
1 Introduction and survey

Recall the content of the
K-theory conjecture in string theory: The collection of NS-flux and RR-flux differential forms in string theory
are subject to charge quantization in twisted K-theory, in that they are but the Chern-character image of a cocycle
in twisted K-theory, and it is this cocycle in (differential) twisted K-theory which is the full incarnation of the
NS&RR-fields in string theory.

In direct analogy to this, we introduce:
Hypothesis H in M-Theory: The C-field 4-flux and 7-flux forms in M-theory are subject to charge quantization in
J-twisted Cohomotopy cohomology theory in that they are but the non-abelian Chern character image of a cocycle
in J-twisted Cohomotopy theory, and it is this cocycle in (differential) J-twisted Cohomotopy theory which is the
full incarnation of the C-field in M-theory .

In support of Hypothesis H, we here prove that it implies the following phenomena, expected for M2-brane back-
grounds in M-theory on 8-manifolds:

Cohomotopy theory expression M-theory

compatible twisting
on 4- & 7-Cohomotopy theory

W7[T X ] = 0 (13) DMW anomaly cancellation condition

any cocycle
in J-twisted 7-Cohomotopy

Spin(7)-structure g (14) ≥ 1/8 BPS M2-brane background

any cocycle in
compatibly twisted 4&7-Cohomotopy

Sp(1) ·Sp(1)-structure τ (15) 4/8 BPS M2-brane background

Chern character of
rationally twisted 4-Cohomotopy

d G4 = 0

d G7 = −1
2 G4∧G4 +L8

(19)
C-field Bianchi identity with

generic higher curvature correction

Chern character of compatibly
rationally twisted 4&7-Cohomotopy

d G̃4 = 0

d G7 = −1
2

(
G̃4− 1

4 P4
)
∧ G̃4 +K8

(20)
shifted C-field Bianchi identity with
generic higher curvature correction

Chern character 4-form of
Sp(2)-twisted 4-Cohomotopy

G̃4 = G4 +
1
4 p1(∇) (21) C-field shift by background charge

[G̃4] ∈ H4(X8,Z) (22) shifted C-field flux quantization

Sq2([G̃4]
)
= 0 (23) integral equation of motion

Chern character 7-form of compatibly
Sp(2)-twisted 4&7-Cohomotopy

G̃7 = G7 +
1
2 H3∧ G̃4 (26) Page charge

d G̃7 = −1
2
χ8(∇) (27) conservation of Page charge

2
∫

S7
i∗G̃7 ∈ Z (28) level quantization of Hopf-WZ term

integrated Chern character of compatibly
Sp(2)-twisted 4&7-Cohomotopy

NM2 = −I8 (32) C-field tadpole cancellation

We now survey these statements informally. Full details, proofs and references are in [FSS19b][FSS19c]. For back-
ground and motivation see [FSS19a]; for equivariant Cohomotopy and M-theory orbifolds see [SS19a][SS19b].
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Generalized abelian cohomology. Before we start, briefly a word on “generalized” cohomology theories, recalling
some basics, but in a broader perspective:

The ordinary cohomology groups X 7!H•(X ,Z) famously satisfy a list of nice properties, called the Eilenberg-
Steenrod axioms. Dropping just one of these axioms (the dimension axiom) yields a larger class of possible abelian
group assignments X 7! E•(X), often called generalized cohomology theories. One example are the complex
topological K-theory groups X 7! KU•(X).

By the Brown representability theorem, every generalized cohomology theory in this sense has a classifying
space En for each degree, such that the n-th cohomology group is equivalently the set of homotopy classes of maps
into this space:

generalized abelian
cohomology theory En(X)

Brown’s
representability

theorem

'
{

X continuous function

= cocycle in E-theory
// En

}/
∼homotopy

for (En)n∈N with En 'ΩEn+1
a spectrum of classifying spaces . (1)

(Here and in the following, a dashed arrow indicates a map representing a cocycle that is free to choose, as opposed
to solid arrows indicating fixed structure maps.)

For example, ordinary cohomology theory has as classifying spaces the Eilenberg-MacLane spaces K(Z,n),
while complex topological K-theory in degree 1 is classified by the space underlying the stable unitary group.

For generalized cohomology theories in this sense of Eilenberg-Steenrod, Brown’s representability theorem
translates the suspension axiom into the statement that the classifying spaces En in (1) are loop spaces of each
other, En ' ΩEn+1, and thus organize into a sequence of classifying spaces (En)n∈N called a spectrum. The fact
that each space in a spectrum is thereby an infinite loop space makes it behave like a homotopical abelian group
(since higher-dimensional loops may be homotoped and hence commuted around each other, by the Eckmann-
Hilton argument).

Generalized non-abelian cohomology. But not all cohomology theories are abelian! The classical example, for
G any non-abelian Lie group, is the first non-abelian cohomology X 7! H1

(
X ,G

)
, defined on any manifold X as

the first Cech cohomology of X with coefficients in the sheaf of G-valued functions.
Nevertheless, this non-abelian cohomology theory also has a classifying space, called BG, and in terms of this

it is given exactly as the abelian generalized cohomology theories in (1):

degree-1 non-abelian
cohomology theory H1(X ,G)

principal bundle
theory

'
{

X continuous function

= cocycle
// BG

}/
∼homotopy

. (2)

Hence the joint generalization of a) generalized abelian cohomology theory (1) and b) non-abelian 1-cohomology
theories (2) are assignments of homotopy classes of maps into any coefficient space A

non-abelian generalized
cohomology theory H(X ,A) :=

{
X continuous function

= cocycle
// A
}/
∼homotopy

. (3)

All this may naturally be further generalized from topological spaces to higher stacks. In the literature of this
broader context the perspective of non-abelian generalized cohomology is more familiar. But it applies to the
topological situation as the easiest special case, and this is the case we are concerned with for the present purpose.

Higher principal bundles. This way, the classical statement (2) of principal bundle theory finds the following
elegant homotopy-theoretic generalization:

For every connected space A, its based loop space G := ΩA is a higher homotopical group under concatenation
of loops (an “∞-group”). Moreover, A itself is equivalently the classifying space for that higher group:

Every
connected

space...

A '

...is the
classifying

space...

B

G︷︸︸︷
ΩA
...of its

loop group.

(4)
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in that non-abelian G-cohomology in degree 1 classifies higher homotopical G-principal bundles:

H(X ,BG) =

non-abelian
G-cohomology

H1(X ,G)
'

−−−−!

higher homotopical
G-principal bundles

GBundles(X)/
∼

[
X

cocycle
c
−! BG

]
7!



G-principal bundle
classified by c

P //

homotopy
pullbackc∗(pBG )

��

universal
G-principal

bundle

G�G

pBG

��
X c

classifying map
for P

// BG



(5)

Cohomotopy cohomology theory. The primordial example of a non-abelian generalized cohomology theory (3)
is Cohomotopy cohomology theory, denoted π•. By definition, its classifying spaces are simply the n-spheres Sn:

Cohomotopy
cohomology theory π

n(X) :=
{

X continuous function

= cocycle
// Sn
}/
∼homotopy

. (6)

Since the (n ≥ 1)-spheres are connected, the equivalence (4) applies and says that Cohomotopy theory is equiva-
lently non-abelian 1-cohomology for the loop groups of spheres G := ΩSn:

π
n(X)

Cohomotopy
theory

' H1(X ,ΩSn)

non-abelian 1-cohomology
for sphere loop group

.

A whole range of classical theorems in differential topology all revolve around characterizations of Cohomo-
topy sets, even if this is not often fully brought out in the terminology.

Evaluated on spaces which are themselves spheres, Cohomotopy cohomology theory evaluates to the (unsta-
ble!) homotopy groups of spheres, the “vanishing point” of algebraic topology:

n-cohomotopy groups
of k-sphere π

n(Sk) ' {
Sk // Sn

}/
∼
' πk

(
Sn) k-homotopy groups

of n-sphere .

The quaternionic Hopf fibration. A notable example, for the following purpose, of a class in the Cohomotopy
group of spheres, is given by the quaternionic Hopf fibration

S7

quaternionic Hopf fibration
hH

**' S(H2)
unit sphere

in quaternionic
2-space

(q1,q2)7![q1:q2]
// HP1

quaternionic
projective
1-space

' S4 , (7)

which represents a generator of the non-torsion subgroup in the 4-Cohomotopy of the 7-sphere, as shown on the
left here:

quaternionic
Hopf fibration

[S7 hH! S4]

7!

∈

non-abelian/unstable
Cohomotopy group

π4(S7)

'

stabilization

Σ∞

//

abelian/stable
Cohomotopy group

S4(S7)

'

3 Σ∞[S7 hH! S4]

7!

stabilized
quaternionic

Hopf fibration

non-torsion
generator (1,0) ∈ Z×Z12

(n,a)7!(n mod 24)
// Z24 3 1 torsion

generator

(8)
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Shown on the right is the abelian approximation to non-abelian Cohomotopy cohomology theory, called stable
Cohomotopy theory and represented, via (1), by the sphere spectrum S (whose component spaces are the infinite-
loop space completions of the n-spheres: Sn ' Ω∞Σ∞Sn). Crucially, in this approximation the quaternionic Hopf
fibration becomes a torsion generator:

Non-abelian 4-Cohomotopy witnesses integer cohomology groups not only in degree 4, but also in degree 7 –
but when seen in the abelian/stable approximation this “extra degree” fades away and leaves only a torsion shadow
behind.

In any case, composition with the quaternionic Hopf fibration is a transformation that translates classes in
degree-7 Cohomotopy to classes in degree-4 Cohomotopy:

S7

hH
��

7-Cohomotopy

reflects into

π7(X)

(hH)∗
��

X

c

99

(hH)∗(c)
// S4

4-Cohomotopy π4(X)

(9)

Twisted non-abelian generalized cohomology. Regarding generalized cohomology theory as homotopy theory
of classifying spaces (3) makes transparent the concept of twistings in cohomology theory: Instead of mapping
into a fixed classifying spaces, a twisted cocycle maps into a varying classifying space that may twist and turn as
one moves on the domain space. In other words: A twisting τ of A-cohomology theory on some X is a bundle over
X with typical fiber A, and a τ-twisted cocycle is a section of that bundle, as shown on the left in the first line of
the following:

τ-twisted
non-abelian generalized
A-cohomology theory

Aτ(X) :=



A-fiber bundle

P

p

��

//

universal
A-fiber bundle

A�Aut(A)

��
X

continuous section
= twisted cocycle

55

X
τ

classifying map
for P

// BAut(A)

/
∼ homotopy

BAut(A)

'


X

twist τ
##

continuous function // A�Aut(A)

xx
BAut(A)

homotopy��

/
∼ homotopy

BAut(A)

. (10)

Here the equivalent formulation shown in the second line follows because A-fiber bundles are themselves classified
by nonabelian Aut(A)-cohomology, as shown on the right of the first line (due to (5)).

Twisted Cohomotopy theory. For the example (6) of Cohomotopy cohomology theory in degree d−1 there is a
canonical twisting on Riemannian d-manifolds, given by the unit sphere bundle in the orthogonal tangent bundle:
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J-twisted
Cohomotopy theory π

T Xd

(Xd) :=



tangent
unit sphere bundle

S(T Xd)

p

��

//

universal tangent
unit sphere bundle

Sd−1�O(d)

��
X

continuous section
= twisted cocycle

88

X
T Xd

classifying map of
tangent/frame bundle

// BO(d)

/
∼ homotopy

BO(d)

'


X

T Xd

twist !!

continuous function // Sd−1�O(d)

yy
BO(d)

homotopy�	

/
∼ homotopy

BO(d)

. (11)

Since the canonical morphism O(d) −! Aut(Sd−1) is known as the J-homomorphism, we may call this J-twisted
Cohomotopy theory, for short.

Compatibly J-twisted Cohomotopy in degrees 4 & 7. In view of (9) it is natural to ask for the maximal subgroup
G⊂O(8) for which the quaternionic Hopf fibration is equivariant, so that its homotopy quotient hH �G exists and
serves as a map of G-twisted Cohomotopy theories (11) from degree 7 and 4.

This subgroup turns out to be the central product of the quaternion unitary groups Sp(n) for n = 1,2:

Sp(2) ·Sp(1)
central product of

quaternion-unitary groups

⊂ O(8) is maximal subgroup s.t.

S7�Sp(2) ·Sp(1)

yy
hH�Sp(2)·Sp(1) universally twisted

quaternionic Hopf fibration

��

B
(
Sp(2) ·Sp(1)

)

S4�Sp(2) ·Sp(1)

ee
. (12)

In other words, J-twisted Cohomotopy (11) exists compatibly in degrees 4 & 7 precisely on those 8-manifolds
which carry topological Sp(2) ·Sp(1)-structure, i.e., whose structure group of the tangent bundle is equipped with
a reduction along Sp(2) ·Sp(1) ↪! O(8). This reduction is equivalent to a factorization of the classifying map as
shown on the left below, with some cohomological consequences shown on the right:

X8

τ

&&

tangent
bundle T X8

��
BO(8)

classifying space of
orthogonal structure

B
(
Sp(2) ·Sp(1)

)
classifying space of
Sp(2) ·Sp(1)-twists

oo

Sp(2) ·Sp(1)
-structure

�	 ⇒



1
24

Euler
class

χ8 = I8 := 1
48

Pontrjagin classes(
p2− 1

4(p1)
2
)

(
H2(X8,Z2) = 0

)
⇒
(
w6

Stiefel-Whitney
class

= 0
)
⇒
(
W7

integral
Stiefel-Whitney

class

= 0
) (13)

J-Twisted Cohomotopy and Topological G-Structure. For every topological coset space realization of an n-
sphere, there is a canonical homotopy equivalence between the corresponding classifying spaces for a) twisted
Cohomotopy and b) topological G-structure, as follows:

coset space structure
on topological n-sphere

Sn '
homeo

G/H ⇒

G-twisted Cohomotopy /
topological H-structure

Sn�G '
htpy

BH .
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In particular, on spin 8-manifolds we have the following equivalences between a) J-twisted Cohomotopy cocycles
(11) and b) topological G-structures:

S7�Spin(8)
' BSpin(7)

⇒



classifying space
for J-twisted

Cohomotopy theory

S7�Spin(8)

��
X8

cocycle in
J-twisted Cohomotopy

c
77

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological

Spin(7)-structure

BSpin(7)

Bi

��
X8

topological
Spin(7)-structure

g
77

T X8

tangent
spin structure

// BSpin(8)

homotopy


�



(14)

and

S7�Sp(2) ·Sp(1)
' BSp(1) ·Sp(1)

⇒



classifying space
for Sp(2) ·Sp(1)-twisted

Cohomotopy theory

S7�Sp(2) ·Sp(1)

��
X8

cocycle in
Sp(2) ·Sp(1)-twisted
Cohomotopy theory

c
77

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological

Sp(1) ·Sp(1)-structure

BSp(1) ·Sp(1)

Bi

��
X8

topological
Sp(1) ·Sp(1)-structure

g 77

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



(15)

As the existence of a G-structure is a non-trivial topological condition, so is hence the existence of J-twisted
Cohomotopy cocycles. Notice that this is a special effect of twisted non-abelian generalized Cohomology: A non-
twisted generalized cohomology theory (abelian or non-abelian) always admits at least one cocycle, namely the
trivial or zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on 8-manifolds, the existence of
any cocycle is a non-trivial topological condition.

Compatibly Sp(2)-Twisted Cohomotopy in degree 4 & 7. For focus of the discussion, we will now restrict
attention to G-structure for the further quaternion-unitary subgroup

Sp(2) ↪! Sp(1) ·Sp(2)

of (12). In summary then, due to the Sp(2)-equivariance of the quaternionic Hopf fibration (12) the map (9) from
degree-7 to degree-4 Cohomotopy passes to Sp(2)-twisted Cohomotopy:

S7�Sp(2)

��

hH�Sp(2) Sp(2)-twisted
quaternionic Hopf fibration

��

X (hH�Sp(2))∗(c) //

cocycle in
twisted

7-Cohomotopy
c

55

twist, uniformly
in degrees 4 & 7 τ   

S4�Sp(2)
induced cocycle

in twisted
4-Cohomotopy

zz
BSp(2)
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and hence (9) becomes:

Sp(2)-twisted
7-Cohomotopy π i7◦τ(X)

reflects into
(

hH�Sp(2)
)
∗

��

:=


X

twist τ
""

continuous function // S7�Sp(2)

yy
BSp(2)

homotopy�	

/
∼ homotopy

BSp(2)
. (16)

Sp(2)-twisted
4-Cohomotopy theory π

i4◦τ(X) :=


X

twist τ
""

continuous function // S4�Sp(2)

yy
BSp(2)

homotopy�	

/
∼ homotopy

BSp(2)

. (17)

Triality between Sp(2)-structure and Spin(5)-structure. While the group (12) is abstractly isomorphic to a
central product of Spin-groups, the two are distinct as subgroups of Spin(8), and not conjugate to each other. But
as subgroups they are turned into each other by the ambient action of triality:

Sp(2) �
� //

central product of
quaternion-unitary groups

Sp(1) ·Sp(2)� _

��

oo ' //

central product of
Spin-groups

Spin(3) ·Spin(5)� _

��

oo ? _Spin(5)

M2 M5

Spin(8) oo '
tri

triality automorphism

// Spin(8)

7



Generalized Chern characters. Since generalized cohomology theory is rich, one needs tools to break it down.
The first and foremost of these is the generalized Chern character map. This extracts differential form data
underlying a cocycle in nonabelian generalized cohomology.

The Chern character is familiar in twisted K-theory, shown in the first half of the following:

torsionful generalized
cohomology theory

approximation by
generalized Chern character // L∞-valued de Rham

cohomology theory

Chern character on
ordinary

integral cohomology

ordinary
integral cohomology

H3(X ,Z)
extension of scalars
& de Rham theorem //

de Rham
cohomology

H3
dR
(X)

τ
bundle gerbe

7! [H3]
3-form

Chern character on
B-field-twisted

K-theory

τ-twisted
complex K-theory

KUτ(X)

τ-twisted
Chern character

chτ

//

H3-twisted
de Rham cohomology

H
[H3 ]

dR
(X)

V
virtual twisted
vector bundle

7!
[
tr
(

exp(F)
)]

exponentiated
curvature form

Chern character on
non-abelian

O(n)-cohomology

non-abelian
O(n)-cohomology

H1
(
X ,O(n)

) characteristic forms //

de Rham cohomology tensor
invariant polynomials on o(n)

HdR

(
X
)
⊗ inv(o(n))

τ
vector bundle

7! τR :=
{
[Wi(∇τ)]
Stiefel-Whitney

forms

, [pk(∇τ)]
Pontrjagin

forms

}
i,k

Chern character
on J-twisted

n-Cohomotopy

τ-twisted
Cohomotopy theory

πτ
(
X
) cohomotopical

Chern character //

τR-twisted
rational Cohomotopy theory

πτR
(
X
)
R

(18)

In order to see what the cohomotopical Chern character in the last line is, we need some general theory of gener-
alized Chern characters. This is rational homotopy theory:

Rational homotopy theory. In the language of homotopy theory, generalized Chern character maps are examples
of rationalization, whereby the homotopy type of a topological space (here: the classifying space of a generalized
cohomology theory) is approximated by tensoring all its homotopy groups with the rational numbers (equivalently:
the real numbers), thereby disregarding all torsion subgroups in homotopy groups and in cohomology groups.

generalized
cohomology theory

OO
classifying

spaces
��

Chern character // L∞-valued
differential forms

OO
Sullivan model

construction
��

full
homotopy theory rationalization

// rational
homotopy theory

What makes rational homotopy theory amenable to computations is the existence of Sullivan models. These are
differential graded-commutative algebras (dgc-algebras) on a finite number of generating elements (spanning the
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rational homotopy groups) subject to differential relations (enforcing the intended rational cohomology groups).
In the supergravity literature Sullivan models are also known as “FDA”s. Here are some basic examples:

Rational
super space

Loop
super L∞-algebra

Chevalley-Eilenberg
super dgc-algebras

(“Sullivan models”, “FDA”s)

General X lX CE
(
lX
)

Super
spacetime

Td,1|N Rd,1|N R
[
{ψα}N

α=1,{ea}d
a=0
] /( d ψα = 0

d ea = ψ Γaψ

)

Eilenberg-MacLane
space

K(R, p+2)

'RBp+1S1 R[p+1] R
[
cp+2

] / (
d cp+2 = 0

)
Odd-dimensional

sphere
S2k+1 l(S2k+1) R

[
ω2k+1

] / (
d ω2k+1 = 0

)
Even-dimensional

sphere
S2k l(S2k) R

[
ω2k,ω4k−1

] /( d ω2k = 0
d ω4k−1 = −ω2k ∧ω2k

)

M2-extended
super spacetime

T̂10,1|32 m2brane R
[
{ψα}32

α=1,{ea}10
a=0,h3

] / d ψα= 0
d ea = ψ Γaψ

d h3 = i
2 (ψΓabψ)∧ ea∧ eb


Under Sullivan’s theorem the rational homotopy type of well-behaved spaces are equivalently encoded in their
Sullivan model dgc-algebras:

Spaces/
∼ rational

weak homotopy
equivalence

form
loop Lie algebra

l
'

//

form
Sullivan model

CE(l−)
'

$$
L∞Algebras/

∼ quasi-
isomorphism

form
Chevalley-Eilenberg algebra

CE
'

// dgcAlgebrasop/
∼ quasi-

isomorphism

“FDA”s
supergravity

jargon

for spaces & algebras
nilpotent & of finite types

When applying the rational approximation to twisted generalized cohomology theory, the order matters: There
are in general more rational twists X τ

−! BAut(AR) for twisted rational cohomology than there are rationalizations
τR of full twists X τ

−! BAut(A) for rational twisted cohomology. We consider first the general rational twists:

9



Rationally twisted rational Cohomotopy. We find that the rationally twisted rational Cohomotopy sets in degrees
4 and 7 are equivalently characterized by cohomotopical Chern character forms as follows:

rational twist

rational
twisted

Cohomotopy
cohomotopical

Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) '

characteristic form
of twist τ7{

7-form

G̃7

∣∣∣ d G̃7 = K8

}
/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) '


4-form

& 7-form

(G4,G7)

∣∣∣∣∣ d G4 = 0

d G7 =−1
2 G4∧G4 +L8

/
∼

characteristic form
of twist τ4

(19)

Here all real 8-classes [K8], [L8] ∈ H8(X ,R) may appear, for some rational twist τ4/7. But constraints on these
characteristic forms appear when we consider more than rational twisted structure:

Compatibly rationally twisted rational Cohomotopy. We may ask that the rational twists τ4,7 in (19) are related
analogously to how the twisted parametrized Hopf fibration (12) relates the full (non-rational) twists, through (16).
We find that this happens precisely when the difference of the characteristic 8-classes in (19) is a complete square

L8 = K8 +
(1

4 P4
)
∧
(1

4 P4
)

and in that case the situation of (19) becomes the following:

compatible
rational twists

rational
compatibly twisted

Cohomotopy
cohomotopical

Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) '

characteristic form
of twist τ7{

G̃7

∣∣∣ d G̃7 = K8

}/
∼

shifted 4-form

G̃4 := G4 +
1
4 P4

G̃7
shifted 7-form

:= G7 +
1
2 H3∧ G̃4

'


(

H3,

G̃4,G7

) ∣∣∣∣∣∣∣
d H3 = G̃4− 1

2 P4

d G̃4 = 0

d G7 =−1
2 dH3∧ G̃4 +K8

/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) '

{
(G̃4,G7)

∣∣∣∣∣ d G̃4 = 0

d G7 =−1
2(G̃4− 1

2 P4)∧ G̃4 +K8

}
/
∼

(20)

Here still all real 8-classes and 4-classes [K8] ∈ H8(X ,R) , [P4] ∈ H4(X ,R) may appear, for some pair of
compatible rational twists.

Next we find that these real classes are fixed as we consider full (not just rational) Sp(2)-twists, compatible by
the full (not just rational) Sp(2)-twisted quaternionic Hopf fibration (12).

10



J-Twisted 4-Cohomotopy of Sp(2)-manifolds. Consider a simply-connected Riemannian spin-manifold R2,1×
X8 with affine connection ∇ and equipped with:

1. an Sp(2)-structure τ (13);

2. a cocycle c in τ-twisted 4-Cohomotopy (17);

hence equipped with a homotopy-commutative diagram of continuous maps as follows:

R2,1×

spacetime

X8

τ

""

tangent
bundle T X8

��

cocycle in
J-twisted Cohomotopy

c //

classifying space of
Sp(2)-twisted Cohomotopy

S4�Sp(2)

twisting through
Sp(2)'

abstr
Spin(5)! Aut(S4)||

BSpin(8)
classifying space of

spin-structure

BSp(2)
classifying space of

Sp(2)-twists

oo

homotopy��Sp(2)-structure

~�


homotopy class

over BSp(2)

∈

twisted 4-Cohomotopy
of spacetime X8

π
i4◦τ
(
X8)

Then the 4-Cohomotopical Chern character (18) of [c], hence the differential flux forms underlying [c] by (19)

twisted 4-Cohomotopy

πτ
(
X8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 4-Cohomotopy

πτ
(
X8
)
R
oooo relations

� ��
conditions//

plain
differential forms

Ω4(X8)×Ω7(X8)[
c
]

class in
twisted Cohomotopy

7!
[
(G4,G7)

]
Chern character in

twisted Cohomotopy

satisfy, first of all, this condition:
The shifted 4-flux form

G̃4 := G4

naive
4-flux

+ 1
4 p1(∇)

shift by first
fractional

Pontrjagin form

∈ Ω
4(X8)

differential
4-forms

(21)

is integral

[G̃4]

shifted
4-flux

∈ H4
(
X8,Z

)
integral cohomology

extension of scalars // H4
(
X8,R

)
real cohomology

' HdR(X
8)

de Rham cohomology

(22)

and as such its Steenrod square vanishes:

Steenrod square of
mod-2 reduction of

integral shifted 4-flux

Sq2([G̃2]
)
= 0 hence also

Steenrod cube of
mod-2 reduction of

integral shifted 4-flux

Sq3([G̃2]
)
= 0 . (23)
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To see the next condition, consider the homotopy pullback of the 4-Cohomotopy cocycle c along the Sp(2)-
twisted quaternionic Hopf fibration hH to a cocycle in twisted 7-Cohomotopy on the induced 3-spherical fibration
Ĥ8 over spacetime:

classifying space of
compatible 3-flux

X̂8

induced cocycle in
twisted 7-Cohomotopy

ĉ //

induced
3-spherical

fibration
c∗h=:p

��

classifying space of
Sp(2)-twisted 7-Cohomotopy

S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration

��
spacetime X8

τ

""

tangent
bundle T X8

��

cocycle in
J-twisted 4-Cohomotopy

c // S4�Sp(2) classifying space of
Sp(2)-twisted 4-Cohomotopy

twisting through
Sp(2)'

abstr
Spin(5)! Aut(S4)||

BSpin(8)
classifying space of

spin-structure

BSp(2)
classifying space of

Sp(2)-twists

oo

��Sp(2)-structure

y�


homotopy class

over BSp(2)

∈

twisted 7-Cohomotopy
of X̂8

π
τ◦p(X̂8) (24)

Then:
The pullback 3-spherical fibration over spacetime

X̂8 := c∗
(
S7�Sp(2)

)
carries a universal 3-flux Huniv

3 which trivializes the 4-flux relative to its background value

d Huniv
3 = p∗G̃4− 1

4 p1(∇) . (25)

Moreover, the 7-Cohomotopical Chern character of [ĉ], hence the differential flux forms underlying [ĉ] by (20)

twisted 7-Cohomotopy

π p◦τ(X̂8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 7-Cohomotopy

π p◦τ(X̂8
)
R
oooo relations

� ��
conditions//

plain
differential forms

Ω7(X̂8)[
ĉ
]

class in
twisted Cohomotopy

7!
[
G̃7
]

Chern character in
twisted Cohomotopy

satisfy this condition:
The shifted 7-flux form

G̃7 = p∗G7

naive 7-flux

+ 1
2

3-flux

Huniv
3 ∧ p∗

shifted
4-flux

G̃4︸ ︷︷ ︸
shift by

Hopf-Whitehead term

(26)

is a trivialization of the Euler 8-form
d G̃7 = −1

2
χ8(∇) (27)

and is half-integral on every 7-sphere S7 i
! X̂8:

2
∫

S7

i∗G̃7 ∈ Z . (28)
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Finally, consider the case that:
1) Our manifold is the complement in a closed 8-manifold of a finite set of disjoint open balls, i.e. of a tubular

neighbourhood N around a finite set {x1,x2, · · ·} of points:

X8 =

closed
manifold

X8
clsd \

tubular
neighbourhood

N{x1,x2,···}

around points in X8
clsd

⇒

boundary
of X8

∂X8 ' t
{x1,x2,···}

sphere
around xi

S7 (29)

This implies that X8 is a manifold with boundary a disjoint union of 7-spheres.
2) Such that the corresponding extended spacetime X̂8 (24) admits a global section; hence, equivalently, such

that the given cocycle in twisted 4-Cohomotopy lifts through the quaternionic Hopf fibration to a cocycle in twisted
7-Cohomotopy:

classifying space of
compatible 3-flux

X̂8

p:=c∗(h)
induced

3-spherical
fibration

��
X8

global section of
3-spherical fibration

i

44

X8

⇔
S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration��
X8

lift to cocycle in
J-twisted 7-Cohomotopy

ĉ ..

c

cocycle in
J-twisted 4-Cohomotopy

// S4�Sp(2)

homotopy

��

(30)

Here the choice of points in (29) matters only in so far as a sufficient number of points has to be removed for a
lifted cocycle ĉ (30) to exist at all.

We observe that:
1) Since the 7-sphere is parallelizable, upon restriction of ĉ (30) to the boundary ∂X8 i

−! X8 (29) the twist
vanishes, and we are left with a pair of compatible cocycles in plain Cohomotopy theory as in (9):

S7

hH
plain

quaternionic
Hopf fibration

��
t

{x1,x2,···}

boundary 7-spheres

S7 ' ∂X8
(hH)∗ĉ|∂X8

underlying boundary
4-Cohomotopy cocycle

//

boundary restriction of
twisted 7-Chomotopy cocycle

ĉ|∂X8

::

S4	�

2) By (8), cocycles in stable 7-Cohomotopy have no side-effect in stable 4-Cohomotopy precisely if they are
multiples of 24:

for [c1], [c2] ∈

7-Cohomotopy

π
7(

∂X8) we have


(hH)∗[c1] = (hH)∗[c2] ∈

stable 4-Cohomotopy

S4
(
∂X8

)
⇔

[c1] =mod 24 [c2] ∈ S7
(
∂X8

)
stable 7-Cohomotopy

This means that the unit charge of a lift ĉ in (30), as seen by stable Cohomotopy, is 24. In view of (28) this says
that the cohomotopically normalized 7-flux of X8 is

NM2 := 1
12

∫
X8

i∗dG̃7 = 1
12

∫
∂X8

i∗G̃7 . (31)

Our final result is that
this equals the I8-number (13) of the manifold:

NM2 = −I8[X8] . (32)
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