Urs Schreiber on joint work with Hisham Sati:

surveying our preprint: [arXiv:2507.00138]

Non-Lagrangian construction of abelian CS/FQH-theory Chern-Simons Fractional quantum Hall

anyons!

(July 2025) find these slides at: [ncatlab.org/schreiber/show/ISQS29]

Urs Schreiber on joint work with Hisham Sati:

surveying our preprint: [arXiv:2507.00138]

Non-Lagrangian construction of abelian CS/FQH-theory via Flux Quantization in 2-Cohomotopy

(July 2025) find these slides at: [ncatlab.org/schreiber/show/ISQS29]

fractional quantum Hall systems (FQH) are known to feature anyons

fractional quantum Hall systems (FQH) are known to feature anyons [Nakamura et al. [Naka

[Nakamura et al. 2020] [Nakamura et al. 2023] [Ruelle et al. 2023] [Glidic et al. 2023] [Kundu et al. 2023] [Veillon et al. 2024] [Ghosh et al. 2025]

fractional quantum Hall systems (FQH) are known to feature anyons [Nakamura e

NEWS 03 July 2020

Welcome anyons! Physicists find best evidence yet for long-sought 2D structures

The 'quasiparticles' defy the categories of ordinary particles and herald a potential way to build quantum computers.

By Davide Castelvecchi

[Nakamura et al. 2020] [Nakamura et al. 2023]

[Ruelle et al. 2023]

[Glidic et al. 2023]

 $[{\rm Kundu}\ {\rm et}\ {\rm al.}\ 2023]$

[Veillon et al. 2024]

[Ghosh et al. 2025]

fractional quantum Hall systems (FQH) are known to feature anyons

fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum,

fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

fractional quantum Hall systems are known to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

but despite successful FQH model building...

fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

but despite successful FQH model building... trial wavefunctions, composite particle lore, effective CS field matching Chern-Simons field theory fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

but despite successful FQH model building... $\begin{pmatrix} \text{trial wavefunctions,} \\ \text{composite particle lore,} \\ \text{effective CS field matching} \\ \\ \text{Chern-Simons field theory} \end{pmatrix}$

...theory of FQH anyons remained a mystery cf. [Jain 2007 §5.1], [Jain 2020 §1] fractional quantum Hall systems are *known* to feature anyons

 \Rightarrow potential hardware for topological quantum, if external control of anyons be achieved

but despite successful FQH model building... $\begin{pmatrix} \text{trial wavefunctions,} \\ \text{composite particle lore,} \\ \text{effective CS field matching} \\ \\ \text{Chern-Simons field theory} \end{pmatrix}$

...theory of FQH anyons remained a mystery cf. [Jain 2007 §5.1], [Jain 2020 §1]

but observe:

the surplus **flux quanta**, aka: quasi-holes

are the FQH anyons!

are the FQH anyons!

are the FQH anyons!

but observe:

the surplus **flux quanta**, aka: quasi-holes are the FQH anyons!

but observe:

the surplus **flux quanta**, aka: quasi-holes *are* the FQH anyons!

suggests:

FQH effect rests on a form of **exotic flux quantization**

but observe:

the surplus **flux quanta**, aka: quasi-holes *are* the FQH anyons!

suggests:

FQH effect rests on a form of exotic flux quantization

but just the magnetic flux quantization appears *inconsistent* in the CS description! cf. [Witten 2016 p 35], [Tong 2016 p 159]

but observe:

the surplus **flux quanta**, aka: quasi-holes *are* the FQH anyons!

suggests:

FQH effect rests on a form of exotic flux quantization

but just the magnetic flux quantization appears *inconsistent* in the CS description! cf. [Witten 2016 p 35], [Tong 2016 p 159]

(1.) find mathematics of exotic flux quantization

(1.) find mathematics of exotic flux quantization

(1.) find mathematics of exotic flux quantization

(1.) find mathematics of exotic flux quantization(2.) hypothesize quantization law for FQH flux

our approach:

(1.) find mathematics of exotic flux quantization

(2.) hypothesize quantization law for FQH flux

(1.) find mathematics of exotic flux quantization

(2.) hypothesize quantization law for FQH flux

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology
our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

approach recovers { fractional statistics, topological order, edge modes } as for FQH

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

approach recovers $\left\{ \begin{array}{l} \mbox{fractional statistics,} \\ \mbox{topological order,} \\ \mbox{edge modes} \end{array} \right\}$ as for FQH

up to subtle details: experimentally discernible

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

approach recovers $\left\{ \begin{array}{l} \mbox{fractional statistics,} \\ \mbox{topological order,} \\ \mbox{edge modes} \end{array} \right\}$ as for FQH

up to subtle details: experimentally discernible also predicts anyonic *defects* where flux is expelled, (such as for superconducting islands within 2DEG)

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

approach recovers { fractional statistics, topological order, edge modes } as for FQH

up to subtle details: experimentally discernible also predicts anyonic *defects* where flux is expelled, (such as for superconducting islands within 2DEG) potentially non-abelian and *controllable*

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

also predicts anyonic *defects* where flux is expelled, (such as for superconducting islands within 2DEG) potentially non-abelian and *controllable*

our approach:

- (1.) find mathematics of exotic flux quantization
- (2.) hypothesize quantization law for FQH flux
- (3.) derive predictions using algebraic topology

our result:

also predicts anyonic *defects* where flux is expelled, (such as for superconducting islands within 2DEG) potentially non-abelian and *controllable*

From Faraday's *Diary of experimental investigation*, vol VI, entry from 11th Dec. 1851, as reproduced in [Martin09]; the colored arc is our addition, for ease of comparison with the next graphics.

The density and orientation of magnetic field flux lines are encoded in a differential 2-form F_2 whose integral over a given surface is proportional to the total magnetic flux through that surface. (Graphics adapted from [Hyperphysics].)

recall ordinary magnetic flux quantization:

recall ordinary magnetic flux quantization:

1985

Topological quantization and cohomology

Comm. Math. Phys. 100(2): 279-309 (1985).

recall ordinary magnetic flux quantization:

recall ordinary magnetic flux quantization:

 $\exists classifying space BU(1) \simeq \mathbb{C}P^{\infty} := \bigcup_n \mathbb{C}P^n$ s.t.:

recall ordinary magnetic flux quantization:

 $\exists \ classifying \ space \ BU(1) \simeq \mathbb{C}P^{\infty} := \bigcup_n \mathbb{C}P^n$ s.t.:

(1.) $\pi_0 \operatorname{Map}(X, \mathbb{C}P^{\infty}) \simeq H^2(X; \mathbb{Z}) \xrightarrow{\text{ordinary}}_{\text{cohomology}}$

space of maps $X \to \mathbb{C}P^{\infty}$

 $\Omega^2_{\mathrm{dR}}(X) \longrightarrow H^2_{\mathrm{dR}}(X) \xleftarrow{\mathrm{ch}} H^2(X; \mathbb{Z}) \longleftarrow \mathrm{Map}(X, \mathbb{C}P^\infty)$ $F_2 \longmapsto [F_2] = [\chi] \longleftarrow \chi$

total flux = charge character

(1.) integrality of flux quanta: $\pi_0 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, \mathbb{C}P^\infty) \simeq \mathbb{Z}$

(1.) integrality of flux quanta: $\pi_0 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, \mathbb{C}P^\infty) \simeq \mathbb{Z}$

$$\operatorname{Obs}(\Sigma^{2})^{^{\mathrm{EM}}} = \mathbb{C}\Big[\pi_{1}\operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\Big]$$

$$Obs(\Sigma^{2})^{EM} = \mathbb{C}\left[\pi_{1} \operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\right]$$

adjoin the
point-at-infinity

$$Obs(\Sigma^{2})^{EM} = \mathbb{C} \left[\pi_{1} \operatorname{Map}^{*} \left(\Sigma^{2}_{\cup \{\infty\}}, \mathbb{C}P^{\infty} \right) \right]$$

$$pointed \operatorname{mapping space}$$

$$pointed \operatorname{mapping space}$$

$$pakes flux vanish-at-infinity$$

$$(the soliton condition)$$

$$Obs(\Sigma^{2})^{EM} = \mathbb{C}\left[\pi_{1} \operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\right]$$

fundamental group
(monodromy of flux)

$$Obs(\Sigma^{2})^{EM} = \mathbb{C}\left[\pi_{1} \operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\right]$$

group algebra
(flux operators)

$$\operatorname{Obs}(\Sigma^2)^{\mathrm{EM}} = \mathbb{C} \Big[\pi_1 \operatorname{Map}^* \big(\Sigma^2_{\cup \{\infty\}}, \mathbb{C} P^\infty \big) \Big]$$

$$\operatorname{Obs}(\Sigma^{2})^{^{\mathrm{EM}}} = \mathbb{C}\Big[\pi_{1}\operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\Big]$$

(2.) the algebra of quantum observables of topological flux through surface:

$$\operatorname{Obs}(\Sigma^2)^{^{\mathrm{EM}}} = \mathbb{C}\Big[\pi_1 \operatorname{Map}^*(\Sigma^2_{\cup\{\infty\}}, \mathbb{C}P^\infty)\Big]$$

Example: On torus $\Sigma^2 \equiv T^2$, commuting Wilson line observables: $Obs(T^2)^{EM} = \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \mid \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$

(2.) the algebra of quantum observables of topological flux through surface:

$$\operatorname{Obs}(\Sigma^{2})^{^{\mathrm{EM}}} = \mathbb{C}\Big[\pi_{1}\operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\Big]$$

Example: On torus $\Sigma^2 \equiv T^2$,

commuting Wilson line observables:

$$Obs(T^2)^{EM} = \left\langle \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}}, \, \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} \mid \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} = \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}} \right\rangle$$

BUT in FQH systems one expects deformation: $\widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \zeta^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}$

(2.) the algebra of quantum observables of topological flux through surface:

$$\operatorname{Obs}(\Sigma^{2})^{^{\mathrm{EM}}} = \mathbb{C}\Big[\pi_{1}\operatorname{Map}^{*}(\Sigma^{2}_{\cup\{\infty\}}, \mathbb{C}P^{\infty})\Big]$$

Example: On torus $\Sigma^2 \equiv T^2$,

commuting Wilson line observables:

$$Obs(T^2)^{EM} = \left\langle \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}}, \, \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} \mid \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} = \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}} \right\rangle$$

BUT in FQH systems one expects deformation:

$$\widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} = \zeta^2 \widehat{W}_{\begin{bmatrix} 0\\1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\0 \end{bmatrix}}$$

What gives?

Exotic flux. Exotic Flux Quantization:

use another classifying space!
use another classifying space!

Encyclopedia of Mathematical Physics (Second Edition)

Volume 4, 2025, Pages 281-324

World Scientific Connect

Domenico Fiorenza Hisham Sati

The Character Map in

Non-abelian Cohomology

Flux Quantization *

Hisham Sati, Urs Schreiber

Subject 🗸 Journals Books 🗸 Resources For Partners 🗸 Open Access

The Character Map in Nonabelian Cohomology

Twisted, Differential, and Generalized

https://doi.org/10.1142/13422 | September 2023

use another classifying space!

use another classifying space!

such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$

Exotic flux. Exotic Flux Quantization: use another classifying space! such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ Fact. This quantizes EM-flux with Chern-Simons flux: $\pi_0 \operatorname{Map}(X, S^2) \xrightarrow{\operatorname{ch}}_{\operatorname{charace}} \begin{cases} F_2 \in \Omega^2_{\operatorname{dR}}(X) \\ H_3 \in \Omega^3_{\operatorname{dR}}(X) \end{cases} \operatorname{d} F_2 = 0 \\ \operatorname{d} H_3 = F_2 \wedge F_2 \end{cases}_{/\sim}$

use another classifying space!

such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$

Fact. This quantizes EM-flux with Chern-Simons flux:

$$\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{aligned} F_{2} \in \Omega^{2}_{\mathrm{dR}}(X) & | d F_{2} = 0 \\ H_{3} \in \Omega^{3}_{\mathrm{dR}}(X) & | d H_{3} = F_{2} \wedge F_{2} \end{aligned} \right\}_{/\sim}$$

Reviews in Mathematical Physics | Vol. 34, No. 05, 2250013 (2022) | Research Twistorial cohomotopy implies Green– Schwarz anomaly cancellation

Domenico Fiorenza, Hisham Sati, and Urs Schreiber

Exotic flux. Exotic Flux Quantization: use another classifying space! such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ Fact. This quantizes EM-flux with Chern-Simons flux: $\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{aligned} F_{2} \in \Omega^{2}_{\mathrm{dR}}(X) & | d F_{2} = 0 \\ H_{3} \in \Omega^{3}_{\mathrm{dR}}(X) & | d H_{3} = F_{2} \wedge F_{2} \end{aligned} \right\}_{/\sim}$

use another classifying space!

such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$

Fact. This quantizes EM-flux with Chern-Simons flux:

$$\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{array}{l} F_{2} \in \Omega^{2}_{\mathrm{dR}}(X) \\ H_{3} \in \Omega^{3}_{\mathrm{dR}}(X) \end{array} \middle| \operatorname{d} F_{2} = 0 \\ \operatorname{d} H_{3} = F_{2} \wedge F_{2} \right\}_{/\sim} \right\}$$

here the flux species \updownarrow free homotopy groups

use another classifying space!

such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$

Fact. This quantizes EM-flux with Chern-Simons flux:

$$\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{aligned} F_{2} \in \Omega^{2}_{\mathrm{dR}}(X) & | \mathrm{d} F_{2} = 0 \\ H_{3} \in \Omega^{3}_{\mathrm{dR}}(X) & | \mathrm{d} H_{3} = F_{2} \wedge F_{2} \end{aligned} \right\}_{/\sim}$$

here the flux species \updownarrow free homotopy groups

unit class as usual

$$\mathbb{Z} \simeq \pi_2(\mathbb{C}P^1) = \pi_2(\mathbb{C}P^\infty)$$

$$\mathbb{Z} \simeq \pi_3(\mathbb{C}P^1) \xrightarrow{0} \pi_3(\mathbb{C}P^\infty)$$
Hopf generator is new!

Exotic flux. Exotic Flux Quantization: use another classifying space! such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ Fact. This quantizes EM-flux with Chern-Simons flux: $\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{array}{l} F_{2} \leftarrow \Omega_{\mathrm{dR}}^{2}(X) & | \mathrm{d} F_{2} = 0 \\ H_{3} \in \Omega_{\mathrm{dR}}^{3}(X) & | \mathrm{d} H_{3} = F_{2} \wedge F_{2} \right\}_{/\sim} \\ & \text{unit class} \qquad \text{as usual} \end{array} \right\}$ $\mathbb{Z} \simeq \pi_2(\mathbb{C}P^1) = \pi_2(\mathbb{C}P^\infty)$ here the flux species free homovory groups $\mathbb{Z} \simeq \pi_3(\mathbb{C}P^1) \xrightarrow{0} \pi_3(\mathbb{C}P^\infty)$ is new! ► Hopf generator

Exotic flux. Exotic Flux Quantization: use another classifying space! such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ Fact. This quantizes EM-flux with Chern-Simons flux: $\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{array}{l} F_{2} \leftarrow \Omega^{2}_{\mathrm{dR}}(X) & | d F_{2} = 0 \\ H_{3} \in \Omega^{3}_{\mathrm{dR}}(X) & | d H_{3} = F_{2} \wedge F_{2} \right\}_{/\sim} \right\}$ unit class as usual $\mathbb{Z} \simeq \pi_2(\mathbb{C}P^1) = \pi_2(\mathbb{C}P^\infty)$ here the flux species $\mathbb{Z} \simeq \pi_3(\mathbb{C}P^1) \xrightarrow{0} \pi_3(\mathbb{C}P^\infty)$ free homotopy groups is new! ► Hopf generator

> not quite ordinary CS theory (where H_3 is not flux but Lagrangian) but something similar...

Exotic flux. Exotic Flux Quantization: use another classifying space! such as the 2-sphere $S^2 \simeq \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ Fact. This quantizes EM-flux with Chern-Simons flux: $\pi_{0} \operatorname{Map}(X, S^{2}) \xrightarrow{\operatorname{ch}} \left\{ \begin{matrix} F_{2} \leftarrow \Omega_{\mathrm{dR}}^{2}(X) \\ H_{3} \in \Omega_{\mathrm{dR}}^{3}(X) \end{matrix} \middle| \operatorname{d} F_{2} = 0 \\ \operatorname{d} H_{3} = F_{2} \wedge F_{2} \right\}_{/\sim} \right\}$ unit class as usual $\mathbb{Z} \simeq \pi_2(\mathbb{C}P^1) = \pi_2(\mathbb{C}P^\infty)$ here the flux species $\mathbb{Z} \simeq \pi_3(\mathbb{C}P^1) \xrightarrow{0} \pi_3(\mathbb{C}P^\infty)$ free homotopy groups is new! ► Hopf generator

> not quite ordinary CS theory (where H_3 is not flux but Lagrangian) but something similar...

Hypothesis h: FQH flux observables are $Obs(\Sigma^2)^{h} := \mathbb{C} \left[\pi_1 \operatorname{Map}^* \left(\Sigma^2_{\cup \{\infty\}}, \, S^2 \right) \right]$

Hypothesis h: | FQH flux observables are $Obs(\Sigma^{2})^{h} := \mathbb{C} \Big[\pi_{1} \operatorname{Map}^{*} \big(\Sigma^{2}_{\cup \{\infty\}}, S^{2} \big) \Big]$ $Cp_{1} \int I_{\operatorname{Map}^{*}} \big(\sum_{i \in \mathcal{M}^{2}} \int I_{i} \int I_$

```
Hypothesis h: FQH flux observables are

Obs(\Sigma^2)^h := \mathbb{C} \left[ \pi_1 \operatorname{Map}^* (\Sigma^2_{\cup \{\infty\}}, S^2) \right]
little cousin of

Hypothesis H

Hypothesis H

in super-gravity
```


Home > Communications in Mathematical Physics > Article

Twisted Cohomotopy Implies M-Theory Anomaly Cancellation on 8-Manifolds

Communications in

Mathematical

Physics

Published: 06 April 2020

Volume 377, pages 1961–2025, (2020) Cite this article

Hypothesis h: FQH flux observables are

$$\operatorname{Obs}(\Sigma^2)^{\mathrm{h}} := \mathbb{C}\Big[\pi_1 \operatorname{Map}^*(\Sigma^2_{\cup\{\infty\}}, S^2)\Big]$$

Hypothesis h: FQH flux observables are $Obs(\Sigma^2)^{h} := \mathbb{C} \Big[\pi_1 \operatorname{Map}^* \big(\Sigma^2_{\cup \{\infty\}}, \, S^2 \big) \Big]$ **Hypothesis h:** FQH flux observables are $Obs(\Sigma^2)^{h} := \mathbb{C} \left[\pi_1 \operatorname{Map}^* \left(\Sigma^2_{\cup \{\infty\}}, \, S^2 \right) \right]$

or rather, made generally covariant:

homotopy quotient by diffeomorphisms

$$Obs(\Sigma^{2})^{h} := \mathbb{C}\left[\pi_{1}\left(\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) / / \operatorname{Diff}(\Sigma^{2})\right)\right]$$
$$= \mathbb{C}\left[\pi_{1}\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) \rtimes \pi_{0}\operatorname{Diff}(\Sigma^{2})\right)\right]$$

semidirect product by mapping classes **Hypothesis h:** FQH flux observables are $Obs(\Sigma^2)^{h} := \mathbb{C} \left[\pi_1 \operatorname{Map}^* \left(\Sigma^2_{\cup \{\infty\}}, \, S^2 \right) \right]$

or rather, made generally covariant:

homotopy quotient by diffeomorphisms

$$Obs(\Sigma^{2})^{h} := \mathbb{C}\left[\pi_{1}\left(\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) / / \operatorname{Diff}(\Sigma^{2})\right)\right]$$
$$= \mathbb{C}\left[\pi_{1}\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) \rtimes \pi_{0}\operatorname{Diff}(\Sigma^{2})\right)\right]$$

semidirect product by mapping classes

 \Rightarrow FQH flux state spaces are unitary reps:

 $\mathcal{H}^{\mathrm{h}}_{\Sigma^{2}} \in \mathrm{URep}\left(\pi_{1}\mathrm{Map}^{*}\left(\Sigma^{2}_{\cup\{\infty\}}, S^{2}\right) \rtimes \pi_{0}\mathrm{Diff}\left(\Sigma^{2}\right)\right)$

covariant flux monodromy group

Hypothesis h: FQH flux observables are $Obs(\Sigma^2)^{h} := \mathbb{C} \left[\pi_1 \operatorname{Map}^* \left(\Sigma^2_{\cup \{\infty\}}, S^2 \right) \right]$

or rather, made generally covariant:

homotopy quotient by diffeomorphisms

$$Obs(\Sigma^{2})^{h} := \mathbb{C}\left[\pi_{1}\left(\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) / / \operatorname{Diff}(\Sigma^{2})\right)\right]$$
$$= \mathbb{C}\left[\pi_{1}\operatorname{Map}^{*}\left(\Sigma_{\cup\{\infty\}}^{2}, S^{2}\right) \rtimes \pi_{0}\operatorname{Diff}(\Sigma^{2})\right)\right]_{\text{semidirect product}}$$

semidirect product by mapping classes

 \Rightarrow FQH flux state spaces are unitary reps:

 $\mathcal{H}^{\mathrm{h}}_{\Sigma^{2}} \in \mathrm{URep}\Big(\pi_{1}\mathrm{Map}^{*}\big(\Sigma^{2}_{\cup\{\infty\}}, S^{2}\big) \rtimes \pi_{0}\mathrm{Diff}\big(\Sigma^{2}\big)\Big)$

covariant flux monodromy group

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

predictions follow by rigorous analysis:

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

predictions follow by rigorous analysis:

Algebraic Topology to compute the flux monodromy

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

predictions follow by rigorous analysis:

Algebraic Topology to compute the flux monodromy **Representation Theory** to classify its irreps

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

predictions follow by rigorous analysis:

Algebraic Topology to compute the flux monodromy **Representation Theory** to classify its irreps

so let's check the predictions of Hypothesis h...

novel effective theory of FQH { non-Lagrangian non-perturbative globally well-defined

predictions follow by rigorous analysis:

Algebraic Topology to compute the flux monodromy **Representation Theory** to classify its irreps

so let's check the predictions of Hypothesis h... or, for lack of time: jump to conclusions

Generally:

V:the Pontrjagin theorem
entails that spheres classifysubmanifolds Q with
normal framing NQ

Generally:

 $\begin{array}{ccc} & \text{the Pontrjagin theorem} \\ & \text{entails that spheres classify} \\ & \text{submanifolds } Q \text{ with} \\ & \text{normal framing } NQ \end{array}$

Generally:

 $\begin{array}{ccc} & \text{the Pontrjagin theorem} \\ & \text{entails that spheres classify} \\ & \text{submanifolds } Q \text{ with} \\ & \text{normal framing } NQ \end{array}$

Series on Knots and Everything

| Topological Library, pp. 1-130 (2007)

Smooth manifolds and their applications in homotopy theory

Л. С. Понтрягин, Гладкие многообразия и *и* применения в теории гомотопий, Москва, 1976. Translated by V.O.Manturov.

L. S. Pontrjagin (original: 1955)

Generally:the Pontrjagin theorem
entails that spheres classifysubmanifolds Q with
normal framing NQ \leftrightarrow \begin{cases} soliton cores within
flux concentrations

ELSEVIER

Series on Knots and Everything

| Topological Library, pp. 1-130 (2007)

Smooth manifolds and their applications in homotopy theory

Л. С. Понтрягин, Гладкие многообразия и *v* применения в теории гомотопий, Москва, 1976. Translated by V.O.Manturov.

L. S. Pontrjagin (original: 1955)

Journal of Geometry and Physics Volume 156, October 2020, 103775

Equivariant Cohomotopy implies orientifold tadpole cancellation

Hisham Sati, Urs Schreiber 1 📯 🖾

Reviews in Mathematical Physics | Vol. 35, No. 10, 2350028 (2023)

M/F-theory as *Mf*-theory

Hisham Sati and Urs Schreiber 🖂

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
 $\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
 $\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$

vacuum-to-vacuum process of exotic flux quanta
First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
 $\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$

observationally equivalent process

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
 $\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$

observationally equivalent processes

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
 $\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longrightarrow \operatorname{writhe}(L)$$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longrightarrow \operatorname{writhe}(L)$$

_

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longrightarrow \operatorname{writhe}(L)$$

First case: $\Sigma^2 \equiv \mathbb{R}^2$ the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:
$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \left\{ \begin{array}{l} \text{points: framed links} \\ \text{curves: link cobordism} \end{array} \right\}$
$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$
$L \longrightarrow \operatorname{writhe}(L)$
$\begin{array}{ccc} L & \longmapsto & \mathrm{writhe}(L) \\ \end{array}$ Pure GNS states $ \zeta\rangle \in \mathcal{H}^{\mathrm{h}}_{\mathbb{R}^2}$ labeled by phases $\zeta \in \mathrm{U}(1)$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longmapsto \text{writhe}(L)$$
Pure GNS states $|\zeta\rangle \in \mathcal{H}^h_{\mathbb{R}^2}$ labeled by phases $\zeta \in \mathrm{U}(1)$
in which Wilson loop observable L evaluates to:

$$\langle \zeta |L|\zeta \rangle = \zeta^{\operatorname{writhe}(L)} = \zeta^{\left(\sum_i \operatorname{frm}(L_i) + \sum_{i \neq j} \operatorname{Ink}(L_i, L_j)\right)}$$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longmapsto \text{writhe}(L)$$
Pure GNS states $|\zeta\rangle \in \mathcal{H}^h_{\mathbb{R}^2}$ labeled by phases $\zeta \in \mathrm{U}(1)$
in which Wilson loop observable L evaluates to:

$$\langle \zeta | L | \zeta \rangle = \zeta^{\text{writhe}(L)} = \zeta \frac{(\sum_i \operatorname{frm}(L_i) + \sum_{i \neq j} \operatorname{lnk}(L_i, L_j))}{\operatorname{result of abelian CS, including framing regularization!}$$

$$\begin{array}{l} \text{First case: } \Sigma^2 \equiv \mathbb{R}^2 \text{ the plane} & -\text{ fractional statistics} \\ \hline \mathbf{Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:} \\ \hline \mathbf{\Omega} \text{ Map}^* (\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases} \\ \hline \Omega \text{ Map}^* (\mathbb{R}^2_{\cup\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases} \\ \hline \Omega \text{ Map}^* (\mathbb{R}^2_{\cup\{\infty\}}, S^2) \longrightarrow \pi_1 \text{ Map}^* (\mathbb{R}^2_{\cup\{\infty\}}, S^2) \simeq \mathbb{Z} \\ L & \longmapsto & \text{writhe}(L) \end{cases} \\ \hline \text{Pure GNS states } |\zeta\rangle \in \mathcal{H}^h_{\mathbb{R}^2} \text{ labeled by phases } \zeta \in \mathrm{U}(1) \\ \text{ in which Wilson loop observable } L \text{ evaluates to:} \\ \langle \zeta | L | \zeta \rangle = \zeta^{\mathrm{writhe}(L)} = \zeta \frac{\left(\sum_i \operatorname{frm}(L_i) + \sum_{i \neq j} \operatorname{lnk}(L_i, L_j)\right)}{\operatorname{result of abelian CS, \\ = & \operatorname{including framing regularization!} \end{cases} \\ \hline \langle \zeta | \sum_{i \neq j} | \zeta \rangle = \zeta \cdots, \end{cases}$$

First case:
$$\Sigma^2 \equiv \mathbb{R}^2$$
 the plane — fractional statistics
Thm. [Sati-S.'24 based on Okuyama'05 based on Segal'73]:

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{U\{\infty\}}, S^2) = \begin{cases} \text{points: framed links} \\ \text{curves: link cobordism} \end{cases}$$

$$\Omega \operatorname{Map}^*(\mathbb{R}^2_{U\{\infty\}}, S^2) \longrightarrow \pi_1 \operatorname{Map}^*(\mathbb{R}^2_{U\{\infty\}}, S^2) \simeq \mathbb{Z}$$

$$L \longrightarrow \text{writhe}(L)$$
Pure GNS states $|\zeta\rangle \in \mathcal{H}^h_{\mathbb{R}^2}$ labeled by phases $\zeta \in \mathrm{U}(1)$
in which Wilson loop observable L evaluates to:

$$\langle \zeta | L | \zeta \rangle = \zeta^{\operatorname{writhe}(L)} = \zeta \begin{pmatrix} \sum_i \operatorname{frm}(L_i) + \sum_{i \neq j} \operatorname{Ink}(L_i, L_j) \\ = \operatorname{cosult of abelian CS, including framing regularization!} \end{cases}$$

$$\langle \zeta | \sum | \zeta \rangle = \zeta \cdots, \text{ flux quanta braiding phase!}$$

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables \widehat{W} as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have {

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have $\begin{cases} \text{braiding phase a primitive root of unity } \zeta = e^{\pi i \frac{p}{q}} \end{cases}$

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have $\begin{cases} \text{ braiding phase a primitive root of unity } \left(\zeta = e^{\pi i \frac{p}{q}} \right) \\ \text{ and dimension } q - \text{ ground state degeneracy!} \end{cases}$

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have $\begin{cases} \text{ braiding phase a primitive root of unity } \left(\boldsymbol{\zeta} = e^{\pi i \frac{p}{q}} \right) \\ \text{ and dimension } q - \text{ ground state degeneracy!} \end{cases}$ **Remarks.** The proof shows... (1.) ...braiding phase ζ is again Hopf generator of $\pi_3(S^2)$.

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have $\begin{cases} \text{ braiding phase a primitive root of unity } \left(\underline{\zeta} = e^{\pi i \frac{p}{q}} \right) \\ \text{ and dimension } q - \text{ ground state degeneracy!} \end{cases}$ **Remarks.** The proof shows... (1.) ...braiding phase ζ is again Hopf generator of $\pi_3(S^2)$.

(2.) ... FQH must be described by "Spin-CS" (rarely admitted).

Second case: $\Sigma^2 \equiv T^2$ the torus — topological order **Thm.** (1.) Bare flux monodromy gives torus Wilson loop observables W as in CS and as expected for FQH anyons: $\pi_1 \operatorname{Map}(T^2, S^2) \simeq \left\langle \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}}, \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}}, \widehat{\zeta} \middle| \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} = \widehat{\zeta}^2 \widehat{W}_{\begin{bmatrix} 0\\ 1 \end{bmatrix}} \widehat{W}_{\begin{bmatrix} 1\\ 0 \end{bmatrix}} \right\rangle$ here: modularity (2.) Fin-dim irreps that extend to the covariantization by diffeos preserving fermionic (aa) spin structure have $\begin{cases} \text{ braiding phase a primitive root of unity } \left(\underline{\zeta} = e^{\pi i \frac{p}{q}} \right) \\ \text{ and dimension } q - \text{ ground state degeneracy!} \end{cases}$ **Remarks.** The proof shows... (1.) ...braiding phase ζ is again Hopf generator of $\pi_3(S^2)$.

(2.) ... FQH must be described by "Spin-CS" (rarely admitted).

(3.) ...modularity was not properly accounted in literature.

Third case: $\Sigma^2 \equiv A^2$ the open annulus — edge modes **Thm.** (1.) The covariantized flux monodromy is: $\pi_1 \left(\operatorname{Map}^*(A^2_{\cup\{\infty\}}, S^2) // \operatorname{Diff}(A^2) \right) \simeq \left\langle \widehat{\xi}, \widehat{\sigma} \right| \begin{array}{c} \widehat{\sigma}^2 = 1 \\ (\widehat{\sigma}\widehat{\xi})^2 = 1 \end{array} \right\rangle$

Third case:
$$\Sigma^2 \equiv A^2$$
 the open annulus — edge modes
Thm. (1.) The covariantized flux monodromy is:
 $\pi_1 \left(\operatorname{Map}^* \left(A^2_{\cup \{\infty\}}, S^2 \right) // \operatorname{Diff}(A^2) \right) \simeq \left\langle \widehat{\xi}, \widehat{\sigma} \right| \begin{array}{c} \widehat{\sigma}^2 = 1 \\ (\widehat{\sigma}\widehat{\xi})^2 = 1 \end{array} \right\rangle$
(2.) Fd irreps compatible with $A^2_{\cup \{\infty\}} \simeq S^2 \lor S^1 \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$
have $\xi = \xi_{\mathrm{in}} / \xi_{\mathrm{out}}$ with $\zeta = \xi_{\mathrm{in}} \cdot \xi_{\mathrm{out}}$

which is relation of FQH edge mode phases due to tunneling

Third case:
$$\Sigma^2 \equiv A^2$$
 the open annulus — edge modes
Thm. (1.) The covariantized flux monodromy is:
 $\pi_1 \left(\operatorname{Map}^* \left(A^2_{\cup \{\infty\}}, S^2 \right) / / \operatorname{Diff}(A^2) \right) \simeq \left\langle \widehat{\xi}, \widehat{\sigma} \right| \begin{array}{c} \widehat{\sigma}^2 = 1 \\ (\widehat{\sigma}\widehat{\xi})^2 = 1 \end{array} \right\rangle$
(2.) Fd irreps compatible with $A^2_{\cup \{\infty\}} \simeq S^2 \lor S^1 \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$
have $\xi = \xi_{\mathrm{in}} / \xi_{\mathrm{out}}$ with $\zeta = \xi_{\mathrm{in}} \cdot \xi_{\mathrm{out}}$

which is relation of FQH edge mode phases due to tunneling

(theory admits $\xi_{in} \neq \xi_{out}$ in which case dim(irrep) = 2)

Third case:
$$\Sigma^2 \equiv A^2$$
 the open annulus — edge modes
Thm. (1.) The covariantized flux monodromy is:
 $\pi_1 \left(\operatorname{Map}^* \left(A^2_{\cup \{\infty\}}, S^2 \right) / / \operatorname{Diff}(A^2) \right) \simeq \left\langle \widehat{\xi}, \widehat{\sigma} \right| \begin{array}{c} \widehat{\sigma}^2 = 1 \\ (\widehat{\sigma}\widehat{\xi})^2 = 1 \end{array} \right\rangle$
(2.) Fd irreps compatible with $A^2_{\cup \{\infty\}} \simeq S^2 \lor S^1 \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$
have $\xi = \xi_{\mathrm{in}} / \xi_{\mathrm{out}}$ with $\zeta = \xi_{\mathrm{in}} \cdot \xi_{\mathrm{out}}$

which is relation of FQH edge mode phases due to tunneling

(theory admits $\xi_{in} \neq \xi_{out}$ in which case dim(irrep) = 2)

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

up to some subtleties (ground state degeneracy for non-unit filling fraction may differ from prediction of K-matrix CS formalism)

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

up to some subtleties (ground state degeneracy for non-unit filling fraction may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

up to some subtleties (ground state degeneracy for non-unit filling fraction may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable

Going further.

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

up to some subtleties (ground state degeneracy for non-unit filling fraction may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable

Going further.

Hypothesis h goes further to make predictions about surfaces with punctures modelling flux-expelling defects in FQH material \rightarrow

these results show that

hallmark properties of FQH systems are reproduced: (fractional statistics, topological order, edge modes)

up to some subtleties (ground state degeneracy for non-unit filling fraction may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable

Going further.

Hypothesis h goes further to make predictions about surfaces with punctures modelling flux-expelling defects in FQH material \rightarrow

Fourth case: $\Sigma^2 \equiv \mathbb{R}^2_{\backslash 2}$ the 2-pnctrd plane — para-defects

Fourth case: $\Sigma^2 \equiv \mathbb{R}^2_{\backslash 2}$ the 2-pnctrd plane — para-defects

Thm. the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash 2})_{\cup\{\infty\}}, S^2\right) / / \operatorname{Diff}(\mathbb{R}^2_{\backslash 2})\right) \subset \operatorname{FSym}_3$

group of framed permutations with total framing $\in 3\mathbb{Z}$

Fourth case: $\Sigma^2 \equiv \mathbb{R}^2_{2}$ the 2-pnctrd plane — para-defects **Thm.** the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{2}})_{\cup\{\infty\}}, S^2\right) /\!\!/ \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{2}})\right) \subset \operatorname{FSym}_3$ group of framed permutations with total framing $\in 3\mathbb{Z}$ fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^n} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\xi_1 \cdot \xi_2) / \xi_{\text{out}}$

Fourth case: $\Sigma^2 \equiv \mathbb{R}^2_{\mathbf{2}}$ the 2-pnctrd plane — para-defects **Thm.** the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{2}})_{\cup\{\infty\}}, S^2\right) /\!\!/ \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{2}})\right) \subset \operatorname{FSym}_3$ group of framed permutations with total framing $\in 3\mathbb{Z}$ fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^n} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\xi_1 \cdot \xi_2) / \xi_{\text{out}}$ $\xi_{
m out}$ $\xi_{\rm out}$ \simeq

If $\xi_1 = \xi_2$, \exists 2D para-anyon rep permuting the defects.

Fourth case: $\Sigma^2 \equiv \mathbb{R}^2_{\mathbf{2}}$ the 2-pnctrd plane — para-defects **Thm.** the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{2}})_{\cup\{\infty\}}, S^2\right) /\!\!/ \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{2}})\right) \subset \operatorname{FSym}_3$ group of framed permutations with total framing $\in 3\mathbb{Z}$ fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^n} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\xi_1 \cdot \xi_2) / \xi_{\text{out}}$ $\xi_{
m out}$ $\xi_{\rm out}$ \simeq

If $\xi_1 = \xi_2$, \exists 2D para-anyon rep permuting the defects.

Thm. For $n \geq 3$ the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup\{\infty\}}, S^2\right) //\operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{3}})\right) \subset \operatorname{FBr}_{n+1}(S^2)/\operatorname{rot}$ group of framed braids with total framing $\in (n+1)\mathbb{Z}$

Thm. For $n \geq 3$ the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup\{\infty\}}, S^2\right) // \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{3}})\right) \subset \operatorname{FBr}_{n+1}(S^2)/\operatorname{rot}$ group of framed braids with total framing $\in (n+1)\mathbb{Z}$

fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^2} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\prod_i \xi_i) / \xi_{\text{out}}$

Thm. For $n \geq 3$ the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup\{\infty\}}, S^2\right) // \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{3}})\right) \subset \operatorname{FBr}_{n+1}(S^2)/\operatorname{rot}$ group of framed braids with total framing $\in (n+1)\mathbb{Z}$

fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^2} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\prod_i \xi_i) / \xi_{\text{out}}$

irreps involve braid representations braiding worldlines of the defects — defect anyons

Thm. For $n \geq 3$ the covariantized flux monodromy is $\pi_1\left(\operatorname{Map}^*\left((\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup\{\infty\}}, S^2\right) // \operatorname{Diff}(\mathbb{R}^2_{\backslash \mathbf{3}})\right) \subset \operatorname{FBr}_{n+1}(S^2)/\operatorname{rot}$ group of framed braids with total framing $\in (n+1)\mathbb{Z}$

fd-irreps compatible with $(\mathbb{R}^2_{\backslash \mathbf{n}})_{\cup \{\infty\}} \simeq S^2 \vee (S^1)^{\vee^2} \twoheadrightarrow \mathbb{R}^2_{\cup \{\infty\}}$ have $\boldsymbol{\zeta} = (\prod_i \xi_i) / \xi_{\text{out}}$

irreps involve braid representations braiding worldlines of the defects — defect anyons

topological quantum hardware

- FQH is candidate for $\overbrace{\mathrm{TQC}}^{\bullet}$ if anyons controllable

Conclusion.

topological quantum hardware

- FQH is candidate for $\overrightarrow{\text{TQC}}$ if anyons controllable
- FQH anyons are exotic flux quanta, but

Conclusion.

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h
- this re-derives all hallmark FQH anyon properties

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h
- this re-derives all hallmark FQH anyon properties
- but also predicts anyonic defects where flux is expelled

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h
- this re-derives all hallmark FQH anyon properties
- but also predicts anyonic defects where flux is expelled

 \Rightarrow TQC via superconducting doping of FQH systems??

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h
- this re-derives all hallmark FQH anyon properties
- but also predicts anyonic defects where flux is expelled
- \Rightarrow TQC via superconducting doping of FQH systems??

in any case:

- FQH is candidate for \overrightarrow{TQC} if anyons controllable
- FQH anyons are exotic flux quanta, but
- effective CS theory does not reflect that well
- turn situation right-side-up: exotic flux quantization
- candidate such law does exist: Hypothesis h
- this re-derives all hallmark FQH anyon properties
- but also predicts anyonic *defects* where flux is expelled
- \Rightarrow TQC via superconducting doping of FQH systems??

in any case:

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH)

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling,

naturally explains expected but elusive anyons infractional quantum *anomalous* Hall systems (FQAH)namely in Chern insulators at fractional filling,

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling,

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

reflects the electron's *fragile* band topology

 $\mathcal{V} = \mathcal{V}$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\mathcal{V} = \operatorname{Eig}_{-1} \left(\begin{array}{cc} \widehat{T}^2 & \xrightarrow{\text{factors}} \mathbb{C}P^1 \longrightarrow \mathcal{B}(\mathbb{C}^2) \end{array} \right)$$

$$\overset{Iower eigen}{\longrightarrow} \begin{array}{c} Iower eigen} \begin{array}{c} Iower eigen}{\longrightarrow} \begin{array}{c} Iower eigen} \end{array} \end{array} \right)$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\mathcal{V} = \operatorname{Eig}_{-1} \left(\begin{array}{cc} \widehat{T}^2 & \xrightarrow{\text{factors}} & \mathbb{C}P^1 & \xrightarrow{\sigma} & \mathcal{B}(\mathbb{C}^2) \end{array} \right)$$

$$\overset{Iower eigen}{\longrightarrow} \begin{array}{c} Iower eigen & torus & Hamiltonian \\ bundle & bundle \end{array} \right)$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 \\ \mathcal{V} & \mathcal{I} & \mathcal{I} \\ Valence & tauto & torus \\ bundle & logical \\ line \\ bundle \end{array} \right)$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 \\ \mathcal{V} = \begin{array}{c} \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 \\ \mathcal{B}_{rillouin} & \mathcal{B}_{loch} \\ \mathcal{B}_{rillouin} & \mathcal{B}_{rillouin} \\ \mathcal{B}_{$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\begin{array}{c} \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^1 & \longrightarrow & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & - \cdots & \mathbb{C}P^\infty \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & -$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

$$\begin{array}{c} \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} & \mathbb{C}P^1 & \longrightarrow \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^1 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^1 \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2 & \cdots & \mathbb{C}P^{\infty} \end{array} \right) \\ \mathcal{V} = \operatorname{Taut} \left(\begin{array}{c} \widehat{T}^2$$

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH) namely in Chern insulators at fractional filling, because here the cohomotopical factorization through $S^2 \simeq \mathbb{C}P^1 \longrightarrow \mathbb{C}\mathbb{P}^\infty \simeq BU(1)$

reflects the electron's *fragile* band topology

$$\begin{array}{c}
\mathcal{V} = \operatorname{Taut}\left(\widehat{T}^{2} \xrightarrow{\mathcal{C}P^{1}} \xrightarrow{\mathcal{C}P^{\infty}} \mathbb{C}P^{\infty}\right) \\
\stackrel{Valence}{\stackrel{tauto}{\stackrel{tauto}{\underset{line}{\underset{line}{\underset{bundle}{\underset{bundle}{\underset{bundle}{\underset{bundle}{\underset{bundle}{\atop{line}{\atop{bundle}{\atop{bundle}{\atop{c}}}}}}}}, \\
\end{array}} \xrightarrow{FQAH anyons classified by adiabatic} \\
\begin{array}{c}
\mathcal{V} = \operatorname{Taut}\left(\widehat{T}^{2} \xrightarrow{\mathcal{C}P^{1}} \xrightarrow{\mathcal{C}P^{\infty}} \mathbb{C}P^{\infty}\right) \\
\stackrel{V}{\stackrel{I}{\underset{bundle}{\atop{bundle}{\atop{bundle}{\atop{bundle}{\atop{c}}}}}}} \\
\xrightarrow{FQAH anyons classified by adiabatic} \\
\xrightarrow{FQAH anyons clas$$

⇒ monodromy in fragile band topology

naturally explains expected but elusive anyons in fractional quantum *anomalous* Hall systems (FQAH)

 $\Rightarrow \stackrel{\text{FQAH anyons classified by adiabatic}}{\text{monodromy in fragile band topology}}$

(July 2025) find these slides at: [ncatlab.org/schreiber/show/ISQS29]