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]Ŵ[
0
1

] = Ŵ[
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Second case: Σ2 ≡ T 2 the torus — topological order
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Thm. (1.) Bare flux monodromy gives torus Wilson loop

observables Ŵ as in CS and as expected for FQH anyons:
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]Ŵ[
0
1

] = ζ̂2 Ŵ[
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(2.) Fin-dim irreps that extend to the

here: modularity︷ ︸︸ ︷
covariantization

by diffeos preserving fermionic (aa) spin structure

have

{
braiding phase a primitive root of unity ζ = e

πi
p
q

and dimension q — ground state degeneracy!
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]Ŵ[
0
1

] = ζ̂2 Ŵ[
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1
0

]Ŵ[
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]Ŵ[
1
0

]〉

(2.) Fin-dim irreps that extend to the

here: modularity︷ ︸︸ ︷
covariantization

by diffeos preserving fermionic (aa) spin structure

have

{
braiding phase a primitive root of unity ζ = e

πi
p
q

and dimension q — ground state degeneracy!

Remarks. The proof shows...

(1.) ...braiding phase ζ is again Hopf generator of π3(S
2).

(2.) ...FQH must be described by “Spin-CS” (rarely admitted).

(3.) ...modularity was not properly accounted in literature.
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Third case: Σ2 ≡ A2 the open annulus — edge modes
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Thm. (1.) The covariantized flux monodromy is:
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∣∣∣ σ̂2 = 1

(σ̂ξ̂)2 = 1

〉
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Taking stock.
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Taking stock.
these results show that

hallmark properties of FQH systems are reproduced:

(fractional statistics, topological order, edge modes)

up to some subtleties
(ground state degeneracy for non-unit filling fraction
may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable
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Fourth case: Σ2 ≡ R2
\2 the 2-pnctrd plane — para-defects
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Fourth case: Σ2 ≡ R2
\2 the 2-pnctrd plane — para-defects

Thm. the covariantized flux monodromy is

π1

(
Map∗((R2

\2)∪{∞}, S
2
)

� Diff(R2
\2)

)
⊂ FSym3

group of framed permutations with total framing ∈ 3Z

fd-irreps compatible with (R2
\n)∪{∞} ≃ S2 ∨ (S1)∨

n
↠ R2

∪{∞}

have ζ = (ξ1 · ξ2) / ξout

;
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If ξ1 = ξ2, ∃ 2D para-anyon rep permuting the defects.
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Further case: Σ2 ≡ R2
\n the n-pnctrd plane – defect anyons
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Further case: Σ2 ≡ R2
\n the n-pnctrd plane – defect anyons

Thm. For n ≥ 3 the covariantized flux monodromy is

π1

(
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)
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\3)
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⊂ FBrn+1(S
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\n)∪{∞} ≃ S2 ∨ (S1)∨

2
↠ R2

∪{∞}
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∏

i ξi) / ξout

;
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irreps involve braid representations
braiding worldlines of the defects — defect anyons

150



Further case: Σ2 ≡ R2
\n the n-pnctrd plane – defect anyons

Thm. For n ≥ 3 the covariantized flux monodromy is

π1

(
Map∗((R2

\n)∪{∞}, S
2
)

� Diff(R2
\3)

)
⊂ FBrn+1(S

2)/rot

group of framed braids with total framing ∈ (n+ 1)Z

fd-irreps compatible with (R2
\n)∪{∞} ≃ S2 ∨ (S1)∨

2
↠ R2

∪{∞}

have ζ = (
∏

i ξi) / ξout

;

irreps involve braid representations
braiding worldlines of the defects — defect anyons

151



Conclusion.

152



Conclusion.

- FQH is candidate for

topological quantum hardware︷ ︸︸ ︷
TQC if anyons controllable

- FQH anyons are exotic flux quanta, but

- effective CS theory does not reflect that well

- turn situation right-side-up: exotic flux quantization

- candidate such law does exist: Hypothesis h

- this re-derives all hallmark FQH anyon properties

- but also predicts anyonic defects where flux is expelled

⇒ TQC via superconducting doping of FQH systems??

in any case:

exotic flux quantization provides new understanding
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Outlook.

- FQH is candidate for if anyons controllable
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Outlook.

naturally explains expected but elusive anyons in

fractional quantum anomalous Hall systems (FQAH)

namely in Chern insulators at fractional filling,

because here the cohomotopical factorization through

S2 ≃ CP 1 ↪−−→ CP∞ ≃ BU(1)

reflects the electron’s fragile band topology

V = Eig−1

(
T̂ 2 CP 1 B(C2)

)
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https://ncatlab.org/schreiber/show/FQAH+Anyons


Urs Schreiber on joint work with Hisham Sati:

surveying our preprint: [arXiv:2507.00138]

Non-Lagrangian construction
of abelianCS/FQH-theory

via Flux Quantization
in 2-Cohomotopy

@

(July 2025) find these slides at: [ncatlab.org/schreiber/show/ISQS29]

Thanks!
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https://ncatlab.org/nlab/show/Urs+Schreiber
https://nyuad.nyu.edu/en/academics/divisions/science/faculty/hisham-sati.html
https://ncatlab.org/schreiber/show/FQH+Anyons
https://ncatlab.org/schreiber/show/FQH+Anyons
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems
https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/cqts/urs-schreiber.html
https://ncatlab.org/schreiber/show/ISQS29

