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Abstract

We highlight what seems to be a remaining subtlety in the argument for the cancellation of the total
anomaly associated with the M5-brane in M-theory. Then we prove that this subtlety is resolved under the
hypothesis that the C-field flux is charge-quantized in the generalized cohomology theory called J-twisted
Cohomotopy.
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1 Introduction

Formulating M-theory remains an open problem (e.g. [Du96, 6][HLW98, p. 2][Du98, p. 6][NH98, p. 2][Du99,
p. 330][Moo14, 12][CP18, p. 2][Wi19, @21:15][Du19, @17:04]). Even formulating just the field-theoretic de-
coupling limit of the worldvolume theory of M5-branes in M-theory remains an open problem (e.g. [La19, 6.3]).
Nevertheless, it is traditionally assumed that enough is known about M-theory in general, and about M5-branes
in particular, that it makes sense to check whether field theoretic anomalies (following [AW84][AG85]) on M5-
brane worldvolumes cancel against M-theoretic anomaly inflow (following [CH85]) from the bulk spacetime
(reviewed in the current context in [Ha05]).

Relevance of anomaly cancellation for M-theory. What from the physics perspective are called anomalies
is what from the perspective of mathematics are obstructions (a point highlighted in [KS04][SSS09]). Hence
such a cancellation of the total M5-brane anomaly, if properly identified, is strictly necessary for M-theory to
exist: any remaining anomaly is an obstruction against the existence of the theory of which it is an anomaly.
But conversely, wherever a putative anomaly in M-theory is found not to vanish, by available reasoning, this
signifies (with the assumption that M-theory does in fact exist) the presence of a new aspect of the elusive
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theory that had hitherto been missed: There must then be a new detail in the theory, previously unrecognized,
which does imply the cancellation of the remaining anomaly, after all.

For this reason a careful mathematical analysis of anomaly cancellation in M-theory is in order. The tacit
assumption that the proverbial magic of M-theory will take care of all cancellations anyway, freeing us from the
burden of patient rigorous checks, would work only if the actual formulation of M-theory were known. Since it
is not known, the situation is the reverse: A carefully deduced failure of anomalies to cancel provides a hint as
to the actual formulation of the elusive theory.

Historical background on M5-brane anomaly cancellation. Indeed, the original computation of the total
M5-brane anomaly in [Wi96b, 5] found the total anomaly not to vanish; and highlighted that the issue remains
an open problem (“somewhat puzzling” [Wi96b, p. 35]). In reaction, several authors argued for several fixes,
but, it seems, without convincing success (see [FHMM98, p.2] for pointers). Finally, [FHMM98, 3] argued
that there is a previously neglected summand in the bulk anomaly inflow which needs to be taken into ac-
count (the top right term in diagram (5) below). That correction to the bulk anomaly inflow term has since
become accepted (e.g., in [BBMN18, (5)]) as the solution to the M5-brane anomaly cancellation. The authors
of [BBMN19a, A.4-5] recently recall the argument of [FHMM98] in streamlined form. Nonetheless, these ar-
guments remain non-rigorous even by physics standards, due to a lack of actual formulation of M-theory. This
is clearly acknowledged and highlighted by one of these authors, in [Ha05, p. 46].1

Remaining issue. In this note we point out, in §2 below, that there does still remain one issue with the currently
accepted anomaly cancellation argument [FHMM98, 3][BBMN19a, A.4-5] in itself. This is a simple observa-
tion: these authors made an Ansatz (see (6) below) for the C-field configuration ([FHMM98, (2.3)][BBMN19a,
(A.18)]) which is seemingly not the most general admissible under the given assumptions (as also noticed in
[Mon15, (3.12)][BBMN19b, (3.16)][BBM20, (2.34)]). Entering their anomaly cancellation argument instead
with a general C-field configuration seemingly leaves one anomaly contribution uncancelled, shown on the
bottom right of (5) below.

Resolution by Hypothesis H. We prove in §3 that this previously neglected remaining anomaly term does in
fact vanish, hence that the anomaly cancellation argument of [Wi96b, §5][FHMM98, §3][BBMN19a, A.4-5] is
completed, if one assumes a hypothesis [Sa13, §2.5] about the proper nature of the C-field in M-theory which
in [FSS19b][FSS19c][SS19a][SS19b][SS21] we called Hypothesis H, recalled in §3.2 below. This hypothesis
says that the M-theory C-field is charge-quantized (21) in the generalized cohomology theory called J-twisted
Cohomotopy (24). We have previously demonstrated that this hypothesis implies a wealth of further anomaly
cancellation conditions [FSS19b][FSS19c][SS19a][BSS19] and other effects [SS19b][SS21] expected in M-
theory (exposition in [Sc20]).

Outlook. Since Hypothesis H gives rigorous mathematical meaning to the M-theoretic nature of the C-field,
our derivation in §3 is a rigorous mathematical proof of the vanishing of the remaining anomaly term (5)
from this hypothesis and, as such, completes the argument of [Wi96b, §5][FHMM98, §3][BBMN19a, A.4-
5]. We do not claim to make the rest of that argument rigorous. In order to do so one will need also a
rigorous definition of the M5-brane coupled to this C-field. We have presented results going towards that goal
in [FSS19d][FSS20a][FSS20b][FSS20c][FSS19c], but more needs to be done.

Acknowledgement. We thank Domenico Fiorenza for very useful discussions. We thank an anonymous referee
for alerting us of [BBMN19b], whose Section 4.1 overlaps with the discussion in our §3.1; see Remark 6.

1[Ha05, p. 46]: “[...] the solution is not so clear. [The established procedure of anomaly cancellation] will not work for the M5-
brane. [...] something new is required. What this something new is, is not a priori obvious. [...] [This is] a daunting task. To my
knowledge no serious attempts have been made to study the problem. [...] [The proposal of [FHMM98]] probably should not be viewed
as a final understanding of the problem. One would eventually hope for a microscopic formulation of M-theory which makes some of
the manipulations [proposed in [FHMM98]] appear more natural.”
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2 The issue

The geometry under consideration. We are dealing with (for background see e.g. [Du99][MiSc06]):
(i) families of
(ii) C-field configurations on
(iii) 11-dimensional spacetimes
(iv) sourced by magnetic 5-branes
(v) of unit charge.

We now say what this means precisely: First, (i) with (iii) means that

X :=

spacetime
manifold︷︸︸︷
X11 ×

parameter
manifold︷︸︸︷

U

is the product of an 11-dimensional manifold (spacetime) with a parameter manifold U of any dimension, while
(ii) means that we consider a closed differential 4-form on X :

G4︸︷︷︸
family of

C-field flux densities

∈Ω
4
cl(X) =⇒ ∀

s∈U

(
G(s)

4︸︷︷︸
C-field flux density

at parameter s

∈ Ω
4
cl(X

11)
)
,

which hence is, in particular, a U-parametrized family of differential 4-forms on X11.2 Moreover, (iv) means,
just as in Dirac’s argument for magnetic 0-branes (e.g. [Al85, §2]), that X11 is the complement of a 5-brane
worldvolume, hence that X is an orthogonal S4-fiber bundle (see Def. 13) as shown on the left of (1).

unit sphere
around

M5-brane
S4 //

spacetime
(families)

X

S(p)4-sphere
fiber bundle

��

C-field
4-flux density
(in families)

[G4]_

total flux
through S4

��

∈

de Rham
cohomology

H•+4
dR (X)

∫
S4 fiber integration

��

'

real
cohomology

H•+4(X ;R)

S(p)∗

��
U

parameter
manifold

× (0,∞)

radial
distance

from brane

× QM5

M5-brane
worldvolume

(families)

= Q 1
single M5

(⇔ abelian 2-form field)

∈ H•dR(Q) ' H•(Q;R)

(1)

Finally, (v) means that the corresponding fiber integration (1) of G4 over the 4-sphere fibers is unity3

S(p)∗[G4] = 1 ∈ H0(Q;R) (2)

as shown on the right of (1). The general solution to (2) is the sum of half the Euler class of the S4-fibration
(e.g. [BT82, §11][BC97, (2.3)]) with any basic class (by exactness of the Gysin sequence, e.g. [BT82, 14.33]),
namely one pulled back from the base of the fibration:

2The inclined reader may think of the 4-flux data G4 as being a value at stage U of the mapping stack Fields(X11) := [X11,Ω4] into
the sheaf of differential 4-forms, and of the anomaly polynomials (5) as being (classes of) differential forms on this mapping stack.
While this is the correct point of view (exposition in [FSS13]), we will not further dwell on it here.

3Our derivations in §3 immediately apply generally to any integer charge S(p)∗[G4] ∈ N (2). But for N ≥ 2 even the nature of the
higher gauge field on the M5-brane(s) remains open (see [FSS20a] for pointers and for a resolution for N = 2) and it seems premature
to extrapolate the existing computations of worldvolume anomalies to this case (compare [HMM98, below (2.4)]).
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[
volS4

]
∈ H4(S4)

general
4-flux density
with unit flux

through S4

[
G4
]

= 1
2
χ4

Euler class of
S4-fibration

_

OO

+

basic component:
pulled back from

base of S4-fibration

S(p)∗
[
G

basic

4
]

∈ H4(X)

i∗x

OO

[
G

basic

4
]

4-class on base
of S4-fibration

_

OO

∈ H4(Q)

0

^^

S(p)∗

OO (3)

Remark 1 (The 1/2BPS M5 configuration and its generalization). The local model of the situation (1) is the triv-
ial S4-fibration of the near horizon geometry of the smooth 1/2-BPS black M5-brane solution of 11-dimensional
supergravity ([GT93], reviewed in [AFHS98, §2.1.2]), restricted to the Poincaré patch of 7-dimensional anti
de-Sitter spacetime:

S4 // AdS
Poin

7 ×S4

S(p)=pr1
��

G4 = vol
S4

R5,1

M5-brane
worldvolume

× (0,∞)

radial
distance

'
diff

AdS
Poin

7
Poincaré chart of

anti-de Sitter spacetime

(4)

So the point of (1) is to generalize the situation away from this highly symmetric 1/2-BPS configuration (4) to
more general 5-brane configurations. While few to no black M5-brane solutions to 11d supergravity beyond (4)
are known explicitly, only their topological structure matters for the discussion of anomaly cancellation; and
that topological structure is (essentially by definition) what is expressed by (1).

Remark 2 (G4 is singular on the M5-brane locus). Condition (2) implies (immediately so by the Poincaré
Lemma, since G4 is closed) that the flux density G4 can not be extended to the locus of the M5-brane itself,
which is (or would be) at the center r = 0 ∈ [0,∞) of the punctured ball S4×(0,∞) in (1). Instead it must/would
have a singularity at r = 0, as is manifest also from the basic example (4). Parts of the literature gloss over this
subtlety; and the point made in [FHMM98, p. 4-5] was to argue that this is the source of the missing anomaly
cancellation of [Wi96b]. To handle the singularity mathematically, these authors declared4 to multiply G4 by a
smooth radial cutoff function, thus rendering it no longer closed [FHMM98, (2.3), (3.4)] but, mathematically,
extendable to the brane locus. Luckily, the key computation [FHMM98, (3.3)], recalled in (5) below, applies
just as well if instead one leaves G4 intact but removes the singular locus from spacetime, just as usual in
supergravity (4).

Remark 3 (Focus on real cohomology). We focus here entirely on the anomaly polynomials in real coho-
mology, hence ignoring all torsion contributions (which become visible in integral cohomology) as well as all
“global” anomaly contributions (which become visible in differential cohomology, see [FSS20d] for discussion
of all these notions of cohomology and their relations). Because, while vanishing of the anomaly in real coho-
mology is not sufficient for full anomaly cancellation (which must happen in differential integral cohomology),
it is the necessary first step. No argument about torsion of global contributions to the M5 anomaly (which, of
course, one will eventually want to address) can affect the proof of anomaly cancellation at the rational/real
approximation; and as long as subtleties do remain here, it behooves us to first focus on these. Therefore, we
often abbreviate H•(−) := H•(−;R), here and in the following.

4[FHMM98, p. 4]: “We leave to the future the very interesting question of the relation of this approach to that based on a direct
study of solutions to supergravity.”
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The anomaly polynomials. The cohomology classes contributing to the total M5-brane anomaly in the situa-
tion (1) are given in the literature as follows:

Bulk
spacetime
CS-terms

H12(X)

S(p)∗
anomaly

inflow

��

[
G4∧ I8

]
_

��

+ −1
6

[
G4∧G4∧G4

]
B

��

�

!!

H8(Q)

M5-brane
worldvolume

anomalies

Atotal = A chiral
fermion

+ A chiral
2form︸ ︷︷ ︸+ I8 + −1

24 p2(NQ) + −1
2

[
G

basic

4 ∧G
basic

4
]

[Wi96b]: 1
24 p2(NQ)︸ ︷︷ ︸

[FHMM98]: 0 +︸ ︷︷ ︸−1
2

[
G

basic

4 ∧G
basic

4
]

Hypothesis H: 0

(5)

We discuss the various items in (5):

(i) The term I8 (17) is the “one-loop polynomial” [DLM95][VW95], while the terms Achiral
fermion

and Achiral
2form

are the
plain anomalies [Wi96b, (5.1), (5.4)] of the chiral fermion and of the abelian chiral (i.e., with self-dual
curvature) 2-form field in 6d QFT. These were expected in [Wi96b] to cancel against the influx of I8, but
found there ([Wi96b, (5.7)]) to cancel only up to a remaining term 1

24 p2(NQ), where NQ denotes the
normal bundle to the M5-brane locus in spacetime.

(ii) The Chern-Simons term −1
6 G4∧G4∧G4 of 11-dimensional supergravity was argued in [FHMM98, §3]

[BBMN19a, A.4-5] to contribute to the anomaly influx from the bulk. Then a formula due to [BC97,
Lem 2.1] shows that this gives rise to the previously missing summand of −1

24 p2(NQ). However, these
authors consider an Ansatz for the C-field configuration [FHMM98, (2.3), (3.4)][BBMN19a, (2.4)] which
amounts to assuming

[G
basic

4 ]
!
= 0 (6)

in (3). If this assumption is not made, then the bulk Chern-Simons term in addition contributes an influx
term −1

2

[
G

basic

4 ∧G
basic

4
]

(bottom right of (5)), whose vanishing remains to be discussed.

(iii) That the Ansatz (6) remained unjustified was pointed out in [FSS19a, (19)] and then in [BBMN19b,
(3.16) & App. C] (where the basic component is denoted γ4, see also [BBM20, (2.34)]). Previously
in [Mon15, (3.12)] the term Gbasic

4 was assumed to be non-vanishing, in general, and as a resolution
it is was suggested [Mon15, (3.7)] that the traditional expression from [Wi96b, (5.7)] for the self-dual
field anomaly Achiral

2form
in real cohomology is wrong, in that it gets corrected by just the seemingly missing

summand +1
2

[
G

basic

4 ∧G
basic

4
]
. Unfortunately, we are unable to verify this derivation. Fortunately, it makes

no difference:

(iv) We prove in §3 that the seemingly restrictive Ansatz (6) is implied as soon as the dual G7-flux satisfies
a Bianchi identity of a widely expected form (Theorem 4 below); in particular, if it satisfies the Bianchi
identity that is implied by Hypothesis H (Thm. 9 below). In this way, Hypothesis H enforces the vanishing
of the problematic remaining anomaly term by itself:

Hypothesis H ⇒
[
G

basic

4
]
= 0 ⇒

[
G

basic

4 ∧G
basic

4
]
= 0 in situation 1 .

This means, according to (5), that the total M5-brane anomaly is finally cancelled.
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3 A resolution

We now prove that Hypothesis H implies, in the situation (1), the vanishing of the problematic basic term
[
G

basic

4
]

in (3), thus implying the vanishing of the total M5-brane anomaly according to (5). We proceed in two steps:

(1) In §3.1, we observe a general mechanism that applies as soon as the Bianchi identity dG7 = −1
2 G4 ∧G4

holds with any correction by Pontrjagin classes (which is traditionally not guaranteed, see Rem. 7).
(2) In §3.2, we discuss how Hypothesis H implements this mechanism.

Both steps rely on facts about tangent structure on sphere bundles, whose proofs we relegate to appendix A.

3.1 For generic G7-Bianchi identity

Theorem 4 (Vanishing of basic component). Given a black M5-brane background (1) with C-field flux G4 (3)
satisfying a Bianchi identity of the form

d G7 = −1
2 G4∧G4 + P

(
p1(∇

T X
), p2(∇

T X
)
)
∈Ω

8
dR(X) (7)

for P any polynomial of Pontrjagin forms, then the basic component of [G4] (3) vanishes:[
G

basic

4
]
= 0 ∈ H4(B;R) . (8)

Proof. The key point is that all Pontrjagin forms on a manifold that is an orthogonal spherical fibration are
basic forms, by Prop. 22. This means with (7) that also the cup-square of the class of the 4-flux is basic:

[G4]
2 = S(p)∗

(
P
(

p1(NQ), p2(NQ)
))
∈ H8(X ;R) . (9)

Consider then the fiber integration

S(p)∗ : H•(X ;R)−→ H•−4(Q;R) (10)

along the fibers of S(p), as in (1). By [BC97, Lemma 2.1], the fiber integration of the odd cup power χ2k+1
4

of the Euler class χ4 ∈ H4(X ;R) of the fibration S(p) are proportional to cup powers of the second Pontrjagin
class of NQ:

S(p)∗(χ2k+1
4 ) = 2

(
p2(NQ)

)k ∈ H8k(Q) , (11)

while the fiber integration of the even cup powers of the Euler class vanishes for all k ∈ N:

S(p)∗(χ2k
4 ) = 0 ∈ H8k−4(Q) . (12)

Notice also the projection formula (e.g. [BT82, Prop. 6.16][FSS18, (2)])

S(p)∗
((

S(p)∗α
)
∧β

)
= α ∧S(p)∗β , (13)

which in particular implies that the fiber integral of basic forms vanishes:

S(p)∗S(p)∗α = S(p)∗
(

S(p)∗α ∧1
)

= α ∧S(p)∗1 = 0 . (14)

Therefore, from (9) and by repeated use of formulas (11 - 14) we get:

0 = S(p)∗S(p)∗P
(

p1(NQ), p2(NQ)
)

= 1
2 S(p)∗[G4∧G4]

= 1
2 S(p)∗

((1
2
χ4 +S(p)∗[Gbasic

4 ]
)
∧
(1

2 χ +S(p)∗[Gbasic
4 ]

))
= 1

2 S(p)∗(χ2
4)+S(p)∗

(1
2
χ4∧S(p)∗[Gbasic

4 ]
)
+ 1

2 S(p)∗
(
S(p)∗[Gbasic

4 ]
)2

= 1
2 S(p)∗

(
χ2

4
)
+S(p)∗

(1
2
χ4
)
∧ [Gbasic

4 ]+ 1
2 S(p)∗S(p)∗[Gbasic

4 ∧Gbasic
4 ]

= [Gbasic
4 ] .

(15)

�
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Remark 5 (M5-Brane anomaly cancellation for traditional G7-Bianchi identity). A Bianchi identity for the
(Hodge) dual flux density G7 := ∗11G4 of the form (7) is traditionally considered as ([DLM95, (1.1)][DFM03,
(7.2)])

d G7 = −1
2 G2

4 + I8
(

p1(∇
T X
), p2(∇

T X
)
)

(16)

for the polynomial P being just the I8-term in (5):

I8(p1, p2) := 1
48

(
p2− 1

4 p2
1
)
. (17)

Under this traditional assumption, Theorem 4 implies the condition (6) and hence the vanishing of the remaining
M5-brane anomaly in (5).

Remark 6. Theorem 4 in conjunction with Remark 5 may be compared to an analogous physics argument in
[BBMN19b, §4.1] (which appeared after [FSS19a] and during the writing of the first version of this article; we
thank an anonymous referee for pointing this out).

Remark 7 (Further corrections to the G7-Bianchi identity). The traditional Bianchi identity (16) incorporates
only one of several expected corrections to the plain supergravity Bianchi identity (P = 0). These M-theoretic
higher curvature corrections are traditionally investigated via an action principle (e.g. [HT03][HO06][ST17]):

(i) From the action principle one expects further higher derivative contributions to the Bianchi identity (16)
([ST17, (4.11)], following [HT03, around (56)]):

d G7 = −1
2 G2

4 + I8(p1, p2) +

further
corrections

δ∆L , (18)

which locally, on a chart U ⊂ X where G4
∣∣
U = dCU

3 ([ST17, below (3.4)]), are of the form ([ST17, below
(4.11)])

δ∆L
∣∣
U = d

(
δ

δCU
3
· · ·
)
. (19)

This shows at once that:
(a) locally on U the correction is exact (which is the case highlighted in [ST17, below (4.11)] ), but
(b) globally on X it fails to be exact as soon as G4 is not globally exact (is only the curvature 4-form of a

2-gerbe connection with local connection 3-forms {CU
3 }U∈U on an open cover U of X , e.g. [FSS12,

p. 22]), which is the generic case and the case of interest here, due to (2).

(ii) The action principle, and hence any Bianchi identity derived from it, must moreover incorporate a global
shift [Ts04, (4.16)]:

S(g,G4) 7−→ S
(
g,G4 +

1
4 p1(∇

T X
)
)
, (20)

reflecting the expected [Wi96a, (1.2)][(1.2)][Wi96b] shifted flux quantization (23) of the C-field.

Apart form the general question of whether a classical action principle, of all things, can be the right principle
for resolving foundations of M-theory, the complete form of the higher curvature correction in (18) remains
open, and its combination with the shift (20) in the action principle seems not to have been discussed yet.
Hence, under traditional assumptions, it remains unknown whether the assumption (7) is met in full M-theory.

What has been missing is a principle that fixes Bianchi identities on more fundamental grounds. Such a
principle is cohomological flux quantization (21), to which we turn now in §3.2.
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3.2 Via Hypothesis H

We briefly recall from [FSS19b][FSS20c] the motivation and formulation of Hypothesis H on the flux quanti-
zation principle for the C-field in M-theory. Then we show (Thm. 9 below) how this Hypothesis implements
the above mechanism for cancellation of the remaining M5-anomaly term.

Flux/charge quantization of higher gauge fields. The key idea is that the mathematical nature of any higher
gauge field is encoded in a twisted generalized cohomology theory Ãτ(−), a notion known as flux quantiza-
tion or charge quantization (see [Fr00][Sa10][FSS20d]): A generalized twisted character map [FSS20d, §5]
approximates cocycles in τ-twisted A-cohomology by flux densities in twisted L∞-algebra valued de Rham
cohomology, namely by differential forms satisfying polynomial differential relations – Bianchi identities:

τ-twisted A-cohomology
of spacetime X

Ãτ(X)

τdR-twisted
L∞-valued de Rham cohomology

HτdR
dR

(
X ; lA

)
τ-twisted A-cocycle[
X c−→ A�G

] flux densities(
Fi(c) ∈Ω•dR(X)

)
i∈I

∣∣∣(d Fi(c)
Bianchi identities

= Pi
(
{Fj(c)} j∈I,

background
fluxes
τdR

))
i∈I

twisted character map

chτ
A

7−→
rational approximation

7−→

flux quantization

(21)

Flux/charge quantization in A-theory means to demand that the flux densities are in the image of the twisted
A-character map (21) of an actual cocycle c in twisted A-cohomology, which then embodies the actual field
configuration (its topological sector as shown here, for brevity, and the full field configuration after refinement
to differential A-cohomology [FSS20d, §4.3]).

The archetypical example is Dirac’s flux quantization of the electromagnetic field (e.g. [Al85, §2][Fr00,
§2]), which is the demand that the ordinary electromagnetic flux density F2 (the Faraday tensor) is the character
image of a cocycle in ordinary integral degree-2 cohomology A(−) = H2(−;Z) (hence is the curvature 2-form
of a connection on a complex line bundle), which equivalently means that it represents an integral cohomology
class [F2]∈H2(X ;Z)−→H2(X ;R). Here the Bianchi identity obtained from (21) is the simple closure condition
dF2 = 0 ([FSS20d, Ex. 4.10]).

The most famous example is the K-theory conjecture in string theory [MM97][Wi98][Fr00] which states
(review in [Wi00][Fr08]) that the B-field and the RR-field fluxes in type II string theory are jointly quantized
in twisted [Wi98, §5.3][BM00] (and differential, see [GS19c] for recent rigorous developments) topological
K-theory, Aτ(−) = KUτ(−). Indeed, the character map (21) in this case takes the following form ([FHT02,
§2.5][FSS20d, Prop. 5.5], shown here for type IIA string theory, for definiteness):

KUτ(X)
τ-twisted

complex K-theory
of X

:=


Z×BU�BU(1)

X B2U(1)τ

classifying map
of B-field

classifying map
of RR-fields

r

/
vertical

homotopy

twisted
Chern character

chτ
KU

 H3,

{F2k}k

∣∣∣∣∣ d H3 = 0 ,
[NS 3-flux

H3
]
∈ H3(X ;Z)

d F2k+2
RR-flux Bianchi identities

= H3∧F2k

/
∼

(22)

The Bianchi identities on the right of (22) are exactly those expected to be satisfied by the NS B-field flux H3
and the RR-flux densities F2k in type IIA string theory (see [FSS16b, §4][BMSS19, §1] for details and pointers).

But the M-theoretic lift of these H3/F2k-Bianchi identities (22) is (see [MaSa03, §4.2][Sa10][FSS16a,
§3][BMSS19, §4]) just the G7-Bianchi identity (7) together with closure and the shifted integrality condition
on the G4-flux:

d G4 = 0 ,
[ G̃4︷ ︸︸ ︷
G4 +

1
4 p1(∇

T X)
]
∈ H4(X ;Z)−→ H4(X ;R) . (23)

Therefore, it is natural to ask for a cohomology theory whose twisted character map (21) enforces (7) and (23):
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Hypothesis H is the statement [FSS19b, §2][FSS19c][SS19a][SS21] (following [Sa13, §2.5][FSS16a], review
in [FSS19, §7]) that the cohomology theory for flux/charge quantization (21) of the C-field in M-theory is
Borsuk-Spanier Cohomotopy theory Aτ(−) = πτ(−) [Sp49] in joint degrees 4 (for the M5-brane charge) and 7
(for the M2-brane charge) related by the quaternionic Hopf fibration and twisted by the tangent bundle via the
J-homomorphism (“J-twist”):

The classifying space for degree-n Cohomotopy is (the homotopy type of) the n-sphere Sn, and for (orthog-
onally) twisted n-Cohomotopy it is the homotopy quotient (Borel construction) Sn � O(n+1) of the canonical
action of the orthogonal group O(n+1) on Sn ' S(Rn+1) (recalled as Def. 13 below):

π
τ(X)

τ-twisted
4-Cohomotopy

of X

:=


S4�O(5)

X BO(5)
τ

cocycle
c

/
vertical

homotopy

twisted
cohomotopical

character
chτ

π

[FSS20d, §5.3]

{
G4,

G7

∣∣∣∣∣ d G4 = 0 ,
[
G4 +

1
4 p1(∇

τ)
]
∈ H4(X ;Z)

d G7 =−1
2 G4∧G4 +

1
8 p2(∇

τ)

}
/
∼

(24)

On the right of (24) we are showing the form of the image of the character map (21) specified to orthogonally
twisted 4-Cohomotopy (due to [FSS19b, Prop. 2.5 & 3.13], for more see [FSS20d, §5.3]). Both the 1

4 p1-shifted
integral flux quantization on G4 (23) is implied from charge-quantization in twisted Cohomotopy, as well as
the general form of the G7-Bianchi identity (7). It just remains to relate the Pontrjagin classes of the twisting
bundle τ to the tangent bundle:

The condition that the twist τ be compatible in degrees 7 and 4, along the quaternionic Hopf fibration hH
singles out ([FSS19b, Prop. 2.20]) the quaternionic central product subgroup Sp(2) ·Sp(1)⊂ Spin(8)→ O(8);
and demanding that it, moreover, be compatible with factorization through the Atiyah-Penrose twistor fibration
tH (which corresponds [FSS20c][SS20c] to charge-quantization in heterotic M-theory) singles out ([FSS20c,
Prop. 2.2]) the further subgroup Sp(2) ⊂ Sp(2) ·Sp(1):

S7 S4 ,

Sp(2)·Sp(1)

hH
quaternionic

Hopf fibration

Sp(2)·Sp(1)

S7 CP3 S4 .

Sp(2)

hC
complex

Hopf fibration

Sp(2)

tH
Atiyah-Penrose
twistor fibration

Sp(2)

(25)

A key subtlety here is that the quaternionic unitary group Sp(2) and the spin-group Spin(5) are isomorphic
as abstract Lie groups, but not as subgroups of Spin(8)→ O(8) (nor are they conjugate subgroups); instead
([FSS19b, Prop. 2.17]) as subgroups they are mapped to each other under the triality automorphism on the
ambient Spin(8)-group:

Sp(2) Spin(5)

Spin(8) Spin(8) ,

iSp(2)

∼

iSpin(5)

∼

triality automorphism

tri

BSp(2) BSpin(5)

BSpin(8) BSpin(8)
p1 ←→ p1(1

4 p1
)2−24 · I8 ←→ 1

4 p2

BiSp(2)

∼

BiSpin(5)

∼

delooped triality automorphism

Btri (26)

As shown on the bottom right of (26), this triality automorphism, does not affect the first Pontrjagin class, but
does induce a nontrivial transformation of Pontrjagin classes in degree 8 ([FSS19b, Lem. 2.19]). Therefore,
as we consider tangential Sp(2) ·Sp(1)-structure on spacetime to unify M2/M5-brane charge quantization in J-
twisted Cohomotopy, and in fact tangential Sp(2)-structure to account for charges in heterotic-theory, we arrive
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at J-twisted Cohomotopy theory of the following form [FSS19b, (17)][FSS19c, (43)]:

J-twisted
4-Cohomotopy

π
τSp(2)(X) :=



4-sphere bundle
associated to

Sp(2)-reduced
tangent bundle

E4

universal Sp(2)-structured
4-sphere bundle

S4�Sp(2) S4�Spin(5)

universal
orthogonal

4-sphere bundle

S4�O(5)

X X BSp(2) BSpin(5) BO(5)

BSpin(8) BSpin(8)

(pb)

∼

(pb) (pb)

cocycle in
J-twisted

Cohomotopy
c

tangential Sp(2)-structure

τSp(2)

`T X
classifying map

of tangent bundle

∼

Btri

triality automorphism

/
vertical

homotopy

(27)

Under the twisted character map (21) (with (24) and (26)), this implies the following G7-Bianchi identity
[FSS19b, Prop. 3.8][FSS20d, §5.3]:

d G7 =−1
2 G̃4∧

(
G̃4− 1

2 p1(∇
T X
)
)
−12 · I8

(
∇

T X)
)
, (28)

for G̃4 := G4 +
1
4 p1 (23).

Remark 8 (Structure of the Bianchi identity). The Bianchi identity (28) is of the form (16) except for inclu-
sion of the integrality shift (23) and of a relative weight on the I8-polynomial, corrections that are compatible
with the general expectations (Remark 7). Detailed discussion of the consistency/necessity of these particular
corrections for all of

(a) C-field tadpole cancellation,
(b) M5 WZ-term level-quantization,
(c) M2-brane Page-charge quantization

is given in [FSS19b, p. 13 & §3.8][FSS19c][SS21, Rem. 4.1]. However, for the application to M5-brane
anomaly cancellation, these details are irrelevant. What matters here, by Theorem 4, is that the right hand side
of (28) is proportional to G4∧G4 plus any polynomial in Pontrjagin forms.

M5-Brane anomaly cancellation via Hypothesis H. This allows us to conclude:

Theorem 9. If the base space Q is parallelizable and the normal bundle NQM5 has Sp(2)-structure then:
(i) the ambient black M5-brane spacetime (1) X −→ Q carries tangential Sp(2)-structure (Def. 11) τSp(2);

(ii) flux-quantization (21) of the C-field in τ-twisted 4-Cohomotopy (27) enforces – besides the shifted 4-flux
quantization (23) and the G7-Bianchi identity (28) – the vanishing of the class of [Gbasic

4 ] (6) and hence of
the remaining M5-brane anomaly (5).

Proof. By the exceptional coset space realization S4 ' Sp(2)/
(
Sp(1)× Sp(1)

)
(37), Prop. 19 says that the

vertical tangent bundle has H-structure, in particular G-structure, for H ⊂ G being Sp(1)×Sp(1) ⊂ Sp(2) ⊂
O(8). By Prop. 21 and using the assumption that the tangent bundle of Q is trivializable, this is also the
structure on the once-stabilized total tangent bundle, which is claim (i). With this, claim (ii) follows with (28)
by Theorem 4. �

Remark 10. The assumption in Theorem 9 are met in the key examples of interest (see [SS19a] [FSS19d][FSS20b]
further discussion and pointers):

(i) The assumption that the base space is parallelizable is satisfied for 5-branes wrapped on tori QM5 =
R5−n,1×T n or wrapped on the 3-sphere QM5 = R2,1×S3.

(ii) The assumption that the normal bundle has Sp(2)-structure is satisfied for 5-branes at ADE-singularities,
where it even has Sp(1)⊂ Sp(2)-structure.
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A Appendix: Tangent structure on sphere bundles

Here we prove some results on (vertical) tangent structures to sphere bundles. The key consequences for the
proofs in §3 are:
(i) Prop. 22 (used in the proof of Thm.4 ,
(ii) Prop. 19 (used in the proof of Thm. 9).
The first of these must be well-known to experts, but complete statements/proofs are hard to find in the literature
(we give commented pointers to existing references as we proceed). We observe here that (i) follows as a direct
corollary of the second statement (ii), which seems to be new. We give a slick homotopy-theoretic proof that
neatly ties in with the formulation of Hypothesis H.

Homotopy theory. Following [FSS19b][FSS19c][SS21], we make free use of basic notions of homotopy
theory (“higher structures”). For mathematical background and pointers see [FSS20d, §A][SS20b, §2]); for
exposition in the context of string/M-theory see [JSSW19][FSS19]. This means that all topological spaces in
the following are regarded up to weak homotopy equivalence (see [FSS20d, Ex. A.7]), which we denote by
an equality sign, e.g. for S4�Spin(5) = BSpin(4) in (38) below, where the double slash denotes the homotopy
quotient or Borel construction for any topological/simplicial group G (see [NSS12b, Prop. 3.73])

X�G = H×G EG ,

which subsumes the the classifying space construction B(−) (e.g. [NSS12b, Ex. 3.68])

BG = ∗�G = ∗×G EG = (EG)/G

for principal G-bundles, being homotopy pullbacks (e.g. [FSS20d, A.24, A.27]) of the universal G-principal
bundle

EG := G�G−→ BG

([NSS12b, §4.1][SS20b, §2.2], traditional review in [Mit11]):

P G�G EG

Q BG .

pprincipal
G-bundle

homotopy pullback
(pb)

universal
principal
G-bundle

`P
classifying map

(29)

Generally, for any (topological/simplicial) action G yF of G on a typical fiber F , the homotopy quotient serves
as the universal G-structured/associated F-fiber bundle ([NSS12a, §4][SS20b, §2.2]):

E F�G EG×G F

Q BG .

pG-structured
F-fiber bundle

homotopy pullback
(pb)

universal
G-structured

F-fiber bundle
`E

classifying map

(30)

Here and in the following, we are notationally suppressing the homotopies filling all these diagrams.

G-Structures. Throughout, n ∈ N denotes any natural number. All (fiber-)vector spaces and, in particular, all
(vertical) tangent spaces are assumed to be finite-dimensional.

Definition 11 (G-Structure). Given a topological group G and a homomorphism φ : G−→ GL(d), we say that

(i) G-structure on a real vector bundle V
p−→Q is a factorization of its classifying map Q `V−−→ BO(d) through

Bφ : BH −→ BGL(d);
(ii) G-structure on a real smooth manifold Md is G-structure on its tangent vector bundle.
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Remark 12 (Literature on G-structure). The notion of G-structures as an efficient tool for controlling the
geometry of super-string compactifications is discussed in [Lo01][GMPW04][Koe10][Ga11][DDG14][Pr16]

[MPT17]. Beware that tradition in Cartan geometry insists that the homomorphism G
φ−→ GL(d) be injective

(e.g. [ČS09, p. 46]). Since this demand excludes common examples of “G-structures” like Spin structures
(but also String structures, etc.; and metaplectic structures, etc.) without being necessary for the part of the
theory that is relevant here, we do not impose it. In algebraic topology this more general notion is known as
(BG,Bφ)-structures (see [Koc96, §1.4]) or as tangential structures [GMTW06, Sec. 5] (observing here that the
canonical inclusion O(d) ↪→ GL(d) is the maximal compact subgroup, so that BO(d) B−→ GL(d) is a homotopy
equivalence). See [SS20b, §4.2] for extensive discussion, comparison and further pointers.

Spherical fibrations.

Definition 13 (Orthogonal n-sphere fiber bundle).
(i) We say that an Sn-fiber bundle p : X −→Q is orthogonal if it is equivalent to unit sphere bundle S(p) : S(V )−→
Q inside an real vector bundle p : V −→ Q (whose structure group may always be taken to be the orthogonal
group).
(ii) This means equivalently that X is associated (30) via a classifying map Q `X−→ BO(n+1) to the classifying
space for the orthogonal group, which fits into a homotopy-pullback diagram of the following form:

X Sn�O(n+1)

Q BO(n+1) ,

porthogonal
n-sphere bundle

homotopy pullback
(pb)

universal
orthogonal

n-shere bundle
`X

classifying map

(31)

where on the top right we have the homotopy quotient (the Borel construction) of the n-sphere Sn ' S(Rn+1)
by its canonical action of the orthogonal group.
(iii) More generally, if a topological group G acts continuously on Sn, then we say that an G-associated n-sphere
fiber bundle X −→ Q is one fitting into a homotopy-pullback diagram of this form:

X Sn�G

Q BG ,

pG-structured
n-sphere bundle

homotopy pullback
(pb)

universal
G-structured

n-sphere bundle
`X

classifying map

(32)

Example 14 (Universal orthogonal n-sphere fiber bundle). Denoting the canonical inclusion of orthogonal
groups by

O(n) O(n+1)
A diag(1,A) ,7−→

(33)

the universal example of orthogonal n-sphere bundles (Def. 13) is equivalent to the map Bin of classifying
spaces induced from (33):

Sn Sn�O(n+1) BO(n)

∗ BO(n+1)

(pb) Bin (34)

This example is classical, see for instance [BC97, p. 4]. But it is just a special case of a more general phe-
nomenon that will be useful for our purpose:
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Example 15 (Universal G-structured n-sphere fiber bundle). Let
H G (35)

be an inclusion of topological groups. Then the homotopy quotient (Borel construction) of their coset space
G/H by its canonical residual left G-action is equivalent to the homotopy type of the classifying space of H
([FSS19b, Lem. 2.7]):

G/H (G/H)�G BH

∗ BG

(pb) Bi (36)

Therefore, when the coset space G/H is in fact an n-sphere equipped with G-action, which happens in the
following cases ([FSS19b, Rem. 2.9, Prop. 2.23])

Generic Exceptional
H i

↪−→ G G/H

O(n) ⊂ O(n+1)
SnSO(n) ⊂ SO(n+1)

Spin(n) ⊂ Spin(n+1)

SU(n) ⊂ SU(n+1) S2n−1

Sp(n) ⊂ Sp(n+1) S4n−1

H i
↪−→ G G/H

Sp(1)×Sp(1) ⊂ Sp(2) S4

SU(3) ⊂ G2 S6

G2 ⊂ Spin(7) S7

Spin(7) ⊂ Spin(9) S15

(37)

then the universal G-associated n-sphere bundle is equivalently the classifying space of H ([FSS19b, Prop.
2.8]):

Sn Sn�G BH

∗ BG

(pb) Bi (38)

Vertical tangent bundles to spherical fibrations. We now show how this universal homotopy-theoretic con-
struction of sphere bundles knows everything about their vertical tangent bundles.

Proposition 16 (Classifying map of frame bundle to n-sphere). Under the identification on the right of (34),
the homotopy fiber inclusion fib(Bin) of Sn into the universal orthogonal n-sphere fiber bundle (Example 14) is
the classifying map ` Fr(Sn) for the orthogonal frame bundle FrO(Sn)→ Sn of the n-sphere:

Sn BO(n)

∗ BO(n+1)

`FrO(Sn)

classifying map of
orthogonal frame bundle

(pb) Bin (39)

Proof. The long homotopy fiber sequence of Bin (e.g. [NSS12a, Def. 2.26], following from the pasting law
[NSS12a, Prop. 2.23]) shows that the homotopy fiber inclusion of Bin classifies an O(n)-principal bundle over
the n-sphere whose total space is O(n+1) with O(n)-action induced by the canonical inclusion in (33):

O(n) O(n+1) ∗

∗ Sn BO(n)

∗ BO(n+1)

i

(pb) (pb)

fib(Bin)

(pb) Bin

13



Therefore, it is sufficient to observe that we have an isomorphism of O(n)-principal bundles

O(n+1) Fr(Sn)

A
(
A · v1, · · · ,A · vn

)
∈ FrA·v0(S

n) ,

O(n)

∼
O(n)

7→

where v0, · · ·vn ∈ Rn+1 are the canonical basis vectors and where on the right we regard Sn = S(Rn+1) with the
induced identification of TA·v0Sn ' (A · v0)⊥ ⊂ Rn+1. �

More generally:

Proposition 17 (Classifying map of H-frame bundle of H-coset realization of n-sphere). Given a coset-space
realization of the n-sphere Sn ' G/H (37) induced from a subgroup inclusion H i−→ G (35) of compact Lie
groups, then under the identification on the right of (38) the homotopy fiber inclusion fib(Bi) of Sn into the
universal G-associated n-sphere fiber bundle (Example 15) is a classifying map for the H-principal bundle on
the n-sphere which exhibits its canonical H-structure (Def. 11):

Sn BH

∗ BG

`FrH(Sn)

classifying map of
H-frame bundle

(pb) Bi (40)

Proof. As before, the long homotopy fiber sequence of Bi (e.g. [NSS12a, Def. 2.26], following from the pasting
law [NSS12a, Prop. 2.23]) shows that the homotopy fiber inclusion of Bi classifies an H-principal bundle over
the n-sphere whose total space is G with H-action induced by the given subgroup inclusion:

H G ∗

∗ Sn BH

∗ BG

i

(pb) (pb)

fib(Bi)

(pb) Bi

Therefore, it is sufficient to observe that G−→G/H is an H-frame bundle that exhibits H-structure (Def. 11) on
the tangent bundle T (G/H). This is basic fact of Cartan geometry, laid out for instance in [ČS09, p. 53]. �

Example 18 (Canonical Spin structure on n-spheres). For the generic coset space realization of the n-sphere
from (37), Sn ' Spin(n+1)/Spin(n), Prop. 17 says that the homotopy fiber inclusion of the map of classifying
spaces BSpin(n) B−→ Spin(n+1) classifies a Spin(n)-principal bundle of the form Spin(n+1)−→ Sn and that this
is a Spin structure (Def. 11) on the n-sphere. A traditional proof of this fact is spelled out in detail in [No15,
Thm. A.6.6], see also [Gu88, §2.a].

Proposition 19 (H-Structure on vertical tangent bundle of G-associated sphere bundle). Given a coset-space
realization of the n-sphere Sn ' G/H (37) induced from a Lie subgroup inclusion H i−→ G (35), then for a

G-associated Sn-fiber bundle X
S(p)−−→ Q (32):

(i) the vertical tangent bundle carries an H-structure (Def. 11);
(ii) whose associated G-principal bundle is the pullback along S(p) of that to which X is associated.
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Proof. By the classification (30) of fiber bundles, S(p) sits in a homotopy pullback square as on the right of the
following pasting diagram

Sn
q X Sn�G BH

∗ Q BG .

`TS(pq)X

(pb) S(p)

`TS(p)X

(pb)

x `X

(41)

Notice that if the top map in the right square classifies H-structure on the vertical tangent bundle, as indicated
by its label, then the homotopy-commutativity of the right square is equivalent to claim (ii).

Hence it is sufficient now to prove that the top right map indeed classifies H-structure on the vertical tangent
bundle; which then also proves claim (i).

To that end, consider any point q ∈ Q and write Sn
q for the sphere fiber over it, as shown by the homotopy

pullback square on the left of (41). By the pasting law ([NSS12a, Prop. 2.23]) it follows that the full rectangle
is a homotopy pullback. Therefore Prop. 17 says that the composite top map in (41) classifies H-structure on
the tangent bundle of Sn

q. Since this true for all q, it follows that the H-principal bundle classified by ` TS(p)X
restricts on each sphere fiber Sn

q to that sphere’s tangent H-structure. But this is the defining property of (H-
structure on) the vertical tangent bundle of X . �

Corollary 20 (Once-stabilized vertical tangent bundle of orthogonal sphere bundle is basic). The once-stabilized
vertical tangent bundle to an orthogonal sphere bundle S(p) : S(V )→ Q (31) is isomorphic to the pullback of
its underlying vector bundle:

vertical
tangent bundle︷ ︸︸ ︷

TS(p)
(
S(V )︸ ︷︷ ︸
orthogonal

sphere bundle

) one-step
stabiliz.︷︸︸︷
×R 'Q

pullback of
associated vector bundle︷ ︸︸ ︷

S(p)∗
(
V
)
. (42)

A traditional proof of this statement is indicated in [Go16, Prop. 1.1.9].

Proof. For the orthogonal subgroup inclusion O(n) in−→ O(n+ 1) (33), Prop. 19 gives a homotopy pullback
diagram (42) of this form:

S(V ) Sn//O(n+1) BO(n)

Q BO(n+1)

`TS(p)S(V )

S(p) (pb) Bin

`V

(43)

Noticing that postcomposition with Bin manifestly corresponds to one-step stabilization of an orthogonal vector
bundle, the homotopy-commutativity of this square is exactly the claim to be proven. �

The following is stated without proof as [CrEs03, Fact 3.1], apparently reading between the lines of [Mil56,
p. 403].

Corollary 21 (Once-stabilized tangent bundle of orthogonal sphere bundle is basic).
If the base space Q is a smooth manifold, then the once-stabilized tangent bundle of the total space of an
orthogonal sphere bundle S(p) : S(V )−→ X (Def. 13) is isomorphic to the pullback along S(p) of the Whitney
sum of the tangent bundle of the base with the given vector bundle:

T
(
S(V )

)
×R 'Q S(p)∗

(
T Q⊕Q V

)
. (44)
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Proof. Consider the following sequence of bundle isomorphisms over the base space Q:

T
(
S(V )

)
×R 'Q

(
S(p)∗(T Q)

)
⊕Q

(
TS(p)

(
S(V )

)
×R

)
'Q

(
S(p)∗(T Q)

)
⊕Q

(
S(p)∗V

)
'Q S(p)∗

(
T Q⊕Q V

)
.

Here:
(a) The first step is a splitting of the short exact sequence of vector bundles

0 TS(p)S(V ) T
(
S(V )

)
S(p)∗(T Q) 0

dS(p)

that defines the vertical tangent bundle TS(p)S(V ), and which splits as a special case of the general split-
ting of short exact sequences of real vector bundles over paracompact Hausdorff base spaces, in particular
over smooth manifolds, by forming orthogonal complements with respect to any choice of a continuous
fiberwise inner product.

(b) The second step is Corollary 20.

(c) The last step is the distributivity of pullback over Whitney sum of vector bundles. �

In conclusion :

Proposition 22 (Stable characteristic classes on sphere bundles are basic). Given an orthogonal sphere-fiber
bundle S(V ),
(i) every stable characteristic class – hence every polynomial P(p1, p2, · · ·) of Pontrjagin classes pi – of its
vertical tangent bundle is basic, i.e.: pulled back from the base space Q:

P(p1, p2, · · ·)
(
TS(p)S(V )

)
= S(p)∗P(p1, p2, · · ·)

(
V
)︸ ︷︷ ︸

∈H•(Q)

;

(ii) and if the base space Q is a smooth manifold then then analogous statement holds for every stable class of
the full tangent bundle

P(p1, p2, · · ·)
(
T S(V )

)
= S(p)∗P(p1, p2, · · ·)(T Q⊕Q V )︸ ︷︷ ︸

∈H•(Q)

;

Proof. Since a stable characteristic class of a vector bundle, such as a Pontrjagin class, is one that can be pulled
back from any direct sum of that vector bundle with a trivial vector bundle, the first claim follows by Cor. 20
and the second by Cor. 21. �
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