2015) 02, [arXiv:1308.5264],
[doi:10.1142/80219887815500188].

[FSS17] D. Fiorenza, H. Sati, and U. Schreiber, Rational sphere valued supercocycles in M-theory and type IIA string
theory, J. Geom. Phys. 114 (2017), 91-108, [doi:10.1016/j.geomphys.2016.11.024], [arXiv:1606.03206].

[FSS18] D. Fiorenza, H. Sati, and U. Schreiber, T-Duality from super Lie n-algebra cocycles for super p-branes,
Adv. Theor. Math. Phys. 22 (2018), 1209-1270, [doi:10.4310/ATMP.2018.v22.05.a3], [arXiv:1611.06536].

[FSS19] D. Fiorenza, H. Sati, and U. Schreiber, The rational higher structure of M-theory, in: Proceedings of the
LMS-EPSRC Durham Symposium: Higher Structures in M-Theory 2018, Fortsch. Phys. 67 (2019) 1910017,
[doi:lO.1002/pr0p.201910017L[arXiV:1903.02834L

40


https://doi.org/10.1016/j.physletb.2006.04.007
https://arxiv.org/abs/hep-th/0606105
https://doi.org/10.1016/0550-3213(82)90376-5
https://inspirehep.net/literature/148583
https://doi.org/10.1063/1.1923338
https://arxiv.org/abs/hep-th/0501198
https://doi.org/10.1088/0264-9381/22/17/018
https://arxiv.org/abs/hep-th/0506009
https://bookstore.ams.org/qft-1-2-s
https://arxiv.org/abs/hep-th/9901094
https://bookstore.ams.org/qft-1-2-s
https://doi.org/10.1017/CBO9780511564000
https://doi.org/10.1016/0550-3213(86)90290-7
https://doi.org/10.1088/0264-9381/18/16/302
https://arxiv.org/abs/hep-th/0011239
https://doi.org/10.1017/CBO9780511721489
https://arxiv.org/abs/hep-th/0312069
https://arxiv.org/abs/2310.05838
https://doi.org/10.1007/JHEP03(2013)103
https://arxiv.org/abs/1212.1462
https://doi.org/10.1007/978-3-642-56936-4
https://doi.org/10.1142/S0217751X96002583
https://arxiv.org/abs/hep-th/9608117
https://www.crcpress.com/The-World-in-Eleven-Dimensions-Supergravity-supermembranes-and-M-theory/Duff/9780750306720
https://ncatlab.org/nlab/show/Perspectives+on+M-Theory
https://doi.org/10.1016/0370-1573(86)90163-8
https://ncatlab.org/nlab/files/FalkowskiLecture.pdf
https://doi.org/10.1016/j.nuclphysb.2015.05.018
https://arxiv.org/abs/1504.05946
https://doi.org/10.1007/978-3-030-35473-2
https://arxiv.org/abs/1308.5264
http://www.worldscientific.com/doi/abs/10.1142/S0219887815500188
http://dx.doi.org/10.1016/j.geomphys.2016.11.024
https://arxiv.org/abs/1606.03206
https://dx.doi.org/10.4310/ATMP.2018.v22.n5.a3
https://arxiv.org/abs/1611.06536
https://doi.org/10.1002/prop.201910017
https://arxiv.org/abs/1903.02834

[FSS20a] D. Fiorenza, H. Sati, and U. Schreiber, Higher T-duality of super M-branes, Adv. Theor. Math. Phys. 24
3 (2020), 621-708, [doi :10.4310/ATMP.2020.v24.n3. a3], [arXiV: 1803. 05634].

[FSS20b] D. Fiorenza, H. Sati, and U. Schreiber, Twisted Cohomotopy implies M-theory anomaly cancellation on
8-manifolds, Commun. Math. Phys. 377 (2020), 1961-2025, [doi:10.1007/s00220-020-03707-2],
[arXiv:1904.10207].

[FSS20c] D. Fiorenza, H. Sati, and U. Schreiber, Super-exceptional geometry: Super-exceptional embedding con-
struction of M5, J. High Energy Phys. 2020 (2020) 107, [doi:10.1007/JHEP02(2020) 107],
[arXiv:1908.00042].

[FSS21a] D. Fiorenza, H. Sati, and U. Schreiber, Super-exceptional M5-brane model — Emergence of SU(2)-flavor
sector, J. Geom. Phys. 170 (2021) 104349, [doi:10.1016/j.geomphys.2021.104349], [arXiv:2006.00012].

[FSS21b] D. Fiorenza, H. Sati, and U. Schreiber, Twisted Cohomotopy implies M5 WZ term level quantization,
Commun. Math. Phys. 384 (2021), 403-432, [doi:10.1007/s00220-021-03951-0], [arXiv:1906.07417].

[FSS22] D. Fiorenza, H. Sati, and U. Schreiber, Twistorial Cohomotopy implies Green-Schwarz anomaly cancella-
tion, Rev. Math. Phys. 34 05 (2022) 2250013, [doi:10.1142/S0129055X22500131], [arXiv:2008.08544].

[FSS23] D. Fiorenza, H. Sati, and U. Schreiber, The Character map in Nonabelian Cohomology — Twisted, Dif-
ferential and Generalized, World Scientific, Singapore (2023), [doi:10.1142/13422], [arXiv:2009.11909].

[FrScSo00] L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie Superalgebras, Academic Press (2000),
[ISBN:978-0122653407], [arXiv:hep-th/9607161].

[Fr99] D. Freed, Five lectures on supersymmetry, American Mathematical Society (1999), [spire:517862],
[ISBN:978-0-8218-1953-1].

[Fr02] D.Freed, Dirac charge quantization and generalized differential cohomology, Surveys in Differential Geometry
7 (2002), 129-194, [doi:10.4310/SDG.2002.v7.n1.a6|, [arXiv:hep-th/0011220].

[FH21] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases, Geom. Topol. 25
(2021), 1165-1330, [doi:10.2140/gt.2021.25.1165], [arXiv:1604.06527].

[FvP12] D. Freedman and A. Van Proeyen Supergravity, Cambridge University Press (2012),

[doi :10. 1017/CB09781139026833].

[FS10] Y. Frishman and J. Sonnenschein, Non-Perturbative Field Theory — From Two Dimensional Conformal Field
Theory to QCD in Four Dimensions, Cambridge University Press (2010), [doi:10.1017/9781009401654],
[arXiv:1004.4859].

[Ful2] P. Fulde, Correlated Electrons in Quantum Matter, World Scientific (2012), [doi:10.1142/8419].

[GJF19] D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, [arXiv:1905.09566].

[GSW10a] J. P. Gauntlett, J. Sonner, and T. Wiseman, Holographic superconductivity in M-Theory, Phys. Rev.
Lett. 103 (2009) 151601, [doi:10.1103/PhysRevLett.103.151601], [arXiv:0907.3796].

[GSW10b] J. P. Gauntlett, J. Sonner, and T. Wiseman, Quantum Criticality and Holographic Superconductors in
M-theory, J. High Energ. Phys. 2010 (2010) 60, [doi:10.1007/JHEP02(2010)060], [arXiv:0912.0512].
[GSS24a] G. Giotopoulos, H. Sati, and U. Schreiber, Fluz Quantization on 11d Superspace, J. High Energy Phys.

2024 (2024) 82, [doi:10.1007/JHEPO7 (2024)082], [arXiv:2403.16456].

[GSS24b] G. Giotopoulos, H. Sati, and U. Schreiber, Fluz-Quantization on M5-Branes, J. High Energy Phys. 2024
140 (2024), [doi:10.1007/JHEP10(2024)140], [arXiv:2406.11304].

[GSS24c] G. Giotopoulos, H. Sati, and U. Schreiber, Holographic M-Brane Super-Embeddings, J. High Energy
Physics (2024, in print), [arXiv:2408.09921].

[GSS24d] G. Giotopoulos, H. Sati, and U. Schreiber, The M-Algebra completes the hierarchy of Super-Exceptional
Tangent Spaces [arXiv:2411.03661].

[GSS24e] G. Giotopoulos, H. Sati, and U. Schreiber, Super-Lie,, T-Duality and M-Theory (in preparation).

[GSS25a] G. Giotopoulos, H. Sati, and U. Schreiber, Field Theory via Higher Geometry II: Super-sets of fermionic
fields (in preparation).

[GSS25b] G. Giotopoulos, H. Sati, and U. Schreiber, Abelian Anyons on the Super-Exceptional M5-Brane (in
preparation).

[GKP19] J. Gomis, A. Kleinschmidt, and J. Palmkvist, Symmetries of M-theory and free Lie superalgebras, J. High
Energ. Phys. 2019 (2019) 160, [doi:10.1007/JHEP03(2019)160], [arXiv:1809.09171].

[Gr60] A. Grothendieck, Technique de descente et théorémes d’existence en géométrie algébriques. II: Le théoreme
d’existence en théorie formelle des modules, Séminaire Bourbaki 195 (1960), [doi:SB_1958-1960__5__369_0].

[Gr61] A. Grothendieck, Techniques de construction et théorémes d’existence en géométrie algébrique III:
préschémas quotients, Séminaire Bourbaki 212 (1961), [numdam:SB_1960-1961_6__99_0].

41


https://dx.doi.org/10.4310/ATMP.2020.v24.n3.a3
https://arxiv.org/abs/1803.05634
https://doi.org/10.1007/s00220-020-03707-2
https://arxiv.org/abs/1904.10207
https://doi.org/10.1007/JHEP02(2020)107
https://arxiv.org/abs/1908.00042
https://doi.org/10.1016/j.geomphys.2021.104349
https://arxiv.org/abs/2006.00012
https://doi.org/10.1007/s00220-021-03951-0
https://arxiv.org/abs/1906.07417
https://doi.org/10.1142/S0129055X22500131
https://arxiv.org/abs/2008.08544
https://doi.org/10.1142/13422
https://arxiv.org/abs/2009.11909
https://arxiv.org/abs/hep-th/9607161
https://inspirehep.net/literature/517862
https://bookstore.ams.org/FLS
https://dx.doi.org/10.4310/SDG.2002.v7.n1.a6
https://arxiv.org/abs/hep-th/0011220
https://doi.org/10.2140/gt.2021.25.1165
https://arxiv.org/abs/1604.06527
https://doi.org/10.1017/CBO9781139026833
https://doi.org/10.1017/9781009401654
https://arxiv.org/abs/1004.4859
https://doi.org/10.1142/8419
https://arxiv.org/abs/1905.09566
https://doi.org/10.1103/PhysRevLett.103.151601
https://arxiv.org/abs/0907.3796
https://doi.org/10.1007/JHEP02(2010)060
https://arxiv.org/abs/0912.0512
https://doi.org/10.1007/JHEP07(2024)082
https://arxiv.org/abs/2403.16456
https://doi.org/10.1007/JHEP10(2024)140
https://arxiv.org/abs/2406.11304
https://arxiv.org/abs/2408.09921
https://arxiv.org/abs/2411.03661
https://doi.org/10.1007/JHEP03(2019)160
https://arxiv.org/abs/1809.09171
http://www.numdam.org/item/SB_1958-1960__5__369_0
http://www.numdam.org/item/?id=SB_1960-1961__6__99_0

[GPR10] S. S. Gubser, S. S. Pufu, and F. D. Rocha, Quantum critical superconductors in string theory and M-
theory, Phys. Lett. B 683 (2010), 201-204, [doi:10.1016/j.physletb.2009.12.017], [arXiv:0908.0011].

[HLS18] S. Hartnoll, A. Lucas, and S. Sachdev, Holographic quantum matter, MIT Press (2018),
[ISBN:9780262348010L[arXiv:1612.07324}

[HKW91] Y. Hatsugai, M. Kohmoto, and Y.-S. Wu, Anyons on a torus: Braid group, Aharonov-Bohm period, and
numerical study, Phys. Rev. B 43 (1991) 10761, [doi:10.1103/PhysRevB.43.10761].

[He01] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Amer. Math. Soc. (2001),
[ams : gsm-34].

[HKSS07] C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son, Quantum critical transport, duality, and M-theory,
Phys. Rev. D 75(2007)085020,Hoi:10.1103/PhySReVD.75.085020L[arXiv:hep—th/0701036}

[HLZ13] O. Hohm, D. Liist, and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks, and
Outlook, Fortschr. Phys. 61 10 (2013), 926-966, [doi:10.1002/prop.201300024], [arXiv:1309.2977].

[HS13a] O. Hohm and H. Samtleben, U-duality covariant gravity, J. High Energ. Phys. 2013 (2013) 80,
[doi:10.1007/JHEP09(2013)080], [arXiv:1307.0509].

[HS13] O. Hohm and H. Samtleben, Fzceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111 (2013) 231601,
[doi:10.1103/PhysRevlett.111.231601], [arXiv:1308.1673].

[HS14a] O. Hohm and H. Samtleben, Exceptional Field Theory I: Egs) covariant Form of M-Theory and Type 1B,
Phys. Rev. D 89 (2014) 066016, [doi:10.1103/PhysRevD.89.066016], [arXiv:1312.0614].

[HS14b] O. Hohm and H. Samtleben, Exceptional Field Theory II: E77) Phys. Rev. D 89 (2014) 066017,
[doi:10.1103/PhysRevD.89.066017], [arXiv:1312.4542)].

[HS14c] O. Hohm and H. Samtleben, Ezceptional Field Theory III: Es, Phys. Rev. D 90 (2014) 066002,
[doi:10.1103/PhysRevD.90.066002], [arXiv:1406.3348].

[HKST11] H. Hohnhold, M. Kreck, S. Stolz, and P. Teichner, Differential forms and 0-dimensional supersymmetric
field theories, Quantum Topology 2 1 (2011), 1-41, [doi:10.4171/QT/12].

[HW96a] P. Hotava and E. Witten, Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B
460 (1996) 506-524, [doi:10.1016/0550-3213(95)00621-4], [arXiv:hep-th/9510209].

[HW96b] P. Horava and E. Witten, Eleven dimensional supergravity on a manifold with boundary, Nucl. Phys. B
475 (1996), 94-114, [doi:10.1016/0550-3213(96)00308-2], [arXiv:hep-th/9603142].

[HH92a] Y. Hosotani and C.-L. Ho, Anyons on a Torus, ATP Conf. Proc. 272 (1992), 1466-1469,
[doi:10.1063/1.43444], [arXiv:hep-th/9210112].

[HH92b] Y. Hosotani and C.-L. Ho, Anyon equation on a torus, Int. J. Mod. Phys. A 07 23 (1992), 5797-5831,
5797-5831, [doi:10.1142/50217751X92002647].

[Ho97] P. Howe, Weyl Superspace, Phys. Lett. B 415 2 (1997), 149-155, [doi:10.1016/S0370-2693(97)01261-6],
[arXiv:hep-th/9707184].

[Ho82] P. Howe, Supergravity in superspace, Nucl. Phys. B 199 2 (1982), 309-364,
[doi:lO.1016/0550—3213(82)90349—2L

[HS97] P. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997), 62-66, [arXiv:hep-th/9611008],
[doi:10.1016/S0370-2693(96)01672-3].

[HS18] J. Huerta and U. Schreiber, M-theory from the Superpoint, Lett. Math. Phys. 108 (2018), 2695-2727,
[doi:10.1007/s11005-018-1110-z], [arXiv:1702.01774].

[Hull98] C. M. Hull, Gravitational Duality, Branes and Charges, Nucl. Phys. B 509 (1998), 216-251,
[doi:10.1016/80550-3213(97)00501-4], [arXiv:hep-th/9705162].

[Hullo7] C. M. Hull, Generalised Geometry for M-Theory, J. High Energy Phys. 0707 (2007) 079,
[doi:10.1088/1126-6708/2007/07/079], [arXiv:hep-th/0701203).

[HT95] C. Hull and P. Townsend, Unity of Superstring Dualities, Nucl. Phys. B 438 (1995), 109-137,
[doi:10.1016/0550-3213(94)00559-W], [arXiv:hep-th/9410167].

[MRI1] I. Moerdijk and G. Reyes, Models for Smooth Infinitesimal Analysis, Springer, Berlin (1991),
[doi:10.1007/978-1-4757-4143-8].

[I094] I. Ichinose and T. Ohbayashi, Ezactly soluble model of multispecies anyons and the braid group on a torus,
Nucl. Phys. B 419 (1994), 529-552, [doi:10.1016/0550-3213 (94)90343-3).

[IL90] R. Iengo and K. Lechner Quantum mechanics of anyons on a torus, Nucl. Phys. B 346 (1990), 551-575,
[doi:10.1016/0550-3213(90)90292-1].

[IL91] R. Iengo and K. Lechner, Ezact results for anyons on a torus, Nucl. Phys. B 364 (1991), 551-583,
[doi:lO.1016/0550—3213(91)90277—5L

42


https://doi.org/10.1016/j.physletb.2009.12.017
https://arxiv.org/abs/0908.0011
https://mitpress.ublish.com/book/holographic-quantum-matter
https://arxiv.org/abs/1612.07324
https://doi.org/10.1103/PhysRevB.43.10761
https://bookstore.ams.org/gsm-34
https://doi.org/10.1103/PhysRevD.75.085020
https://arxiv.org/abs/hep-th/0701036
https://doi.org/10.1002/prop.201300024
https://arxiv.org/abs/1309.2977
https://doi.org/10.1007/JHEP09(2013)080
https://arxiv.org/abs/1307.0509
https://doi.org/10.1103/PhysRevLett.111.231601
https://arxiv.org/abs/1308.1673
https://doi.org/10.1103/PhysRevD.89.066016
https://arxiv.org/abs/1312.0614
https://doi.org/10.1103/PhysRevD.89.066017
https://arxiv.org/abs/1312.4542
https://doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
http://dx.doi.org/10.4171/QT/12
https://doi.org/10.1016/0550-3213(95)00621-4
https://arxiv.org/abs/hep-th/9510209
https://doi.org/10.1016/0550-3213(96)00308-2
https://arxiv.org/abs/hep-th/9603142
https://doi.org/10.1063/1.43444
https://arxiv.org/abs/hep-th/9210112
https://doi.org/10.1142/S0217751X92002647
https://doi.org/10.1016/S0370-2693(97)01261-6
https://arxiv.org/abs/hep-th/9707184
https://doi.org/10.1016/0550-3213(82)90349-2
https://arxiv.org/abs/hep-th/9611008
https://doi.org/10.1016/S0370-2693(96)01672-3
https://doi.org/10.1007/s11005-018-1110-z
https://arxiv.org/abs/1702.01774
https://doi.org/10.1016/S0550-3213(97)00501-4
https://arxiv.org/abs/hep-th/9705162
https://doi.org/10.1088/1126-6708/2007/07/079
https://arxiv.org/abs/hep-th/0701203
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://doi.org/10.1007/978-1-4757-4143-8
https://doi.org/10.1016/0550-3213(94)90343-3
https://doi.org/10.1016/0550-3213(90)90292-L
https://doi.org/10.1016/0550-3213(91)90277-5

[Kal4a] A. Kapustin, Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Coho-
mology, [arXiv:1403.1467].

[Kal4b] A. Kapustin, Bosonic Topological Insulators and Paramagnets: a view from cobordisms,
[arXiv:1404.6659].

[KM17] B. Keimer and J. E. Moore, The physics of quantum materials, Nature Phys. 13 (2017), 1045-1055,
[doi:10.1038/nphys4302].

[KVWO3] E. Keski-Vakkuri and X.-G. Wen, Ground state structure of hierarchical QH states on torus and modular
transformation, Int. J. Mod. Phys. B 7 (1993), 4227-4259, [doi:10.1142/80217979293003644],
[arXiv:hep-th/9303155].

[KS17] I. Khavkine and U. Schreiber, Synthetic geometry of differential equations: I. Jets and comonad structure,
[arXiv:1701.06238].

[Ki03] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303 1 (2003), 2-30,
[doi:10.1016/S0003-4916(02)00018-0], [arXiv:quant-ph/9707021].

[KKLN22] A. Kleinschmidt, R. Kéhl, R. Lautenbacher, and H. Nicolai, Representations of involutory subalgebras of
affine Kac-Moody algebras, Commun. Math. Phys. 392 (2022), 89-123, [doi:10.1007/s00220-022-04342-9],
[arXiv:2102.00870].

[KNO06] A. Kleinschmidt and H. Nicolai, ITA and IIB spinors from K(E1o), Phys. Lett. B 637 (2006), 107-112,
[doi:10.1016/j.physletb.2006.04.007], [arXiv:hep-th/0603205].

[KN21] A. Kleinschmidt and H. Nicolai, Generalised holonomies and K(FEy), J. High Energy Phys. 2021 (2021)
54, [doi :10. 1007/JHEP09(2021)054], [arXiv:2107 . 02445].

[KNPO7] A. Kleinschmidt, H. Nicolai, and J. Palmkvist, K (Fy) from K(Eyp), J. High Energy Phys. 2007 (2007)
06, [doi:10.1088/1126-6708/2007/06/051], [arXiv:hep-th/0611314].

[KNV20] A. Kleinschmidt, H. Nicolai, and A. Vigan6, On spinorial representations of involutory subalgebras of
Kac-Moody algebras, in: Partition Functions and Automorphic Forms, Moscow Lectures 5, Springer (2020),
[doi :10. 1007/978—3—030—42400—8,4], [arXiv: 1811. 11659].

[KS05] D. Kochan and P. Severa, Differential gorms, differential worms, Mathematical Physics, World Scientific
(2005), 128-130, [doi:10.1142/9789812701862_0034], [arXiv:math/0307303].

[K624] B. Konig, t-structure of basic representation of affine algebras, [axrXiv:2407.12748].

[KMS93] I. Kolar, P. Michor, and J. Slovdk, Natural operations in differential geometry, Springer, Berlin (1993),
[doi:10.1007/978-3-662-02950-3].

[LS22] C. Lazaroiu and C. S. Shahbazi, The duality covariant geometry and DSZ quantization of abelian gauge
theory, Adv. Theor. Math. Phys. 26 (2022), 2213-2312, [doi:10.4310/ATMP.2022.v26.n7.a5],
[arXiv:2101.07236].

[LM22] Z. Li and R. S. K. Mong, Detecting topological order from modular transformations of ground states on the
torus, Phys. Rev. B 106 (2022) 235115, [doi:10.1103/PhysRevB.106.235115], [arXiv:2203.04329].

[Liu24] S. Liu, Anyon quantum dimensions from an arbitrary ground state wave function, Nature Commun. 15
(2024) 5134, [doi:10.1038/s41467-024-47856-7|, [arXiv:2106.15705].

[LHW16] Z.-X. Luo, Y.-T. Hu, and Y.-S. Wu, On Quantum Entanglement in Topological Phases on a Torus, Phys.
Rev. B 94 (2016) 075126, [doi:10.1103/PhysRevB.94.075126], [arXiv:1603.01777].

[MT12] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge University
Press (2012), [doi:10.1017/CB09780511994777].

[MaSa04] V. Mathai and H. Sati, Some Relations between Twisted K-theory and Es Gauge Theory, J. High Energy
Phys. 0403 (2004), 016, [doi:10.1088/1126-6708/2004/03/016], [arXiv:hep-th/0312033].

[Me13] E. Meinrenken, Clifford algebras and Lie groups, Ergebn. Mathem. & Grenzgeb., Springer (2013),
[doi:10.1007/978-3-642-36216-3].

[MiSc06] A. Miemiec and I. Schnakenburg, Basics of M-Theory, Fortsch. Phys. 54 (2006), 5-72,
[doi:10.1002/prop.200510256], [arXiv:hep-th/0509137].

[Mil7] J. Milne, Algebraic Groups — The theory of group schemes of finite type over a field, Cambridge University
Press (2017), [doi:10.1017/9781316711736].

[Mo14] G. Moore, Physical Mathematics and the Future, talk at Strings 2014,
[https://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf].

[MySS24] D. J. Myers, H. Sati, and U. Schreiber, Topological Quantum Gates in Homotopy Type Theory, Commun.
Math. Phys. 405 (2024) 172, [doi:10.1007/800220—024—05020—8], [arXiv:2303.02382].

43


https://arxiv.org/abs/1403.1467
https://arxiv.org/abs/1404.6659
https://doi.org/10.1038/nphys4302
https://doi.org/10.1142/S0217979293003644
https://arxiv.org/abs/hep-th/9303155
https://arxiv.org/abs/1701.06238
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1007/s00220-022-04342-9
https://arxiv.org/abs/2102.00870
https://doi.org/10.1016/j.physletb.2006.04.007
https://arxiv.org/abs/hep-th/0603205
https://doi.org/10.1007/JHEP09(2021)054
https://arxiv.org/abs/2107.02445
https://doi.org/10.1088/1126-6708/2007/06/051
https://arxiv.org/abs/hep-th/0611314
https://doi.org/10.1007/978-3-030-42400-8_4
https://arxiv.org/abs/1811.11659
https://doi.org/10.1142/9789812701862_0034
https://arxiv.org/abs/math/0307303
https://arxiv.org/abs/2407.12748
https://link.springer.com/book/10.1007/978-3-662-02950-3
https://dx.doi.org/10.4310/ATMP.2022.v26.n7.a5
https://arxiv.org/abs/2101.07236
https://doi.org/10.1103/PhysRevB.106.235115
https://arxiv.org/abs/2203.04329
https://doi.org/10.1038/s41467-024-47856-7
https://arxiv.org/abs/2106.15705
https://doi.org/10.1103/PhysRevB.94.075126
https://arxiv.org/abs/1603.01777
https://doi.org/10.1017/CBO9780511994777
https://doi.org/10.1088/1126-6708/2004/03/016
https://arxiv.org/abs/hep-th/0312033
https://doi.org/10.1007/978-3-642-36216-3
https://doi.org/10.1002/prop.200510256
https://arxiv.org/abs/hep-th/0509137
https://doi.org/10.1017/9781316711736
https://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
https://doi.org/10.1007/s00220-024-05020-8
https://arxiv.org/abs/2303.02382

[Nal7] H. Nastase, String Theory Methods for Condensed Matter Physics, Cambridge University Press (2017),
[doi:10.1017/9781316847978].

[NR78] Y. Ne’eman and T. Regge, Gravity and supergravity as gauge theories on a group manifold, Phys. Lett. B
74 1-2 (1978), 54-56, [doi:10.1016/0370-2693(78)90058-8].

[Ni87] H. Nicolai, d = 11 Supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987), 316-320,
[doi:10.1016/0370-2693(87)91102-6].

[Ni99] H. Nicolai, On M-Theory, J. Astrophys. Astron. 20 (1999), 149-164, [doi:10.1007/BF02702349],
[arXiv:hep-th/9801090].

[NH98] H. Nicolai and R. Helling, Supermembranes and M(atriz) Theory, in: ICTP Spring School on Nonpertur-
bative Aspects of String Theory and Supersymmetric Gauge Theories (1998), 29-74, [arXiv:hep-th/9809103],
[spire:476366].

[No23] S. Noja, On the Geometry of Forms on Supermanifolds, Differential Geom. Appl. 88 (2023) 101999,
[doi:10.1016/j.difgeo.2023.101999], [arXiv:2111.12841].

[OP99] N. Obers and B. Pioline, U-duality and M-Theory, Phys. Rept. 318 (1999), 113-225,
[doi:10.1016/80370-1573(99)00004-6|, [arXiv:hep-th/9809039].

[Ov04] B. Ovrut, Lectures on Heterotic M-Theory, in Strings, Branes and Extra Dimensions, TASI 2001, World
Scientific (2004), 359-407, [doi:10.1142/9789812702821_0007], [arXiv:hep-th/0201032].

[Pil4] A. Pires, AdS/CFT correspondence in condensed matter, Morgan & Claypool (2014), [arXiv:1006.5838],
[doi:10.1088/978-1-627-05309-9)].

[PJ21] S. Pu and J. K. Jain, Composite anyons on a torus, Phys. Rev. B 104 (2021) 115135, [arXiv:2106.15705],
[doi:10.1103/PhysRevB.104.115135].

[Ra84] R. Rajaraman, Solitons and Instantons, North Holland (1984), [ISBN:9780444862297].

[Ra21] L. Ravera, On the hidden symmetries of D = 11 supergravity, in: V. Dobrev (eds), Lie Theory and Its
Applications in Physics, Springer (2021), [doi:10.1007/978-981-19-4751-3_15|, [arXiv:2112.00445].
[RS20] C. Roberts and S. M. Schmidt, Reflections upon the Emergence of Hadronic Mass, Eur. Phys. J. Special

Topics 229 (2020), 3319-3340, [doi:10.1140/epjst/e2020-000064-6], [arXiv:2006.08782].

[Ro07] A. Rogers, Supermanifolds: Theory and Applications, World Scientific (2007), [doi:10.1142/1878].

[Sac08] C. Sachse, A Categorical Formulation of Superalgebra and Supergeometry, [arXiv:0802.4067].

[Sam23] H. Samtleben, 11D Supergravity and Hidden Symmetries, in Handbook of Quantum Gravity, Springer
(2023), [doi :10. 1007/978—981—19—3079—9], [arXiv: 2303. 12682}.

[SS17] H. Sati and U. Schreiber, Lie n-algebras of BPS charges, J. High Energ. Phys. 2017 (2017) 87,
[doi:10.1007/JHEP03(2017)087], [arXiv:1507.08692].

[SS20b] H. Sati and U. Schreiber, Proper Orbifold Cohomology, [arXiv:2008.01101].

[SS20b] H. Sati and U. Schreiber, The character map in equivariant twistorial Cohomotopy implies the Green-
Schwarz mechanism with heterotic M5-branes, [arXiv:2011.06533].

[SS23c] H. Sati and U. Schreiber, Anyonic topological order in TED K-theory, Rev. Math. Phys. (2023) 35 03
(2023) 2350001, [doi:10.1142/S0129055X23500010], [arXiv:2206.13563].

[SS24a] H. Sati and U. Schreiber, Fluz Quantization on Phase Space, Ann. Henri Poincaré (2024),
[doi:10.1007/s00023-024-01438-x], [arXiv:2312.12517].

[SS24b] H. Sati and U. Schreiber, Abelian Anyons on Fluz-Quantized M5-Branes, [arXiv:2408.11896].

[SS24c] H. Sati and U. Schreiber, The Possibility of Exotic Anyons, (in preparation).

[SS25] H. Sati and U. Schreiber, Flux quantization, Encyclopedia of Mathematical Physics, 2nd ed. 4 (2025),
281-324, [doi:10.1016/B978-0-323-95703-8.00078-1], [arXiv:2402.18473).

[Saul?] J. Sau, A Roadmap for a Scalable Topological Quantum Computer, Physics 10 (2017) 68,
[physics.aps.org/articles/v10/68].

[Schurl1891] F. Schur, Zur Theorie der endlichen Transformationsgruppen, Math. Ann. 38 (1891), 263-286,

[doi :10.1007/BF01 199254].

[Ser64] J.-P. Serre, Lie Algebras and Lie Groups — 196/ Lectures given at Harvard University, Lecture Notes in
Mathematics 1500, Springer (1992), [doi:10.1007/978-3-540-70634-2].

[Se97] E. Sezgin, The M-Algebra, Phys. Lett. B 392 (1997), 323-331, [doi:10.1016/S0370-2693(96)01576-6],
[arXiv:hep-th/9609086].

[Sh97] R. W. Sharpe, Differential geometry — Cartan’s generalization of Klein’s Erlagen program, Graduate Texts
in Mathematics 166, Springer (1997), [ISBN:9780387947327].

44


https://doi.org/10.1017/9781316847978
https://doi.org/10.1016/0370-2693(78)90058-8
https://doi.org/10.1016/0370-2693(87)91102-6
https://doi.org/10.1007/BF02702349
https://arxiv.org/abs/hep-th/9801090
https://arxiv.org/abs/hep-th/9809103
https://inspirehep.net/literature/476366
https://doi.org/10.1016/j.difgeo.2023.101999
https://arxiv.org/abs/2111.12841
https://doi.org/10.1016/S0370-1573(99)00004-6
https://arxiv.org/abs/hep-th/9809039
https://doi.org/10.1142/9789812702821_0007
https://arxiv.org/abs/hep-th/0201032
https://arxiv.org/abs/1006.5838
https://doi.org/10.1088/978-1-627-05309-9
https://arxiv.org/abs/2106.15705
https://doi.org/10.1103/PhysRevB.104.115135
https://doi.org/10.1007/978-981-19-4751-3_15
https://arxiv.org/abs/2112.00445
https://doi.org/10.1140/epjst/e2020-000064-6
https://arxiv.org/abs/2006.08782
https://doi.org/10.1142/1878
https://arxiv.org/abs/0802.4067
https://doi.org/10.1007/978-981-19-3079-9
https://arxiv.org/abs/2303.12682
http://link.springer.com/article/10.1007/JHEP03(2017)087
https://arxiv.org/abs/1507.08692
https://arxiv.org/abs/2008.01101
https://arxiv.org/abs/2011.06533
https://doi.org/10.1142/S0129055X23500010
https://arxiv.org/abs/2206.13563
https://doi.org/10.1007/s00023-024-01438-x
https://arxiv.org/abs/2312.12517
https://arxiv.org/abs/2408.11896
doi:10.1016/B978-0-323-95703-8.00078-1
https://arxiv.org/abs/2402.18473
https://physics.aps.org/articles/v10/68
https://doi.org/10.1007/BF01199254
https://doi.org/10.1007/978-3-540-70634-2
https://doi.org/10.1016/S0370-2693(96)01576-6
https://arxiv.org/abs/hep-th/9609086
https://link.springer.com/book/9780387947327

[So00] D. Sorokin, Superbranes and Superembeddings, Phys. Rept. 329 (2000), 1-101, [arXiv:hep-th/9906142],
[doi:10.1016/S0370-1573(99)00104-0].

[Str13] F. Strocchi, An Introduction to Non-Perturbative Foundations of Quantum Field Theory, Oxford University
Press (2013), [doi:10.1093/acprof:0s0/9780199671571.001.0001].

[To95] P. Townsend, p-Brane Democracy, in Duff (ed.), The World in Eleven Dimensions, IoP (1999), 375-389,
[ISBN:9780750306720], [arXiv:hep-th/9507048].

[To98] P. Townsend, M(embrane) theory on T?, Nucl. Phys. Proc. Suppl. 68 (1998), 11-16,
[doi:lO.1016/50920—5632(98)00136—4L[arXiv:hep—th/9708034L

[To99] P. Townsend, M-theory from its superalgebra, in Strings, Branes and Dualities, NATO ASI Series 520,
Springer (1999), [doi:10.1007/978-94-011-4730-9_5], [arXiv:hep-th/9712004].

[Ts04] D. Tsimpis, Curved 11D supergeometry, J. High Energy Phys. 11 (2004) 087, [arXiv:hep-th/0407244],
[doi:1088/1126-6708/2004/11/087].

[Va04] V. Varadarajan, Supersymmetry for mathematicians: An introduction, Courant Lecture Notes in Mathe-
matics 11, American Mathematical Society (2004), [doi:10.1090/c1n/011].

[Var06] O. Varela, Symmetry and holonomy in M Theory, PhD thesis, Valencia (2006), [arXiv:hep-th/0607088],
[hd1:10550/15484].

[Va07] S. Vaula, On the underlying Eq11-symmetry of the D = 11 Free Differential Algebra, J. High Energy Phys.
0703 (2007) 010, [doi:10.1088/1126-6708/2007/03/010], [arXiv:hep-th/0612130].

[Wa24] K. Waldorf, Geometric T-duality: Buscher rules in general topology, Ann. Henri Poincaré 25 (2024),
1285-1358, [doi:10.1007/500023-023-01295-0], [arXiv:2207.11799].

[Wen89] X.-G. Wen, Vacuum Degeneracy of Chiral Spin State in Compactified Spaces, Phys. Rev. B 40 (1989),
7387-7390, [doi:10.1103/PhysRevB.40.7387].

[Wen90] X.-G. Wen, Topological Orders in Rigid States, Int. J. Mod. Phys. B 4 (1990), 239-271,
[doi:10.1142/80217979290000139].

[WDF90] X.-G. Wen, E. Dagotto, and E. Fradkin, Anyons on a torus, Phys. Rev. B 42 (1990), 6110-6123,
[doi :10.1103/PhysRevB.42. 6110].

[WN90] X.-G. Wen and Q. Niu, Ground state degeneracy of the FQH states in presence of random potential and
on high genus Riemann surfaces, Phys. Rev. B 41 (1990), 9377-9396, [doi:10.1103/PhysRevB.41.9377].

[WZ77] J. Wess and B. Zumino, Superspace formulation of supergravity, Phys. Lett. B 66 (1977), 361-364,
[doi:10.1016/0370-2693(77)90015-6].

[We01] P. West, Ey; and M Theory, Class. Quant. Grav. 18 (2001), 4443-4460, [arXiv:hep-th/0104081],
[doi:10.1088/0264-9381/18/21/305].

[We03] P. West, E11, SL(32) and Central Charges, Phys. Lett. B 575 (2003), 333-342, [arXiv:hep-th/0307098],
[doi:10.1016/j.physletb.2003.09.059].

[Wi98] E. Witten, Magic, Mystery, and Matriz, Notices Amer. Math. Soc. 45 9 (1998), [ams . org/notices/199810].

[Ya93] K. Yagi, Super Lie Groups, Adv. Stud. Pure Math. 22, Progress in Differential Geometry (1993), 407-412,
[euclid:1534359537].

[Yo19] K. Yonekura, On the cobordism classification of symmetry protected topological phases, Commun. Math.
Phys. 368 (2019), 1121-1173, [doi:10.1007/s00220-019-03439-y], [arXiv:1803.10796].

[ZLSS15] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics, Cam-
bridge University Press (2015), [doi:10.1017/CB09781139942492].

[ZeelO] A. Zee, Quantum Field Theory in a Nutshell, 2nd ed., Princeton University Press (2010),
[ISBN:9780691140346].

[ZCZW19] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum Information Meets Quantum Matter — From
Quantum FEntanglement to Topological Phases of Many-Body Systems, Quantum Science and Technology
(QST), Springer (2019), [doi:10.1007/978-1-4939-9084-9], [arXiv:1508.02595].

45


https://arxiv.org/abs/hep-th/9906142
https://doi.org/10.1016/S0370-1573(99)00104-0
https://doi.org/10.1093/acprof:oso/9780199671571.001.0001
https://www.crcpress.com/The-World-in-Eleven-Dimensions-Supergravity-supermembranes-and-M-theory/Duff/9780750306720
https://arxiv.org/abs/hep-th/9507048
https://doi.org/10.1016/S0920-5632(98)00136-4
https://arxiv.org/abs/hep-th/9708034
https://doi.org/10.1007/978-94-011-4730-9_5
https://arxiv.org/abs/hep-th/9712004
https://arxiv.org/abs/hep-th/0407244
https://iopscience.iop.org/article/10.1088/1126-6708/2004/11/087
http://dx.doi.org/10.1090/cln/011
https://arxiv.org/abs/hep-th/0607088
https://hdl.handle.net/10550/15484
https://doi.org/10.1088/1126-6708/2007/03/010
https://arxiv.org/abs/hep-th/0612130
https://doi.org/10.1007/s00023-023-01295-0
https://arxiv.org/abs/2207.11799
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.42.6110
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1016/0370-2693(77)90015-6
https://arxiv.org/abs/hep-th/0104081
https://doi.org/10.1088/0264-9381/18/21/305
https://arxiv.org/abs/hep-th/0307098
https://doi.org/10.1016/j.physletb.2003.09.059
https://www.ams.org/notices/199810
https://projecteuclid.org/euclid.aspm/1534359537
https://doi.org/10.1007/s00220-019-03439-y
https://arxiv.org/abs/1803.10796
https://doi.org/10.1017/CBO9781139942492
https://press.princeton.edu/books/hardcover/9780691140346/quantum-field-theory-in-a-nutshell?srsltid=AfmBOoovOHTlGiQ8S-JqFUpn26ihzhfNQocoId3eN9SUZ8WYL83oyKG0
https://doi.org/10.1007/978-1-4939-9084-9
https://arxiv.org/abs/1508.02595

	Introduction
	The M-algebra
	The base case
	The hidden extension
	The 3-form
	s=0: CSp-symmetry
	s=-1: IIA-Algebra

	Further extensions

	The M-group
	Super-Lie groups
	The Lie integration

	Conclusion

