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Abstract. We provide a brief invitation to the novel understanding [1-4] of anyonic
topological order in fractional quantum (anomalous) Hall systems, via “extraordinary”
quantization of effective magnetic flux in Cohomotopy — following our presentation at

1SQS29 [5].
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1 DMotivation and Introduction

While anyons have been considered as a theoretically possible curiosity since the 1970s ([6], cf. [7]), it is
the ongoing “second quantum revolution” ([8], cf. [9]) which promotes them — in the guise of anyonic
solitons and defects [10, 11] in topological quantum materials [12] — to a tangible reality, whence their
experimental realization and technological potential warrant a more proper theoretical understanding by
mathematical physicists, which, despite the decades of discussion, has arguably remained sketchy.

Topological quantum and Anyons. It is hard to overstate the hopes [13] associated with the idea of digital
quantum technology/computing [9, 14]. And yet the core problem remains essentially unsolved [15]: The
stabilization of quantum registers against decohering noise that jeopardizes the creation of large-scale
robust quantum computers of practical value.

Apart from the popular approach of quantum error correction [16] by means of heavy software-level
redundancy, this stabilization plausibly necessitates (cf. [17, 18]) error protection, already at the hardware
level, by physically suppressing decoherence in the first place. The ambitious idea of topological quantum
computing ([19], cf. [17, 20]) is to employ topological quantum states as quantum registers, whose coherence
is largely protected by fundamental physical principles.

The prominent example, in theory, are effectively 2-dimensional quantum materials exibiting topolog-
ical order [21], where the (adiabatic) movement of anyonic soliton/defect positions in the material effects
unitary transformations of its ground states which only depend on the isotopy class of the deformation
path. In this way the braiding of worldlines of such anyonic solitons/defects may serve as topological
quantum gates insensitive to local noise (cf. [22, §3] and see Fig. 1).



Figure 1: Topological quantum gates by adiabatic braiding of anyon worldlines.
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2 Solitonic Anyons in FQH Systems

Despite considerable interest in this basic idea since its proposal over 25 years ago, the theoretical un-
derstanding of real anyonic quantum materials had remained sketchy (cf. [23, §5.1][24, §1]) and its
experimental realization elusive (cf. [25, 26]). That is, until recently:

Fractional Quantum Hall Anyons. On the experimental side, in the last years the observation of braiding
phases of (abelian) anyons in fractional quantum Hall systems (FQH, cf. [23, 27, 28]) have come to be
consistently reported by several groups and in various materials [29]. On the theoretical side, we survey
here a new rigorous understanding [1-4] of such FQH anyons by means of the previously overlooked issue
of their proper flur quantization * (cf. [32, 34]).

For this we highlight (cf. [27, p. 882] and see Figs. 2 and 4) that the characteristic aspect of the
anyons (observed) specifically in FQH systems is that they are flux quanta of the magnetic field, or rather
are their imprint, in the guise of vortices, onto the strongly correlated electron gas that constitutes the
2D FQH system.

Figure 2: Anyons in FQH systems are (quasi-hole vortices associated with) surplus flux magnetic flux
quanta (relative to a given rational filling fraction of K flux quanta per electron) through an electron gas
occupying an effectively 2-dimensional semiconducting surface ¥2. This suggests [2] that FQH anyons
are to be understood in terms of an exotic effective flur quantization law [32].
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Fluz quantization — Ordinary and exotic. In the absence of strongly-correlated electrons, away from
their exact fractional Landau level filling, standard electromagnetic theory predicts ([33], via ordinary
“Dirac flux quantization” [30][32, §2.1]) that their topological quantum observables are entirely controlled
by the algebraic topology (the homotopy theory) of the ordinary classifying space BU(1) ~ CP> of

Here fluz quantization (also: “charge quantization”) refers, a priori, to “quantization” in the sense of discretization:
The traditional Dirac charge quantization of ordinary electromagnetism [30][31, §16.4e] famously constrains electric charges
to be integer multiples of a unit quantum of charge, and also constrains, in particular, solitonic magnetic flux through
the plane to come in integer units of the magnetic flur quantum [32, §2.1], as indicated in Fig. 2. In more detail,
Dirac charge quantization constrains the magnetic field to a class in ordinary integral 2-cohomology of spacetime, cf. (3)
below. However, flux/charge quantization is closely related to actual quantization in the sense of quantum mechanics/field
theory: Historically, Dirac charge quantization is necessary for the quantum mechanics of electrically charged particles to be
globally consistent. More importantly for our purpose, the choice of flux quantization of a(n effective, higher, ...) gauge field
immediately determines the topological flux quantum observables of the corresponding quantum fields, hence the quantum
theory of the topological sector of the field — this is the main result of [33], used in (1) and (4) below, following [2, §2.1]
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However, since this prediction is crucially violated for FQH flux quanta imprinted on vortices in the
2D electron gas (Fig. 2), while flux quantization as such must clearly remain in effect in some form, we
conclude with [2] that the situation is to be described by a variant effective flux quantization law for
exotic FQH flux. Since flux quantization laws are determined by their classifying spaces [32, §3.2][35],
we are to look for a suitable variant A of the classifying space CP°.

This A will be a choice determining our effective model of the physics, just like the familiar specification
of any effective Lagrangian density is a choice of a physics model. To the extent that such a choice
implies known characteristic properties of the physical systems we tend to trust it and regard its further
implications as predictions about previously unknown properties of the physical system. We consider the
simplest choice, in a sense: The first skeleton of CP>, which the (2-)sphere:

S? ~ CP!' «— |, .yCP" ~ CP>® ~ BU(1). (2)

Where CP* is the classifying space for ordinary integral 2-cohomology I;T(—;Z) (cf. [35, Ex. 2.1]), so

S? ~ CP! is the classifying space for the unstable/nonabelian extraordinary cohomology theory known
as 2-Cohomotopy m2(—) (cf. [36, §7][35, Ex. 2.7]):

?IZ (—,Z) ~ T (Map*(—,(CPOO)) ordinary cohomology

%2(—) = T (Map*(—,(CPl )) extraordinary cohomotopy
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Therefore we shall refer to the hypothesis that CP! is the correct classifying space for surplus FQH flux
as Hypothesis h (a small cousin [4, 37] of the capital Hypothesis H in high energy physics [38][39)]).

The first phenomenological justification for Hypothesis h is the following most remarkable fact: Over
the torus, it yields the following noncommutative modification of (1) — by [2, Prop. 3.19], using [40,
Thm. 1], cf. [41, Prop. 1.5], going back to [42]:

C [m Map* (Eﬁ{w}, CPl)] ~ C |:7T0 Map* (Eﬁ{oo}, Sl)] W
gC[W,W, }/(WW:QWW)
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But this is just algebra of abelian Chern-Simons Wilson loop observables on the torus, thought to char-
acterize FQH anyons there (cf. [28, (5.28)])!

Relation to Chern-Simons theory. Indeed, traditionally the end result of (4) is argued instead (as recalled
in [2, §A.1]) by first arguing that a form of the abelian Chern-Simons Lagrangian density [43] provides the
effective field theory for FQH anyons. But as highlighted in [2, Rem. A.1], this traditional assumption
appears to be at odds with ordinary flux quantization (as noted in [44, p. 35][28, p. 159]), which is
worrying in view of the very flux quantum nature of FQH anyons (Fig. 2). Indeed, at generic filling
fraction the Chern-Simons model of FQH anyons is an elaboration of the Haldane-Halperin hierarchy
model, which is known to be unphysical for most filling fractions (see [43, Rem. 2.1]).

In our novel description of FQH anyons this situation is turned right-side-up: Proper flux quantization
is made the very starting point of the description of anyonic FQH flux quanta, and Lagrangian densities
(which generally do not reflect global topological properties of fields, cf. [2, Fig. G]) are never used or
needed. Remarkably, the resulting non-Lagrangian theory of FQH anyons broadly agrees with abelian
Chern-Simons theory, but makes distinct experimentally discernible predictions for certain filling fractions

(see [2, p. B]).

Anyon worldlines and their braiding. More tangibly, flux quantization in 2-cohomotopy manifests the
worldlines of anyonic solitons and their braiding phases, as follows.

Looking at the case of flux through the plane, 32 = R? — which is the situation naturally realized
in FQH experiments —the topological quantum observables according to Hypothesis h are

C|m Map* (B2, CP")| = Clmo Map* (5%, 5%)] = C[#(5%)] = C[2], (5)



where the last identification is via the Hopf fibration [45]
(52 1 §%] =1 € Z ~ 7%(S%) = m3(5?). (6)
Now, Pontrjagin’s theorem [46] identifies 72(S%) with the cobordism classes Cobg.(S%) of framed links (cf.

1, §2] and see Fig. 3), hence with regularized Wilson loops L, and careful analysis shows [1, Thm. 2.19]
that their integer characteristic on the right of (5) is their total crossing number (or writhe) #L:

CobZ (83) — 72(53) ~ Z
(L] — #L

(7)

Figure 3: Some (blackboard-)framed Wilson loop/links and their total crossing number /writhe.
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It follows [1, Cor. 3.3] that the topological pure quantum states (of 2-cohomotopical flux through the
plane) are labeled by a number K € R\ {0} (8)

and that the expectation values of framed Wilson loops/link observables in these states are the exponen-
tiated sum of framing and linking numbers:

C[Cobl (5] —EEEL, ¢
(L] — exp (22 #L) = exp (%(Zifrm(Li)—l—zi’jlnk(Li,Lj))).

On the right we recognize the traditional Wilson loop observable of abelian Chern-Simons theory ([1,
Rem. 3.4], whose regularization by framing is traditionally an ad hoc fix of an ill-defined path integral

quantization procedure [1, Rem. 3.5], while here it is a rigorous consequence of Hypothesis h, cf. [1,
2mi
Rem. 3.6]), whereas in the middle this is recognized as assigning a fixed braiding phase e K to each

crossing/braiding, just as it should be for FQH anyons (by Fig. 2).

9)

General covariance and Topological order More precisely, a topological field theory, like that of FQH
anyouns, is to be “generally covariant” — in that field/flux configurations which differ only by a diffeomor-
phism of the domain are to be regarded as gauge-equivalent. In terms of classifying spaces A this means
that the moduli space of topological flux is not exactly the plain mapping space from X2 to A, but is
its homotopy quotient (—)//Diff(¥2) (“Borel construction”) by the diffeomorphism group of 32 [2, (21)].
Therefore the covariantized topological quantum observables are, more precisely, the group algebra of the
semidirect product of the flux monodromy group with the mapping class group MCG [2, Prop. 2.24]:

TQObsd, = cc[m (Map* (o0 A)//Diﬂ’(Zz)” ~ C{(wlMap*(Eﬁ{o@}, A)) X woDiff@?l] . (10)

topological flux
quantum observables

flux monodromy MCG(¥?)

generally covariant flux monodromy

Over the torus, ¥? = T2, the mapping class group is the modular group, and we find [2, §3.4] that for
flux quantization in 2-cohomotopy A = S? (3), the general covariance of (10) enforces the modular data
of Chern-Simons/Wess-Zumino-Witten theory [2, Rem. 3.39], in particular it implies — on top of the
anyonic observables from (4) — that on superselection sectors (on quantum state spaces which are irreps
of the observable algebra) the level (8) is quantized as appropriate for spin Chern-Simons theory, and
that the braiding phases (Fig. 2) are roots of unity, as seen in FQH systems. The resulting irreducible
modules of TQObsagﬂz reflect the detailed anyonic topological order predicted by Hypothesis h, which turns
out to broadly agree with traditional arguments form abelian Chern-Simons theory, but adds some fine
print and seems to differ in some aspects for some filling fractions [2, p. 5 & Rem. 3.45].



3 Defect Anyons in FQH Systems

Results [2] as indicated above in §2 show the Hypothesis h — that surplus FQH flux is quantized in 2-
Cohomotopy — reproduces key properties observed or expected for FQH anyons. It is then interesting to
note that the hypothesis makes further predictions of phenomena that have not (or cannot) be discussed
by traditional means, but that may be visible experimentally and be relevant technologically. We highlight
one of these:

Superconducting Islands in FQH Systems. The idea that topological quantum states might be realized in
super-/semi-conducting heterostructures has received a tremendous amount of attention for 1D materials
(“Majorana zero modes”) but persistently so with at best inconclusive experimental verification [25, 26].
Instead, we may consider the doping of 2D semiconducting FQH systems by super-conducting islands,
which, due to the Meissner effect, will tend to expel the magnetic flux (see Fig. 4).

Figure 4: Where FQH anyons are solitonic quanta of concentrations of magnetic flux (cf. Fig. 2),
super-conducting island in the semi-conductor substrate will tend to expel magnetic flux. Hypothesis h
implies/predicts that, if adiabatically movable, such islands behave like defect anyons.
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Now, the evident mathematical model for the presence of a finite set D C %2 of such flux expelling
defect points is [2, Fig. D & §3.5] to replace the surface X2 with the punctured surface X2\ D. Indeed, as
the topological phases of flux are labeled by pointed maps Map”® ((Z2 \ D) ufsc} A) out of the one-point
compactification of the domain, this encodes the constraint of vanishing flux not only at literal infinity
— as was the case in (5) — but also at each of the defect points in D, since in (32 \ D) (o0} all of these
are regarded as being “at infinity” where the pointedness of the classifying maps forces flux to vanish.

But this has the remarkable consequence that with such flux-expelling defects included, the covari-
antized topological quantum observables (10) reflect operations of the surface braid group (cf. [2, §2.2])

BI‘|D|(Z2) — MCG(Ez \D) 5 (].1)

whose |D| € N strands are the wordlines of these very flux-expelling defects. This implies that the
corresponding space of topological quantum states of the FQH system are predicted to constitute a braid
representation [2, §3.5, 8], where each braiding of worldlines of defects acts as a unitary transformation
as in Fig. 1, witnessing the flux-expelling defects as defect anyons.

Moreover — in contrast to the solitonic anyons that arose from the flux monodromy in §2 and that
have been experimentally observed in FQH experiments — the theory does not constrain these defect
anyons to be abelian.

4 Solitonic Anyons in FQAH Systems
Very recently an “anomalous” version of the fractional quantum Hall effect (FQAH, cf. [47]) has been
observed in fractional Chern insulators (FCI): Crystalline quantum materials in which the role of the

magnetic flux in physical space is instead played by Berry curvature over the Brillowin torus T2 of crystal
quasi-momenta [48]. This suggests the tantalizing possibility that FAQH systems may serve as topological
quantum hardware under much more practical laboratory conditions than FQH systems — but the nature
and appearance of their anyon braiding operation, if any, has not been explained by traditional theory.
On the other hand, it is well-known that the topological phases of typical FCI are classified by
homotopy classes of maps from the Brillouin torus to a 2-sphere of relative normalized 2-band Bloch
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This means, we may observe [3], that the fragile band topology ([50], meaning: not coarsened by de-
formations through further electron conduction bands) is quantized in 2-Cohomotopy (3)! While this
observation makes no difference for the topological (Chern) class, due to the Hopf degree theorem:
moMap®(T?(,, CP') = #(T?) ~ H*(T*%1Z) ~ Z, (13)
Hopf degree
and hence may and has been ignored for that purpose, we observe that it does make a key difference for
the potentially anyonic monodromy in the space of topological phases [3]: As in (4), this is anyonic:
Clm Map(T2, CP)| = [ Wy, Wy, ¢ | /(W Wy = W) . (14)
67 D compran 6113 Hit
This analysis predicts anyonic topological order in 2-band FCI which break all crystalline symmetries,

with anyons localized not in ordinary physical space but in the “reciprocal” space T2 of crystal momenta
(previously considered also in [11]). Remarkably, the toroidal topology which makes this work — which for
FQH systems in ordinary space is experimentally at best hard to approximate — is the default topology
of the crystal’s momentum space: the Brillouin torus [48]! In this way, anyonic topological order over the
momentum space of FCI may be the most natural experimental realization of this phenomenon.

5 Conclusion and Outlook

Despite their long history of discussion and their more recent practical relevance as potential topological
quantum hardware, the actual theoretical understanding of anyonic solitons/defects in quantum materials
has remained sketchy. In view of the fact that precisely one kind of such anyons has been unambiguously
experimentally observed in recent years — FQH anyons — and highlighting the nature of these as
(vortex quasi-holes associated with) flux quanta, we reviewed an argument [2, §2] that FQH anyons
must be effectively modeled via a choice of “extraordinary” flux quantization law, that, unlike traditional
Lagrangian effective (Chern-Simons) field theory, properly captures their global topological properties.

The Hypothesis h that the appropriate choice of effective FQH flux quantization is in the extraordinary
nonabelian/unstable cohomology theory known as (2-) Cohomotopy turns out to imply at once [1][2, §3]
the hallmark properties observed of solitonic FQH anyons or expected via Chern-Simons arguments:
fractional statistics, topological order and edge modes. Furthermore, Hypothesis h provably predicts that
(superconducting) flux-expelling islands in FQH semiconductor materials constitute possibly non-abelian
defect anyons if adiabatically movable — which would be dramatic if experimentally verified.

Finally, we highlighted with [3] that Hypothesis h is actually known to apply to the fragile band
topology of generic crystalline FQAH systems — which have very recently been experimentally observed,
but whose anyonic nature had remained elusive — predicting that FQAH anons exist as fragile band
monodromy effects localized in reciprocal momentum space.
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