Structured Homotopy Theory from String Theory

Urs Schreiber

(Czech Academy of Science, Prague & NYU, Abu Dhabi)

a couple of talks at

Geometry, Topology & Physics

NYU AD, April 2018

Based on joint work with:

V. Braunack-Mayer, D. Fiorenza, J. Huerta, H. Sati,

Abstract.

Homotopy theory is extremely rich, with various structured variants such as equivariant, graded, parameterized and stable homotopy theory. Powerful tools from differential-graded algebra, particularly in the rational approximation, serve for concrete computations.

Also string/M-theory is extremely rich, revealing a system of higher dimensional objects (branes) with subtle inter-relations.

In these talks I survey recent insights into a close relation between the two, which provides structured homotopy theory with curious new examples and sheds light on the elusive foundations of string/M-theory.

The 4-sphere will play a surprisingly central role, as initially realized by Hisham Sati.

The 4-sphere

We will discuss its incarnation in various flavours of *homotopy theory*:

1) Super homotopy theory and fundamental M2/M5-branes

2) Parameterized stable homotopy theory and gauge enhancement

3) Equivariant homotopy theory and black M-branes

1) Super homotopy theory and fundamental M2/M5-branes

based on FSS 13, FSS 15, FSS 16, HS 17

Classical homotopy theory

$$Ho(Spaces) := Spaces \left[\{ Isos on all homotopy groups \}^{-1} \right]$$

see ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory

For example homotopy groups of spheres:

$$\pi_k(S^n) := \operatorname{Hom}_{\operatorname{Ho}(\operatorname{Spaces})} \left(S^k, S^n \right)$$

These exhibit an endlessly rich pattern. But most of them are torsion groups.

For example for S^4 two of them non-torsion: generated by the *quaternionic Hopf fibration*:

Rational homotopy theory

disregards all torsion information:

 $\operatorname{Ho}(\operatorname{Spaces}_{\mathbb{Q}}) := \operatorname{Spaces} \left[\{ \operatorname{Isos on rationalized homotopy groups} \}^{-1} \right]$ $\pi_k(S^n) \otimes \mathbb{Q} = \operatorname{Hom}_{\operatorname{Ho}(\operatorname{Spaces}_{\mathbb{Q}})} \left(S^k, S^n \right)$ $\pi_{\bullet} \left(S^4 \right) \otimes \mathbb{Q} = \mathbb{Q}_{\operatorname{deg}=4} \otimes \mathbb{Q}_{\operatorname{deg}=7} \otimes \mathbb{Q}_$

dg-Algebraic model for rational homotopy theory.

dgcAlg := {differential graded-commutative algebras over \mathbb{R} } Homotopy theory of dg-algebras:

 $\begin{array}{l} \operatorname{Ho}\left(\operatorname{dgcAlg^{op}}\right) \\ := \\ \operatorname{dgcAlg^{op}}\left[\left\{\operatorname{Isos \ on \ all \ cohomology \ groups}\right\}^{-1}\right] \end{array}$

Quillen-Sullivan equivalence:

$$Ho(Spaces) \underbrace{\square}_{\mathcal{S}} Ho(dgcAlg^{op})$$
$$\int_{\mathcal{S}} \mathcal{O}_{\mathcal{S}} Ho(dgcAlg^{op})$$
$$Ho(Spaces_{\mathbb{Q},nil,fin}) \underbrace{\square}_{\mathcal{S}} Ho(dgcAlg^{op}_{cn,fin})$$

dg-Algebra model for the 4-sphere

Classical fact of rational homotopy theory:

$$\mathcal{O}(S^4) \simeq \mathbb{R}[\underbrace{\omega_4}_{\text{deg}=4}, \underbrace{\omega_7}_{\text{deg}=7}] / \begin{pmatrix} d\omega_4 = 0\\ d\omega_7 = -\frac{1}{2}\omega_4 \wedge \omega_4 \end{pmatrix}$$

This equation

$$dG_4 = 0$$

$$dG_7 + \frac{1}{2}G_4 \wedge G_4 = 0$$

is also the equations of motion in 11-dimensional supergravity for the M-brane flux.

Conjecture (Sati 13, Sect. 1.5): The cohomology theory classifying M-branes is some flavour of degree-4 cohomotopy.

Super homotopy theory.

Via Quillen-Sullivan we may immediatly generalize homotopy theory to *superspaces*:

In supergravity, cofibrant sdgc-algebras are known as "FDA"s. We consider the corresponding homotopy theory:

$$\begin{array}{l} \operatorname{Ho}(\operatorname{SuperSpaces}_{\mathbb{Q},\operatorname{nil},\operatorname{fin}}) \\ := \\ \operatorname{sdgcAlg}_{\operatorname{cn},\operatorname{fin}}^{\operatorname{op}} \left[\left\{ \operatorname{Isos \ on \ all \ cohomology \ groups} \right\}^{-1} \right] \end{array}$$

 $see\ ncatlab.org/nlab/show/geometry+of+physics+-+superalgebra$

Example: Super-Minkowski spacetimes.

The nilpotency condition on the fundamental group allows precisely the mild non-abelianness that goes with super-Minkowski spacetimes:

see ncatlab.org/nlab/show/geometry+of+physics+-+supersymmetry

Extension tower of super-Minkowski spacetime.

These appear in a sequence of iterated maximal R-symmetry invariant central extensions:

The M2/M5-Brane cocycle.

On the top-dimensional 11d super Minkowski spacetime, there is a unique element in Spin(10, 1)-invariant rational cohomotopy in degree 4.

$$\mathbb{T}^{10,1|\mathbf{32}} \xrightarrow{\mu_{M2/M5}} S^4$$

 $\in \operatorname{Ho}(\operatorname{SuperSpaces}_{\mathbb{R}})^{\operatorname{Spin}(10,1)}$

In string/M theory this statement characterizes fundamental M2-brane and M5-branes via the WZW terms of their Green-Schwarz-type sigma-models.

2) Parameterized stable homotopy theory and gauge enhacement

based on BSS 18

Central extensions are homotopy fibers.

That 11d super-spacetime is an extension of 10d super-spacetime means that it is a *homotopy fiber* of a 2-cocyle:

Proposition. The extension/homotopy fiber functor has a right adjoint

Ho (Spaces)
$$\xrightarrow{\text{Ext}}$$
 Ho (Spaces_{/BS1})

given by forming *cyclic loop spaces*:

$$\operatorname{Cyc}(X) := \operatorname{Maps}(S^1, X) /\!\!/ S^1$$

i.e. the homotopy quotient of the free loop space by the rigid rotation of loops.

Example: cyclification of the 4-Sphere

The cyclification of the 4-sphere is

$$\mathcal{O}\left(\operatorname{Cyc}\left(S^{4}\right)\right) = \mathbb{Q}[h_{3}, h_{7}, \omega_{2}, \omega_{4}, \omega_{6}] / \begin{pmatrix} dh_{7} = -\frac{1}{2}\omega_{4} \wedge \omega_{4} \\ + \omega_{2} \wedge \omega_{6} \\ dh_{3} = 0 \\ d\omega_{2p} = h_{3} \wedge \omega_{2p-2} \end{pmatrix}$$

Curiously, the terms in blue exhibit a truncation of rationalized twisted K-theory.

Below we will find also the rest of rationalized K-theory from the 4-sphere...

The Ext/Cyc-adjunct of $\mu_{M2/M5}$

Hence the M2/M5-cocycle

$$\mathbb{T}^{10,1|\mathbf{32}} \xrightarrow{\mu_{M2/M5}} S^4$$

induces its Ext/Cyc-adjunct

 $see \ ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes$

This is double dimensional reduction of M2/M5-cocycle to the F1/NS5/D0/D2/D4 branes of type IIA string theory:

Sullivan algebra of cyclified 4-sphere	$dh_7 = -\frac{1}{2}\omega_4 \wedge \omega_4 \\ + \omega_2 \wedge \omega_6 \\ dh_3 = 0 \\ d\omega_{2p} = h_3 \wedge \omega_{2p-2}$	$\begin{array}{c} 2p\\ \in\end{array}$
Bianchi identities of NS1/NS5-flux and $D(p \le 4)$ RR-fluxes:	$dH_7 = -\frac{1}{2}F_4 \wedge F_4$ $+ F_2 \wedge F_6$ $dH_3 = 0$ $dF_{2p} = H_3 \wedge F_{2p-2}$	{0,2,4}

Extensions and actions

To make the double dimensional reduction more symmetric, we ask also S^4 to be an S^1 -extension

The base $S^4 /\!\!/ S^1$ of such an extension is necessarily the homotopy quotient by some S^1 -action on S^4 .

Example: Suspended Hopf action on S^4

The identifications

$$S^1 \simeq U(1) \subset \mathrm{SU}(2) \simeq S(\mathbb{H})$$

$$S^4 \simeq S(\mathbb{R} \oplus \mathbb{H})$$

induce an S^1 -action on S^4 .

Attempted lift in Super homotopy theory

For any choice of S^1 -action on S^4 we may ask for a lift of the double dimensional reduction of the M2/M5-cocyle:

Attempted lift in Super homotopy theory

For any choice of S^1 -action on S^4 we may ask for a lift of the double dimensional reduction of the M2/M5-cocyle:

Prop. Such a lift does not exist, for any choice of action. But it may exist to first linear order.

Stable homotopy theory

:

Ho (Spectra) := Spectra $\left[\{ \text{ Isos on all stable homotopy groups } \}^{-1} \right]$ Spectra stabilize the operation of forming loop spaces:

Loop spaces are the groups of homotopy theory.

Double loop space are the first-order commutative groups.

Hence: Spectra are the abelian groups of homotopy theory, Hence: Σ^{∞} is linearization in homotopy theory.

 $see\ ncatlab.org/nlab/show/Introduction+to+Stable+Homotopy+Theory$

Parameterized stable homotopy theory

For $X \in \text{Ho}(\text{Spaces})$

 $Ho (Spectra_X) := Spectra_X \left[\left\{ \begin{array}{c} Isos on all stable homotopy groups \\ for all homotopy fibers over X \end{array} \right\}^{-1} \right]$ Parameterized spectra stabilize forming homotopy-fiber wise loop spaces:

Hence: Parameterized spectra are the bundles of abelian groups in homotopy theory.

Rational parameterized stable homotopy theory

Theorem (Braunack-Mayer 18) :

The Quillen-Sullivan dg-Model for rational homotopy theory generalizes to parameterized stable homotopy theory by modeling parameterized spectra by dg-modules:

$$\operatorname{Ho}\left(\operatorname{Spectra}_{\mathcal{S}(A)}\right) \xrightarrow{\mathcal{O}} \operatorname{Ho}\left(\operatorname{dgMod}_{A}\right)^{\operatorname{op}}$$

$$\int \\ \operatorname{Ho}\left(\left(\operatorname{Spectra}_{\mathcal{S}(A)}\right)_{\mathbb{Q},\operatorname{fin}}\right) \xrightarrow{\mathcal{O}} \\ \xrightarrow{\mathcal{O}} \\ \xrightarrow{\mathcal{S}} \\ \operatorname{Ho}\left(\operatorname{dgMod}_{A,\operatorname{bd}}\right)^{\operatorname{op}}$$

Remember that we were asking for a full lift, which, however, does not exist:

But now we may linearize the coefficients:

Theorem: With the suspended Hopf S^1 -action on S^4 the linearized lifting problem has a unique solution:

Theorem: This solution factors through a summand which is the (rationalized) twisted K-theory spectrum:

This is gauge enhancement of M2/M5-cocycle

to the full F1/Dp branes of type IIA string theory:

Beyond rational approximation?

We would like to eventually solve the open problem of lifting this discussion beyond the rational approximation.

As a first step towards solving this problem we now lift the $S^1 \subset SU(2)$ -action beyond rational while keeping the spaces acted on rationally. This hybrid approach is

equivariant rational homotopy theory.

3) Equivariant homotopy theory and black M-branes

based on HSS18

Equivariant homotopy theory

For G a compact Lie group, the evident definition is: Ho(GSpaces) := $GCWComplexes \left[\{G\text{-equivariant homotopy equivalences}\}^{-1} \right]$ The equivariant Whitehead theorem relates this to fixed-point loci:

$$Ho(GSpaces) \simeq \\ GSpaces \left[\left\{ \begin{array}{l} Isos \text{ on all homotopy groups} \\ after restriction to H-fixed points} \\ for all closed subgroups H \subset G \end{array} \right\}^{-1} \right]$$

Systems of fixed point loci

But the *H*-fixed points are equivalently the *G*-equivariant maps out of the orbit space G/H:

$$X^H = \operatorname{Maps}(G/H, X)^G$$

Hence if we form the category of all possible G-orbit spaces

$$\operatorname{Orb}_G := \{G/H\}_{H \underset{\text{closed}}{\subset} G} \subset G \text{Spaces}$$

Then the system of fixed point loci is extracted as

$$GSpaces \xrightarrow{Y} PSh(Orb_G, Spaces)$$

$$X \mapsto \begin{pmatrix} G/H_1 & X^{H_1} \\ | f & \mapsto & | \operatorname{Maps}(f, X)^G \\ G/H_2 & X^{H_2} \end{pmatrix}$$

Equivariant homotopy theory is about fixed point loci. Elmendorf's theorem: Equivariant homotopy theory is plain homotopy theory of the systems of fixed point loci:

$$\operatorname{Ho}(G\operatorname{Spaces}) \xrightarrow{Y} \operatorname{Ho}(\operatorname{PSh}(\operatorname{Orb}_G, \operatorname{Spaces}))$$

This induces in particular equivariance for non-classical homotopy theories: **Equivariant rational homotopy theory.**

$$\operatorname{Ho}\left(G\operatorname{Spaces}_{\mathbb{Q},\operatorname{nil},\operatorname{fin}}\right) \simeq \operatorname{Ho}\left(\operatorname{PSh}\left(\operatorname{Orb}_{G},\operatorname{dgcAlg}_{\operatorname{cn},\operatorname{fin}}^{\operatorname{op}}\right)\right)$$

Equivariant rational super homotopy theory.

$$\operatorname{Ho}\left(G\operatorname{SuperSpaces}_{\mathbb{Q},\operatorname{nil},\operatorname{fin}}\right) \simeq \operatorname{Ho}\left(\operatorname{PSh}\left(\operatorname{Orb}_{G},\operatorname{sdgcAlg}_{\operatorname{cn},\operatorname{fin}}^{\operatorname{op}}\right)\right)$$

Prop. The Hopf S^1 -action on S^4 is trivial on the rational homotopy type of S^4 , but in equivariant rational homotopy theory it is visible via its fixed point locus.

In fact this holds for the full SU(2)-action:

$G_{\rm HW}$ -action on S^4

There is also a \mathbb{Z}_2 -action on S^4 which does act non-trivially in rational homotopy theory, this is a reflection

 $S^{4} \xrightarrow{\text{reverse}} S^{4}$ $(x_{1}, \cdots, x_{4}, x_{5}) \longmapsto (x_{1}, \cdots, x_{4}, -x_{5})$ The corresponding system of fixed points:

We will denote this action by $G_{\rm HW}$.

ADE-classification of the finite subgroups of SU(2):

Dynkin label	Finite subgroup $G_{ADE} \subset SU(2)$	Name of group
\mathbb{A}_n	\mathbb{Z}_{n+1}	Cyclic
\mathbb{D}_{n+4}	$2D_{n+2}$	Binary dihedral
\mathbb{E}_6	2T	Binary tetrahedral
\mathbb{E}_7	20	Binary octahedral
\mathbb{E}_8	2I	Binary icosahedral

Resolution of ADE-singularities

Fact (du Val). The blow-up of an orbifold singularity fixed by a finite subgroup of SU(2) is a system of spheres touching according to a Dynkin diagram:

Sen had suggested an interpretation in terms of M-brane physics. But the mathematical formulation of M-branes had remained an open problem.

Equivariant enhancement?

Hence we have lifted the 4-sphere to an object in $G_{ADE} \times G_{HW}$ -equivariant rational (super) homotopy theory.

Therefore we are now entitled to the following

Question: Does the M2/M5-cocyle have a corresponding equivariant enhancement?

 $\mathbb{R}^{10,1|\mathbf{32}} \xrightarrow{\mu_{M2/M5}} S^4 \in \operatorname{Ho}\left(\operatorname{G_{ADE,HW}SuperSpaces}_{\mathbb{R}}\right)$ $\mathbb{R}^{10,1|\mathbf{32}} \xrightarrow{\mu_{M2/M5}} S^4 \in \operatorname{Ho}\left(\operatorname{SuperSpaces}_{\mathbb{R}}\right)$

First, this requires identifying $G_{ADE} \times G_{HW}$ -actions on $\mathbb{R}^{10,1|32}$...

Theorem: ADE-Singularities in 11d super spacetime.

Group action on $\mathbb{R}^{10,1 32}$	Possible singular locus					
type H	NS1 _H	M2	$^{1/2}M5_{H}$	MKK6	M9 _H	
type I	E1		$^{1/2}M5_{I}$		M9 _I	
$G_{ m ADE}$				$\mathbb{R}^{6,1}$ 16		1/2
$G_{ m ADE}$		$\mathbb{R}^{2,1 \geq 8\cdot 2}$				$\geq 1/2$
$G_{\rm HW} = \mathbb{Z}_2$					$\mathbb{R}^{9,1 16 }$	1/2
$G_{\text{ADE,HW}} = \mathbb{Z}_2$	$\mathbb{R}^{1,1 16\cdot1}$		$\mathbb{R}^{5,1 8+8}$			1/2
$G_{\rm ADE} \times G_{\rm HW}$	$\mathbb{R}^{1,1 8\cdot1}$		$\mathbb{R}^{5,1} 8$			1/4

Theorem: There are two $G_{ADE,HW}$ -equivariant enhancements of the M2/M5-brane cocycle, exhibiting...

1) ... the 1/2-BPS black 1/2**M5** of D = 5 + 1 and N = (2, 0)2)...the 1/2-BPS black $NS1_H$ of D = 1 + 1 and N = (16, 0)WZW-terms of 11d super fundamental M2/M5-brane shape of spacetime ADE-singularity $\mathbb{R}^{10,1|\mathbf{32}}$ $\mu_{M2/M5}$ $G_{ADE,HW}/1$ $\rho(g)$ reverse $\mu_{M2/M5}$ $\mathbb{R}^{10,1|16}$ $G_{ADE.HW}/1$ vol_{p+1} NG-Lagrangi $\mathbb{R}^{p,1|16}$ $G_{ADE,HW}/G_{ADE,HW}$ black brane at ADE-singularity

Theorem: There are two G_{ADE} -equivariant enhancements of the M2/M5-brane cocycle restricted to M9_H, exhibiting...

1) ... the ¹/₄-BPS black ¹/₂**M5** of D = 5 + 1 and N = (1, 0)2) ... the ¹/₄-BPS black **NS1**_H of D = 1 + 1 and N = (8, 0)

 $[\]in$ Ho (PSh(Orb_{*G*_{ADE}}, SuperSpaces_R))

Conclusion:

A fair bit of the expected structure of M-theory emerges out of the superpoint $\mathbb{R}^{0|1}$ in rational equivariant super homotopy theory.

Evident Conjecture:

The full theory emerges once passing beyond the rational approximation in full super-geometric homotopy theory. (arXiv:1310.7930).

see also ncatlab.org/schreiber/show/StringMath2017

Epilogue

In full super-geometric homotopy theory the superpoint $\mathbb{R}^{0|1}$ itself emerges from \emptyset

(Schreiber 16, FOMUS proceedings)