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Abstract

In the search for potential mathematical structures underlying 11-dimensional supergravity with M-
theoretic corrections included, two major approaches exist, but had remained unrelated: On the one hand,
a widely studied proposal is that M-theory is a kind of Cartan geometry locally modeled on inclusions
Kd(d) ↪→ Ed(d) of maximal compact subgroups of exceptional Lie or Kac-Moody groups in the E-series.
On the other hand, the approach to supergravity initiated by D’Auria and Fré may be understood as
higher (i.e. homotopy theoretic, stacky) super-Cartan geometry locally modeled on the exceptional super
Lie cocycles of super Minkowski spacetimes. Here we informally discuss some indication for how the first
of these approaches might arise within the second.
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1 Review and Motivation

The fact that the term “M-theory” eventually became attached to a grandiose conjecture [Witten98] tends
to overshadow that it was originally coined as “non-committed” shorthand [HoWi95, p. 2] for “membrane
theory” [Duff95, Duff99] (directly modeled on the well established term “string theory”), referring to the
concrete study of super-membrane sigma models on 11-dimensional supergravity spacetimes [BST87]. It is
noteworthy that the latter is a rich topic in itself about which a lot is understood in precise mathematical
detail. Seminal mathematical results here include [AtWi01, HoSi05]. Hence close mathematical analysis of
M-theory-the-concrete is fruitful in itself, and is plausibly a way to make progress on M-theory-the-grandiose.

Traditional wisdom has it that a key technical problem with M-theory is that membrane sigma-models
are understood only classically, not in the quantum version that is expected to be relevant for the M-theory-
in-the-grandiose-sense. But actually a little more is true: membrane sigma models – and also the 5-brane
sigma models induced by them – are understood in pre-quantum theory, in the precise sense in which this
term is used in the Kostant-Souriau formalization of quantization via geometric quantization. This is a
substantial distinction: we have previously shown [FSS13b, Sc15b] how to refine the brane sigma-models
further to higher/local pre-quantum theory [FRS13a, FRS13b], and in this refined formulation membrane
theory already sees a wealth of subtle effects, such as notably the properly globalized BPS groups of brane
charges [SaSc15] in generalized twisted differential cohomology [FSS15]. This goes much beyond what genuine
classical field theory sees, and arguably probes into M-theory-in-the-grandiose-sense.

As generally in quantization, also pre-quantization involves making choices. Here we discuss:

Claim 1.1. Exceptional generalized geometry in 11-dimensions is a natural parameterization of the space
of choices in the pre-quantization of the fermionic supergravity 4-flux, equivalently of the space of choices in
the definition of the M2-brane WZW term on curved superspacetimes.

More concretely, the statement here is that 11-dimensional supergravity with these pre-quantum mem-
brane and 5-brane effects included is precisely the higher super Cartan geometry [Sc15b, Sc15a] which is
locally modeled on the exceptional super Lie algebra cocycles on 11-dimensional super-Minkowski spacetime
R10,1|32, regarded as a super Lie algebra (see [Sc13] for a comprehensive account). This is readily seen to be
a globalized version of key observations originating in [AuFr82], after understanding the “FDA”s referred to
there as the Chevalley-Eilenberg algebras of super L∞-algebras [SSS09, FSS13b].

1.1 11-dimensional supergravity as super-Cartan geometry

The identification of 11-dimensional supergravity as super-Cartan geometry may be understood in two steps
[Sc13].

1. super-orthogonal structures A simple but remarkable observation is that the Spin-cover Spin(10, 1)
of the Lorentz group is the joint stabilizer of the super Lie bracket and of the M2-brane 4-cocycle µM2

4

on R10,1|32. A reduction of the super-structure group of an 11-dimensional supermanifolds to this
stabilizer group along Spin(10, 1)→ GL(R10,1|32) is hence precisely the srtructure needed to equip the
tangent bundle with the structure of a bundle of super-Lie algebras equipped with 4-cocycles, whose
typical fiber is (R10,1|32, µM2

4 ). At the same time such reduction is of course the first-order formulation
of pseudo-Riemannian structure, hence of field configurations of graviton and gravitino.

2. torsion constraint Requiring such a reduction of the structure group of the supermanifold to be
first-order integrable means that it is, around each point, equivalent to first infinitesimal order to the
canonical reduction on the model space R10,1|32 (via left translation) means equivalently that the
torsion of the reduction structure vanishes. Here in the context of supergeometry this means that the
super-torsion vanishes. Now the vanishing of the bosonic component of the super-torsion tensor in 11d
is known to be already equivalent to the equations of motion of 11-dimensional supergravity. Requiring
also its fermionic component to vanish means to set the “gravitino field strength” to zero, hence means
restriction to bosonic avcuua.
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These facts exhibit higher supergravity mathematically as a topic in what one might call parameterized
Lie theory, or in first-order integrable parameterized higher super Lie theory, to be precise, hence higher
super Cartan geometry.

Accordingly, every Lie theoretic statement about (R10,1|32, µ4) is to induce a parameterized analog that
impacts on the understanding of 11-dimensional supergravity.

In particular we may ask the 3-form potential C3 to be chosen such that on each first order infinitesimal
neighbourhood it relates to the 4-flux ψΓa1a2Ψ ∧ ea1 ∧ ea2 in a Lie theoretic way.

One of the most immediate questions that one may ask of a pair (g, µ) (such as (R10,1|32, µM2
4 )) consisting

of a Lie algebra and a cocycle is: what are Lie algebra extensions p∗ : ĝ → g such that p∗µ trivializes in
cohomology? We will see below in 2 that every such an extension produces a parameterization of local
choices of WZW terms for µ by linear splittings of p∗.

If µ here is a 2-cocycle, then there is a well known universal answer to this question: the universal ĝ for
which this is true is the Lie algebra central extension that is induced by µ2 via the classical formula.

If µ however is a (p + 2)-cocycle, then the situation is more subtle, as then it depends on whether one
regards (super) Lie algebras as forming a 1-category, or whether one understands them as sitting inside the
∞-category of (super-)L∞-algebras. In the latter case the universal ĝ is the Lie (p + 1)-algebra that is the
homotopy fiber of µp+2 [FSS13b]. This is what appears in the higher super Cartan geometry mentioned
above.

But one may also constrain ĝ to remain a (super-)Lie 1-algebra, hence a plain (super-)Lie algebra, while
still requiring that µp+2 trivializes on it.

Such ĝ1 for the case of (g, µ) = (R10,1|32, µM2
4 ) happen to have already been found in the literature

[AuFr82, BAIPV04]: There is (at least) a 1-parameter family of such, and for all members of the family the
underlying bosonic vector space (body) is

(R̂10,1)bosonic ' R10,1 ⊕ ∧2(R10,1)∗ ⊕ ∧5(R10,1)∗

Following [H97] we may equivalently express this in terms of purely spatial components by applying Poincaré
duality to obtain

R̂10,1|32
bosonic 'lin R10,1 ⊕ ∧2(R10)∗︸ ︷︷ ︸

M2-brane

⊕ ∧9 R10︸ ︷︷ ︸
M9-brane

⊕ ∧5(R10)∗︸ ︷︷ ︸
M5-brane

⊕ ∧6 R10︸ ︷︷ ︸
KK-monopole

.

Considering this in turn for a splitting R10,1 ' R3,1 ⊕ R7 adapted to a KK-compactification to 4d gives

R̂10,1|32
bosonic 'lin

(
R7 ⊕ ∧2(R7)∗ ⊕ ∧5(R7)∗ ⊕ ∧6R7

)
⊕ · · · ,

where the ellipses indicates summands that involve a tensor factor of R3,1 or (R3,1)∗. This last expression
is the typical fiber of what later came to be known, independently, as the exceptional tangent bundle of the
fiber space for 11d SuGra compactified to 4d [Hull07, section 4.4] [PaWa08, section 2].

The observation that motivates the formulation of 11-dimensional supergravity based on such exceptional
tangent bundle is the following:

1. A choice of fiberwise identification of an exceptional tangent bundle with a direct product form as
above is a choice of reduction of structure groups along Kd(d) ↪→ Ed(d).

2. Part of the action of ed on the exceptional tangent bundle may be identified with an action of 3-forms,
and these are naturally locally identified with the background field for the M2-brane sigma-model.

Therefore the idea is that the field content of 11d-sugra with pre-quantized M2-brane background field Ĉ3

should equivalently be locally a Kd(d) ↪→ Ed(d) structure subject to a global twist by the 4-class underlying

the Ĉ3 field, probably for d = 11. Indeed, R10,1⊕∧2(R10,1)∗⊕∧5(R10,1)∗ is isomorphic the level-2 truncation
of the l1-representation of E11 [We04, around (5.2)] (see also e.g. [We11, (2.17)]).

This connection between the super Lie algebra obtained as above in [AuFr82, BAIPV04] and the typical
fiber of an exceptional tangent bundle as in [Hull07, PaWa08] seems not to have been explored in print
before, except for a remark in [Vau06, p. 14].
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2 The M2-WZW term and the exceptional tangent bundle

We discuss here in more detail how the exceptional tangent bundle may be systematically discovered from
locally parameterizing the space of κ-symmetry WZW ferms for the M2-brane. In this section we consider
mostly just a single (exceptional) tangent space. Below in 3 we look at the globalization of this story over
curved superspacetimes.

It is a famous fact [BST87] that

• a) the equations of motion of 11-dimensional supergravity imply that the bilinear fermionic component

Gψψ4 of the super-4-form flux on 11-dimesnional spacetimeX is a definite form (in terminology borrowed
from that of G2-manifolds), which in each tangent space is Spin(10, 1)-equivalent to the left-invariant
super 4-form ψ ∧ Γa1a2 ∧ ψ ∧ ea ∧ eb on super-Minkowski spacetime R10,1|32.

• b) Gθθ4 is the curvature 4-form of the κ-symmetry WZW term for the M2-brane sigma-model with
target space the give 11d superspacetime.

What has arguably found less attention is that the definition of the M2-brane sigma model with target
space a curved superspacetime X is not complete with just this 4-form curvature: the higher WZW term
in the M2-brane action functional is locally a choice of form potential C3 for Gψψ4 , and globally it is the
3-connection of a 3-bundle (2-gerbe) whose local connection 3-forms are given by these choices of C3. (Such

a 3-bundle with 3-connection is a higher pre-quantization of Gψψ4 regarded as a pre-3-plectic form.) One
place in the physics literature where the need of this extra information is at least mentioned is [Wi86, page
17].

A systematic study of 11d-supergravity with these pre-quantum corrections coming from the M2 and
the M5-brane sigma-models included is in [Sc13], with lecture notes in [Sc15b]. For the moment here we
will focus just on the space of local choices, and stay within the realm of traditional differential geometry.
We will see that the space of local choices is naturally parameterized by splittings of the 11d exceptional
generalized tangent bundle, hence by exceptional generalized metrics.

It is useful to state the problem of parameterizing spaces of form potentials for left-invariant closed forms
in generality, to separate its general structure from the intricacies of its application to M2-branes WZW
terms. In generality it looks as follows.

2.1 Atiyah sequence for (p+ 1)-form connections

Consider a germ of a Lie group G (hence a “local Lie group” where we consider working on arbitray small
contractible neighbourhoods of the neutral element of an actual Lie group and ignore the global topology of
the group). Consider furthermore a closed an left-invariant differential (p+ 2)-form

ω ∈ Ωp+2
cl,li (G) .

Since we are working just locally on a germ, by the Poincaré lemma ω is guaranteed to have a potential

A ∈ Ωp+1(G)

in that
dA = ω

where of course A may not be left-invariant itself, unless ω comes from a trivial Lie algebra cocycle. But we
may force that to happen after passing to an extension:

Assume that there is an extension of (germs of) Lie groups

p : Ĝ −→ G

with the property that pulled back along this extension, ω does become left-invariantly trivial, i.e. such that
there is a left invariant potential form

Â ∈ Ωp+1
li (Ĝ)
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such that
dÂ = p∗ω .

If this may be found, then (at least part of) the space of potentials for ω down on G has a neat parame-
terization as follows.

Every splitting
σ : G −→ Ĝ

of the bundle underlying the extension (i.e. a section of the underlying map of (germs of) smooth manifolds,
not required to respect the group structure) gives rise to a potential for ω, namely the pullback σ∗Â of the
left-invariant “reference potential” which we assumed to exist on Ĝ:

d(σ∗Â) = σ∗(dÂ)

= σ∗(p∗ω)

= (p ◦ σ)∗ω

= id∗ω

= ω

.

Notice that by the left-invariance of Â, two sections σ that differ by an action of Ĝ on itself give rise
to the same potential form: For every element ĝ ∈ Ĝ write Lĝ : Ĝ −→ Ĝ for the action on Ĝ given by
left-multiplication. Then

(Lĝ ◦ σ)∗Â ' σ∗(L∗ĝÂ)

' σ∗Â
.

This means that the parameterization of potential forms which we found is really the quotient space
ΓG(Ĝ)/Ĝ. But this has a nice re-interpretation: this is equivalently the space of pointed sections of p (those
that send the neutral element of G to the neutral element of Ĝ).

This is useful, because it implies that as we restrict further from germs to infinitesimal neighbourhoods,
hence to Lie algebras, then the space of sections becomes the space of linear splittings of the Lie algebra
extension ĝ −→ g:

0 // ker(p∗) // ĝ
p∗

// g //

σ∗

yy
0 .

This is a very familiar situation. An example of this at the level of Lie algebroids is the Atiyah sequence
of a principal bundle, whose fiberwise linear splittings correspond to choices of connection 1-forms. Here we
see something analogous for connection (p+ 1)-forms.

Notice that on the level of Lie algebras Â is identified with an element of the Chevalley-Eilenberg dg-
algebra CE(ĝ) such that ddCE

Â = (p∗)
∗ω.

2.2 Realization for M2-brane WZW terms

We may now specify the above general discussion to the case of the M2-brane WZW term.
In this case (as reviewed in [FSS13b])

• g := R10,1|32;

• ω := ψ ∧ Γa1a2ψ ∧ ea1 ∧ ea2

and so the question is if there exists a suitable super Lie algebra extension p∗ : ĝ −→ g and an element
Â ∈ CE(ĝ) such that

dCEÂ = (p∗)
∗ψ ∧ Γa1a2ψ ∧ ea1 ∧ ea2 .

If so, then all pullbacks of Â along linear splittings of p∗ are possible WZW terms for the M2-brane.

5



This is non-trivial. But it is precisely this problem that was solved already (even if not presented from
the perspective used here) in [AuFr82, section 6] and more comprehensively in [BAIPV04].

These authors find [AuFr82, (6.2)] [BAIPV04, (28)] that there exists a 1-parameter class of solutions to
this problem given by super Lie algebras ĝ which are generically fermionic extensions of the M-theory super
Lie algebra [To95, H97], and hence whose bosonic body is generically:

ĝbos ' R10,1 ⊕ ∧2(R10,1)∗ ⊕ ∧5(R10,1)∗

(except for one value of the parameter, at which the ∧5-summand disappears). Moreover, these authors find
a class of Chevalley-Eilenberg 3-forms Ĉ that trivialize the M2-brane 4-cocycle on this extension. It is given
for

s ∈ R− {0}

by [AuFr82, (6.1)] [BAIPV04, (28)]

Ĉ(s) := αLP(s) Ba1b1 ∧ ea1 ∧ ea2︸ ︷︷ ︸
ĈLP

+αCS(s) Ba1a2 ∧Ba2a3 ∧Ba3a1︸ ︷︷ ︸
ĈCS

+ · · · ,

where {Ba1a2} is a basis for the left-invariant 1-forms on the summands ∧2(R10,1)∗, and where we show only
the terms generated by {ea} and {Ba1a2}.

According to [BAIPV04, (30)] we have

• for s = −3 then αCS(−3) = 0 and with it the second term above vanishes

• for s→ 0 then the bosonic part of sĈ(s) goes to ĈCS

We observe below in section 2.3 that ĈLP akin to a Liouville-Poincaré form on a cotangent bundle, while
ĈCS is akin to a Chern-Simons form.

In this context it is maybe curious that in the limit s→ 0 the M-theory super Lie algebra here becomes
a limiting case of osp(1|32) [FIO15].

ea := dxa + θΓadθ

ψα = dθα

2.3 The M2-Liouville-Poincaré form and 3-form shift symmetry

Proposition 2.1. Given a bosonic 3-form C ∈ ∧3(R10,1|32)∗ then the linear splitting

R10,1
σC
∗ // R10,1 ⊕ ∧2(R10,1)∗

v � // (v, ιvC)

has the property that
(σC∗ )∗ĈLP = C .

Corollary 2.2. For s = −3 then
(σC∗ )∗Ĉ(−3) = C .

In particular, the map from linear splittings to bosonic 3-forms is surjective.

Remark 2.3. The formula for the splitting in prop.2.1 is coincides with the formula that the literature on
exceptional generalized geometry postulates to encode the 3-form degrees of freedom [Hull07, (4.2)] [PaWa08,
(B.23)].
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2.4 Gauge fields and Chern-Simons forms

On the other hand, consider which section would parameterize C via pullback if only the second summand
ĈCS were present in Ĉ, hence the case s→ 0. This would most naturally be understood by using the Lorentz
metric to make the linear identification

∧2(R10,1)∗
'−→ so(10, 1) .

Notice that this matches the role that Bab plays in the super Lie algebra ĝ, where it acts on fermions via
action with BabΓ

ab on the spin representation, i.e. via the matrix representation of so(10, 1) on the fermions.
With such an identification, then a linear splitting is an so(10, 1)-valued linear 1-form A, and the 3-form

that it parameterizes is
(σA∗ )∗ĈCS = 〈A ∧ [A,A]〉 ,

where 〈−,−〉 is the invariant bilinear (Killing) form. This is of course the Chern-Simons form for the linear
1-form A regarded as a constant differential 1-form.

Hence we see that for generic value of the parameter s in the possible choices of Ĉ, the 3-form poten-
tials that are parameterized by linear splittings as above are naturally interpreted as having a component
proportional to the Chern-Simons form of a nonabelian gauge field.

Now I don’t see at the moment how this is more than a curiosity, but it seems suggestive of the following
expectations

• such a Chern-Simons component is what one expects to see appear in heterotic Hořava-Witten “comapc-
tifications” of the setup;

• in the context of gauged supergravity it is part of the R-symmetry that is being gauged, and from
the 11-dimensional perspective that R-symmetry is an isometry of the compactification space, hence
is locally a Lorentz transformation;

• the interpretation of the splitting as a 1-form with values in bivectors is also the natural interpretation
in the context of Kaluza-Klein reduction of the on fibers with 2-cycles by which the 3-form C is fiber
integrated to a space of 1-forms Ai :=

∫
Σi C. For this case, too, it is folklore that the {Ao}, which a

priori are abelian, become gauged under a nonabelian group.
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3 From higher geometry to exceptional geometry

We give now the general abstract formulation.

3.1 Definite forms

We discuss formalization of the concept of definite forms in the sense in which they traditionally appear for
instance in G2-structure, but pre-quantized to WZW-terms.

Throughout, let G be a braided cohesive ∞-group, def. ??, equipped with a Hodge filtration, def. ??,
and write BGconn for the corresponding differential coefficient object, def. ??.

Definition 3.1. Given

1. a G-principal connection ∇F : F −→ BGconn, def. ??;

2. an F -fiber bundle E → X, def. ??;

then a definite parameterization of ∇ by E is a G-principal connection on the total space of the fiber bundle

∇E : E −→ BGconn ,

such that the equivariant differential concretification conc//Aut(F )◦σ(∇E), prop. ??, of the section σ(∇E)
corresponding to ∇E under prop. ??

[F,BGconn]//Aut(F )

((

conc//Aut(F ) // GConn(F )//Aut(F )

vv
X

σ(∇E)
77

// BAut(F )

is definite, def. ??, on ∗ `∇
F

−→ [F,BGconn]
conc−→ GConn(X).

Proposition 3.2. There is a canonical ∞-functor from definite parameterizations of ∇F over E → X,
def. 3.1, to lifts, def. ??, of the structure group of E (via prop. ??) through the quantomorphism ∞-group
extension, def. ??

BQuantMorph(∇F )

��
X //

g
77

BAut(F )

.

Specifically if the structure ∞-group of E has already been reduced along some G→ HamSympl(∇F ), then
there is a canonical ∞-functor from definite parameterizations to lifts to HeisG(LWZW)-structures

BHeisG(∇F )

��
X //

g
99

BAut(F )

.

In particular for a definite parameterization on E → X to exist it is necessary that E admits a lift to
QuantMorph(∇F )-structure.

Proof. By prop. ?? and prop. ??. �
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Corollary 3.3 (obstruction to definite parameterizations). With E → X and ∇F as in def. 3.2, assume
that the structure group of E is reduced along HamSympl(∇F ) ↪→ Aut(F ), def. ??. Then an obstruction
for a definite parameterization, def. 3.1, of ∇F over E → X to exist is the obstruction class [P∇(E)] of def.
??.

We now consider definite parmeterizations of WZW terms over infinitesimal disk bundles, which are
induced from WZW terms on the base space.

Definition 3.4. Let V be a framed object, def. ?? and ∇DV

: DV −→ BGconn a G-principal connection,
def. ?? on its infinitesimal disk, def. ??. Then for X a V -manifold, def. ??, a G-principal connection

∇X : X −→ BGconn on X is a definite globalization of ∇DV

over X if its pullback ∇TkX to the infinitesimal
disk bundle along the horizontal map in def. ??

∇T
kX : T kX

ev−→ X
∇X

−→ BGconn

is a definite parameterization of ∇DV

over T kX in the sense of def. 3.1.

Proposition 3.5. There is a canonical functor from definite globalizations of ∇ over X, def. 3.4, to

QuantMorph(∇DV

)-structures on X, i.e. to G-structures on X, def. ??, for G the quantomorphism group

of ∇DV

, def. ??.

Proof. The defining construction ∇X 7→ ∇TkX is clearly functorial, being given by precomposition. Then

prop. 3.2 gives a functor sending the ∇TkX further to StabGL(V )(∇DV

)-structures on X. By prop. ?? these

are equivalently QuantMorph(∇DV

)-structures. �

Corollary 3.6 (obstruction to definite globalization). An obstruction for a definite globalization of ∇DV

over X to exist is the obstruction class

P∇DV (X) := P∇DV (T kX)

of def. ??.

Proof. By prop. 3.5 and corollary 3.3. �

Definition 3.7. We call a definite globalization as in def. 3.4, infinitesimally integrable if the

QuantMorph(∇DV

)-structure corresponding to it under prop. 3.5 is infinitesimally integrable according to
def. ??.

So far the obstructions in corollary 3.3 and corollary ?? are such that their vanishing is necessary but
possibly not sufficient for the existence of a definite globalization. This is because, by construction, they
obstruct precisely the existence of the differential concretification of the section corresponding to a global
principal connection, but not necessarily the existence of that section itself, before differential concretifica-
tion. That is to say, when these obstructions vanish then a definite and diffentially concrete section of the
GConn(DV )-fiber bundle associated to the frame bundle is guarateed to exist, but the above results do not
guarantee yet, that this concrete section comes from an un-concrete section obtained by restricting a global
G-principal connection to all infinitesimal disks. We need to refine the obstruction information in order to
guarantee this.

To this end, we now consider fully integrable definite globalization, i.e. such that do not only coincide
with the prescribed prequantum geometry on infinitesimal disks as in def. 3.7, but do so on an entire V -cover,
def. ??.
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Definition 3.8. Given a V -manifold with V -cover V ← U → X and given a G-principal connection
∇V : V −→ BGconn, def. ??, an integrable definite globalization of ∇V over X is a G-principal connection
on X ∇X : X // BGconn such that there is a homotopy

U

et

## ##
et

{{
V

∇V ##

X

∇X{{
BGconn

'
v~

.

Remark 3.9. The notion in def. 3.8 is the pre-quantization, def. ??, of the integrable globalization of just
the curvature ωV of the connection:

U

et

$$ $$
et

zz
V

∇V

$$

ωV

##

X

∇X

zz

ωX

zz

BGconn

F(−)

��
Ω2

cl(−,G)

'
u}

.

Example 3.10. Given an integrable globalization as in def. 3.8, forget the connection and consider just
the maps modulating the underlying G-principal bundles PV → V and PX → X, respectively. Then
base-chaning the correspondence diagram along the point inclusion ∗ → BG and using that both local
diffeomorphisms as well as 1-epimorphisms are stable under pullback, it follows that PX is a PV -manifold.

Definition 3.11. Let V be an object equipped with the structure of a differential cohesive group, def. ??.
We say that a G-principal connection, def. ?? ∇V : V −→ BGconn is equivariant if the left ∞-action of V
on itself, def. ??, is Hamiltonian in that it factors

V // HamSympl(∇V ) // Aut(V )

through the object underlying the Hamiltonian symplectomorphism ∞-group, def. ??, of ∇V .

Remark 3.12. The condition in def. 3.11 means that there exists a cover V̂ of V over which the left
V -action on itself factors through the Heisenberg group, def. ??, of ∇V , hence that we have the dashed

10



morphism in the following diagram (from the proof of theorem ??):

V̂

����ss
HeisV (∇V )

��

// // V

��
QuantMorph(∇V )

��

// // HamSympl(∇V )

��

� � // Aut(V )

∇V ◦(−)

��
∗ // //

`∇V

22BΩ∇V (GConn(V )) �
� // GConn(V )

Notice that we do not require the dashed morphism to respect group structure.
For instance for ∇V the canonical prequantum bundle on a symplectic vector space (V, ω), then, by the

discussion in ??, HeisV (∇V ) is the traditional Heisenberg group extension U(1)→ Heis(V, ω)→ V . While
as a group extension this does not split, as a map of underlying spaces is the trivial U(1)-principal bundle
over V and hence does split and admit a dashed section as above, even with V̂ = V .

Now the total left part of the diagram says that restricted along V̂ → V the operation V
∇V ◦(−)−→

GConn(V ) of (left-)translating the connection over V is cohesively gauge equivalent to the trivial action,
hence that the translation may be gauged away. This is the refinement of the curvature form ωV being
genuinely left invariant over all of V .

Theorem 3.13. Given a differentially cohesive group V , given a V -manifold X, def. ??, given an equivariant
connection ∇V , def. 3.11, then a necessary condition for the existence of an integrable definite globalization
∇X , of ∇V over X, def. 3.8, is the existence of a G-structure on X, def. ??, for G = QuantMorph(L∇DV )
the quantomorphism group, def. ??, of the restriction

∇DV

: DV → V
∇V

−→ BGconn

of ∇V to the infinitesimal disk, def. ??, of V , such that moreover this G-structure is integrable, def. ??,
relative to the left-invariant G-structure gLI of V , example ??.

Proof. Assuming ∇X exists, consider its pullback to the infinitesimal disk bundle via the horizontal map ev
in the defining pullback in def. ??:

T kX

ev

"" ""

∇TkX

--

U

et

##
et

{{{{
X

∇X

##

V

∇V{{
BGconn

We now find a necessary conditions for ∇TkX to exist, which is hence also a necessary condition for ∇X to
exist.

First observe that by prop. ?? the infinitesimal disk bundle of U is both the pullback of that on X as
well as of that on V . By prop. ?? the latter is canonically trivialized via left translation such that the map
ev restricts over the V -cover to the left action of V on its infinitesimal disk DVe at the neutral element. This

11



means that the above diagram completes to a pasting composite as shown by solid arrows in the following
diagram.

HeisV (∇V )× DVe

��

�� ��

U × DVe

����
et

zzzz

88

et

**

HeisV (∇V )

�� ��

T kX

ev
����

∇TkX

00

U

et

++

et

yyyy

88

V × DVe
(−)·(−)

��
X

∇X

%%

V

∇V

ss
BGconn

Moreover, by the assumptions in def. 3.11 the connection ∇V is locally invariant under left translation, up
to gauge transformation, as discussed in remark 3.12, (possibly after further refining the cover U via the
cover V̂ of V , which we suppress notationally) so that we get the dashed lifts in the above diagram.

By prop. ??, ∇TkX is equivalently a section σ of the associated [DVe ,BGconn]-fiber bundle, such that σ
is locally on U equivalent to the ((−× DVe ) a [DVe ,−]))-adjunct of

U × DVe
ev|U // U et // V

∇V
// BGconn .

Under differential concretification [DVe ,BGconn] → GConn(DVe ) (def. ??) this implies, via prop. ??, a
section σconc of the associated GConn(DVe )-bundle.

But by the above diagram, the section σ is locally equivalently the adjunct of

U × DVe et // V × DVe
(−)·(−)// V

∇V
// BGconn ,

which in turn is equivalently the adjunct of

U × DVe // HeisV (∇V )× DVe // V × DVe
(−)·(−)// V

∇V
// BGconn ,

and so σconc is of the form

U // HeisV (∇V ) // GConn(DVe ) .

But by the diagram in remark 3.12 this means that σconc is locally constant, up to equivalence.

Therefore by prop. ?? and prop. ?? the existence of σconc is equivalent to a QuantMorph(∇DV

)-
structure (def. ??) on X.

Finally, to see that this structure is integrable, def. ??, notice from the proof of prop. ?? that this

12



QuantMorph(∇DV

)-structure is given by the dashed diagonal lift in

∗

∇V

����
U

66

et

����

// BQuantMorph(∇V )� _

��
X σconc //

66

τX ((

(BG)Conn(DV )//GL(V )

��
BGL(V )

.

with the left morphism being formally étale by the above construction. Taking this pasting diagram apart,
it may be viewed as giving a morphism in the double slice (H/BGL(V ))/QuantMorph(∇TkX)Struc

U

et
����
X //

τX ##

BQuantMorph

QuantMorphStrucww
BGl(C)

gqy


−→



U

et
����

// ∗ // BQuantMorph

QuantMorphStruc

}}

X

τX $$
BGL(V )

(gLI)|U

w�


.

Here the codomain, given by the total pasting diagram, exhibits the constancy of the concretified section
σconc as obtained above. This was obtained from left translation over V with respect to the left invariant
framing, prop. ??, of V , hence the homotopy shown on the right is that exhibits the left invariant G-structure
gLI of example ??.

The domain is the structure g that we constructed by way of the section σconc and the dashed lift ob-
tained from the homotopy which exhibits this section as constant on U relative to the given trivialization of
the frame bundle of U . Finally the morphism itself is the pasting of the diagram for g, pulled back to U ,
with the top diagonal rectangular part of the original pasting diagram, yielding the diagram for gLI. Hence
this diagram exhibits the integrability according to def. ??. �

3.2 Generalized geometry

The definition of definite globalizations of principal connections above in 3.1 constrains both the curvature as
well as the connection data to be locall equivalent to that of a fixed reference connection. More generally one
may ask only the curvature to be definite, and leave the connection data less constrained, hence allow more
general pre-quantization of a given closed form data. The extra choices involved in such a globalization turn
out to subsume in special case structure that in the literature is known as generalized geometry [Hi11, Hull07].

Let H be an ∞-topos equipped with differential cohesion. Throughout, let G be a braided cohesive
∞-group in H, def. ??, equipped with a Hodge filtration, def. ??, and write BGconn for the corresponding
differential coefficient object, def. ??.

The following definition accordingly relaxes def. 3.4.

13



Definition 3.14. Let

V̂

p

��

∇̂ // BGconn

V

be a group extension p, def. ??, equipped with a a G-principal ∞-connection ∇̂.
Then for X a V -manifold, def. ??, a G-principal connection ∇X : X −→ BGconn on X is a p-definite

globalization of ∇DV

over X if its pullback ∇TkX to the infinitesimal disk bundle along the horizontal map
in def. ??

∇T
kX : T kX

ev−→ X
∇X

−→ BGconn

is a p-definite parameterization of ∇DV̂

over T kX in that for the corresponding section

X
conc(σ(∇TkX)) //

τX ##

GConn(DV )/GL(V )

vv
BGL(V )

there exists a cover U // // X , a map ĝ : U −→ ΓDV (DV̂ ) and a homotopy filling the following diagram

U
ĝ //

��

ΓDV (DV̂ )/GL(V )

'
��

(ΓDV (DV̂ )× ∗)/GL(V )

(id,∇̂DV̂ )/GL(V )
��

(ΓDV (DV̂ )×GConn(DV̂ ))/GL(V )

ev

��
X

conc(σ(∇TkX)) //

τX ##

GConn(DV )/GL(V )

tt
BGL(V )

y�

.

One choice of such data we say is a (p, ∇̂)-generalized geometry on X.
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