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Abstract

We consider the hypothesis that the C-field 4-flux and 7-flux forms in M-theory are in the image under the
non-abelian Chern character map from the non-abelian generalized cohomology theory called J-twisted Coho-
motopy theory. We prove for M2-brane backgrounds in M-theory on 8-manifolds that such charge quantization
of the C-field in Cohomotopy theory implies a list of expected anomaly cancellation conditions, including:
shifted C-field flux quantization and C-field tadpole cancellation, but also the DMW anomaly cancellation and
the C-field’s integral equation of motion.
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1 Introduction and survey

We consider the following hypothesis, which we make precise as Def. 3.5 below, based on details developed in §2,
see §4 for background, motivation and outlook:

Hypothesis H: The C-field 4-flux and 7-flux forms in M-theory are subject to charge quantization in J-twisted
Cohomotopy cohomology theory in that they are in the image of the non-abelian Chern character map from J-
twisted Cohomotopy theory.

In support of Hypothesis H, we prove in §3 that it implies the following phenomena, expected for M2-brane
backgrounds in M-theory on 8-manifolds (recalled in Remark 3.1 below):

Cohomotopy theory Expression M-theory

§3.2 Compatible twisting
on 4- & 7-Cohomotopy theory

W7(T X) = 0 (13) DMW anomaly cancellation condition
[DMW03a][DMW03b, 6]

1
24

χ8(T X) = I8(T X)

:= 1
48

(
p2(T X)− 1

4 (p1(T X))2) (13)
one-loop anomaly polynomial

[DLM95][VW95]

§2.4 Any cocycle
in J-twisted 7-Cohomotopy

Spin(7)-structure g (14)
≥ 1/8 BPS M2-brane background

[IP88][IPW88][Ts06]

§2.3 Any cocycle in
compatibly twisted 4&7-Cohomotopy

Sp(1) ·Sp(1)-structure τ (15)
4/8 BPS M2-brane background

[MF10, 7.3]

§3.3
Chern character of

rationally twisted 4-Cohomotopy
d G4 = 0

d G7 = − 1
2 G4∧G4 +L8

(19)
C-field Bianchi identity with

generic higher curvature correction
[ST16]

§3.3
Chern character of compatibly

rationally twisted 4&7-Cohomotopy
d G̃4 = 0

d G7 = − 1
2

(
G̃4− 1

4 P4
)
∧ G̃4 +K8

(20)
Shifted C-field Bianchi identity with
generic higher curvature correction

[Ts04]

§3.4 Chern character 4-form of
Sp(2)-twisted 4-Cohomotopy

G̃4 = G4 +
1
4 p1(∇) (21) C-field shift

[Wi96a][Wi96b][Ts04]

[G̃4] ∈ H4(X ,Z) (22) Shifted C-field flux quantization
[Wi96a][Wi96b][DFM03][HS05]

§3.5 (G4)0 = 1
2 p1(∇) (24) Background charge

[Fr09, p. 11][Fr00]

§3.6 Sq3([G̃4]
)
= 0 (23) Integral equation of motion

[DMW03a][DMW03b, 5]

§3.7 Chern character 7-form of compatibly
Sp(2)-twisted 4&7-Cohomotopy

G̃7 = G7 +
1
2 H3∧ G̃4 (27) Page charge

[Pa83, (8)][DS91, (43)][Mo05]d G̃7 = − 1
2

χ8(∇) (28)

2
∫

S7
i∗G̃7 ∈ Z (29) Level quantization of Hopf-WZ term

[In00]

§3.8 Integrated Chern character of compatibly
Sp(2)-twisted 4&7-Cohomotopy

NM2 = −I8 (33)
C-field tadpole cancellation

[SVW96]

Table 1 –Implications of C-field charge quantization in J-twisted Cohomotopy.
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Organization of the paper.
– In §1 we survey our constructions and results.
– In §2 we introduce twisted Cohomotopy theory, and prove some fundamental facts about it.
– In §3 we use these results to explains and prove the statements in Table 1.
– In §4 we comment on background and implications.

Generalized abelian cohomology. Before we start, we briefly say a word on “generalized” cohomology theories,
recalling some basics, but in a broader perspective: The ordinary cohomology groups X 7! H•(X ,Z) famously
satisfy a list of nice properties, called the Eilenberg-Steenrod axioms. Dropping just one of these axioms (the
dimension axiom) yields a larger class of possible abelian group assignments X 7! E•(X), often called generalized
cohomology theories. One example are the complex topological K-theory groups X 7! KU•(X).

By the Brown representability theorem, every generalized cohomology theory in this sense has a classifying
space En for each degree, such that the n-th cohomology group is equivalently the set of homotopy classes of maps
into this space: 1

Generalized abelian
cohomology theory En(X)

Brown’s
representability

theorem

'
{

X continuous function

= cocycle in E-theory
// En

}/
∼homotopy

. (1)

For example, ordinary cohomology theory has as classifying spaces the Eilenberg-MacLane spaces K(Z,n), while
complex topological K-theory in degree 1 is classified by the space underlying the stable unitary group.

For generalized cohomology theories in this sense of Eilenberg-Steenrod, Brown’s representability theorem
translates the suspension axiom into the statement that the classifying spaces En in (1) are loop spaces of each
other, En ' ΩEn+1, and thus organize into a sequence of classifying spaces (En)n∈N called a spectrum. The fact
that each space in a spectrum is thereby an infinite loop space makes it behave like a homotopical abelian group
(since higher-dimensional loops may be homotoped and hence commuted around each other, by the Eckmann-
Hilton argument).

Generalized non-abelian cohomology. We highlight the fact that not all cohomology theories are abelian. The
classical example, for G any non-abelian Lie group, is the first non-abelian cohomology X 7! H1

(
X ,G

)
, defined

on any manifold X as the first Čech cohomology of X with coefficients in the sheaf of G-valued functions. Never-
theless, this non-abelian cohomology theory also has a classifying space, called BG, and in terms of this it is given
exactly as the abelian generalized cohomology theories in (1):

Degree-1 non-abelian
cohomology theory H1(X ,G)

principal bundle
theory
'

{
X continuous function

= cocycle
// BG

}/
∼homotopy

. (2)

Hence the joint generalization of generalized abelian cohomology theory (1) and non-abelian 1-cohomology theo-
ries (2) are assignments of homotopy classes of maps into any coefficient space A

Non-abelian generalized
cohomology theory H(X ,A) :=

{
X continuous function

= cocycle
// A
}/
∼homotopy

. (3)

All this may naturally be further generalized from topological spaces to higher stacks. In the literature of this
broader context the perspective of non-abelian generalized cohomology is more familiar. But it applies to the
topological situation as the easiest special case, and this is the case with which we are concerned for the present
purpose.

Higher principal bundles. This way, the classical statement (2) of principal bundle theory finds the following
elegant homotopy-theoretic generalization. For every connected space A, its based loop space G := ΩA is a higher

1Here and in the following, a dashed arrow indicates a map representing a cocycle that can be freely choosen, as opposed to solid arrows
indicating fixed structure maps.
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homotopical group under concatenation of loops (an “∞-group”). Moreover, A itself is equivalently the classifying
space for that higher group:

Every
connected

space...

A '

...is the
classifying

space...

B

G︷︸︸︷
ΩA
...of its

loop group.

(4)

in that non-abelian G-cohomology in degree 1 classifies higher homotopical G-principal bundles:

H(X ,BG) =

non-abelian
G-cohomology

H1(X ,G)
'

−−−−!

higher homotopical
G-principal bundles

GBundles(X)/
∼

[
X

cocycle
c
−! BG

]
7−!



G-principal bundle
classified by c

P //

homotopy
pullback

c∗(pBG )

��

universal
G-principal bundle

G�G

pBG
��

X c
classifying map for P

// BG


(5)

Cohomotopy cohomology theory. The primordial example of a non-abelian generalized cohomology theory (3)
is Cohomotopy cohomology theory, denoted π•. By definition, its classifying spaces are simply the n-spheres Sn:

Cohomotopy
cohomology theory π

n(X) :=
{

X continuous function

= cocycle
// Sn
}/
∼homotopy

. (6)

Since the (n ≥ 1)-spheres are connected, the equivalence (4) applies and says that Cohomotopy theory is equiva-
lently non-abelian 1-cohomology for the loop groups of spheres G := ΩSn:

π
n(X)

Cohomotopy
theory

' H1(X ,ΩSn)
non-abelian 1-cohomology

for sphere loop group

.

Evaluated on spaces which are themselves spheres, Cohomotopy cohomology theory gives the (unstable!) homo-
topy groups of spheres, the “vanishing point” of algebraic topology:

n-cohomotopy groups
of k-sphere π

n(Sk) ' {
Sk // Sn

}/
∼
' πk

(
Sn) k-homotopy groups

of n-sphere

A whole range of classical theorems in differential topology all revolve around characterizations of Cohomotopy
sets, even if this is not often fully brought out in the terminology.

The quaternionic Hopf fibration. A notable example, for the following purpose, of a class in the Cohomotopy
group of spheres, is given by the quaternionic Hopf fibration

S7

quaternionic Hopf fibration
hH

++' S(H2)
unit sphere

in quaternionic
2-space

(q1,q2) 7! [q1:q2]
// HP1

quaternionic
projective
1-space

' S4 , (7)

which represents a generator of the non-torsion subgroup in the 4-Cohomotopy of the 7-sphere, as shown on the
left here:

quaternionic
Hopf fibration

[S7 hH! S4]

7!

∈

non-abelian/unstable
Cohomotopy group

π4(S7)

'

stabilization

Σ∞

//

abelian/stable
Cohomotopy group

S4(S7)

'

3 Σ∞[S7 hH! S4]

7!

stabilized
quaternionic

Hopf fibration

non-torsion
generator (1,0) ∈ Z×Z12

(n,a) 7!(n mod 24)
// Z24 3 1 torsion

generator

(8)
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Shown on the right is the abelian approximation to non-abelian Cohomotopy cohomology theory, called stable
Cohomotopy theory and represented, via (1), by the sphere spectrum S, whose component spaces are the infinite-
loop space completions of the n-spheres: Sn ' Ω∞Σ∞Sn. Crucially, in this approximation, the quaternionic Hopf
fibration becomes a torsion generator: non-abelian 4-Cohomotopy witnesses integer cohomology groups not only
in degree 4, but also in degree 7; but when seen in the abelian/stable approximation this “extra degree” fades
away and leaves only a torsion shadow behind. From the perspective, composition with the quaternionic Hopf
fibration can be viewed as a transformation that translates classes in degree-7 Cohomotopy to classes in degree-4
Cohomotopy:

S7

hH
��

7-Cohomotopy

reflects into

π7(X)

(hH)∗
��

X

c

99

(hH)∗(c)
// S4

4-Cohomotopy π4(X)

(9)

Twisted non-abelian generalized cohomology. Regarding generalized cohomology theory as homotopy theory
of classifying spaces (3) makes transparent the concept of twistings in cohomology theory: Instead of mapping
into a fixed classifying spaces, a twisted cocycle maps into a varying classifying space that may twist and turn as
one moves in the domain space. In other words, a twisting τ of A-cohomology theory on some X is a bundle over
X with typical fiber A, and a τ-twisted cocycle is a section of that bundle:

τ-twisted
non-abelian generalized
A-cohomology theory

Aτ(X) :=



A-fiber bundle

P

p

��

//

universal
A-fiber bundle

A�Aut(A)

��
X

continuous section
= twisted cocycle

11

X τ

classifying map for P
// BAut(A)

/
∼ homotopy

BAut(A)

'


X

twist τ
&&

continuous function // A�Aut(A)

vv
BAut(A)

ho
moto

py

|�

/
∼ homotopy

BAut(A)

(10)

Here the equivalent formulation shown in the second line follows because A-fiber bundles are themselves classified
by nonabelian Aut(A)-cohomology, as shown on the right of the first line (due to (5)).

Twisted Cohomotopy theory. For the example (6) of Cohomotopy cohomology theory in degree d−1 there is a
canonical twisting on Riemannian d-manifolds, given by the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theory π

T Xd

(Xd) :=



tangent
unit sphere bundle

S(T Xd)

p
��

//

universal tangent
unit sphere bundle

Sd−1�O(d)

��
X

continuous section
= twisted cocycle

33

X T Xd

classifying map of
tangent/frame bundle

// BO(d)

/
∼ homotopy

BO(d)

'


X

T Xd

twist %%

continuous function // Sd−1�O(d)

vv
BO(d)

ho
moto

py

~�

/
∼ homotopy

BO(d)

(11)
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Since the canonical morphism O(d) −! Aut(Sd−1) is known as the J-homomorphism, we may call this J-twisted
Cohomotopy theory, for short.

Compatibly J-twisted Cohomotopy in degrees 4 & 7. In view of (9) it is natural to ask for the maximal subgroup
G⊂O(8) for which the quaternionic Hopf fibration is equivariant, so that its homotopy quotient hH �G exists and
serves as a map of G-twisted Cohomotopy theories (11) from degree 7 and 4. This subgroup turns out to be the
central product of the quaternion unitary groups Sp(n) for n = 1,2:

Sp(2) ·Sp(1)
central product of

quaternion-unitary groups

⊂ O(8) is maximal subgroup s.t.

S7�Sp(2) ·Sp(1)

ww
hH�Sp(2)·Sp(1) universally twisted

quaternionic Hopf fibration

��

B
(
Sp(2) ·Sp(1)

)

S4�Sp(2) ·Sp(1)

gg
(12)

In other words, J-twisted Cohomotopy (11) exists compatibly in degrees 4 & 7 precisely on those 8-manifolds
which carry topological Sp(2) ·Sp(1)-structure, i.e., whose structure group of the tangent bundle is equipped with
a reduction along Sp(2) ·Sp(1) ↪! O(8). This reduction is equivalent to a factorization of the classifying map as
shown on the left below, with some cohomological consequences shown on the right:

X8

τ

((

tangent
bundle T X8

��
BO(8)

classifying space of
orthogonal structure

B
(
Sp(2) ·Sp(1)

)
classifying space of
Sp(2) ·Sp(1)-twists

oo

Sp(2) ·Sp(1)
-structure

�	
=⇒



1
24

Euler
class

χ8 = I8 := 1
48

Pontrjagin classes
s(

p2− 1
4(p1)

2
)

(
H2(X8,Z2) = 0

)
⇒ (w6

Stiefel-Whitney
class

= 0) ⇒ (W7

integral
Stiefel-Whitney

class

= 0)
(13)

J-Twisted Cohomotopy and Topological G-Structure. For every topological coset space realization G/H of an
n-sphere, there is a canonical homotopy equivalence between the classifying spaces for G-twisted Cohomotopy
and for topological H-structure (i.e., reduction of the structure group to H), as follows:

coset space structure
on topological n-sphere

Sn '
homeo

G/H ⇒

G-twisted Cohomotopy /
topological H-structure

Sn�G '
htpy

BH .

(One may think of this as “moving G from numerator on the right to denominator on the left”.)
In particular, on Spin 8-manifolds we have the following equivalences between J-twisted Cohomotopy cocycles

(11) and topological G-structures:

S7�Spin(8)
' BSpin(7)

=⇒



classifying space
for J-twisted

Cohomotopy theory

S7�Spin(8)

��
X8

cocycle in
J-twisted Cohomotopy

c
44

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological

Spin(7)-structure

BSpin(7)

Bi

��
X8

topological
Spin(7)-structure

g
33

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



(14)
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and

S7�Sp(2) ·Sp(1)
' BSp(1) ·Sp(1)

=⇒



classifying space
for Sp(2) ·Sp(1)-twisted

Cohomotopy theory

S7�Sp(2) ·Sp(1)

��
X8

cocycle in
Sp(2) ·Sp(1)-twisted
Cohomotopy theory

c
66

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological

Sp(1) ·Sp(1)-structure

BSp(1) ·Sp(1)

Bi

��
X8

topological
Sp(1) ·Sp(1)-structure

g 55

T X8

tangent
spin structure

// BSpin(8)

homotopy


�



(15)

As the existence of a G-structure is a non-trivial topological condition, so is hence the existence of J-twisted
Cohomotopy cocycles. Notice that this is a special effect of twisted non-abelian generalized Cohomology: A non-
twisted generalized cohomology theory (abelian or non-abelian) always admits at least one cocycle, namely the
trivial or zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on 8-manifolds, the existence of
any cocycle is a non-trivial topological condition.

Compatibly Sp(2)-Twisted Cohomotopy in degree 4 & 7. For focus of the discussion, we will now restrict
attention to G-structure for the further quaternion-unitary subgroup

Sp(2) ↪−! Sp(1) ·Sp(2)

in diagram (12). In summary then, due to the Sp(2)-equivariance of the quaternionic Hopf fibration (12), the map
(9) from degree-7 to degree-4 Cohomotopy passes to Sp(2)-twisted Cohomotopy:

S7�Sp(2)

||

hH�Sp(2) Sp(2)-twisted
quaternionic Hopf fibration

��

X (hH�Sp(2))∗(c) //

cocycle in
twisted

7-Cohomotopy
c

33

twist, uniformly
in degrees 4 & 7 τ ''

S4�Sp(2)
induced cocycle

in twisted
4-Cohomotopy

uu
BSp(2)

and hence (9) becomes:

Sp(2)-twisted
7-Cohomotopy π i7◦τ(X)

reflects into (hH�Sp(2))∗

��

:=


X

twist τ
%%

continuous function // S7�Sp(2)

ww
BSp(2)

ho
moto

py

}�

/
∼ homotopy

BSp(2)
(16)

Sp(2)-twisted
4-Cohomotopy theory π

i4◦τ(X) :=


X

twist τ
%%

continuous function // S4�Sp(2)

ww
BSp(2)

ho
moto

py

}�

/
∼ homotopy

BSp(2)

(17)
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Triality between Sp(2)-structure and Spin(5)-structure. While the group Sp(2) ·Sp(1) (12) is abstractly iso-
morphic to the central product of Spin-groups Spin(5) ·Spin(3), the two are distinct as subgroups of Spin(8), and
not conjugate to each other. But as subgroups they are turned into each other by the ambient action of triality:

Sp(2) �
� //

central product of
quaternion-unitary groups

Sp(2) ·Sp(1)� _

��

oo ' //

central product of
Spin-groups

Spin(5) ·Spin(3)� _

��

oo ? _ Spin(5)

Spin(8) oo '
tri

triality automorphism

// Spin(8)

While Spin(5) on the right is the structure group of normal bundles to M5-branes, acting on fibers of 4-spherical
fibrations around 5-branes through its vector representation, Sp(2) on the left is the structure group of normal bun-
dles to M2-branes, acting on the 7-spherical fibrations around 2-branes via its defining left action on quaternionic
2-space H2 'R R8 ([MFGM09][MF10]):

S
(
H2

left quaternion
multiplication Sp(2)

		 )
= S7 S4 = S

(
R5

Spin(5) vector
representation

�� )
In this article we consider only the M2-case. But all formulas we derive translate to the M5 case via triality.

Generalized Chern characters. Since generalized cohomology theory is rich, one needs tools to break it down.
The first and foremost of these is the generalized Chern character map. This extracts differential form data
underlying a cocycle in nonabelian generalized cohomology. The Chern character is familiar in twisted K-theory
(see [GS19a][GS19c]), as shown in the top half of the following:

Torsionful generalized
cohomology theory

approximation by
generalized Chern character // L∞-valued de Rham

cohomology theory

Chern character on
ordinary

integral cohomology

ordinary
integral cohomology

H3(X ,Z)
extension of scalars
& de Rham theorem //

de Rham
cohomology

H3
dR
(X)

τ
bundle gerbe

7−! [H3]
closed 3-form

Chern character on
B-field-twisted

K-theory

τ-twisted
complex K-theory

KUτ(X)

τ-twisted
Chern character

chτ

//

H3-twisted
de Rham cohomology

H
[H3 ]

dR
(X)

V
virtual twisted
vector bundle

7−!
[
tr
(

exp(F)
)]

exponentiated
curvature form

Chern character on
non-abelian

O(n)-cohomology

non-abelian
O(n)-cohomology

H1
(
X ,O(n)

) characteristic forms //

de Rham cohomology tensor
invariant polynomials on o(n)

HdR

(
X
)
⊗ inv(o(n))

τ
vector bundle

7−! τR ∈ R
[
[Wi(∇τ)]
Stiefel-Whitney

forms

, [pk(∇τ)]
Pontrjagin

forms

]
i,k

Chern character
on J-twisted

n-Cohomotopy

τ-twisted
Cohomotopy theory

πτ
(
X
) cohomotopical

Chern character //

τR-twisted
rational Cohomotopy theory

πτR
(
X
)
R

(18)
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In order to see what the cohomotopical Chern character in the last line is, we need some general theory of gener-
alized Chern characters. This is rational homotopy theory:

Rational homotopy theory. In the language of homotopy theory, generalized Chern character maps are examples
of rationalization, whereby the homotopy type of a topological space (here: the classifying space of a generalized
cohomology theory) is approximated by tensoring all its homotopy groups with the rational numbers (equivalently:
the real numbers), thereby disregarding all torsion subgroups in homotopy groups and in cohomology groups.

Generalized
cohomology theory

OO
classifying

spaces
��

Chern character // L∞-valued
differential forms

OO
Sullivan model

construction
��

Full
homotopy theory rationalization

// Rational
homotopy theory

What makes rational homotopy theory amenable to computations is the existence of Sullivan models. These are
differential graded-commutative algebras (dgc-algebras) on a finite number of generating elements (spanning the
rational homotopy groups) subject to differential relations (enforcing the intended rational cohomology groups).
In the supergravity literature Sullivan models are also known as “FDA”s. Here are some basic examples (see
[FSS16b][FSS18a][FSS18b][FSS19a]):

Rational
super space

Loop
super L∞-algebra

Chevalley-Eilenberg
super dgc-algebras

(“Sullivan models”, “FDA”s)

General X lX CE
(
lX
)

Super
spacetime

Td,1|N Rd,1|N R
[
{ψα}N

α=1,{ea}d
a=0
] /( d ψα = 0

d ea = ψ Γaψ

)

Eilenberg-MacLane
space

K(R, p+2)

'R Bp+1S1 R[p+1] R[cp+2]
/ (

d cp+2 = 0
)

Odd-dimensional
sphere

S2k+1 l(S2k+1) R[ω2k+1]
/ (

d ω2k+1 = 0
)

Even-dimensional
sphere

S2k l(S2k) R
[
ω2k,ω4k−1

] /( d ω2k = 0
d ω4k−1 = −ω2k ∧ω2k

)

M2-extended
super spacetime

T̂10,1|32 m2brane R
[
{ψα}32

α=1,{ea}10
a=0,h3

] / d ψα= 0
d ea = ψ Γaψ

d h3 = i
2 (ψΓabψ)∧ ea∧ eb


Under Sullivan’s theorem the rational homotopy type of well-behaved spaces are equivalently encoded in their
Sullivan model dgc-algebras. For spaces and algebras which are nilpotent and of finite type one has:

Spaces/
∼ rational

weak homotopy
equivalence

form
loop Lie algebra

l

' //

form Sullivan model
CE(l−)
'

,,

L∞Algebras/
∼ quasi-

isomorphism

form
Chevalley-Eilenberg algebra

CE

' //

“FDA”s in supergravity jargon

dgcAlgebrasop/
∼ quasi-

isomorphism
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When applying the rational approximation to twisted generalized cohomology theory, the order matters: There
are in general more rational twists X τ

−! BAut(AR) for twisted rational cohomology than there are rationalizations
τR of full twists X τ

−! BAut(A) for rational twisted cohomology. 2 We consider first the general rational twists:

Rationally twisted rational Cohomotopy. We find that the rationally twisted rational Cohomotopy sets in degrees
4 and 7 are equivalently characterized by cohomotopical Chern character forms as follows:

rational twist rational twisted
Cohomotopy

cohomotopical
Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) '

characteristic form
of twist τ7{ 7-form

G̃7

∣∣∣ d G̃7 = K8

}/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) '


4-form

& 7-form

(G4,G7)

∣∣∣∣∣ d G4 = 0

d G7 =−1
2 G4∧G4 +L8

/
∼

characteristic form
of twist τ4

(19)

Here all real 8-classes [K8], [L8] ∈ H8(X ,R) may appear, for some rational twists τ4,7. Constraints on these
characteristic forms appear when we consider more than rational twisted structure:

Compatibly rationally twisted rational Cohomotopy. We may ask that the rational twists τ4,7 in (19) are related
analogously to how the twisted parametrized Hopf fibration (12) relates the full (non-rational) twists, through (16).
We find that this happens precisely when the difference of the characteristic 8-classes in (19) is a complete square

L8 = K8 +
(1

4 P4
)
∧
(1

4 P4
)

and in that case the situation of (19) becomes the following:

Compatible
rational twists

Rational
compatibly twisted

Cohomotopy
Cohomotopical

Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) '

characteristic form
of twist τ7{

G̃7

∣∣∣ d G̃7 = K8

}/
∼

shifted 4-form

G̃4 := G4 +
1
4 P4

G̃7
shifted 7-form

:= G7 +
1
2 H3∧ G̃4

'


(

H3,

G̃4,G7

) ∣∣∣∣∣∣∣
d H3 = G̃4− 1

2 P4

d G̃4 = 0

d G7 =−1
2 dH3∧ G̃4 +K8

/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) '

{
(G̃4,G7)

∣∣∣∣∣ d G̃4 = 0

d G7 =−1
2(G̃4− 1

2 P4)∧ G̃4 +K8

}
/
∼

(20)

Here still all real 8-classes and 4-classes [K8] ∈ H8(X ,R) , [P4] ∈ H4(X ,R) may appear, for some pair of
compatible rational twists.

2This is in contrast with twisting vs. differential refinement where the order does not matter – see [GS19a][GS19b].
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Next we find that these real classes are fixed as we consider full (not just rational) Sp(2)-twists, compatible by
the full (not just rational) Sp(2)-twisted quaternionic Hopf fibration (12).

J-Twisted 4-Cohomotopy of Sp(2)-manifolds. Consider a simply-connected Riemannian Spin manifold R2,1×
X8 with affine connection ∇ and equipped with:

(i) an Sp(2)-structure τ (13);
(ii) a cocycle c in τ-twisted 4-Cohomotopy (17);

hence equipped with a homotopy-commutative diagram of continuous maps as follows:

R2,1×

spacetime

X8

τ

((

tangent
bundle T X8

��

cocycle in
J-twisted Cohomotopy

c //

classifying space of
Sp(2)-twisted Cohomotopy

S4�Sp(2)

twisting through
Sp(2)'

abstr
Spin(5)! Aut(S4)vv

BSpin(8)
classifying space of

Spin structure

BSp(2)
classifying space of

Sp(2)-twists

oo

homotopy
{�Sp(2)-structure

~�


homotopy class

over BSp(2)

∈

twisted 4-Cohomotopy
of spacetime X8

π
i4◦τ
(
X8)

Then the 4-Cohomotopical Chern character (18) of [c], hence the differential flux forms (G4,G7) underlying [c]
by (19), as indicated on the left in the following diagram

twisted 4-Cohomotopy

πτ
(
X8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 4-Cohomotopy

πτ
(
X8
)
R
oooo

equivalence
relations {

(G4,G7) | · · ·
}
��

conditions //

plain
differential forms

Ω4(X8)×Ω7(X8)

[c]

class in
twisted Cohomotopy

� //
[
(G4,G7)

]
Chern character in

twisted Cohomotopy

satisfy, first of all, this condition:
The shifted 4-flux form G̃4 := G4

naive
4-flux

+ 1
4 p1(∇)

shift by first
fractional

Pontrjagin form

∈ Ω
4(X8)

differential
4-forms

(21)

represents an integral cohomology class

[G̃4]

shifted
4-flux

∈ H4
(
X8,Z

)
integral cohomology

extension of scalars // H4
(
X8,R

)
real cohomology

' HdR(X
8)

de Rham cohomology

(22)

on which the action of the Steenrod square vanishes:

Steenrod square of
mod-2 reduction of

integral shifted 4-flux

Sq2([G̃2]
)
= 0 hence also

Steenrod cube of
mod-2 reduction of

integral shifted 4-flux

Sq3([G̃2]
)
= 0 , (23)

and its background charge in the case of factorization through hH�Sp(2) is

residual flux of cocucle
factoring through hH�Sp(2)

(G4)0 =

background charge

1
4 p1(∇) . (24)

To see the next condition satisfied by the pair (G4,G7), consider the homotopy pullback of the 4-Cohomotopy
cocycle c along the Sp(2)-twisted quaternionic Hopf fibration hH to a cocycle in twisted 7-Cohomotopy on the
induced 3-spherical fibration Ĥ8 over spacetime:
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

classifying space of
compatible 3-flux

X̂8

induced cocycle in
twisted 7-Cohomotopy

ĉ //

induced
3-spherical

fibration
c∗h=:p

��

classifying space of
Sp(2)-twisted 7-Cohomotopy

S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration

��
spacetime X8

τ

&&

tangent
bundle T X8

��

cocycle in
J-twisted 4-Cohomotopy

c // S4�Sp(2) classifying space of
Sp(2)-twisted 4-Cohomotopy

twisting through
Sp(2)'

abstr
Spin(5)! Aut(S4)xx

BSpin(8)
classifying space of

Spin structure

BSp(2)
classifying space of

Sp(2)-twists

oo

|�Sp(2)-structure

|�


homotopy class

over BSp(2)

∈

twisted 7-Cohomotopy
of X̂8

π
τ◦p(X̂8) (25)

Then:
The pullback 3-spherical fibration over spacetime

X̂8 := c∗
(
S7�Sp(2)

)
carries a universal 3-flux Huniv

3 which trivializes the 4-flux relative to its background value

d Huniv
3 = p∗G̃4− 1

4 p1(∇) . (26)

Moreover, the 7-Cohomotopical Chern character of [ĉ], hence the flux forms underlying [ĉ] by (20), as indicated
on the left in the following diagram

twisted 7-Cohomotopy

π p◦τ(X̂8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 7-Cohomotopy

π p◦τ(X̂8
)
R
oooo equivalence relations {

G̃7 | · · ·
}
��

conditions //

plain
differential forms

Ω7(X̂8)[
ĉ
]

class in
twisted Cohomotopy

� //
[
G̃7
]

Chern character in
twisted Cohomotopy

satisfy this condition:
The shifted 7-flux form G̃7 = p∗G7

naive 7-flux

+ 1
2

3-flux

Huniv
3 ∧ p∗

shifted 4-flux

G̃4︸ ︷︷ ︸
shift by

Hopf-Whitehead term

(27)

is closed up to the Euler 8-form
d G̃7 = −1

2 p∗χ8(∇) (28)

and half-integral on every 7-sphere S7 i
! X̂8:

2
∫

S7

i∗G̃7 ∈ Z . (29)

Finally, consider the case when:

(i) Our manifold is the complement in a closed 8-manifold of a finite set of disjoint open balls, i.e. of a tubular
neighbourhood N around a finite set {x1,x2, · · ·} of points:

X8 =

closed
manifold

X8
clsd \

tubular
neighbourhood

N{x1,x2,···}

around points in X8
clsd

⇒

boundary
of X8

∂X8 ' t
{x1,x2,···}

sphere
around xi

S7 (30)

This implies that X8 is a manifold with boundary a disjoint union of 7-spheres.

12



(ii) Such that the corresponding extended spacetime fibration X̂8!X8 (25) admits a global section; hence, equiv-
alently, such that the given cocycle in twisted 4-Cohomotopy lifts through the quaternionic Hopf fibration to
a cocycle in twisted 7-Cohomotopy:

classifying space of
compatible 3-flux

X̂8

p:=c∗(h)
induced

3-spherical
fibration

��
X8

global section of
3-spherical fibration

i

55

X8

⇔
S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration

��
X8

lift to cocycle in
J-twisted 7-Cohomotopy

ĉ
00

c

cocycle in
J-twisted 4-Cohomotopy

// S4�Sp(2)

homotopy

	�

(31)

Here the choice of points in (30) matters only in so far as a sufficient number of points has to be removed for
a lifted cocycle ĉ (31) to exist at all.

By (26) this lift exhibits a 4-fluxless background at least at the level of integral cohomology. In order to refine this
to 4-fluxlessness at the finer level of (stable) Cohomotopy, we observe the following:

(i) Since the 7-sphere is parallelizable, upon restriction of ĉ (31) to the boundary ∂X8 i
−! X8 (30) the twist

vanishes, and we are left with a pair of compatible cocycles in plain Cohomotopy theory as in (9):

S7

hH
plain

quaternionic
Hopf fibration

��
t

{x1,x2,···}

boundary 7-spheres

S7 ' ∂X8
(hH)∗ĉ|∂X8

underlying boundary
4-Cohomotopy cocycle

//

boundary restriction of
twisted 7-Cohomotopy cocycle

ĉ|∂X8

55

S4
�

(ii) By (8), cocycles in stable 7-Cohomotopy have no side-effect in stable 4-Cohomotopy, hence remain stably
cohomotopically 4-fluxless precisely if they are multiples of 24:

For [c1], [c2] ∈

7-Cohomotopy

π
7(

∂X8) we have


(hH)∗[c1] = (hH)∗[c2] ∈

stable 4-Cohomotopy

S4
(
∂X8

)
⇔

[c1] =mod 24 [c2] ∈ S7
(
∂X8

)
stable 7-Cohomotopy

This means that the unit charge of a lift ĉ in (31), as seen by stable Cohomotopy, is 24. In view of (29) this
says that the cohomotopically normalized 7-flux of X8 is

NM2 := −1
12

∫
X8

i∗dG̃7 = −1
12

∫
∂X8

i∗G̃7 . (32)

Our final result is that:
this equals the I8-number (13) of the manifold:

NM2 = I8[X8] . (33)
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4 Conclusion

Perturbative string theory has a precise definition via 2d worldsheet SCFT. In contrast, the formulation of its non-
perturbative completion to M-theory and of the brane physics this subsumes (see [Du99][BBS06]), remains an
open problem (e.g. [HLW97, p. 2][NH98, p. 2][Mo14, 12][CP18, p. 2][Wi19] 6 ). The lack of an actual set of
fundamental laws of non-perturbative brane physics has recently surfaced in a debate on the extent of validity of
the brane uplifts that have been widely discussed for 15 years [DvR18][Ba19, p. 14-22].

Besides the field of gravity, the only other field in M-theory at low-energy is the C-field [CJS78]. A list of
cohomological conditions on the C-field, including those shown in Table 1, have been derived as plausible con-
sistency conditions in various expected limiting cases of M-theory (effective field theory limits, decoupling limits
etc.) assuming the conjectural string dualities to hold. One imagines that if M-theory exists then thereby it must be
consistent, and hence ought to imply all these expected consistency conditions. In order to make this actually hap-
pen, the first step in formulating M-theory ought to be the identification of the generalized cohomology theory that
charge-quantizes the C-field, just as the first step in formulating a quantum consistent theory of electromagnetism
was Dirac’s charge quantization of the electromagnetic field: as a cocycle in (differential) ordinary cohomology
(see [Fr00]),

The string theory literature has mostly regarded the M-theory C-field as a cocycle in ordinary 4-cohomology,
with extra constraints imposed on it by hand. A proposal to build at least one of these conditions, the shifted
flux quantization condition (§3.4), into the definition of the cohomology theory (making it a “mildly generalized
cohomology theory”) has been considered in [DFM03][HS05][SSS12][FSS14a]. Another condition, the “integral
equation of motion” (§3.6) has been argued in [DMW03a][DMW03b] to be in correspondence with one differential
of specific degree in the Atiyah-Hirzebruch spectral sequence for K-theory. In reaction to this state of affairs, it
has been suggested [Sa05a][Sa05b][Sa06][Sa10] that the C-field should be regarded as a cocycle in some genuine
generalized cohomology theory, such as Cohomotopy theory [Sa13, 2.5]. Indeed, if M-theory is as fundamental
to physics as it should be, one may expect the cohomology theory that charge quantizes the C-field to be more
fundamental to mathematics than ordinary cohomology with some modifications.

In order to derive what this fundamental generalized cohomology theory actually is, we had initiated a system-
atic analysis of the bifermionic super p-brane charges from the point of view of super rational homotopy theory
[FSS13]; see [FSS19a] for review. We proved in this supergeometric setting, albeit in rational approximation,
that the expected charge quantization of the RR-field in twisted K-theory follows from systematic analysis of the
D-brane super WZW terms [FSS16a][FSS16b][BSS18]. Then we showed that the exact same logic applies to
the super WZW terms of the M-branes [FSS15]. The analysis in this case reveals their cohomology theory to be
[FSS15, 3][FSS16a, 2] Cohomotopy cohomology theory in compatible degrees (4,7), related by the quaternionic
Hopf fibration; see [FSS19a, 7] for review of this super rational analysis. This proves that if full M-theory retains
the super-space structure of its low-energy limit, then the cohomology theory that charge-quantizes the C-field
must be such that its rationalization coincides with that of Cohomotopy cohomology theory in degrees (4,7).
While there are many different cohomology theories with the same rationalization as Cohomotopy theory, one of
these is minimal in number of CW-cells: This is Cohomotopy theory itself.

What we have shown in this article is that assuming with Hypothesis H that Cohomotopy cohomology theory
in compatible degrees (4,7) indeed encodes the charge-quantization of the C-field even beyond the rational ap-
proximation, then the list in Table 1 of expected consistency conditions is implied. Further checks of Hypothesis
H for the case of M-theory orbifolds are presented in [SS19a][SS19b].
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6 [Wi19] at 21:15: “I actually believe that string/M-theory is on the right track toward a deeper explanation. But at a very fundamental
level it’s not well understood. And I’m not even confident that we have a good concept of what sort of thing is missing or where to find it.”
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