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Abstract

The lift of K-theoretic D-brane charge to M-theory was recently hypothesized to land in Cohomotopy co-
homology theory. To further check this Hypothesis H, here we explicitly compute the constraints on fractional
D-brane charges at ADE-orientifold singularities imposed by the existence of lifts from equivariant K-theory to
equivariant Cohomotopy theory, through Boardman’s comparison homomorphism. We check the relevant cases
and find that this condition singles out precisely those fractional D-brane charges which do not take irrational
values, in any twisted sector. Given that the possibility of irrational D-brane charge has been perceived as a
paradox in string theory, we conclude that Hypothesis H serves to resolve this paradox.

Concretely, we first explain that the Boardman homomorphism, in the present case, is the map from the
Burnside ring to the representation ring of the singularity group given by forming virtual permutation repre-
sentations. Then we describe an explicit algorithm that computes the image of this comparison map for any
finite group. We run this algorithm for binary Platonic groups, hence for finite subgroups of SU(2); and we
find explicitly that for the three exceptional subgroups and for the first few cyclic and binary dihedral subgroups
the comparison morphism surjects precisely onto the sub-lattice of the real representation ring spanned by the
non-irrational characters.
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We present here a curious computation in elementary representation theory (Theorem 3.1 below), the back-
ground for which we introduce in detail in §2 below. Besides its mathematical content, which is of interest in itself
as explained in §2.2 below, we argue that this result impacts on open questions in the foundations of string theory,
as we explain next in §1.

1 Fractional brane charge quantization in M-theory

The issue of irrational D-brane charge. It is a long-standing conjecture [Wi98, Sec. 5.1] that the charge lattice
of fractional D-branes [DGM97] stuck at G-orientifold singularities is the G-equivariant K-theory of the singular
point, hence the representation ring of G (e.g. [Gr05]). However, it was argued already in [BDH+02, 4.5.2] that
not all elements of the representation ring can correspond to viable D-brane charges, and a rationale was sought
for identifying a sub-lattice of physical charges. Independently, in [BDS00, (2.8)] it was highlighted that the
possibility of irrational D-brane RR-charge is a “paradox” [BDS00] that needs to be resolved.

However, for fractional D-branes stuck at G-orbifold singularities, the RR-charge is rationally proportional
to the character (recalled as Def. 2.28 below) of the corresponding representation (by [DGM97, (3.8)][BCR00,
(4.65)][RS13, (4.102)]):

Orbifold
D-brane theory

D-brane charge
at G-singularity mass charge in

g-twisted sector

V ∈
KOG

'

RR(G)

dim(V )

=
χV (e)

trV (g)

=

χV (g)
Representation

theory
linear

G-representation
character value

at neutral element
character value

at element g ∈ G

Table 1 – The translation between fractional D-brane charge at G-orbifold singularities and characters of linear G-representations.

In view of [BDS00] this means that representations with irrational characters would reflect physically spurious
fractional D-brane charges, even though they do appear in equivariant K-theory. Several authors tried to find a
resolution of the paradox of possible irrational D-brane charge [Ta00][Zh01][Ra02] but the situation has remained
inconclusive.

The open problem of formulating M-theory. Of course, perturbative string theory, where this paradox is en-
countered, is famously supposed to be just a limiting case of an elusive non-perturbative theory with working title
M-theory (see e.g.[Du99][HSS18, Sec. 2]). It is to be expected that the full M-theory implies constraints not
seen from the string perturbation series. This is directly analogous to the now popular statement that perturbative
string theory, in turn, implies constraints not seen in effective quantum field theory, separating the “Landscape” of
effective field theories that do lift to perturbative string vacua from the “Swampland” of those that do not [Va05],
indicated on the right of Figure 1. However, despite the tight web of hints on its limiting cases, actually formulating
M-theory remains an open problem (see [NH98, p. 2][Mo14, Sec. 12][CP18, p. 2][HSS18, Sec. 2]).

Hypothesis H – M-brane charge quantization in Cohomotopy. But recent analysis of the structure of the
bouquet of super p-brane WZ terms from the point of view of homotopy theory ([Sa18][FSS16a][FSS15][BSS18],
see [FSS19a] for review) has suggested a new hypothesis about the precise nature of the brane charge structure in
M-theory. This Hypothesis H [FSS19b][FSS19c] asserts that the generalized cohomology theory which quantizes
brane charge in M-theory, in analogy to how twisted K-theory is expected to quantize D-brane charge in string
theory (see [BSS18, Sec. 1][GS19] for pointers), is unstable Cohomotopy cohomology theory [Bo36][Sp49][Pe56],
specifically J-twisted Cohomotopy [FSS19b, Def. 3.1]. On flat orbifold spacetimes this is unstable equivariant
Cohomotopy [SS19, (2)][HSS18], traditionally considered in its stabilized approximation [Seg71][Ca84][Lu05].
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This is indicated on the left of Figure 1, which contextualizes our proposal and provides a global perspective:

M-theory
small coupling

limit // Perturbative
string theory

low energy
limit // Effective

quantum field theory

M-brane charge in
Cohomotopy theory

(Hypothesis H)

Boardman
homomorphism

β

//
D-brane charge

in K-theory
(traditional conjecture)

Chern
character

ch
//

Fluxes in
ordinary Cohomology

image(β ) = liftable to M-theory
cokernel(β ) = not liftable to M-theory

image(ch) = Landscape
cokernel(ch) = Swampland

Figure 1: Relations between M-brane charges in M-theory via Cohomotopy and D-brane charges in string theory via K-theory.

The Boardman homomorphism to equivariant K-theory. Displayed on the left of Figure 1 is the Boardman
homomorphism [Ad74, II.6], which, under Hypothesis H, is the M-theoretic analog of the Chern character (that
maps D-brane charge in string theory to flux forms in effective field theory) now mapping brane charge in non-
perturbative M-theory to its perturbative approximation in string theory. As discussed in detail in [SS19, 3.1.2],
classical results in equivariant homotopy theory (see [Bl17]) identify [Seg71][tD79, 8.5.1][Lu05, 1.13] the stable
equivariant Cohomotopy of a G-orbifold singularity with the Burnside ring – a non-linear combinatorial analog of
the G-linear representation ring. Furthermore, under this identification, the Boardman homomorphism to equiv-
ariant K-theory identifies with the homomorphism that linearizes a combinatorial G-set (of M-branes) to a linear
G-representation (of D-brane Chan-Paton factors), see Figure 2. We lay out the relevant definitions in full detail in
§2 below. As explained in [SS19], we have the following picture:

equivariant Cohomotopy
vanishing at infinity

of Euclidean G-space
in compatible RO-degree V
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Figure 2 – Virtual G-representations of fractional branes classified by equivariant Cohomotopy in the vicinity of ADE-singularities,

seen through the Boardman homomorphism to equivariant K-theory, according to [SS19]. Shown is a situation for G = Z4.

With this explicit form of the equivariant Boardman homomorphism at G-singularities (β 'R[−]) in hand, we
obtain here a concrete computational handle on the implications of Hypothesis H, which may serve as further tests
of this hypothesis.
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Fractional D-brane charge at orientifold singularities under Hypothesis H. In [SS19] we had laid out in de-
tail how, under Hypothesis H, equivariant Cohomotopy measures charges of M5-branes stuck at ADE-orientifold
singularities, and how this translates, under the Boardman homomorphism, to charges in equivariant K-theory of
fractional D-branes stuck at these singularities. The main result of [SS19] is that the lift of fractional D-brane
charge on orientifolds from equivariant K-theory through the Boardman homomorphism to equivariant Cohomo-
topy (as in Figure 2) implies expected anomaly cancellation conditions for D-branes in orientifolds, the RR-field
tadpole cancellation conditions.

Approach: Numerical fractional D-brane charge under Hypothesis H. Here we investigate further implications
of this lift of brane charge from K-theory to Cohomotopy: Using the explicit form of the Boardman homomorphism
explained below in §2.1, we develop in §2.3 an effective algorithm for explicitly computing the image of the
Boardman homomorphism as a sublattice in the representation ring, and hence in the equivariant K-theory ring of
fractional D-brane charges. This allows us to concretely read off which fractional D-brane charges lift to M-theory
under Hypothesis H, as indicated in Figure 1.

Physics result. Our main result, Theorem 3.1 below, establishes that, in all the examples of singularity groups
which we compute, the image of the Boardman homomorphism in the real representation ring (appropriate for
orientifold charges) consists precisely of the integral characters; these are equivalently the non-irrational characters
(by Prop. 2.3 below). Under the translation of Table 1 this means that Hypothesis H removes precisely the irrational
D-brane charges from the charge lattice of fractional D-branes stuck at ADE-singularities. Hence, in as far as
irrational D-brane charge is a paradox [BDS00][Ta00][Zh01][Ra02], Hypothesis H resolves this paradox.

We explain now in §2 how these issues are formulated mathematically, translating the question of lifting D-
brane charge to Cohomotopy to a question purely in representation theory.

2 The equivariant Boardman homomorphism β

2.1 The Burnside ring and K-theory

Finite group actions control orbifold spacetime singularities in string theory. For G a finite group one may consider
linear as well as purely combinatorial actions of G on some set (see e.g. [Dr71][tD79][Ke99][LP12]). We will be
concerned with the relation between these two types of actions (see e.g. [tD79][Be91][Bo10]).

Basics. Traditionally, for k any field, the linear actions receive more attention as they are the k-linear representa-
tions of G, namely the group homomorphisms G! Autk(V ) from G to the k-linear invertible maps from a given
k-vector space V to itself. More elementary than this concept is that of plain G-sets, which are instead group homo-
morphism of the form G! Aut(S), from G to all the invertible functions from some set S to itself (permutations).

To emphasize that these two concepts, while clearly different, are conceptually related, one may appeal to the
lore of the “field with one element” F1 [Ti56][KS][So04][CCM09][Man08] (see [Th16][Lo18] for recent surveys)
and regard plain sets as vector spaces over F1, and plain set-theoretic permutations as being the F1-linear maps
Aut(S) = AutF1(S).

In any case, for every finite group G and field k, the isomorphism classes of finite nonlinear actions and of
finite-dimensional linear actions of G form two rings-without-negatives,(

GSetfin/∼, t,×
)
=
(
GRepfin

F1
/∼, ⊕F1 ,⊗F1

)
and

(
GRepfin

k /∼, ⊕k,⊗k
)
, (1)

where addition is given by disjoint union of G-sets and by direct sum of G-representations, respectively, while the
product operation is given by Cartesian product of G-sets and by tensor product of G-representations, respectively.

We will be interested in a canonical comparison map from G-sets to G-representation: By forming k-linear
combinations of elements of a finite set, every G-set G y S in A(G) spans a k-linear representation

k[S]

G
��

g(v) = g
(
∑
s∈S

vs︸︷︷︸
∈k

· s︸︷︷︸
∈S

)
:= ∑

h∈G
vi ·g(s) . (2)
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These are called the permutation representations. The archetypical example is the regular representation k[G],
which is the linearization of G acting on its own underlying set by group multiplication from the left. A simple
but important example is the trivial 1-dimensional representation 1 of G, which is the linearization of the point,
regarded as a G-set:

1' k[∗] . (3)

The construction (2) of permutation representations from G-sets is clearly linear and multiplicative, in that it
extends to a homomorphism between the above rings-without-negatives (1)(

GSetfin/∼,t,×
) k[−] //

(
GRepfin/∼,⊕,⊗

)
. (4)

While this establishes the canonical comparison map between nonlinear and linear G-actions, there is nothing
much of interest to be said about it.

Passage to K-theory. This situation changes drastically as soon as we consider not just plain G-sets and G-
representations, but also their “anti-G-sets” and “anti-G-representations”, namely as we group-complete the rings-
without-negatives in (1) to actual rings, by adjoining additive inverses for all elements. Concretely, a virtual G-
representation is represented by a pair (V+,V−) of two G-representations, thought of as a plain G-representation
V+ and an anti-G-representation V−; and the K-group completion is obtained by quotienting out from the evident
group (ring) that these virtual representation/anti-representation pairs form the equivalence relation

(V,V )∼ 0 for all V ∈ GRepfin
k /∼ .

This can viewed as exhibiting pair-creation/annihilation of bound states of a representation with its own anti-
representation. The resulting ring is called the representation ring of G, denoted

Rk(G) := K
(
GRepfin

k /∼,⊕,⊗
)
. (5)

An analogous construction applies to virtual G-sets represented by pairs consisting of a G-set and an anti-G-set,
subject to the relation of pair-creation/annihilation of bound states of a G-set S with its anti-G-set:

(S,S)∼ 0 for all S ∈ GSetfin.

Now the resulting ring is known as the Burnside ring of G (see e.g. [So67][Dr71][tD79][Ke99]), denoted

A(G) := K
(
GSetfin/∼,t,×

)
. (6)

While plain permutation representations (2) generally form just a very small subset of all isomorphism classes of
k-linear representations, the passage to virtual permutation representations drastically changes the picture: Since
every plain permutation representation decays into a direct sum of irreducible linear representations, the formal
difference of two permutation representations in a virtual permutation representation may partially cancel out to
become equal, in the representation ring, to a representation that is not itself a plain permutation representation.

For example, in the simplest non-trivial case, where G = C2 is the finite group of order 2, the 1-dimensional
alternating representation 1alt is clearly not a permutation representation itself. But it is a direct summand in
the regular representation k[C2] = 1+ 1alt. Since the other summand is a permutation representation, 1 = k[∗],
the alternating representation may then be isolated as the formal difference 1alt = k[C2]− k[∗], thus as a virtual
permutation representation.

The comparison morphism. Therefore, while the step from plain to virtual actions and representations is small,
it has drastic consequences, as it potentially reduces much of linear representation theory to pure combinatorics. In
order to quantify this effect, one observes that the construction (4) of permutation representations evidently extends
linearly to virtual G-sets and virtual G-representations, to a homomorphism

A(G)
β :=k[−] // Rk(G) (7)
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from the Burnside ring (6) to the representation ring (5), taking virtual G-sets to virtual G-representations.
We may associate to the representation theory of G over k the following interpretation.

Space Meaning
Cokernel of β Linear algebra invisible to pure combinatorics
Kernel of β Pure combinatorics invisible to linear algebras

Intuition might suggest that generally the cokernel of β is large, while the kernel of β is generally small. This is
indeed the case for the restriction (4) of β to actual (as opposed to virtual) G-sets and G-representations. However,
the inclusion of anti-G-sets and anti-representations and passage to the K-groups of virtual G-sets and virtual
G-representations completely changes the picture. It turns out that the kernel of β almost never vanishes: in
characteristic zero its rank is the difference of the number of non-cyclic by cyclic subgroups of G (Prop. 2.7
below). At the same time, classical results give that the cokernel of β often vanishes: for instance, over k = Q it
vanishes for all cyclic groups (Prop. 2.6 below), as well as for all p-groups ([Seg72], recalled as Prop. 2.8 below),
while for G = Sn a symmetric group, the cokernel of β vanishes even for all fields k of characteristic zero (Prop.
2.9 below).

This is a remarkable state of affairs, which deserves further investigation.

The mathematical incarnation of the goals and results stated at the end of §1 are the following:

Goal. Here our goal is to give explicit descriptions of the cokernel of β , over the rational, real and complex
numbers, for further concrete examples of finite groups G. We are particularly interested in the case of the binary
Platonic groups, namely the finite subgroups of SU(2) (recalled in appendix A.1).

Method. In §2.3 we describe an algorithm for the image of β , Theorem 2.37 below. In §3 we apply this algorithm
and compute the cokernel of β in various concrete examples, Theorem 3.1. In appendix A we collect some
background material.

Results. The table in Theorem 3.1 shows that in all examples computed here, notably for the three exceptional
finite subgroups of SU(2) as well as the seven first cases of binary dihedral groups, the image of β in the real
representation ring consists precisely of the sub-lattice of integer characters, hence (by Prop. 2.3) of non-irrational
characters. The same holds true for larger classes of Examples which we have computed, but are not showing here.
We conjecture that it holds true for all binary dihedral groups.

2.2 Analysis of the image of β

In order to set the scene for the considerations below, we record some well-known general facts about the image
of the comparison morphism β (7).

Definition 2.1 (Sub-lattice of integer-valued characters). For G a finite group and k a field, write

Rint
k (G) �

� // Rk(G) (8)

for the sub-lattice of the representation ring given by those representations V ∈ Rk(G) whose characters χV (Def.
2.28) are integer-valued

χV : g 7−! χV (g) ∈ Z⊂ k .

Proposition 2.2 (β takes values in integer-valued characters). The comparison morphism β (7) has its image inside
the integer-valued characters (Def. 2.1), hence it factors as

β : A(G)
β int

k // Rint
k (G) �

� // Rk(G) . (9)

Proof. By Example 2.29.
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The following is elementary, but important:

Proposition 2.3 (e.g. [Na-cycl]). If the ground field k has characteristic zero, then a character (Def. 2.28) that
takes values in the rational numbers Q ⊂ k in fact already takes values in the integers Z ⊂ Q ⊂ k. Hence if
Rrat

k (G) ⊂ Rk(G) denotes the sublattice of rational-valued characters, in analogy to the sub-lattice of integer-
valued characters in Def. 2.1, then these sub-lattices are in fact equal:

Rint
k (G)

= // Rrat
k (G)⊂ Rk(G) for Q⊂ k .

In particular, if the ground field k = Q is itself the rational numbers, then all characters are integer-valued char-
acters (Def. 2.1), hence in this case the canonical inclusion (8) is an isomorphism:

Rint
Q (G)

= // RQ(G) .

Proof. In general, characters are cyclotomic integers. Over the rationals the only cyclotomic integers are the actual
integers.

Remark 2.4 (Factorizations of the comparison map β ). In summary, Prop. 2.2 and Prop. 2.3 say that we have the
following commuting diagram of factorizations of the morphism β (7) that sends G-sets to their linear permutation
representation:

A(G)

β int
Q
��

β int
R

((

β int
C

%%

βC

��

βQ

,,

Rint
Q (G) �

� // Rint
R (G) �

� // Rint
C (G)

Rrat
Q (G) �

� // Rrat
R (G) �

� //
� p

  

Rrat
C (G)� o

  
RQ(G) �

� // RR(G) �
� // RC(G)

Hence it is worthwhile to first record what is known about the image of β over Q;

Proposition 2.5 (e.g. [tDi09, proof of Prop. 4.5.4]). Over the rational numbers, k = Q, the image of A(G)
β
!

RQ(G) (7) is at least a sub-lattice of full rank (i.e. has the same number of generators as RQ(G)). This full-rank
sublattice is spanned by the permutation representations (2) of the form Q[G/Ci] for Ci ⊂ Cn ranging over the
cyclic subgroups.

Proposition 2.6 (e.g. [tDi09, Example (4.4.4)]). For G=Cn =Z/n a cyclic group and k =Q the rational numbers,
β is an isomorphism

A(Cn)
β

'
// RQ(Cn) .

Proposition 2.7. The only finite groups G for which A(G)
βk−! Rk(G) is injective over k =Q (hence over k =R,C)

are the cyclic groups G =Cn.

Proof. We know that a linear basis for A(G) is given by the cosets G/H for H ranging over conjugacy classes
of all subgroups of G, while a linear basis for RQ(G) is given by the isomorphism classes of irreducible Q-linear
representations. But the latter are in bijection to just the cyclic subgroups of G (e.g. [tDi09, Prop. 4.5.4] ). This
means that when G is not itself cyclic, then the cardinality of a linear basis for A(G) is strictly larger than the
cardinality of a linear basis for RQ(G), so that no morphism A(G)! RQ(G) can be injective. On the other hand,
when G is a cyclic group then β is an isomorphism by Prop. 2.6, and hence in particular injective.
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Less immediate is the following result:

Proposition 2.8 ([Seg72]). If the finite group G is a p-group, hence if its number of elements is the nth power pn

of some prime number p by some natural number n ∈ N

|G| = pn ,

then over k =Q the comparison morphism A(G)
β // // RQ(G) (7) is surjective.

The standard representation theory of symmetric groups in terms of Young diagrams and Specht modules yields
the following statement:

Proposition 2.9 (e.g. [Dr86, Section 3]). Over any ground field k of characteristic zero, and for G = Sn any
symmetric group of permutations of n ∈ N elements, the comparion map A(Sn) // // Rk(Sn) (7) is surjective.

For some other classes of finite groups, formulas for the cokernel and kernel of β are known; see, e.g., [BD16].

2.3 An algorithm for the image of β

We describe here an algorithm for computing the image and cokernel of β (7). The end result is Theorem 2.37
below. Establishing the algorithm involves only elementary representation theory (see [Dr71][tD79][Be91][Ke99]
[Rob06][Bo10][LP12]) and basic monoidal category theory (see [Mc65][Bo94]) but seems to be new.

Throughout, G is a finite group and k is a field.

Definition 2.10 (Category of G-sets). We write GSetfin for the category of finite sets equipped with G-action, called
G-sets, for short.

This is a symmetric monoidal category ([Bo94, vol 2, 6.1]) with respect to Cartesian product of G-sets, which
is given by the plain Cartesian product of underlying sets, equipped with the diagonal G-action. For example, the
underlying set of the group G becomes a G-set by the left multiplication action of G on itself. More generally, for
H ⊂ G any subgroup, the set G/H of cosets is still a G-set by the left action of G on itself. The elements of G/H
are equivalence classes of elements g of G, often denoted gH, for which we will write

[g] := gH .

Generally, we use square brackets to indicate the equivalence classes or isomorphism classes. In particular we
write [G/H] for the isomorphism class of the G-set G/H as an object of GSet.

Definition 2.11 (Category of k-linear G-representations). We write GRepfin
k for the category of finite dimensional

k-linear G-representations.

This is a symmetric monoidal category ([Bo94, vol 2, 6.1]) with respect to the standard tensor product of
representations, which we denote simply by “⊗”.

Definition 2.12 (The trivial irrep). We write

1' k[∗] ∈ GRepfin
k

for the trivial 1-dimensional G-representation (3), equivalently the permutation representation (2) of the singleton
G-set. This is the tensor unit for the tensor monoidal structure on GRepk: For V ∈ GRepk any representation, the
hom-space out of 1 into V is the vector space V G of G-invariants in V , hence of elements which are fixed by G:

V G ' Hom(1,V ) ∈ Vectk .
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Definition 2.13 (The irreducible G-sets). The action of G on a G-set S is called transitive if for all pairs of elements
s1,s2 ∈ S there exists a group element that takes them into each other: gs2 = g2.

Every transitive G-set S is isomorphic to a set of cosets G/H, equipped with the canonical G-action induced
from the left action of G on itsef, where H is isomorphic to the stabilizer subgroup Stab(s)⊂G of s in S. Two such
G-sets of cosets are isomorphic, G/H1 'G/H2, precisely if H1 and H2 are conjugate to each other, as subgroups of
G. If we denote isomorphism classes of G-sets by square brackets, and also denote conjugacy classes of subgroups
by square brackets, then this means that

[G/H1] = [G/H2] ⇐⇒ [H1] = [H2] .

Consequently, we have the following.

Proposition 2.14 (Canonical linear basis for Burnside ring). Every finite G-set is a disjoint union of such transitive
G-sets (Def. 2.13). Hence the abelian group underlying the Burnside ring is the free abelian group on elements
[G/H], one for each conjugacy class [H] of subgroups of H:

⊕
[H]

H⊂G

Z[H]
' // A(G)

[H] � // [G/H] .

We would like to get a handle on the following object:

Definition 2.15 (Multiplicities multiplication table of the Burnside ring). Let
{
[Hi]
}

i be an indexing of the set of
conjugacy classes [H] of subgroups H ⊂ G.

(i) The structure constants of the Burnside ring A(G) is the set of natural numbers {n`i j} defined by

k[G/Hi]⊗ k[G/H j] ' ⊕
`

n`i j k[G/H`] . (10)

(ii) The total multiplicities table of the Burnside ring A(G) is the quadratic matrix whose (i, j)-entry is

Mi j := ∑
`

n`i j . (11)

Before discussing the crucial role of the total multiplicities (11) for our purpose, (to which we come in Prop.
2.22 below) we first record an efficient way of computing them:

Definition 2.16 (e.g [Pf97, Def. 1.1]). Given a finite group G, its table of marks is the square matrix m indexed by
the conjugacy classes [H] of subgroups H ⊂G whose [Hi], [H j]-entry is the number of fixed points of the H j-action
on G/Hi

mi j :=
∣∣∣(G/Hi

)H j
∣∣∣ ∈ Z .

Proposition 2.17 (Ordering). There exists a linear ordering ≤ of the set of conjugacy classes of subgroups of G
which extends the inclusion relation of subgroups, in that(

Hi ⊂ H j
)
⇒
(
[Hi]≤ [H j]

)
.

With respect to any such linear ordering, the table of marks m (Def. 2.16) is a lower triangular matrix with positive
entries on its diagonal, hence in particular an invertible matrix.

Proof. First of all, inclusion of subgroups defines a partial order and every partial order extends to a linear order.
(For our finite ordered set this follows immediately by induction, splitting off a minimal element in each step;
more generally see [Mar30].) Then, observe that H j having any fixed points on G/Hi means that it is conjugate to
a subgroup of the stabilizer group of [e] ∈ G/Hi. But the latter is manifestly Hi itself. Hence(

Mi j =
∣∣(G/Hi)

G j
∣∣ > 0

)
⇒
(
[H j]≤ [Hi]

)
,

which says that m is lower triangular. Finally, it is clear that at least [e] ∈ G/Hi is fixed by Hi, hence that the
diagonal entries are positive.
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Proposition 2.18 (Multiplicities explicitly). The Burnside multiplicities m`
i j (Def. 2.15) are given by the following

algebraic expression in terms of the entries of the table of marks m (Def. 2.16) and its inverse matrix m−1 (from
Prop. 2.17):

n`i j = ∑
k

mik ·m jk · (m−1)k` . (12)

Proof. Notice that the entry mi j of the table of marks may equivalently be thought of as the cardinality of the set
of homomorphism from the G-set G/H j to the G-set G/Hi:

mi j =
∣∣ HomGSet

(
G/H j,G/Hi

)∣∣ .
(Because, by transitivity of the action, any such homomorphism is determined by its image of [e] ∈ G/H j and by
G-equivariance this has to be sent to any H j-fixed point of G/Hi.) With this we compute as follows:

∑
`

n`i j ·m`k = ∑
`

n`i j ·
∣∣HomGSet

(
G/Hk,G/H`

)∣∣
=
∣∣∣HomGSet

(
G/Hk,∑

`

n`i j ·G/H`

)∣∣∣
=
∣∣HomGSet

(
G/Hk, G/Hi×G/H j

)∣∣
=
∣∣HomGSet

(
G/Hk, G/Hi

)∣∣ · ∣∣HomGSet
(
G/Hk, G/H j

)∣∣
= mik ·m jk .

Here in the third step we used the defining equation (10) of the Burnside multiplicities n`i j, and otherwise we used
evident properties of sets of homomorphisms. Now matrix multiplication of both sides of this equation with the
inverse matrix m−1 yields the claimed relation.

In order to understand the meaning of the total multiplicities (11), we consider now some basic facts, all
elementary.

Proposition 2.19 (Self-duality of permutation representations). If char(k) 6= |H|, then the permutation representa-
tion k[G/H] (2) is a dualizable object in the symmetric monoidal representation category (GRepk,⊗) (e.g. [Bo94,
vol 2, 6.1]) and is in fact self-dual:

k[G/H]∗ ' k[G/H] .

Proof. We need to find morphisms

1 η
−! k[G/H]⊗ k[G/H] and k[G/H]⊗ k[G/H]

ε
−! 1

in GRepk that make the following triangle commutes (the “triangle identity”, recalled in appendix A.2):

k[G/H]⊗ k[G/H]⊗ k[G/H]
id⊗ε

++
k[G/H]

η⊗id
33

id
// k[G/H]

where we are notationally suppressing the unitors and associators, as usual. With [g] ∈ G/H ⊂ k[G/H] denoting
both the equivalence class of an element g ∈ G as well as the corresponding basis element of k[G/H], we claim
that the following choice works:

1
η // k[G/H]⊗ k[G/H]

1 � // 1
|H| ∑

g∈G
[g]⊗ [g] and

k[G/H]⊗ k[G/H]
ε // 1

[g1]⊗ [g2]
� //

{
1 | [g1] = [g2],
0 | otherwise.

10



Here the fraction on the left makes sense by assumption on the characteristic of k. Also, it is immediate that these
linear maps do respect the G-action and hence are morphisms in GRepk. Because with this, we check for every
[g̃] ∈ k[G/H] that:

[g̃] �
η⊗id // 1

|H| ∑
g∈G

[g]⊗ [g]⊗ [g̃] � id⊗ε // 1
|H| ∑

g∈G
[g]=[g̃]︸ ︷︷ ︸

=1

[g̃] [g̃] .

As a direct consequence we obtain:

Proposition 2.20 (Internal hom between permutation representations). If char(k) 6= |H1|, then the internal hom
between the permutation representation k[G/H1] and k[G/H2] (2) exists in (GRepk,⊗) and is given by the tensor
product of representations: [

k[G/H1] , k[G/H2]
]
' k[G/H1]⊗ k[G/H2] .

Proof. Generally, if duals exist, the internal hom is given by

[V1,V2] ' V ∗1 ⊗V2 .

With this, the statement follows by Prop. 2.19.

Proposition 2.21 (Trivial irrep in transitive permutation representations). The permutation representation k[G/H]
of a transitive G-set (Def. 2.13) contains precisely one direct summand of the trivial 1-dimensional representation
(Def. 2.12):

dimkHom
(
1,k[G/H]

)
= dimk

(
k[G/H]

)G
= 1 .

Proof. By definition, every element v ∈ k[G/H] is a formal linear combination of cosets [g]:

v = ∑
[g]∈G/H

v[g] [g]

for coefficients v[g] ∈ k. If there exists [g1], [g2] ∈ G/H such that v[g1] 6= v[g2] then, by transitivity of the G-action,
there exist g ∈ G with g[g1] = [g2]. But since the [g] constitute a basis of k[G/H], this implies that gv 6= v, hence
that v is not G-invariant. Therefore, the only G-invariant vectors v ∈ k[G/H] are those all whose coefficients v[g]
agree. These clearly form a 1-dimensional subspace.

As a corollary we obtain:

Proposition 2.22 (Multiplication table via invariants and via hom-spaces). The entries Mi j := ∑` n`i j in the table of
multiplication multiplicities in the Burnside ring (Def. 2.15) are equivalently

(i) the dimensions of the subspaces of G-invariants in the Burnside products;
(ii) the dimensions of the external homs of the two given basis elements;

Mi j := ∑
`

n`i j = dimk
(
k[G/Hi]⊗ k[G/H j]

)G
= dimkHom

(
k[G/Hi] , k[G/H j]

)
.

Proof. The first equality follows from Prop. 2.21 applied to the Definition 2.15 of the structure constants, which
gives the following isomorphism (

k[G/Hi]⊗ k[G/H j]
)G :=

(
⊕
`

n`i j k[G/H`]
)G

'⊕
`

n`i j
(
k[G/H`]

)G

'⊕
`

n`i j k .

11



The second equality comes from the following sequence of isomorphisms

Hom
(

k[G/H1],k[G/H2]
)
' Hom

(
1,
[
k[G/H1],k[G/H2]

])
'
([

k[G/H1],k[G/H2]
))G

'
(
k[G/H1]⊗ k[G/H2]

)G
.

Here the first equivalence expresses a general relation between external and internal homs, via the tensor unit (Def.
2.12), the second is from (2.12) and the last one is Prop. 2.20.

Now it is useful to relate this to Schur’s Lemma. For this purpose it turns out to be convenient to think in terms
of the following inner product.

Definition 2.23 (Inner product on Burnside ring). For V1,V2 ∈ GRepk, write〈
V1,V2

〉
:= dimkHom

(
V1,V2

)
∈ N

for the dimension of the vector space of representation homomorphism between them. By Z-linearity this extends
to a Z-valued pairing on the Burnside ring:

Rk(G)×Rk(G)
〈−,−〉 // Z .

In terms of this pairing, Schur’s Lemma says the following:

Lemma 2.24 (Schur’s Lemma). The pairing 〈−,−〉 from Def. 2.23 is a symmetric and Z-bilinear inner product
on the abelian group underlying the representation ring Rk(G). With respect to this inner product, the set of
isomorphism classes ρi of irreducible representations of G

(i) is always an orthogonal basis, where each basis element has positive norm-square;
(ii) is even an orthonormal basis if the field k is algebraically closed.

Using this perspective, we amplify the following:

Remark 2.25 (Matching of multiplicities and independence). The statement of Prop. 2.22 is that, in terms of
the inner product 〈−,−〉 from Def. 2.23, the multiplicities multiplication table coincides with the table of inner
products of Burnside-basis elements:

Mi j := ∑
`

n`i j =
〈
k[G/Hi] , k[G/H j]

〉
. (13)

Also notice that Prop. 2.22 implies that the k-linear dimension of k-linear hom-spaces between k-linear permutation
representations of transitive G-sets is independent of the ground field k:〈

k[G/Hi] , k[G/H j]
〉

:= dimkHom(k[G/Hi] , k[G/H j]) = Mi j

since the multiplication multiplicities matrix M of the Burnside ring is manifestly independent of k.

We now use this to discuss explicit matrix representations of β .

Definition 2.26 (Upper triangular form of the Burnside multiplicities matrix). For G a finite group, let

H :=U ·M ∈MatN×N(N) (14)

be an integral upper triangular form (e.g. [GP90, p. 3,4]) of the Burnside multiplication multiplicities matrix (Def.
2.15), hence with U ∈GL(N,Z) an invertible matrix whose left-multiplication implements row reduction on M (N
the number of conjugacy classes of subgroups of G). Write

H̃ := Ũ ·H (15)
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for the result of deleting the zero-rows from (14). Write

Vi := ∑
`

Ũ `
i · [G/H`] ∈ A(G) (16)

for the corresponding permutation representations and write

di :=
〈
Vi,Vj

〉
(17)

for their norm-square with respect to the inner product (Def. 2.23).

Proposition 2.27 (Matrix for β ). Consider the upper triangular form H̃ of the Burnside multiplication matrix,
Def. 2.26.

(i) Then the corresponding permutation representations Vi ∈Rk(G) (16) are orthogonal, in that their inner products
(Def. 2.23) satisfy 〈

Vi ,Vj
〉
= δi j di di ∈ N ; (18)

and they linearly span the image of β : 〈Vi〉i ' im(β )⊂ Rk(G).

(ii) Specifically, the matrix that represents β with respect to the basis of the G/H j ∈ A(G) and the basis of Vi ∈
Im(β )⊂ Rk(G) is

βi j = 1
di

H̃i j .

(In particular this means that the ith row H̃i• of H̃ is divisible by di.)

(iii) Hence for every subgroup H j ⊂ G, the image of β on the corresponding G-set G/H j is the following linear
combination of the representations Vi (16), from Def. 2.26:

β
(
G/H j

)
= ∑

i

1
di

H̃i j Vi . (19)

Proof. The first statement follows from [PT91]: By (13) we have that M = AT ·A is a positive semi-definite matrix
of inner products, where A is the matrix whose columns are the permutation representations k[G/H] expanded in
terms of the irreps of G. By [PT91, top of p. 5] this implies that the same row reduction which turns M into
upper-triangular form takes A to a matrix whose non-vanishing columns Vi constitute an orthogonal basis of the
linear span of the k[G/H].

The remaining statement just spells this out by immediate computation:

H̃i j = ∑
`

Ũ `
i M` j

= ∑
`

Ũ `
i
〈
k[G/H`],k[G/H j]

〉
=
〈
∑
`

Ũ `
i k[G/H`],k[G/H j]

〉
=
〈
Vi,k[G/H j]

〉
=
〈
Vi,β (G/H j)

〉
= diβi j .

Here the first line is by Def. 2.26, and in the second step we used Prop. 2.20 in the inner product notation from
Def. 2.23 (as in Remark 2.25). In the third step we used the linearity of the inner product from Prop. 2.24, in the
fourth step we inserted the definition of Vi (16). In the fifth step we just identified β (H j) = k[G/H j], for emphasis.
Finally we used the assumption (18) to identify the coefficient βi j of Vi in β (H j).

With a linear basis for the image of β thus in hand, it just remains to express it in a form that may directly be
compared to standard classifications available from the linear representation theory of finite groups. For complete-
ness, recall:
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Definition 2.28 (Characters). For G a finite group and k a field, a function from the underlying set of G to k is
called a class function if it is constant on conjugacy classes of G, hence if it factors as

G
(( ((

// k .

ConjCl(G)
φ

66

Hence class functions form a k-vector space of dimension the number of conjugacy classes in G:

k|ConjCl(G)|. (20)

For V ∈ Rk(G) a representation, the map sending any g ∈ G to its trace, when regarded as a linear map V
g
!V via

this representation, is a class function (by basic properties of the trace), called the character χV of V :

ConjCl(G) // k
[g] � // trV (g)

The following example is immediate but important:

Example 2.29 (Character of permutation representation). For S ∈ A(G) a finite G-set, the character (Def. 2.28) of
its permutation representation k[S] (2) is the function that sends g to the number of elements in S that are fixed by
the given action of g:

χk[S] : [g] 7−! |Sg| ∈ N⊂ k .

The relevance of characters is that, in characteristic zero, they already completely characterize linear represen-
tations, while being more manifestly tractable:

Proposition 2.30 (e.g. [tDi09, Theorem 2.2.5]). If the field k is of characteristic zero, then the map that sends a
k-linear G-representation to its character (Def. 2.28) is an injection of the k-vector space of isomorphism classes
of finite-dimensional G-representations into the vector space (20) of class functions (Def. 2.28)

GRepk/∼
� � // k

|ConjCl(G)|

V � // χV

If k is, in addition, a splitting field for G (notably if k = C is the complex numbers), then this map is even an
isomorphism.

As usual, it is convenient to organize this data in character tables. In order to make our list of examples in §3
be unambiguously intelligible, we briefly dwell on the notation for character tables.

Definition 2.31 (Character table). For (Wi ∈ Rk(G))i∈{1,··· ,} a tuple of (possibly virtual) k-linear representations of
a finite group G, their character table is the n× |ConjCl(G)|-matrix with values in k whose (i, j)-th entry is the
value χWi

(g j) of the character χWi
(Def. 2.28) on any element g j of the jth conjugacy class [g j] ∈ ConjCl(G).

Example 2.32 (Irreducible character table over C). By Prop. 2.30 the characters of irreducible representations
over k = C the complex numbers form a linear basis of the representation ring RC(G). We will denote these
irreducible representations by (ρi ∈ RC)(G) and will display the corresponding character table (Def. 2.31) as
follows (conjucagy classes being labeled by the order of their elements):

conjugacy class
1 3 4A 4B · · ·

ir
re

d.
re

pr
. ρ1 · · · ·

ρ2 · χ
ρ2
(g2) χ

ρ2
(g3) ·

ρ3 · χ
ρ3
(g2) χ

ρ3
(g3) ·

ρ4 · · · ·
...

. . .
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The character tables of irreducible representations over the complex numbers, for many finite groups of small
order, have been tabulated in the literature, for instance in [Dok-GroupNames].

Example 2.33 (Irreducible character table over R ). For k ⊂ C a subfield, under the ring homomorphism of
“extension of scalars”

Rk(G)
(−)kC // RC(G) ,

the values of characters to not change. Hence if k is of characteristic zero, Q⊂ k⊂C, then, by Prop. 2.30, we may
equivalently express the character of any linear representation W ∈ Rk(G) over k after tensoring it with C. This is
a linear combination of the complex irreducible characters χ

ρi
from above

W ⊗k C = ∑
i

wi︸︷︷︸
∈N

·ρi , χ
(W⊗kC)

= ∑
i

wi ·χρi
.

Therefore, when Q ⊂ k ⊂ C and for (· · · ,W ∈ Rk(G), · · ·) a tuple of k-linear representations, we may and will
express the corresponding character table as a table of linear combinations of the irreducible complex characters:

conjugacy class
1 3 4A 4B · · ·

ir
re

d.
re

pr
. · · · · ·

W ⊗k C= ∑
i
wi ·ρi · ∑

i
wi ·χρi

(g2) ∑
i
wi ·χρi

(g3) ·

· · · · · ·
...

. . .

In this fashion we will in particular state the irreducible character tables over k = R the real numbers, which may
again be found in the literature for many finite groups of small order.

Specifically, the complex character tables available in the literature (e.g. [Dok-GroupNames]) list the type of
the corresponding complex representation, from which the character table of irreducible representations over the
real numbers may be extracted (or conversely, as in [Mon-Reps]), via the following basic fact:

Proposition 2.34 (e.g. [Rob06, p. 4]). Let G be a finite group, and consider the complexification map on the repre-

sentation ring RR(G)
(−)⊗RC
−−−−−! RC(G). Then every irreducible complex representation V ∈ RC(G) is of exactly one

of the following three types, depending on how it arises as a direct summand of an irreducible real representation
W ∈ RR(G):

W ⊗RC '


V | real type / orthogonal
V ⊕V ∗ | complex type
V ⊕V | quaternionic type / symplectic

In this fashion we may now identify the image of β via the character table of its basis elements:

Proposition 2.35 (Character table of linear basis of image of β ). The character (Def. 2.28) of a basis element Vi

(16) of the image of β (Prop. 19) is the class function given by

χVi
: [g] 7−!∑

`

Ũ `
i · |(G/H`)

g| , (21)

where on the right we have the sum over conjugacy classes H` of subgroups of G of the product of the entries of
the base change matrix from (15) with the number of elements in G/H` that are fixed by the action of g.

Proof. This follows by Example 2.29.

Hence, in conclusion, we have the following.

15



Proposition 2.36 (Recognizing surjectivity of β ). For k of characteristic zero, let (ρi ∈ Rk(G)) be the irreducible
k-linear representations, spanning the representation ring Rk(G). Then the comparison morphism (7) is surjective
precisely if the corresponding tuple of characters χ

ρi
(Def. 2.28) is related to the set of characters χVi

in Def. 2.35
by an invertible integer matrix

β is surjective over k ⇐⇒ χ
ρi

= ∑
j

T j
i ·χVj

, T ∈ GL(N,Z) .

Proof. Since, by construction, the Vj (16) are linearly independent and span the image of β (Prop. 2.27) and since
the ρi span Rk(G), the number of the Vj is smaller or equal to the number of ρi, hence the number must be equal
if β is surjective. This means that for surjectivity there must be an invertible integer matrix relating the (Vj) to
the (ρi). But by Prop. 2.30 this is the case precisely if there is such a matrix relating the characters of these
representations.

This concludes our algorithmic description of the image of β . To summarize, the algorithm proceeds as follows.
Here

• N := |ConjCl(G)| is the number of conjugacy classes of G;
• r := rank(image(β )) is the rank of the image of β (the number of Vj);
• n is the number of isomorphism classes of irreducible representations ρi.

Theorem 2.37 (Algorithm for the cokernel of β ). Let G be a finite group and k a field of characteristic zero.
(1) Extract from standard literature:

• the character table of irreducible k-linear representations (Examples 2.32, 2.33)(
χ

ρi
([g])

)
∈Matn,N (k) .

(2) Compute:
(a) the multiplication table

(
n`i j
)

(10) of the Burnside ring, efficiently so via (12);

(b) the resulting table of total multiplication multiplicities (Mi j) :=
(
∑
`

n`i j
)

(11);

(c) its upper triangular form H :=U ·M (14);

(d) the result H̃ = Ũ ·M (15) of deleting its zero-rows;

(e) the character table of the resulting linear basis for the image of β (21)(
χVi

([g]) = ∑
`

Ũ `
i · |(G/H`)

g|
)
∈ Matr,N(N)⊂Matr,N (k) .

(3) Read off the quotient of the lattice spanned by the vectors χ
ρi

by that spanned by the vectors χVj
:

coker(βk) :=
Z[χρi ]

n
i=1

Z[χVj ]
N
j=1

.

Remark 2.38 (Simplification in examples). (i) In all examples that we compute in §3, upper triangular form of
the multiplicities matrix in the third step of the algorithm of Theorem 2.37 is achieved by the most straightforward
row reduction, where, incrementally in the row number, a suitable integer multiple of each row is subtracted from
all those beneath it.

(ii) This is remarkable, since, in general, row reduction over the integers needs more and more intricate steps than
this; see e.g. [GP90, p. 3–4]. That this happens is due to the fact that M is a positive semidefinite matrix, as
explained in [PT91].

(iii) Furthermore, in each case the resulting rows Vi happen to be actual representations, as opposed to virtual
representations. This makes our algorithm very efficient, and makes it easy to read off the image of β in each
example. It seems clear that this particularly nice behavior of row reduction on the Burnside multiplicities matrix
is due to a very special property of the latter. It would be interesting to understand this phenomenon theoretically.
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3 The image of β – Examples

Given a finite group G and its irreducible characters over a given field k of characteristic zero, Theorem 2.37 pro-

vides an effective algorithm for identifying the image of A(G)
β
−! Rk(G) (7) and checking whether β is surjective.

We have implemented this algorithm in Python, available as an ancillary file. Here we spell out various example
computations. In summary, we obtain the result shown in Theorem 3.1. In particular, the shaded entries show
that over the real numbers β has vanishing cokernel/is surjective onto the ring of integer characters (i.e. onto
non-irrational characters, by Prop. 2.3).

Theorem 3.1 (Cokernel of β for binary Platonic groups). The following table lists the cokernels

coker(βk) :=
Rk(G)

image(βk)
, coker(β int

k ) :=
Rint

k (G)

image(βk)

of the permutation-representation morphism A(G)
βk−! Rk(G) (7) and its corestriction to the integer-valued char-

acter ring (Prop. 2.2, Remark 2.4), for finite subgroups of SU(2) in the D- and E-series (via Prop. A.1) and some
relatives, over ground fields k ∈ {Q,R,C}:

coker A(G)
βF−! RF(G) A(G)

β int
F−−! Rint

F (G)

Dynkin
label

group ground field F ground field F

G Q R C Q R C
Proof
via

Thm. 2.37:

A1 C2 0 0 0 0 0 0 §3.1.1

A2 C3 0 Z[ρ2,ρ3]
Z[ρ2+ρ3]

0 0 0 Z[ρ2,ρ3]
Z[ρ2+ρ3]

§3.1.2

A3 = D3 C4 0 Z[ρ2,ρ4]
Z[ρ2+ρ4]

0 0 0 Z[ρ2,ρ4]
Z[ρ2+ρ4]

§3.1.3

D4 2D4 0 0 Z[ρ5]
Z[2ρ5]

0 0 Z[ρ5]
Z[2ρ5]

§3.2.1

D5 2D6 0 0 Z[ρ3,ρ4,ρ6]
Z[ρ3+ρ4,2ρ6]

0 0 Z[ρ6]
Z[2ρ6]

§3.2.2

D6 2D8 0 Z[2ρ6,2ρ7]
Z[2ρ6+2ρ7]

Z[ρ6,ρ7]
Z[2ρ6+2ρ7]

0 0 Z[ρ6+ρ7]
Z[2ρ6+2ρ7]

§3.2.3

D7 2D10 0 Z[ρ3,ρ4,ρ5,ρ6,ρ7,ρ8]
Z[ρ3+ρ4,ρ5+ρ6,2ρ7+2ρ8]

Z[ρ3,ρ4,ρ5,ρ6,2ρ7,2ρ8]
Z[ρ3+ρ4,ρ5+ρ6,2ρ7+2ρ8]

0 0 Z[ρ7+ρ8]
Z[2ρ7+2ρ8]

§3.2.4

D8 2D12 0 Z[ρ7,ρ8,ρ9]
Z[2ρ7,2ρ8+2ρ9]

Z[2ρ8,2ρ9]
Z[2ρ8+2ρ9]

0 0 Z[ρ7]
Z[2ρ7]

§3.2.5

E6 2T 0 0 Z[ρ2,ρ
∗
2 ,ρ4,ρ

∗
4 ,ρ5]

Z[ρ2+ρ∗2 ,ρ4+ρ∗4 ,2ρ5]
0 0 Z[ρ5]

Z[2ρ5]
§3.3.1

E7 2O 0 Z[2ρ6,2ρ7]
Z[2ρ6+2ρ7]

Z[ρ6,ρ7,ρ8]
Z[2ρ6+2ρ7,2ρ8]

0 0 Z[ρ8]
Z[2ρ8]

§3.3.2

E8 2I 0 Z[2ρ2,2ρ3,ρ4,ρ5]
Z[2ρ2+2ρ3,ρ4+ρ5]

Z[ρ2,ρ3,ρ4,ρ5,ρ7,ρ9]
Z[2ρ2+2ρ3,ρ4+ρ5,2ρ7,2ρ9]

0 0 Z[ρ2+ρ3,ρ7,ρ9]
Z[2ρ2+2ρ3,2ρ7,2ρ9]

§3.3.3

GL(2,F3) 0 0 Z[ρ6,ρ7]
Z[ρ6+ρ7]

0 0 0 §3.3.4
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For emphasis we highlight by example how to read the table in Theorem 3.1:

• an entry “0” means that the cokernel vanishes, hence that β is surjective;

• an entry “ Z[ρ]
Z[2ρ]” means that the image of β consists of all those virtual representations whose ρ-component

has even multiplicity;

• an entry “ Z[ρ1,ρ2]
Z[ρ1+ρ2]

” means that the image of β consists of all those virtual representations whose ρ1-component
has the same weight as their ρ2-component.

Here ρi refers to the irreducible representations as tabulated in the respective subsection below. From the character
tables given there one also reads off whether the character of ρi is integer-valued or else (by Prop. 2.3) irrational.
The cokernel for β int

k is obtained from that of βk by removing those generators from the numerator that have
irrational-valued characters.

3.1 Cyclic groups: Cn

For completeness, we include discussion of the first three cyclic groups, which may be thought of as completing
the D-series of finite subgroups of SU(2) (from Prop. A.1) in the low range. These simple examples may serve to
introduce and illustrate our notation for recording application of the algorithm (Theorem 2.37) in the examples to
follow further below.

3.1.1 The cyclic group C2

Group name: C2 ([Dok-C2])
Group order: 2

Subgroups:

subgroup order cosets conjugates cyclic
A 2 1 1 X
B 1 2 1 X

Burnside ring product:

× A B
A A B
B B 2B

Table of multiplicities:

A B
A 1 1
B 1 2

Upper triangular form:

A B
V1 1 1
V2 . 1

Character table for image of β :

class 1 2
size 1 1

V1 1 1
V2 1 −1
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Character table of irreps:
over C:

conjugacy
class

1 2

ir
re

d.
re

pr
. ρ1 1 1

ρ2 1 −1

over R:

conjugacy
class

1 2

ir
re

d.
re

pr
. ρ1 1 1

ρ2 1 −1

Hence the cokernel of β is:

V1 = ρ1

V2 = ρ2
coker

(
A(C2)

β
! Rk(C2)

)
'


0 | k = C
0 | k = R
0 | k =Q

3.1.2 The cyclic group C3

Group name: C3 ([Dok-C3])
Group order: 3

Subgroups:

subgroup order cosets conjugates cyclic
A 3 1 1 X
B 1 3 1 X

Burnside ring product:

× A B
A A B
B B 3B

Table of multiplicities:

A B
A 1 1
B 1 3

Upper triangular form:

A B
V1 1 1
V2 . 2

Character table for image of β :
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class 1 2 3
size 1 1 1

V1 1 1 1
V2 2 −1 −1

Character table of irreps:
over C:

conjugacy class
1 2 3

ir
re

d.
re

pr
. ρ1 1 1 1

ρ2 1 e2πi 1
3 e2πi 2

3

ρ3 1 e2πi−1
3 e−2πi 2

3

over R:

conjugacy class
1 2 3

ir
re

d.
re

pr
. ρ1 1 1 1

ρ2 +ρ3 2 −1 −1

Hence the cokernel of β is:

V1 = ρ1

V2 = ρ2 +ρ3
coker

(
A(C3)

β
! Rk(C3)

)
'


Z[ρ2,ρ3]
Z[ρ2+ρ3]

| k = C
0 | k = R
0 | k =Q

3.1.3 The cyclic group C4

Group name: C4 ([Dok-C4])
Group order: 4

Subgroups:

subgroup order cosets conjugates cyclic
A 4 1 1 X
B 2 2 1 X
C 1 4 1 X

Burnside ring product:

× A B C
A A B C
B B 2B 2C
C C 2C 4C

Table of multiplicities:

A B C
A 1 1 1
B 1 2 2
C 1 2 4
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Upper triangular form:

A B C
V1 1 1 1
V2 0 1 1
V3 0 0 2

Character table for image of β :

class 1 2 3 4
size 1 1 1 1

V1 1 1 1 1
V2 1 −1 1 −1
V3 2 0 −2 0

Character table of irreps:
over C:

conjugacy class
1 2 3 4

ir
re

d.
re

pr
.

ρ1 1 1 1 1
ρ2 1 i −1 −i
ρ3 1 −1 1 −1
ρ4 1 −i −1 i

over R:

conjugacy class
1 2 3 4

ir
re

d.
re

pr
. ρ1 1 1 1 1

ρ3 1 −1 1 −1
ρ2 +ρ4 2 0 −2 0

Hence the cokernel of β is:

V1 = ρ1

V2 = ρ3

V3 = ρ2 +ρ4

coker
(

A(C4)
β
! Rk(C4)

)
'


Z[ρ2,ρ4]
Z[ρ2+ρ4]

| k = C
0 | k = R
0 | k =Q

3.2 Binary dihedral groups: 2D2n ' Dicn

The binary dihedral groups have the following presentation (see e.g. [Dok-2D2n] [Li18]):

2D2n := 〈r,s|r2n = 1,s2 = rn,s−1rs = r−1〉.

The order of 2D2n is 4n and has n+3 conjugacy classes:

{1},{s2},
{r,r2n−1},{r2,r2n−2}, ...,{rn−1,rn+1},
{s,sr2, ...,sr2n−2},{sr,sr3, ...,sr2n−1}.
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The n+3 complex irreducible characters are given by:

2D2n = Dicn 1 s2 r r2 · · · rn−1 s sr
Triv. 1 1 1 1 · · · 1 1 1
1A 1 1 1 1 · · · 1 −1 −1
1B 1 (−1)n −1 1 · · · (−1)n−1 in −in

1C 1 (−1)n −1 1 · · · (−1)n−1 −in in

ρ1 2 −2 ζ +ζ−1 ζ 2 +ζ−2 · · · ζ n−1 +ζ 1−n 0 0
ρk 2 (−1)k2 ζ k +ζ−k ζ 2k +ζ−2k · · · ζ k(n−1)+ζ k(1−n) 0 0

with k = 2, ...,n−1 and ζ = e2πi/2n.
The representations Triv. and 1A are always real. For n even 1B and 1C are real. For n odd 1A and 1B are

complex, and 1A+1B is real irreducible. For k even ρk is real. For k odd ρk is quaternionic, and so 2ρk is real.

3.2.1 Binary dihedral group: 2D4 ' Dic2 ' Q8

Group name: 2D4 ' Q8 ([Dok-2D4])
Group order: |2D4|= 8

Subgroups:

subgroup order cosets conjugates cyclic
A 8 1 1
B 4 2 1 X
C 4 2 1 X
D 4 2 1 X
E 2 4 1 X
F 1 8 1 X

Burnside ring product:

× A B C D E F
A A B C D E F
B B 2B E E 2E 2F
C C E 2C E 2E 2F
D D E E 2D 2E 2F
E E 2E 2E 2E 4E 4F
F F 2F 2F 2F 4F 8F

Table of multiplicities:

A B C D E F
A 1 1 1 1 1 1
B 1 2 1 1 2 2
C 1 1 2 1 2 2
D 1 1 1 2 2 2
E 1 2 2 2 4 4
F 1 2 2 2 4 8

Upper triangular form:
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A B C D E F
V1 1 1 1 1 1 1
V2 . 1 . . 1 1
V3 . . 1 . 1 1
V4 . . . 1 1 1
V5 . . . . . 4

Character table for image of β :

class 1 2 4A 4B 4C
size 1 1 2 2 2

V1 1 1 1 1 1
V2 1 1 −1 1 −1
V3 1 1 −1 −1 1
V4 1 1 1 −1 −1
V5 4 −4 0 0 0

Character table of irreps [Dok-2D4, Mon-Q8]
over C:

conjugacy class
1 2 4A 4B 4C

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1
ρ2 1 1 −1 1 −1
ρ3 1 1 1 −1 −1
ρ4 1 1 −1 −1 1
ρ5 2 −2 0 0 0

over R:

conjugacy class
1 2 4A 4B 4C

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1
ρ2 1 1 −1 1 −1
ρ3 1 1 1 −1 −1
ρ4 1 1 −1 −1 1
2ρ5 4 −4 0 0 0

Hence the cokernel of β is:

V1 = ρ1

V2 = ρ2

V3 = ρ4

V4 = ρ3

V5 = 2ρ5

coker
(

A(2D4)
β
! Rk(2D4)

)
'


Z[ρ5]
Z[2ρ5]

| k = C
0 | k = R
0 | k =Q
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3.2.2 Binary dihedral group: 2D6 ' Dic3

Group name: 2D6 ([Dok-2D6])
Group order: |2D6|= 12

Subgroups:

subgroup order cosets conjugates cyclic
A 12 1 1
B 6 2 1 X
C 4 3 3 X
D 3 4 1 X
E 2 6 1 X
F 1 12 1 X

Burnside ring product:

× A B C D E F
A A B C D E F
B B 2B E 2D 2E 2F
C C E C+E F 3E 3F
D D 2D F 4D 2F 4F
E E 2E 3E 2F 6E 6F
F F 2F 3F 4F 6F 12F

Table of multiplicities:

A B C D E F
A 1 1 1 1 1 1
B 1 2 1 2 2 2
C 1 1 2 1 3 3
D 1 2 1 4 2 4
E 1 2 3 2 6 6
F 1 2 3 4 6 12

Upper triangular form:

A B C D E F
V1 1 1 1 1 1 1
V2 . 1 . 1 1 1
V3 . . 1 . 2 2
V4 . . . 2 . 2
V5 . . . . . 4

Character table for image of β :

class 1 2 3 4A 4B 6
size 1 1 2 3 3 2

V1 1 1 1 1 1 1
V2 1 1 1 −1 −1 1
V3 2 2 −1 0 0 −1
V4 2 −2 2 0 0 −2
V5 4 −4 −2 0 0 2

Character table of irreps [Dok-2D6]
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over C:

conjugacy class
1 2 3 4A 4B 6

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1
ρ2 1 1 1 −1 −1 1
ρ3 1 −1 1 i −i −1
ρ4 1 −1 1 −i i −1
ρ5 2 2 −1 0 0 −1
ρ6 2 −2 −1 0 0 1

over R:

conjugacy class
1 2 3 4A 4B 6

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1
ρ2 1 1 1 −1 −1 1

ρ3 +ρ4 2 −2 2 0 0 −2
ρ5 2 2 −1 0 0 −1
2ρ6 4 −4 −2 0 0 2

Hence the cokernel of β is

V1 = ρ1

V2 = ρ2

V3 = ρ5

V4 = ρ3 +ρ4

V5 = 2ρ6

coker(βk) =


Z[ρ3,ρ4,ρ6]
Z[ρ3+ρ4,2ρ6]

| k = C
0 | k = R
0 | k =Q

3.2.3 Binary dihedral group: 2D8 ' Dic4 ' Q16

Group name: 2D8 ([Dok-2D8])
Group order: |2D8|= 16

Subgroups:

subgroup order cosets conjugates cyclic
A 16 1 1
B 8 2 1 X
C 8 2 1
D 8 2 1
E 4 4 2 X
F 4 4 1 X
G 4 4 2 X
H 2 8 1 X
I 1 16 1 X

Table of multiplicities:
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A B C D E F G H I
A 1 1 1 1 1 1 1 1 1
B 1 2 1 1 1 2 1 2 2
C 1 1 2 1 2 2 1 2 2
D 1 1 1 2 1 2 2 2 2
E 1 1 2 1 3 2 2 4 4
F 1 2 2 2 2 4 2 4 4
G 1 1 1 2 2 2 3 4 4
H 1 2 2 2 4 4 4 8 8
I 1 2 2 2 4 4 4 8 16

Upper triangular form:

A B C D E F G H I
V1 1 1 1 1 1 1 1 1 1
V2 . 1 . . . 1 . 1 1
V3 . . 1 . 1 1 . 1 1
V4 . . . 1 . 1 1 1 1
V5 . . . . 1 . 1 2 2
V6 . . . . . . . . 8

Character table for image of β :

class 1 2 4A 4B 4C 8A 8B
size 1 1 2 4 4 2 2

V1 1 1 1 1 1 1 1
V2 1 1 1 −1 1 −1 −1
V3 1 1 1 −1 −1 1 1
V4 1 1 1 1 −1 −1 −1
V5 2 2 −2 0 0 0 0
V6 8 −8 0 0 0 0 0

Character table of irreps [Dok-2D8]:
over C

conjugacy class
1 2 4A 4B 4C 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 −1 −1
ρ3 1 1 1 −1 1 −1 −1
ρ4 1 1 1 −1 −1 1 1
ρ5 2 2 −2 0 0 0 0
ρ6 2 −2 0 0 0

√
2 −

√
2

ρ7 2 −2 0 0 0 −
√

2
√

2

over R
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conjugacy class
1 2 4A 4B 4C 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 −1 −1
ρ3 1 1 1 −1 1 −1 −1
ρ4 1 1 1 −1 −1 1 1
ρ5 2 2 −2 0 0 0 0
2ρ6 4 −4 0 0 0 2

√
2 −2

√
2

2ρ7 4 −4 0 0 0 −2
√

2 2
√

2

Hence the cokernel of β is:

V1 = ρ1

V2 = ρ3

V3 = ρ4

V4 = ρ2

V5 = ρ5

V6 = 2ρ6 +2ρ7

coker
(

A(2D8)
β
! Rk(2D8)

)
'


Z[ρ6,ρ7]

Z[2ρ6+2ρ7]
| k = C

Z[2ρ6,2ρ7]
Z[2ρ6+2ρ7]

| k = R
0 | k =Q

3.2.4 Binary dihedral group: 2D10 ' Dic5

Group name: 2D10 ([Dok-2D10])
Group order: |2D10|= 20

Subgroups:

subgroup order cosets conjugates cyclic
A 20 1 1
B 10 2 1 X
C 5 4 1 X
D 4 5 5 X
E 2 10 1 X
F 1 20 1 X

Table of multiplicities:

A B C D E F
A 1 1 1 1 1 1
B 1 2 2 1 2 2
C 1 2 4 1 2 4
D 1 1 1 3 5 5
E 1 2 2 5 10 10
F 1 2 4 5 10 20

Upper triangular form:

A B C D E F
V1 1 1 1 1 1 1
V2 . 1 1 . 1 1
V3 . . 2 . . 2
V4 . . . 2 4 4
V5 . . . . . 8
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Character table for image of β :

class 1 2 4A 4B 5 5 10 10
size 1 1 5 5 2 2 2 2

V1 1 1 1 1 1 1 1 1
V2 1 1 −1 −1 1 1 1 1
V3 2 −2 0 0 2 2 −2 −2
V4 4 4 0 0 −1 −1 −1 −1
V5 8 −8 0 0 −2 −2 2 2

Character table of irreps [Dok-2D10]
over C

class 1 2 4A 4B 5A 5B 10A 10B
ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 −1 −1 1 1 1 1
ρ3 1 −1 −i i 1 1 −1 −1
ρ4 1 −1 i −i 1 1 −1 −1
ρ5 2 2 0 0 ζ 2

5 +ζ 3
5 ζ5 +ζ 4

5 ζ 2
5 +ζ 3

5 ζ5 +ζ 4
5

ρ6 2 2 0 0 ζ5 +ζ 4
5 ζ 2

5 +ζ 3
5 ζ5 +ζ 4

5 ζ 2
5 +ζ 3

5
ρ7 2 −2 0 0 ζ 2

5 +ζ 3
5 ζ5 +ζ 4

5 −ζ 2
5 −ζ 3

5 −ζ5−ζ 4
5

ρ8 2 −2 0 0 ζ5 +ζ 4
5 ζ 2

5 +ζ 3
5 −ζ5−ζ 4

5 −ζ 2
5 −ζ 3

5

over R

class 1 2 4A 4B 5A 5B 10A 10B
ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 −1 −1 1 1 1 1

ρ3 +ρ4 2 −2 0 0 2 2 −2 −2
ρ5 2 2 0 0 ζ 2

5 +ζ 3
5 ζ5 +ζ 4

5 ζ 2
5 +ζ 3

5 ζ5 +ζ 4
5

ρ6 2 2 0 0 ζ5 +ζ 4
5 ζ 2

5 +ζ 3
5 ζ5 +ζ 4

5 ζ 2
5 +ζ 3

5
2ρ7 4 −4 0 0 2

(
ζ 2

5 +ζ 3
5

)
2
(
ζ5 +ζ 4

5

)
−2
(
ζ 2

5 −ζ 3
5

)
−2
(
ζ5−ζ 4

5

)
2ρ8 4 −4 0 0 2

(
ζ5 +ζ 4

5

)
2
(
ζ 2

5 +ζ 3
5

)
−2
(
ζ5−ζ 4

5

)
−2
(
ζ 2

5 −ζ 3
5

)
Hence the cokernel of β is:

V1 = ρ1

V2 = ρ2

V3 = ρ3 +ρ4

V4 = ρ5 +ρ6

V5 = 2ρ7 +2ρ8

coker
(

A(2D10)
β
! Rk(2D10)

)
=


Z[ρ3,ρ4,ρ5,ρ6,ρ7,ρ8]

Z[ρ3+ρ4,ρ5+ρ6,2ρ7+2ρ8]
| k = C

Z[ρ3,ρ4,ρ5,ρ6,2ρ7,2ρ8]
Z[ρ3+ρ4,ρ5+ρ6,2ρ7+2ρ8]

| k = R
0 | k =Q

3.2.5 Binary dihedral group: 2D12 ' Dic6

Group name: 2D12 ([Dok-2D12])
Group order: |2D12|= 24

Subgroups:
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subgroup order cosets conjugates cyclic
A 24 1 1
B 12 2 1 X
C 12 2 1
D 12 2 1
E 8 3 3
F 6 4 1 X
G 4 6 3 X
H 4 6 1 X
I 4 6 3 X
J 3 8 1 X
K 2 12 1 X
L 1 24 1 X

Table of multiplicities:

A B C D E F G H I J K L
A 1 1 1 1 1 1 1 1 1 1 1 1
B 1 2 1 1 1 2 1 2 1 2 2 2
C 1 1 2 1 1 2 2 1 1 2 2 2
D 1 1 1 2 1 2 1 1 2 2 2 2
E 1 1 1 1 2 1 2 3 2 1 3 3
F 1 2 2 2 1 4 2 2 2 4 4 4
G 1 1 2 1 2 2 4 3 3 2 6 6
H 1 2 1 1 3 2 3 6 3 2 6 6
I 1 1 1 2 2 2 3 3 4 2 6 6
J 1 2 2 2 1 4 2 2 2 8 4 8
K 1 2 2 2 3 4 6 6 6 4 12 12
L 1 2 2 2 3 4 6 6 6 8 12 24

Upper triangular form:

A B C D E F G H I J K L
V1 1 1 1 1 1 1 1 1 1 1 1 1
V2 . 1 . . . 1 . 1 . 1 1 1
V3 . . 1 . . 1 1 . . 1 1 1
V4 . . . 1 . 1 . . 1 1 1 1
V5 . . . . 1 . 1 2 1 . 2 2
V6 . . . . . . 1 . 1 . 2 2
V7 . . . . . . . . . 4 . 4
V8 . . . . . . . . . . . 8

Character table for image of β :
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class 1 2 3 4 4 4 6 12 12
size 1 1 2 6 6 2 2 2 2

V1 1 1 1 1 1 1 1 1 1
V2 1 1 1 −1 −1 1 1 1 1
V3 1 1 1 −1 1 −1 1 −1 −1
V4 1 1 1 1 −1 −1 1 −1 −1
V5 2 2 −1 0 0 2 −1 −1 −1
V6 2 2 −1 0 0 −2 −1 1 1
V7 4 −4 4 0 0 0 −4 0 0
V8 8 −8 −4 0 0 0 4 0 0

Character table of irreps
over C

class 1 2 3 4A 4B 4C 6 12A 12B
ρ1 1 1 1 1 1 1 1 1 1
ρ2 1 1 1 −1 −1 1 1 −1 −1
ρ3 1 1 1 1 −1 −1 1 1 1
ρ4 1 1 1 −1 1 −1 1 −1 −1
ρ5 2 2 −1 2 0 0 −1 −1 −1
ρ6 2 2 −1 −2 0 0 −1 1 1
ρ7 2 −2 2 0 0 0 −2 0 0
ρ8 2 −2 −1 0 0 0 1

√
3 −

√
3

ρ9 2 −2 −1 0 0 0 1 −
√

3
√

3

over R

class 1 2 3 4A 4B 4C 6 12A 12B
ρ1 1 1 1 1 1 1 1 1 1
ρ2 1 1 1 −1 −1 1 1 −1 −1
ρ3 1 1 1 1 −1 −1 1 1 1
ρ4 1 1 1 −1 1 −1 1 −1 −1
ρ5 2 2 −1 2 0 0 −1 −1 −1
ρ6 2 2 −1 −2 0 0 −1 1 1
2ρ7 4 −4 4 0 0 0 −4 0 0
2ρ8 4 −4 −2 0 0 0 2 2

√
3 −2

√
3

2ρ9 4 −4 −2 0 0 0 2 −2
√

3 2
√

3

Hence the cokernel of β is

V1 = ρ1

V2 = ρ3

V3 = ρ2

V4 = ρ4

V5 = ρ5

V6 = ρ6

V7 = 2ρ7

V8 = 2ρ8 +2ρ9

coker
(

A(2D12)
β
! Rk(2D12)

)
=


Z[ρ7,ρ8,ρ9]

Z[2ρ7,2ρ8+2ρ9]
| k = C

Z[2ρ8,2ρ9]
Z[2ρ8+2ρ9]

| k = R
0 | k =Q
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3.2.6 Binary dihedral group: 2D14 ' Dic7

Group name: 2D14
Group order: |2D14|= 28

Subgroups:

subgroup order cosets conjugates cyclic
A 28 1 1
B 14 2 1 X
C 7 4 1 X
D 4 7 7 X
E 2 14 1 X
F 1 28 1 X

Table of multiplicities:

A B C D E F
A 1 1 1 1 1 1
B 1 2 2 1 2 2
C 1 2 4 1 2 4
D 1 1 1 4 7 7
E 1 2 2 7 14 14
F 1 2 4 7 14 28

Upper triangular form:

A B C D E F
V1 1 1 1 1 1 1
V2 . 1 1 . 1 1
V3 . . 2 . . 2
V4 . . . 3 6 6
V5 . . . . . 12

Character table for image of β :

class 1 2 4 4 7 7 7 14 14 14
size 1 1 7 7 2 2 2 2 2 2

V1 1 1 1 1 1 1 1 1 1 1
V2 1 1 −1 −1 1 1 1 1 1 1
V3 2 −2 0 0 2 2 2 −2 −2 −2
V4 6 6 0 0 −1 −1 −1 −1 −1 −1
V5 12 −12 0 0 −2 −2 −2 2 2 2
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class 1 2 4A 4B 7A 7B 7C 14A 14B 14C
ρ1 1 1 1 1 1 1 1 1 1 1
ρ2 1 1 −1 −1 1 1 1 1 1 1
ρ3 1 −1 −i i 1 1 1 −1 −1 −1
ρ4 1 −1 i −i 1 1 1 −1 −1 −1
ρ5 2 2 0 0 ζ 3

7 +ζ 4
7 ζ7 +ζ 6

7 ζ 2
7 +ζ 5

7 ζ 3
7 +ζ 4

7 ζ7 +ζ 6
7 ζ 2

7 +ζ 5
7

ρ6 2 2 0 0 ζ 2
7 +ζ 5

7 ζ 3
7 +ζ 4

7 ζ7 +ζ 6
7 ζ 2

7 +ζ 5
7 ζ 3

7 +ζ 4
7 ζ7 +ζ 6

7
ρ7 2 2 0 0 ζ7 +ζ 6

7 ζ 2
7 +ζ 5

7 ζ 3
7 +ζ 4

7 ζ7 +ζ 6
7 ζ 2

7 +ζ 5
7 ζ 3

7 +ζ 4
7

ρ8 2 −2 0 0 ζ 3
7 +ζ 4

7 ζ7 +ζ 6
7 ζ 2

7 +ζ 5
7 −ζ 3

7 −ζ 4
7 −ζ7−ζ 6

7 −ζ 2
7 −ζ 5

7
ρ9 2 −2 0 0 ζ 2

7 +ζ 5
7 ζ 3

7 +ζ 4
7 ζ7 +ζ 6

7 −ζ 2
7 −ζ 5

7 −ζ 3
7 −ζ 4

7 −ζ7−ζ 6
7

ρ10 2 −2 0 0 ζ7 +ζ 6
7 ζ 2

7 +ζ 5
7 ζ 3

7 +ζ 4
7 −ζ7−ζ 6

7 −ζ 2
7 −ζ 5

7 −ζ 3
7 −ζ 4

7

3.2.7 Binary dihedral group: 2D16 ' Dic8 ' Q32

Group name: 2D16
Group order: |2D16|= 32

Subgroups:

subgroup order cosets conjugates cyclic
A 32 1 1
B 16 2 1
C 16 2 1 X
D 16 2 1
E 8 4 1 X
F 8 4 2
G 8 4 2
H 4 8 4 X
I 4 8 4 X
J 4 8 1 X
K 2 16 1 X
L 1 32 1 X

Table of multiplicities:

A B C D E F G H I J K L
A 1 1 1 1 1 1 1 1 1 1 1 1
B 1 2 1 1 2 1 2 2 1 2 2 2
C 1 1 2 1 2 1 1 1 1 2 2 2
D 1 1 1 2 2 2 1 1 2 2 2 2
E 1 2 2 2 4 2 2 2 2 4 4 4
F 1 1 1 2 2 3 2 2 3 4 4 4
G 1 2 1 1 2 2 3 3 2 4 4 4
H 1 2 1 1 2 2 3 5 4 4 8 8
I 1 1 1 2 2 3 2 4 5 4 8 8
J 1 2 2 2 4 4 4 4 4 8 8 8
K 1 2 2 2 4 4 4 8 8 8 16 16
L 1 2 2 2 4 4 4 8 8 8 16 32

Upper triangular form:
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A B C D E F G H I J K L
V1 1 1 1 1 1 1 1 1 1 1 1 1
V2 . 1 . . 1 . 1 1 . 1 1 1
V3 . . 1 . 1 . . . . 1 1 1
V4 . . . 1 1 1 . . 1 1 1 1
V5 . . . . . 1 1 1 1 2 2 2
V6 . . . . . . . 2 2 . 4 4
V7 . . . . . . . . . . . 16

Character table for image of β :

class 1 2 4 4 4 8 8 16 16 16 16
size 1 1 8 8 2 2 2 2 2 2 2

V1 1 1 1 1 1 1 1 1 1 1 1
V2 1 1 1 −1 1 1 1 −1 −1 −1 −1
V3 1 1 −1 −1 1 1 1 1 1 1 1
V4 1 1 −1 1 1 1 1 −1 −1 −1 −1
V5 2 2 0 0 2 −2 −2 0 0 0 0
V6 4 4 0 0 −4 0 0 0 0 0 0
V7 16 −16 0 0 0 0 0 0 0 0 0

class 1 2 4A 4B 4C 8A 8B 16A 16B 16C 16D
ρ1 1 1 1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 1 1 −1 −1 −1 −1
ρ3 1 1 1 −1 1 1 1 −1 −1 −1 −1
ρ4 1 1 1 −1 −1 1 1 1 1 1 1
ρ5 2 2 2 0 0 −2 −2 0 0 0 0
ρ6 2 2 −2 0 0 0 0 −

√
2 −

√
2

√
2

√
2

ρ7 2 2 −2 0 0 0 0
√

2
√

2 −
√

2 −
√

2
ρ8 2 −2 0 0 0 −

√
2
√

2 ζ16−ζ 7
16 −ζ16 +ζ 7

16 −ζ 3
16 +ζ 5

16 ζ 3
16−ζ 5

16
ρ9 2 −2 0 0 0 −

√
2
√

2 −ζ16 +ζ 7
16 ζ16−ζ 7

16 ζ 3
16−ζ 5

16 −ζ 3
16 +ζ 5

16
ρ10 2 −2 0 0 0

√
2 −

√
2 −ζ 3

16 +ζ 5
16 ζ 3

16−ζ 5
16 −ζ16 +ζ 7

16 ζ16−ζ 7
16

ρ11 2 −2 0 0 0
√

2 −
√

2 ζ 3
16−ζ 5

16 −ζ 3
16 +ζ 5

16 ζ16−ζ 7
16 −ζ16 +ζ 7

16

3.3 Binary exceptional groups: 2T , 2I, 2O

We discuss the three exceptional cases in the E-series of the finite subgroups of SU(2) (from Prop. A.1).

3.3.1 Binary tetrahedral group: 2T = SL(2,3).

Group name: 2T ([Dok-2T ])
Group order: |2T |= 24

Subgroups:

33



subgroup order cosets conjugates cyclic
A 24 1 1
B 8 3 1
C 6 4 4 X
D 4 6 3 X
E 3 8 4 X
F 2 12 1 X
G 1 24 1 X

Table of multiplicities:

A B C D E F G
A 1 1 1 1 1 1 1
B 1 3 1 3 1 3 3
C 1 1 2 2 2 4 4
D 1 3 2 4 2 6 6
E 1 1 2 2 4 4 8
F 1 3 4 6 4 12 12
G 1 3 4 6 8 12 24

Upper triangular form:

A B C D E F G
V1 1 1 1 1 1 1 1
V2 . 2 . 2 . 2 2
V3 . . 1 1 1 3 3
V4 . . . . 2 . 4
V5 . . . . . . 4

Character table for image of β :

class 1 2 3A 3B 4 6A 6B
size 1 1 4 4 6 4 4

V1 1 1 1 1 1 1 1
V2 2 2 −1 −1 2 −1 −1
V3 3 3 0 0 −1 0 0
V4 4 −4 1 1 0 −1 −1
V5 4 −4 −2 −2 0 2 2

Character table of irreps [Dok-2T , Mon-2T ]:
over C:

conjugacy class
1 2 3A 3B 4 6A 6B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1
ρ2 1 1 ζ 2

3 ζ3 1 ζ 2
3 ζ3

ρ∗2 1 1 ζ3 ζ 2
3 1 ζ3 ζ 2

3
ρ3 3 3 0 0 −1 0 0
ρ4 2 −2 −ζ 2

3 −ζ3 0 ζ 2
3 ζ3

ρ∗4 2 −2 −ζ3 −ζ 2
3 0 ζ3 ζ 2

3
ρ5 2 −2 −1 −1 0 1 1
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over R

conjugacy class
1 2 3A 3B 4 6A 6B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1
ρ2 +ρ∗2 2 2 −1 −1 2 −1 −1

ρ3 3 3 0 0 −1 0 0
ρ4 +ρ∗4 4 −4 1 1 0 −1 −1

2ρ5 4 −4 −2 −2 0 2 2

where ζ3 := 1
2

(
−1+

√
3i
)

Hence the cokernel of β is:

coker
(

A(2T )
β
! Rk(2T )

)
'


Z[ρ2,ρ

∗
2 ,ρ4,ρ

∗
4 ,ρ8]

Z[ρ2+ρ∗2 ,ρ4+ρ∗4 ,2ρ8]
| k = C

0 | k = R
0 | k =Q

3.3.2 Binary octahedral group: 2O' CSU(2,F3).

Group name: 2O ([Dok-2O])
Group order: |2O|= 48

Subgroups:

subgroup order cosets conjugates cyclic
A 48 1 1
B 24 2 1
C 16 3 3
D 12 4 4
E 8 6 3
F 8 6 1
G 8 6 3 X
H 6 8 4 X
I 4 12 6 X
J 4 12 3 X
K 3 16 4 X
L 2 24 1 X
M 1 48 1 X

Table of multiplicities:
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A B C D E F G H I J K L M
A 1 1 1 1 1 1 1 1 1 1 1 1 1
B 1 2 1 1 1 2 1 2 1 2 2 2 2
C 1 1 2 1 2 3 2 1 2 3 1 3 3
D 1 1 1 2 2 1 1 2 3 2 2 4 4
E 1 1 2 2 3 3 2 2 4 4 2 6 6
F 1 2 3 1 3 6 3 2 3 6 2 6 6
G 1 1 2 1 2 3 3 2 3 4 2 6 6
H 1 2 1 2 2 2 2 4 4 4 4 8 8
I 1 1 2 3 4 3 3 4 7 6 4 12 12
J 1 2 3 2 4 6 4 4 6 8 4 12 12
K 1 2 1 2 2 2 2 4 4 4 8 8 16
L 1 2 3 4 6 6 6 8 12 12 8 24 24
M 1 2 3 4 6 6 6 8 12 12 16 24 48

Upper triangular form:

A B C D E F G H I J K L M
V1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 . 1 . . . 1 . 1 . 1 1 1 1
V3 . . 1 . 1 2 1 . 1 2 . 2 2
V4 . . . 1 1 . . 1 2 1 1 3 3
V5 . . . . . . 1 1 1 1 1 3 3
V6 . . . . . . . . . . 4 . 8
V7 . . . . . . . . . . . . 8

Character table for image of β :

class 1 2 3 4A 4B 6 8A 8B
size 1 1 8 6 12 8 6 6

V1 1 1 1 1 1 1 1 1
V2 1 1 1 1 −1 1 −1 −1
V3 2 2 −1 2 0 −1 0 0
V4 3 3 0 −1 1 0 −1 −1
V5 3 3 0 −1 −1 0 1 1
V6 8 −8 2 0 0 −2 0 0
V7 8 −8 −4 0 0 4 0 0

Character table of irreps [Dok-2O, Mon-2O]
over C

conjugacy class
1 2 3 4A 4B 6 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 1 −1 −1
ρ3 2 2 −1 2 0 −1 0 0
ρ4 3 3 0 −1 −1 0 1 1
ρ5 3 3 0 −1 1 0 −1 −1
ρ6 2 −2 −1 0 0 1

√
2 −

√
2

ρ7 2 −2 −1 0 0 1 −
√

2
√

2
ρ8 4 −4 1 0 0 −1 0 0
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over R

conjugacy class
1 2 3 4A 4B 6 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 1 −1 −1
ρ3 2 2 −1 2 0 −1 0 0
ρ4 3 3 0 −1 −1 0 1 1
ρ5 3 3 0 −1 1 0 −1 −1
2ρ6 4 −4 −2 0 0 2 2

√
2 −2

√
2

2ρ7 4 −4 −2 0 0 2 −2
√

2 2
√

2
2ρ8 8 −8 2 0 0 −2 0 0

Hence the cokernel of β is:

coker
(

A(2O)
β
! Rk(2O)

)
'


Z[ρ6,ρ7,ρ8]

Z[2ρ6+2ρ7,2ρ8]
| k = C;

Z[2ρ6,2ρ7]
Z[2ρ6+2ρ7]

| k = R;
0 | k =Q

3.3.3 Binary icosahedral group: 2I ' SL(2,5).

Group name: 2I ([Dok-2I])
Group order: |2I|= 120

Subgroups:

subgroup order cosets conjugates cyclic
A 120 1 1
B 24 5 5
C 20 6 6
D 12 10 10
E 10 12 6 X
F 8 15 5
G 6 20 10 X
H 5 24 6 X
I 4 30 15 X
J 3 40 10 X
K 2 60 1 X
L 1 120 1 X

Table of multiplicities:
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A B C D E F G H I J K L
A 1 1 1 1 1 1 1 1 1 1 1 1
B 1 2 1 2 1 2 3 1 3 3 5 5
C 1 1 2 2 2 3 2 2 4 2 6 6
D 1 2 2 3 2 4 4 2 6 4 10 10
E 1 1 2 2 4 3 4 4 6 4 12 12
F 1 2 3 4 3 6 5 3 9 5 15 15
G 1 3 2 4 4 5 8 4 10 8 20 20
H 1 1 2 2 4 3 4 8 6 8 12 24
I 1 3 4 6 6 9 10 6 16 10 30 30
J 1 3 2 4 4 5 8 8 10 16 20 40
K 1 5 6 10 12 15 20 12 30 20 60 60
L 1 5 6 10 12 15 20 24 30 40 60 120

Upper triangular form:

A B C D E F G H I J K L
V1 1 1 1 1 1 1 1 1 1 1 1 1
V2 . 1 . 1 . 1 2 . 2 2 4 4
V3 . . 1 1 1 2 1 1 3 1 5 5
V4 . . . . 2 . 2 2 2 2 6 6
V5 . . . . . . . 4 . 4 . 12
V6 . . . . . . . . . 4 . 8
V7 . . . . . . . . . . . 8

Character table for image of β :

class 1 2 3 4 5A 5B 6 10A 10B
size 1 1 20 30 12 12 20 12 12

V1 1 1 1 1 1 1 1 1 1
V2 4 4 1 0 −1 −1 1 −1 −1
V3 5 5 −1 1 0 0 −1 0 0
V4 6 6 0 −2 1 1 0 1 1
V5 12 −12 0 0 2 2 0 −2 −2
V6 8 −8 2 0 −2 −2 −2 2 2
V7 8 −8 −4 0 −2 −2 4 2 2

Character table of irreps [Dok-2I]
over C

conjugacy class
1 2 3 4 5A 5B 6 10A 10B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1 1
ρ2 2 −2 −1 0 φ −1 −φ 1 φ 1−φ

ρ3 2 −2 −1 0 −φ φ −1 1 1−φ φ

ρ4 3 3 0 −1 1−φ φ 0 φ 1−φ

ρ5 3 3 0 −1 φ 1−φ 0 1−φ φ

ρ6 4 4 1 0 −1 −1 1 −1 −1
ρ7 4 −4 1 0 −1 −1 −1 1 1
ρ8 5 −5 −1 1 0 0 −1 0 0
ρ9 6 −6 0 0 1 1 0 −1 −1
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over R

conjugacy class
1 2 3 4 5A 5B 6 10A 10B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1 1
2ρ2 4 −4 −2 0 2(φ −1) −2φ 2 2φ 2(1−φ)
2ρ3 4 −4 −2 0 −2φ 2(φ −1) 2 2(1−φ) 2φ

ρ4 3 3 0 −1 1−φ φ 0 φ 1−φ

ρ5 3 3 0 −1 φ 1−φ 0 1−φ φ

ρ6 4 4 1 0 −1 −1 1 −1 −1
2ρ7 8 −8 2 0 −2 −2 −2 2 2
ρ8 5 5 −1 1 0 0 −1 0 0
2ρ9 12 −12 0 0 2 2 0 −2 −2

where φ := 1
2

(
1+
√

5
)

is the golden ratio.
Hence the cokernel of β is

V1 = ρ1

V2 = ρ6

V3 = ρ8

V4 = ρ4 +ρ5

V5 = 2ρ9

V6 = 2ρ7

V7 = 2ρ2 +2ρ3

coker(βk) =



Z[ρ2,ρ3,ρ4,ρ5,ρ7,ρ9]
Z[2ρ2+2ρ3,ρ4+ρ5,2ρ7,2ρ9]

| k = C

Z[2ρ2,2ρ3,ρ4,ρ5]
Z[2ρ2+2ρ3,ρ4+ρ5]

| k = R

0 | k =Q

3.3.4 The general linear group: GL(2,F3)

Group name: GL(2,F3) ([Dok-GL(2,3)]1)
Group order: |GL(2,F3)|= 48

Subgroups:

1 The representation theory of this group GL(2,F3) is deceptively similar to that of the binary octahedral group 2O ' CSU(2,F3)
(discussed Sect. 3.3.2): Both have the same character table over C, the only difference being in the Schur indices, hence in the real
character table. In fact, several online databases of character tables had misidentified the two groups, which became apparent when our
computation of the image of β revealed real representations of 2O that contradicted available character tables. We are indebted to James
Montaldi for patiently double-checking computations with us and to Tim Dokchitser for swiftly recognizing and fixing the issue with the
databases.
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subgroup order cosets conjugates cyclic
A 48 1 1
B 24 2 1
C 16 3 3
D 12 4 4
E 8 6 3 X
F 8 6 1
G 8 6 3
H 6 8 4
I 6 8 4
J 6 8 4 X
K 4 12 6
L 4 12 3 X
M 3 16 4 X
N 2 24 1 X
P 2 24 12 X
Q 1 48 1 X

Table of multiplicities:

A B C D E F G H I J K L M N P Q
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B 1 2 1 1 1 2 1 2 1 1 1 2 2 1 2 2
C 1 1 2 1 2 3 2 1 1 1 2 3 1 2 3 3
D 1 1 1 2 1 1 2 2 2 2 3 2 2 3 4 4
E 1 1 2 1 3 3 2 2 1 1 3 4 2 3 6 6
F 1 2 3 1 3 6 3 2 1 1 3 6 2 3 6 6
G 1 1 2 2 2 3 3 2 2 2 4 4 2 4 6 6
H 1 2 1 2 2 2 2 4 2 2 4 4 4 4 8 8
I 1 1 1 2 1 1 2 2 3 3 3 2 4 5 4 8
J 1 1 1 2 1 1 2 2 3 3 3 2 4 5 4 8
K 1 1 2 3 3 3 4 4 3 3 7 6 4 7 12 12
L 1 2 3 2 4 6 4 4 2 2 6 8 4 6 12 12
M 1 2 1 2 2 2 2 4 4 4 4 4 8 8 8 16
N 1 1 2 3 3 3 4 4 5 5 7 6 8 13 12 24
P 1 2 3 4 6 6 6 8 4 4 12 12 8 12 24 24
Q 1 2 3 4 6 6 6 8 8 8 12 12 16 24 24 48

Upper triangular form:

A B C D E F G H I J K L M N P Q
V1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 . 1 . . . 1 . 1 . . . 1 1 . 1 1
V3 . . 1 . 1 2 1 . . . 1 2 . 1 2 2
V4 . . . 1 . . 1 1 1 1 2 1 1 2 3 3
V5 . . . . 1 . . 1 . . 1 1 1 1 3 3
V6 . . . . . . . . 1 1 . . 2 2 . 4
V7 . . . . . . . . . . . . . 2 . 4

Character table for image of β :
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class 1 2A 2B 3 4 6 8A 8B
size 1 1 12 8 6 8 6 6

V1 1 1 1 1 1 1 1 1
V2 1 1 −1 1 1 1 −1 −1
V3 2 2 0 −1 2 −1 0 0
V4 3 3 1 0 −1 0 −1 −1
V5 3 3 −1 0 −1 0 1 1
V6 4 −4 0 1 0 −1 0 0
V7 4 −4 0 −2 0 2 0 0

Character table of irreps [Dok-GL(2,3)]:
over C

conjugacy class
1 2A 2B 3 4 6 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 −1 1 1 1 −1 −1
ρ3 2 2 0 −1 2 −1 0 0
ρ4 3 3 −1 0 −1 0 1 1
ρ5 3 3 1 0 −1 0 −1 −1
ρ6 2 −2 0 −1 0 1 −

√
2
√

2
ρ7 2 −2 0 −1 0 1

√
2 −

√
2

ρ8 4 −4 0 1 0 −1 0 0

over R

conjugacy class
1 2A 2B 3 4 6 8A 8B

ir
re

d.
re

pr
.

ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 −1 1 1 1 −1 −1
ρ3 2 2 0 −1 2 −1 0 0
ρ4 3 3 −1 0 −1 0 1 1
ρ5 3 3 1 0 −1 0 −1 −1

ρ6 +ρ7 4 −4 0 −2 0 2 0 0
ρ8 4 −4 0 1 0 −1 0 0

Hence the cokernel of β is

coker
(

A
(
GL(2,F3)

) βk! Rk
(
GL(2,F3)

))
'


Z[ρ6,ρ7]
Z[ρ6+ρ7]

| k = C
0 | k = R
0 | k =Q
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A Background on platonic groups and categorical algebra
To be reasonably self-contained, we briefly collect some background material which will be directly useful for our
discussion and for connecting the physical and the mathematical sides of the arguments.

A.1 The Platonic groups

We are interested in the ADE groups as the main groups appearing in orbifolds in string theory. There are two
variants, ones that are subgroups of the orthogonal group SO(3) and ones that are subgroups of the unitary group
SU(2). Our focus will be on the latter.

Proposition A.1 (ADE-classification of the finite rotation groups [Kl84]). The finite subgroups of SU(2) are given,
up to conjugacy, by the following classification (where n ∈ N):

Dynkin
label

Finite
subgroup
of SO(3)

Name of
group

Finite
subgroup
of SU(2)

Name of
group

An≥1 Cn+1 Cyclic Cn+1 Cyclic
Dn≥4 D2(n−2) Dihedral 2D2(n−2) Binary dihedral
E6 T Tetrahedral 2T Binary tetrahedral
E7 O Octahedral 2O Binary octahedral
E8 I Icosahedral 2I Binary icosahedral

Full proof for finite subgroups of SL(2,C) is in [MBD1916], recalled in [Ser14, Sec. 2]. Full proof for SO(3)
is spelled out in [Re05, Theorem 11]; from this the case of SU(2) is given in [Kee03, Theorem 4]. See also [Li18,
Chapter 1,2] for an elementary treatment.

Our discussion will require details on the structure of these finite groups and how they relate to each other.
Hence we highlight the following pattern. The full subgroup lattice of SU(2) under the three exceptional finite
subgroups from Prop. A.1 (using the subgroup lattices from [Dok-2T , Dok-2O, Dok-2I]).
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A.2 Categorical algebra

For ease of reference, we briefly recall the concept of internal homs in compact closed categories [Bo94, vol 2,
6.1], also [Mc65].

The categories GSetfin (Def. 2.10) and GRepfin
k (Def. 2.11) enjoy various properties that are directly analogous

to familiar properties of the category Vectfin
k of finite-dimensional k-vector spaces. The language of categorical

algebra allows to make these analogies explicit, and such that one may reason uniformly in all three cases.

For V,W ∈ Vectfin
k two vector spaces, the set Hom(V,W ) of linear maps (“homomorphisms”) V !W between

them becomes itself canonically a vector space, by pointwise multiplication with k and pointwise addition of values
of functions. When we want to emphasize that we regard the set Hom(V,W ) as equipped with this vector space
structure, we write [V,W ] for it.

One way to make this vector space of linear functions [V,W ] more explicit is to consider the dual vector space
V ∗. With that in hand we have a canonical linear isomorphism

W ⊗V ∗ ' // [V,W ]

(|w〉⊗〈v|) //
(
|q〉 7! |w〉 · 〈v,q〉︸︷︷︸

∈k

)
which identifies the tensor product space of V ∗ with W as the vector space of linear maps from V to W . Here

〈−,−〉 : V ∗⊗V −! k = 1

denotes the pairing map that defines the dual vector space, and we denote elements of V by |q〉 ∈V and those of the
dual vector space by 〈v| ∈V ∗, just so as to bring out the pattern better. Note that this pairing map is itself k-linear.
Hence if we regard the ground field k as the canonical 1-dimensional k-vector 1, as indicated, then this is actually
a morphism in Vectfin

k . There is also a closely related linear going the other way around:

1
η // [V,V ] ' V ⊗V ∗

1 � // idV

which, under the above identification, sends any element c ∈ k to the linear map from V to itself that is given by
multiplication with c. One readily checks that these two functions make the following triangles commute

V ⊗V ∗⊗V
id⊗〈−,−〉

%%
V

η⊗id
99

id // V

V ∗⊗V ⊗V ∗
〈−,−〉⊗id

%%
V ∗

id⊗η

99

id // V ∗

whence called the triangle identities.

The quickest way to convince oneself that this indeed holds is to choose linear identifications V ' Rn and
W ' Rm, which means to choose linear bases. This in turn induces a canonical identification V ∗ ' (Rn)∗ ' Rn

(the dual linear basis), hence a linear identification

[V,W ]'V ∗⊗W ' Rn⊗Rm ' Rn×m 'Matn×m(k)

of the vector space of linear maps V !W with the vector space of n×m matrices.

The description of dual vector spaces in terms of pairing and co-pairing maps satisfying triangle identities, as
above, turns out to be equivalent to the traditional definition. It may seem more involved than the direct definition,
but it has the great advantage that it makes sense without any actual reference to the nature of vector spaces: all
that is needed to speak of dual objects is the analogue of the tensor product ⊗.

Categorical algebra shows that the triangle identities guarantee that V ∗⊗W behaves like an “internalized”
version of the Hom-set. The same applies to the tensor product of representations used in §2.3.

Acknowledgements. We thank Tim Dokchitser, James Dolan, James Montaldi and Todd Trimble for discussion.
Our algorithm is inspired by the note [Tr09], which in turn goes back to private communication with James Dolan.
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[BCR00] M. Billó, B. Craps, F. Roose, Orbifold boundary states from Cardy’s condition, JHEP 0101 (2001), 038,
[arXiv:hep-th/0011060].

[BDH+02] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. Morrison and S. Sethi, Triples, Fluxes,
and Strings, Adv. Theor. Math. Phys. 4 (2002) 995-1186, [arXiv:hep-th/0103170].

[Bl17] A. Blumberg, Equivariant homotopy theory, lecture notes 2017,
[github.com/adebray/equivariant homotopy theory].

[Bo94] F. Borceux, Handbook of Categorical Algebra, Cambridge University Press, Cambridge, 1994.
[Bo36] K. Borsuk, Sur les groupes des classes de transformations continues, CR Acad. Sci. Paris 202 (1936),

1400-1403, [doi:10.24033/asens.603].
[Bo10] S. Bouc, Biset Functors for Finite Groups, Springer-Verlag, Berlin, 2010.
[BSS18] V. Braunack-Mayer, H. Sati, U. Schreiber, Gauge enhancement for Super M-branes via Parameterized

stable homotopy theory, Comm. Math. Phys. (2019) [arXiv:1805.05987][hep-th].
[Ca84] G. Carlsson, Equivariant Stable Homotopy and Segal’s Burnside Ring Conjecture, Ann. Math. 120 (1984),

189-224, [jstor:2006940].
[CP18] S. M. Chester and E. Perlmutter, M-Theory Reconstruction from (2,0) CFT and the Chiral Algebra Con-

jecture, J. High Energy Phys. 2018 (2018) 116, [arXiv:1805.00892].
[CCM09] A. Connes, C. Consani, M. Marcolli, Fun with F1, J. Number Th. 129 (2009), 1532-1561.
[DGM97] M. R. Douglas, B. R. Greene, D. R. Morrison, Orbifold Resolution by D-Branes, Nucl. Phys. B506

(1997), 84-106, [hep-th/9704151].
[Dr71] A. Dress, Notes on the theory of representations of finite groups, Bielefeld, 1971.
[Dr86] A. Dress, Congruence relations characterizing the representation ring of the symmetric group, J. of Alge-

bra 101 (1986), 350-364, [ncatlab.org/nlab/files/Dress86.pdf]
[Du99] M. Duff (ed.) The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, Institute of

Physics Publishing, Bristol, 1999.
[FSS15] D. Fiorenza, H. Sati and U. Schreiber, The WZW term of the M5-brane and differential cohomotopy, J.

Math. Phys. 56 (2015), 102301, [arXiv:1506.07557].
[FSS16a] D. Fiorenza, H. Sati and U. Schreiber, Rational sphere valued supercocycles in M-theory and type IIA

string theory, J. Geom. Phys. 114 (2017) 91-108, [arXiv:1606.03206].
[FSS19a] D. Fiorenza, H. Sati and U. Schreiber, The rational higher structure of M-theory, Fortsch. Phys. 2019,

DOI: 10.1002/prop.201910017 [arXiv:1903.02834] [hep-th].
[FSS19b] D. Fiorenza, H. Sati and U. Schreiber, Twisted Cohomotopy implies M-theory anomaly cancellation,

[arXiv:1904.10207].
[FSS19c] D. Fiorenza, H. Sati and U. Schreiber, Twisted Cohomotopy implies M5 WZ term level quantization,

[arXiv:1906.07417].
[GC99] H. Garcia-Compean, D-branes in Orbifold Singularities and Equivariant K-Theory, Nucl. Phys. B557

(1999), 480-504, [arXiv:hep-th/9812226].
[GP90] W. Gilbert and A. Pathria, Linear Diophantine Equations, preprint 1990,

[ncatlab.org/nlab/files/GilbertPathria90.pdf]
[GS19] D. Grady and H. Sati, Ramond-Ramond fields and twisted differential K-theory, [arXiv:1903.08843]

[hep-th].

44

https://www.press.uchicago.edu/ucp/books/book/chicago/S/bo21302708.html
https://arxiv.org/abs/hep-th/0003037
https://arxiv.org/abs/1405.6616
https://arxiv.org/abs/hep-th/0011060
https://arxiv.org/abs/hep-th/0103170
https://github.com/adebray/equivariant_homotopy_theory
https://doi.org/10.24033/asens.603
https://arxiv.org/abs/1805.05987
https://www.jstor.org/stable/2006940
https://arxiv.org/abs/1805.00892
https://arxiv.org/abs/hep-th/9704151
https://ncatlab.org/nlab/files/Dress86.pdf
https://arxiv.org/abs/1506.07557
https://arxiv.org/abs/1606.03206
https://ncatlab.org/schreiber/show/The+rational+higher+structure+of+M-theory
https://arxiv.org/abs/1903.02834
https://arxiv.org/abs/1904.10207
https://arxiv.org/abs/1906.07417
https://arxiv.org/abs/hep-th/9812226
https://ncatlab.org/nlab/files/GilbertPathria90.pdf
https://arxiv.org/abs/1903.08843


[Gr05] J. Greenlees, Equivariant version of real and complex connective K-theory, Homology Homotopy Appl. 7
(2005), 63-82, [euclid.hha/1139839291].

[HSS18] J. Huerta, H. Sati, U. Schreiber, Real ADE-equivariant (co)homotpy of super M-branes, Commun. Math.
Phys. (2019), [arXiv:1805.05987].

[KS] M. Kapranov and A. Smirnov, Cohomology determinants and reciprocity laws: number field case, unpub-
lished preprint, cage.ugent.be/k̃thas/Fun/library/KapranovSmirnov.pdf

[Kee03] A. Keenan, Which finite groups act freely on spheres?, 2003,
www.math.utah.edu/∼keenan/actions.pdf

[Ke99] A. Kerber, Applied Finite Group Actions, Springer-Verlag, Berlin, 1999.
[Kl84] F. Klein, Vorlesungen uber das Ikosaeder und die Auflösung der Gleichungen vom funften Grade, 1884,

translated as Lectures on the Icosahedron and the Resolution of Equations of Degree Five by George Morrice
1888, [archive.org/details/cu31924059413439].

[Li18] M. Lindh, An Introduction to the McKay Correspondence: Master Thesis in Physics, 2018,
[www.diva-portal.org/smash/get/diva2:1184051/FULLTEXT01.pdf]

[Lo18] O. Lorscheid, F1 for everyone, [arXiv:1801.05337] [math.AG].
[Lu05] W. Lück, The Burnside ring and equivariant stable cohomotopy for infinite groups, Pure Appl. Math. Q. 1

(2005), 479–541, [arXiv:math/0504051] [math.AT].
[LP12] K. Lux and H. Pahlings, Representations of Groups: A Computational Approach, Cambridge University

Press, 2012.
[Mc65] S. MacLane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40-106.
[Mad00] A. Mader, Almost completely decomposable groups, CRC Press, 2000.
[Man08] Y. Manin, Cyclotomy and analytic geometry over F1, Quanta of Maths, Conference in honour of Alain

Connes, Clay Math. Proceedings 11 (2008), 385-408, [arXiv:0809.1564] [math.AG].
[Mar30] E. Marczewski, Sur l’extension de l’ordre partiel, Fund. Math. 16 (1930), 386-389,

[matwbn.icm.edu.pl/ksiazki/fm/fm16/fm16125.pdf]
[MBD1916] G. A. Miller, H. F. Blichfeldt, L. E. Dickson, Theory and applications of finite groups, Dover, New

York, 1916.
[Mo14] G. Moore, Physical Mathematics and the Future, talk at Strings 2014

[www.physics.rutgers.edu/∼gmoore/PhysicalMathematicsAndFuture.pdf].
[Na-cycl] V. Naik, Characters are cyclotomic integers,

[groupprops.subwiki.org/wiki/Characters are cyclotomic integers]
[NH98] H. Nicolai and R. Helling, Supermembranes and M(atrix) Theory, In: M. Duff, E. Sezgin, B. Greene

et. al. (eds.) Nonperturbative aspects of strings, branes and supersymmetry, World Scientific (1999),
[arXiv:hep-th/9809103].

[Ra02] P. Rajan, D2-brane RR-charge on SU(2), Phys. Lett. B533 (2002), 307-312,
[arXiv:hep-th/0111245].

[Pe56] F. P. Peterson, Some Results on Cohomotopy Groups, Amer. J. Math. 78 (1956), 243-258,
[jstor:2372514].

[Pf97] G. Pfeiffer, The Subgroups of M24, or How to Compute the Table of Marks of a Finite Group, Experiment.
Math. 6 (1997), 247-270, [doi:10.1080/10586458.1997.10504613]
[schmidt.ucg.ie/∼goetz/pub/marks/marks.html]

[PT91] L. Pursell, S. Y. Trimble, Gram-Schmidt orthogonalization by Gauss Elimination, Amer. Math. Month.
98(1991), 544-549, [jstor:2324877].

[RS13] A. Recknagel, V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-
Branes, Cambridge University Press, 2013.

[Re05] E. Rees, Notes on Geometry, Springer, Berlin, 2005.
[Rob06] J. Robbin, Real, Complex and Quaternionic representations, 2006,

[www.math.wisc.edu/∼robbin/angelic/RCH-G.pdf]
[Sa18] H. Sati, Framed M-branes, corners, and topological invariants, J. Math. Phys. 59 (2018), 062304,

[arXiv:1310.1060].

45

http://projecteuclid.org/euclid.hha/1139839291
https://arxiv.org/abs/1805.05987
http://cage.ugent.be/~kthas/Fun/library/KapranovSmirnov.pdf
http://www.math.utah.edu/~keenan/actions.pdf
https://archive.org/details/cu31924059413439
http://www.diva-portal.org/smash/get/diva2:1184051/FULLTEXT01.pdf
https://arxiv.org/abs/1801.05337
https://arxiv.org/abs/math/0504051
https://arxiv.org/abs/0809.1564
http://matwbn.icm.edu.pl/ksiazki/fm/fm16/fm16125.pdf
http://physics.princeton.edu/strings2014/
http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
https://groupprops.subwiki.org/wiki/Characters_are_cyclotomic_integers
https://arxiv.org/abs/hep-th/9809103
https://arxiv.org/abs/hep-th/0111245
https://www.jstor.org/stable/2372514
https://doi.org/10.1080/10586458.1997.10504613
http://schmidt.ucg.ie/~goetz/pub/marks/marks.html
https://www.jstor.org/stable/2324877
http://www.math.wisc.edu/~robbin/angelic/RCH-G.pdf
https://arxiv.org/abs/ arXiv:1310.1060


[SS19] H. Sati and U. Schreiber, Equivariant Cohomotopy implies orientifold tadpole cancellation,
[arXiv:1909.12277].

[Seg71] G. Segal, Equivariant stable homotopy theory, In Actes du Congrès International des Mathématiciens
(Nice, 1970), Tome 2 , pages 59-63, Gauthier-Villars, Paris, 1971,
[ncatlab.org/nlab/files/SegalEquivariantStableHomotopyTheory.pdf].

[Seg72] G. Segal, Permutation representations of finite p-groups, Quart. J. Math. Oxford (2) 23 (1972), 375-381,
[10.1093/qmath/23.4.375].

[Sen97] A. Sen, A Note on Enhanced Gauge Symmetries in M- and String Theory, JHEP 9709 (1997), 001,
[arXiv:hep-th/9707123].

[Ser14] J. Serrano, Finite subgroups of SL(2,C) and SL(3,C), Warwick 2014,
[homepages.warwick.ac.uk/∼masda/McKay/Carrasco Project.pdf]

[Ser77] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Math., vol. 42, Springer-Verlag,
New York, 1977.

[So67] L. Solomon, The Burnside algebra of a finite group, J. Comb. Theory 1 (1967), 603-615.
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