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Abstract

The key open question of contemporary mathematical physics is elucidation of the currently elusive fundamental laws of
strongly-interacting “non-perturbative” quantum states, including bound states as mundane as nucleons but more generally of
quarks confined inside hadrons, as well as strongly-correlated ground states of topologically ordered quantum materials.

The seminal strategy of regarding such systems as located on branes inside a higher dimensional string-theoretic spacetime
(the “holographic principle”) shows all signs of promise but has been suffering from the ironic shortcoming that also string
theory has only really been defined perturbatively. However, string theory exhibits a web of hints towards the nature of its
non-perturbative completion, famous under the working title “M-Theory” but still elusive. Thus, mathematically constructing
M-theory should imply a mathematical understanding of quantum brane worldvolumes which should solve non-perturbative
quantum physics: the M-strategy for attacking the Millennium Problem.

After a time of stagnation in research towards M-theory, we have recently formulated and extensively tested a hypothesis
on the precise mathematical nature of at least a core part of the theory: We call this Hypothesis H since it postulates that M-
branes are classified by Co-Homotopy-theory in much the same way that D-branes are expected to be classified by K-theory
(a widely held but just as conjectural belief which might analogously be called Hypothesis K). In fact, stabilized coHomotopy
is equivalently the algebraic K-Theory over “F1”, the “absolute base field with one element”. Last not least, coHomotopy is
equivalent to framed Cobordism cohomology.

In these lecture notes we try to give an introduction to (1.) the motivation and (2.) some consequences of Hypothesis H,
assuming an audience with a little background in electromagnetism, differential geometry and algebraic topology.
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These are notes under development,
prepared for a series of talks and lectures;
parts are still not more than a slide show.

The first half aims to be elementary explanation of
Hypothesis H as a good question to ask about physics:

whether it is right or wrong, it deserves checking.

The second half explains evidence
that Hypothesis H is in fact correct
and some insights gained from it.

For comprehensive referencing see:
ncatlab.org/schreiber/show/Hypothesis+H
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The key open question of fundamental quantum physics is not primar-
ily the lack of coherent quantum gravity theory as such, as often portrayed,
but the general lack of non-perturbative quantum theory of almost any
sort, due to which exotic quantum states of matter – such as topologically
ordered solid states thought to be needed for topological quantum compu-
tation – but even mundane phenomena – such as room-temperature matter,
namely “confined” quarks in hadron bound states, reflected (just as are
topological phases!) in a “mass gap” – remain theoretically ill-understood,
to the extent that one speaks of an open Millennium Problem1.

The role of string theory. String theory originates as a model for these
elusive hadron bound states, specifically for the string-like “flux tubes” be-
tween pairs of quarks, conceptually explaining both their confinement and
their scattering behaviour. The unexpected discovery that subtle quantum
effects make these hadronic strings propagate in an effectively higher di-
mensional space – with only their endpoint quarks attached to observed
3+1 dimensional spacetime (now: the “brane”) or else carrying gravitons
into an otherwise unobserved higher dimensional “bulk” – came to be
appreciated as a “holographic” description of non-perturbative quantum
physics.2

The role of M-theory. Ironically, string dynamics is itself primarily under-
stood only perturbatively, which makes holography require the unrealistic
assumption of a large (in fact: humongous) number N of coincident branes,
to be tractable. But understanding branes as physical objects yields a web
of hints as to what non-perturbative string theory should be like, enough
so that it famously has a working title (since 1995): “M-theory”.
To highlight, in conclusion: One strategy for addressing the “Millennium
Problem” of formulating non-perturbative QFT is to mathematically for-
mulate M-theory:3 With this it ought to be possible to define and investi-
gate, with precision, individual quantum branes whose intersections should
exhibit non-perturbative quantum dynamics such as anyonic topological
order (which we discuss in §7) and eventually confined hadrodynamics.

The role of Algebraic Topology. After initial excitement, progress on ac-
tually formulating M-theory had stagnated and efforts had been largely
abandoned4, arguably due to a lack of appropriate mathematical tools:
Where famous examples of physical theories were formulated within a
fairly well-understood framework of mathematical principles (e.g. general
relativity in differential geometry or quantum physics in functional analy-
sis), the real problem with formulating M-theory is (or was) that even its
underlying mathematical principles remained unclear. It was the vision of
[Sa10] (review in [FSS19]) that M-theory ought to find its formulation in
algebraic topology; initiating a program of looking for algebro-topological
patterns in the available information on M-brane physics, deducing clues
as to their fundamental mathematical meaning.

The role of Hypothesis H. This analysis eventually culminated in a formu-
lation of a hypothesis – Hypothesis H – of what M-theory really is about
[FSS20], namely about the generalized non-abelian cohomology theory
called CoHomotopy Theory. This we explain below in §3.
It is noteworthy here that algebraic topology is not a field of mathematics
as any other, but has recently been understood to serve, in its guise of ho-
motopy theory, as an alternative foundation for mathematics itself (HoTT5).
Moreover, within algebraic topology, cohomotopy is not a (multiplicative)
cohomology theory as any other, but is initial among all of them. This may
be more than a coincidence given that M-theory is meant to be not just a
theory of physics as any other, but the initial foundation of all of them.
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1 Branes imprinted on flux
The concept of branes in string theory (see [IU12, §6][Fr13, §7][HSS19, §2]) is the key ingredient of the historical re-
thinking of string theory that came to be known as the “second superstring revolution” [Schw96], in that it is the key for the
non-perturbative completion of the theory [Du00] (the “M” in “M-theory” originates [HW96, p. 2] as a “non-committal”
abbreviation for membrane). But conversely this means that the precise meaning of “brane” has been almost as elusive as that
of “M-theory” itself. Or rather: There is a range of specialized meanings of the term, some versions of which do have precise
definitions, but it has remained unclear how exactly any and all of these notions are aspects of a unified concept of “branes”.

Our strategy in formalizing the concept of “branes” is conceptually straightforward:
• We recall here the notion of branes as higher-dimensional generalizations of poles and hence as concentrations of flux.
• We rephrase (§2) this notion in appropriate algebro-topological terms, from which we motivate (§3) Hypothesis H.
• All further exploration of the notion of branes proceeds by mathematical inspection of Hypothesis H.

1.1 Branes as concentrations of flux
To get ground under our feet, it is expedient – our ambitious goal nonwithstanding – to start with elementary reflections on flux
lines (flux densities) sourced by charged poles as originally conceived by Faraday, and as more generally sourced by higher
dimensional charged branes, like the charged membranes already considered by [Dirac1962]. While most of these objects
(famously including magnetic mono-poles) are notorious for remaining hypothetical entities not currently seen in experiment
(possibly because the do not actually exist, possibly because they do exist but remain undetectable by present means), we
highlight (p. 6) the example of vortex strings in superconductors which have been observed in detail and which – whether one
likes to refer to them as “1-branes” or not – do constitute an example of the general notion of classical branes in question.7

This may seem of little relevance to a reader used to the zoo of (hypothetical) branes considered in string theory, but since
we are going to completely sidestep traditional discussion of string theory and instead bootstrap M-theory out of just a close
mathematical inspection of the possible nature of charged membranes in 11-dimensional supergravity, it may be noteworthy.

Field flux.

X ∈ Mfds spacetime manifold

Ωr
dR(X) ∈ Sets differential r-forms

F(a)
ra ∈ Ω

ra
dR(X) flux density form

⋆ : Ωr
dR!Ω

D−r
dR Hodge star (§1.2)

Classical Example: Electromagnetic flux

X = R3,1 Minkowski spacetime

Ω1
dR(R3,1) =

{
Ai dxi +φ dt

}
vector potentials

F2 : Ω2
dR(R3,1) Faraday tensor

= Ei dxi ∧dt electric field strength

+ Bi j dxi ∧dx j magnetic flux density

m
agnetic flux lines

∆x 1

∆
x2

∆⃗x 1∧
∆⃗x 2

magnetic flux
through surface element

F2
(⃗
∆x1 , ∆⃗x2

)
= B⊥ ·∆x1 ·∆x2

Magnetic flux lines. On the left: Faraday’s original iron filings in the magnetic field of two rod magnets (Faradays diary of experimental investigation, entry of
11th Dec 1851, reproduced by Martin 2009). On the right: schematics (adapted from hyperphysics.phy-astr.gsu.edu/hbase/magnetic/fluxmg.html)

Imprinted on the flux density may be two kinds of branes, called:8

(1.) singular branes (black branes) reflected in diverging flux density at singular loci in spacetime,
(2.) solitonic branes reflected in localized but finite flux density, namely vanishing at infinity.

7[Pol12, p. 1] regrets not to have understood vortex lines as strings. See also the emphasis on vortex worldsheets in [Beekman & Zaanen 2011].

5

http://faradaysdiary.com/ws3/faraday.pdf#page=311
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/fluxmg.html
https://doi.org/10.1007/s11467-011-0205-0


The singular branes of 4d electromagnetism are the (would-be) magnetic monopoles:

Faraday tensor

F2 =
magnetic

flux

density

B(r)dvolS2 ,

Gauss law
away from singular locus

dF2 = 0 ,
∫

S2
F2 = total magnetic flux

prop. to total charge

magnetic flux lines

S2 any sphere
around monopole

space

magnetic monopole

m
onopole

position

r

distance
from

m
onopole

B
magnetic

flux density

But the solitonic branes of 4d electromagnetism are the vortex strings in type II super-conductors (“Abrikosov vortices”)
inside an external electromagnetic field. Here the 1-brane is the central locus (the eye of the storm) of a (non-singular) vortex
in the electron current J, localized by the requirement that fields vanish at infinity (cf. eg. [Timm 2020 (6.101)]):

Faraday tensor

F2 =
magnetic

flux

density

B(r)dx1 ∧dx2 ,
Gauss law

dF2 = 0 ,
∫
R1×R2

F2 =
∫

B dx1 dx2 = total magnetic flux
prop. to # vortices

magnetic

flux density

vortex
position

distance
from

vortex

vortex in electron current

magnetic flux lines

R
3

x1

x2

electron
density

current
density

electron
current

Figure adapted from
[Loudon & Midgley (2009) Fig. 1]

Abrikosov- vortex strings are the solitonic branes associated with the EM fieldDirac- magnetic monopoles singular branes

8The terminology “solitonic brane” is wide-spread but its exact meaning differs between authors (as does the term “soliton” that it is derived from):
It was introduced in [DKL92][DKL95][DL94] to mean (topologically stable) non-singular brane-like solutions to (supergravity/flux) equations of motion,
which is how we use it here. But already [St99] uses “solitonic” to instead mean the “electromagnetic dual singular brane”, eg. calling the singular NS5 the
soliton of the fundamental string, cf. (49). Somewhat in this vein, many later authors (eg. [Sm03]) use “solitonic” for any singular or non-singular brane-like
supergravity solution, thus regarding it as the antonym to the fundamental sigma-model branes discussed in §4.1. This is how we ourselves use it elsewhere.
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The formalization of the
difference between singu-
lar and solitonioc branes
is via choice of domains on
which the flux densities are
actually defined (following
[HpH2, §2.1]).

type of brane ⇔ domain of flux density (19)

singular brane complement of brane Σ inside spacetime X ,
removing the singular locus from spacetime X \Σ

solitonic brane Alexandroff-compactification of transverse space Σ⊥,
adjoining a “transverse point at infinity” to spacetime Σ⊥

∪{∞}

This is most transparent for the special case of “flat” branes in flat Minkowski spacetime:
- singular branes have spacetime singularities which are removed from spacetime: the field flux sourced by the singularity

is that through spheres in the normal bundle around these loci and would diverge at the singular brane locus.

bulk

Rd+1 \

singular
brane

Rp+1 ≃
homeomorphism

punctured
transverse space(
Rd−p \ {0}

)
×Rp+1 ≃

homotopy equivalence

encircling sphere

Sd−p−1 (1)

- solitonic branes are witnessed by non-singular “local bumps” in the flux densities: Their flux vanishes at infinity which
means that it is measured on the 1-point compactification of their transverse space, which is again a sphere:

solitonic
brane

Rp+1
⊔{∞} ∧

transv.
space

Rd−p
∪{∞}with pointat infinity

≃ Rd−p
∪{∞} ≃

homeomorphism

transverse sphere

Sd−p

Rd−p
∪{∞} ≃ Sd−p

Rd−p

∞

(2)

Towards flux quantization. The laws
of flux discussed so far are laws of
“classical physics”: By themselves
they do not explain, for instance, why
the flux carried by Abrikosov vor-
tices (p. 6) is quantized to appear
in integer multiples of a unit flux, or
why, as argued long ago by Dirac,
magnetic monopoles would be quan-
tized to appear in integer multiples of
unit charged monopoles. Apparently
the electromagnetic flux density F2 =
Ω2

dR(X) is just one aspect of the true
nature of the electromagnetic field. In
modern mathematical language, the ar-
gument underlying Dirac charge quan-
tization says that an electromagnetic
field configuration on a spacetime X
also involves a “charge map” c : X −!
BU(1) to the classifying space of the
circle group. This may be understood
as the infinite complex projective space
BU(1) ≃

whe
CP∞, but crucially it is a

classifying space for ordinary integral
cohomology in degree 2, meaning that
homotopy classes of such maps are in
natural bijection with H2(X ;Z).
Formalizing generalized flux quantiza-
tion is the topic of §2.

c
−−−−−−−−−−−−−−−−!

electromagnetic field
sourced by monopole

X := R3,1 \R0,1 ≃ R0,1 ×Rrad ×S2

spacetime around magnetic monopole︷ ︸︸ ︷ BU(1) ≃ CP∞

classifying space for ordinary cohomology︷ ︸︸ ︷

monopole

CP1

higher cells[c] ∈
{

X −! BU(1)
}/

hmpty
charge = homotopy class

≃ Z
charge
lattice

flux tube CP1

0

∞

higher cells

X := R1,1 ×R2
∪{∞} ≃ R1,1 ×S2

spacetime seen by fields vanishing at transversal infinity︷ ︸︸ ︷
c

magnetic flux
through transversal plane

// BU(1) = CP∞

classifying space for ordinary cohomology︷ ︸︸ ︷

[c] ∈
{

X −! BU(1)
}/

hmpty
total flux = homotopy class

≃ Z
charge
lattice
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1.2 Laws of flux
As we now turn to the classical laws of motion for flux densities (the analogs of Maxwell’s equations), the key move towards
identifying possible flux quantization laws (below in §2) is to arrange these equations of motion, equivalently, as:

(1.) a purely cohomological system of differential equations known as higher Bianchi identities,
(2.) a purely geometric system of linear equations expressing a Hodge self-duality,

the point being that the first item is entirely “topological”, while dependency on geometry, namely on the spacetime metric
(the field of gravity) is all isolated in the second item:

higher Bianchi identities
(pre-geometric)equations of motion

for higher flux forms
in background gravity higher self-duality

(geometric)

(3)

This move of looking at “pre-metric flux equations” first, later to be supplemented by a “constitutive” duality constraint
has a curious status in the literature: On the one hand it is elementary and immediate as an equivalent re-formulation of the
usual form of equations of motion, and as such has been highlighted, in the case of electromagnetism (4), a century ago
[Ko1922][Cartan1924, §80][vDa1934][Whit1953, pp. 192], and re-amplified more recently under the name “pre(geo)metric
electromagnetism” [HO03][Del05][HIO16][Del]; but the broader community does not seem to have taken much note of this
yet. On the other hand, we may observe below in (5) and (8) that just the same “pregeometric” perspective, applied to higher
degree flux forms, evidently underlies, entirely independently, what string theorists call “duality-symmetric” or (for better or
worse) “democratic” formulations of supergravity fields, notably underlying the highly recognized conjecture that RR-fields
are flux-quantized in K-theory (“Hypothesis K”, to which we come below in §3, when we have discussed twistings).

Pregeometric electromagnetism. Concretely, Maxwell’s equations for electromagnetic flux encoded in the Faraday tensor
F2 as shown on the left (cf. [Th78, v2 §1.3][Fr97, §7.2b][Na11, §2.2]) have (pre)geometric decomposition as shown on the
right (cf. already [Cartan1924, §80]):

dF2
dG2

=
=

0
J3dF2

d⋆F2

=
=

0
J3

G2 = ⋆F2

(4)

While trivially equivalent, some authors found deep significance to the pre-geometric decomposition on the right of (4),
(cf. the careful discussion of classical electromagnetism in [HO03]) highlighting that it maximally disentangles gauge from
gravitational degrees of freedom (already in [Whit1953, p. 192]9) and thus possibly helping with understanding unification
of the two (cf. [Del15]). None of what we say here refers to or relies on any of these previous discussions of premetric
electromagnetism, but the inclined reader may find value in comparing to them.

It is clear that an analogous transmutation – by first “doubling” the flux degrees of freedom and then cutting them back
down by half via a self-duality constaint – applies also to equations of motion for higher degree fluxes (made explicit for
instance in [Fr00, Exp. 3.8]):

Pregeometric RR-fields. In evident higher-degree generalization of vacuum electromagnetism, consider a “higher gauge
field” whose flux density is a tuple of differential forms F2p in every second degree smaller or equal the spacetime dimension
D: and satisfying the evident higher-degree generalization of Maxwell’s equations, as shown on the left, where the equivalent
pregeometric formulation shown on the right is rather more suggestive in its conceptual simplicity (here “•” may be taken to
range through N or even Z):

dF2• = 0
2• ≤ DdF2•

d⋆F2•

=
=

0
0

2• ≤ D/2
F
(D−2•) = ⋆F2•

(5)

9[Whit1953, p. 192]: “Since the notion of metric is a complicated one, which requires measurements with clocks and scales, generally with rigid bodies,
which themselves are systems of great complexity, it seems undesirable to take metric as fundamental, particularly for phenomena which are simpler and
actually independent of it.”
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But this is just the situation of the “RR-fields” in D= 10-dimensional massive type IIA supergravity for the special case where
the background NS-fields besides the metric vanish (we discuss the more general case in §1.3): On the left of (5) we have the
equations of motion of the RR-field fluxes in their original “geometric” form (e.g. [Po95, (3)][IU12, §4.2.5]), while on the
right of (5) we have the RR-fields in their pregeometric form, now commonly called the “duality-symmetric” or “democratic”
form (see [CJLP98, §3][BKORV01][MV23]), this being the form which plays into the “Hypothesis K” that D-brane charge
is quantized in K-theory (26).
Of course, the sources for the RR-field
flux are D-branes as originally proposed
in [Po95, (14)], and for the present pur-
pose this may be regarded as the definition
of (classical) D-branes: concentrations of
RR-field flux (cf. exposition in [Ha12]).
Similarly, we identify other (classical)
brane species as sources of corresponding
flux densities, as shown on the right.

field flux sourced by

4d Maxwell theory A-field F2 monopoles

type II 10d SuGra
RR-field F8−p Dp-branes

B-field H3 NS5-brane

11d supergravity C-field
G4 M5-branes

G7 M2-branes

(6)

Pregeometric C-field in 11d supergravity. The primary example of interest here is that of “C-field flux” G4 in 11-
dimensional supergravity (the 3-index A-field [CJS78], see [DF82, §III.8][MiSc06, p. 32][vPF12, §10]), which is meant
to be the low-energy approximation of M-theory (see [Du00, §1]).

It is noteworthy that the C-field is the only field in D = 11 SuGra, besides the field of (super-)gravity itself (quite in
constrast to the zoo of fields that appear in lower dimensional supergravities). This may make plausible that a proper treatment
of the pregeometric C-field flux alone may go at least half-way towards a full definition of M-theory.

C-field
field content
of M-theory

gravity

(7)

In any case, the higher Maxwell-type equations for the C-field flux are famously as follows:

dG4
dG7

=
=

0
− 1

2 G4 ∧G4dG4
d⋆G4

=
=

0
− 1

2 G4 ∧G4

G7 = ⋆G4

(8)

On the left of (8) we have the equations of motion in their traditional geometric form ([DF82, p. 131], detailed review
in [CDF91, §III.8.53][MiSc06, (3.23)]), on the right their pregeometric form, known as the duality-symmetric form, cf.
[BBS98][CJLP98][BNS04, §2][Nu03, §3].

Pregeometric flux in 5d supergravity. Just to amplify that the pre-geometric decomposition of field-flux equations of motion
is a generic phenomenon, we briefly mention one more example:

The flux forms in 5-dimensional supergravity (cf. [CDF91, §III.5.70]) satisfy an equation of motion analogous to the
equation (8) for the C-field in 11-dimensional supergravity (cf. [GGHPR03, (2.2)]):

dF2
dH3

=
=

0
F2 ∧F2dF2

d⋆F2

=
=

0
F2 ∧F2

H3 = ⋆F2

(9)

9



Summarizing this list of examples (which could be much expanded) of pre-geometric equations of motion of flux densities:

Flux species equations of motion
(of fields in background gravity)

⇔ Bianchi identities
(purely cohomological) with duality constraint

(wrt background metric)

free A-field
in 4d gravity

d ⋆ F2 = 0
d F2 = 0

}
⇔

{
d G2 = 0
d F2 = 0

where G2 = ⋆F2

A-field & B-field
in 5d supergravity

d ⋆ F2 = F2 ∧F2

d F2 = 0

}
⇔

{
d H3 = F2 ∧F2

d F2 = 0
where H3 = ⋆F2

C-field
in 11d supergravity

d ⋆G4 = G4 ∧G4

d G4 = 0

}
⇔

{
d G7 = G4 ∧G4

d G4 = 0
where G7 = ⋆G4

free RR-field
in 10d supergravity

d ⋆F2•≤5 = 0
d F2•≤5 = 0

}
⇔

{
d F2• = 0 where F10−2• = ⋆F2•

(10)

In conclusion so far, when looking at classical flux densities sourced by branes, we are looking at systems of differential
forms on a (pseudo-)Riemannian manifold satisfying polynomial exterior differential equations subject to a Hodge-duality
constraint:

classical higher gauge field theory in gravitational background︷ ︸︸ ︷
( flux densitie

s

F (a)
ra ∈ Ω

ra
dR(X)

)
1≤a≤amax

flux densities
differential forms on spacetime

de Rham diff.

dF (a)
ra =

polynomial

P(a)
({

F (b)
rb

}
b≤a

)
Bianchi identities

cohomological part of field equations︸ ︷︷ ︸
pre-geometric cohomological aspect

But for which cohomology theory, really?
We answer this question in §2, §3.

involution
σ : {1, · · · ,amax}! {1, · · · ,amax}
σ ◦σ = id , F(a) = ⋆F

(
σ(a)

)
Hodge duality constraint

gravity-dependent part of field equations︸ ︷︷ ︸
Riemannian geometric aspect

Not further discussed here.

(11)

The appearance of quadratic Bianchi identities in the above examples (10) — in particular for the C-field flux in 11d
supergravity (8) and generally of non-linear polynomial Bianchi identities (11) — is a crucial effect not seen in classical elec-
tromagnetism and outside the scope of previous mathematical discussions of flux quantization. It is to handle the quantization
of such non-linear flux that we invoke the non-abelian character theory developed in [Char] and surveyed below in §2, which
eventually allows to identify M-theory flux quantization in non-abelian (namely: unstable) cohomotopy (in §3).

But first we here discuss the physics encoded by non-linear terms in the pregeometric equations of motion of flux:

1.3 Brane intersections imprinted in non-linear flux
Bound states of intersecting black branes are seen (eg. [Sm03]) as solutions of full supergravity equations of motion; but in
the pre-geometric spirit of §1.2 we highlight here that the qualitative aspects of the brane intersection laws may largely be
deduced from the pre-geometric flux Bianchi identities (11) alone.

Namely it is the non-linear (quadratic and higher) polynomial source terms which encode the possibility that the branes
which source these fluxes may “intersect” or “end on” each other in certain ways, as we explain now. Notice that it is only
“on” such brane intersections that modern string phenomenology (namely all type I/II/M/F phenomenology, excluding only
the traditional HET models) expects to model quasi-realistic physics (see [Ha12, §6.1, §6.4][IU12][RZ16, §15]).

branes ending on branes
(brane intersection laws)

non-linear pregeometric flux
(polynomial Bianchi identities)

non-abelian cohomology
(polynomial characters)

[Char]

The relation on the left is fairly well-known in the case of D-branes ending on NS5-branes, to be briefly recalled now, which
is a “mild” form of non-linear flux since it may still be understood as “parameterized” or “twisted” linear flux (see around
(23) below) and as such can and has been discussed by conventional means of flux quantization:
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D-branes ending on NS5-branes. From the perspective (6) of flux densities, NS 5-branes are what source 3-form flux H3 in
type II supergravity, whose pregeometric equation of motion we may take to simply be10 dH3 = 0. In the presence of such
flux, the pregeometric equations for RR-field fluxes (5) are modified as follows (see references around (5) and [RW86, (23)]):

dH3 = 0

dF0 = 0

dF2 = H3 ∧F0

dF4 = H3 ∧F2
...

NS5
dF8−p = H3 ∧F6−p

Dp
Dp+2 (12)

These differential equations, in particular the one for F2, are not unlike the Maxwell equations (4) with a source term J3,
meaning here that NS5-branes via their H3-flux but also Dp+2-branes via their F6−p-flux act as a source or sink for RR-field
flux F8−p and hence for Dp-branes, in some way, suggesting that Dp-branes may emanate from or end on NS5-branes and
Dp+2-branes (cf. eg. [EGKRS08] and references in [Fa17]).

The full supergravity equations of motion for such NS5/Dp/Dp+2-brane systems are complicated and satisfactory dis-
cussion is hard to cite, but we can readily give a full qualitative analysis of the solutions to the pre-geometric flux equations
of motion (12) which already reveals the expected effects. This is going to be instructive for understanding the case of
M2/M5-brane intersections that we are after further below in (13):

D6-brane creation and the Hanany-Witten effect. A popular conjecture by [HW97] states that the expected Dp-branes
stretching between NS5 and Dp+2 are “created” as the Dp+2-branes are “dragged over” the NS5, intuitively like a pole will
cause a spike in a rubber sheet that is pulled over its tip. It was suggested in [Mar01, §2] that this Hanany-Witten effect should
be understandable entirely from analysis of the flux Bianchi identities (12). At least for the case p = 6 of NS5/D6/D8-brane
intersections [HZ98, §2.4][BLO98, p. 60] this is indeed the case, as we explain now. Here the flux F0 of D8-branes (the
“Romans mass”) is a locally constant function which vanishes in the vacuum and jumps by N units across the locus of N
D8-branes (cf. eg. [Fa17, p. 40]). But this means that:
1. When the NS5-brane is located in the vacuum then its sourcing of F2-flux is “switched off” by the vanishing F0-factor in

(12), hence if F2 vanishes at infinity then the PDE demands it vanishes everywhere, reflecting the absence of D6-branes.
2. When the NS5-brane is located on the other side of the D8-branes, where F0 = N, then the equation (12) shows that F2-

flux/D6-number density which vanishes far away will increase along the coordinate axis x9 orthogonal to the D8-branes in
proportionality of the dx9-component of the flux H3, and hence pronouncedly so as one crosses the NS5-brane locus.

1.

2.

F2 = 0F2 = 0

H3

k(=
∫

S3 H3) NS5N(= F0|x9<d) D8

x9
N

d

F0
dF2 = F0 ∧H3

= 0

F2 ∼ N
∫ d
−∞

H3F2 ≫ 0F2 ∼ 0

H3

k(=
∫

S3 H3) NS5
kN(∼

∫
S2 F2) D6

N(= F0|x9<d) D8

x9
N

d

F0
dF2 = F0 ∧H3

= N H3

10We ignore here the dual NS-flux H7 = ⋆H3 in 10d supergravity: Its presence is actually a problem for the traditional Hypothesis K (§3.1) that NS/D-
brane charge is in 3-twisted K-theory, while it plays no direct role in the formulation of Hypothesis H that we are after (§3.2). But interestingly, one proposal
for incorparating H7 into Hypothesis K also proceeds via cohomotopy, see [arXiv:1405.5844, §7.4] and [Char, Exp. 3.6]
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D3-branes and M2-branes streching between 5-branes. Consider now the case of flux configurations which should reflect
branes stretching between pairs of 5-branes. By the previous discussion this occurs either for D3-branes between NS5/D5-
branes or for M2-branes between M5-branes, according to the following pregeometric equations of motion:

D = 10 : dF5 = H3 ∧F3 (12)

D = 11 : dG7 = 1
2 G4 ∧G4 (8)

= G
(1)

4 ∧G
(2)

4 G4 := G
(1)

4︸︷︷︸
homog.

+ G
(2)

4︸︷︷︸
homog.

(13)

Considering a background configuration given by a pair of parallel flat 5-branes at some positive distance 2d > 0:

R1,5
(i)

R1,D

(t, x⃗) 7!
(
t, x⃗,(−1)id ,⃗0

)
hence reflected in flux densities of the following form (or any multiples of these, if you like)

H3 := dvolS3 ∈ Ω3
dR(S

3)
pr∗

S3
↪−−!Ω3

dR

(
R1,5

(1)
×R⊔{∞}×S3

)
≃ Ω3

dR

(
R1,9 \R1,5

(1)

)
F3 := dvolS3 ∈ Ω3

dR(S
3)

pr∗
S3

↪−−!Ω3
dR

(
R1,5

(2)
×R⊔{∞}×S3

)
≃ Ω3

dR

(
R1,9 \R1,5

(2)

)
G

(i)

4 := dvolS4 ∈ Ω4
dR(S

4)
pr∗

S4
↪−−!Ω4

dR

(
R1,5

(i)
×R⊔{∞}×S4

)
≃ Ω4

dR

(
R1,10 \R1,5

(i)

)
and assuming that D3- or M2-brane flux vanishes at infinity, then these differential equations will imply D3- or M2-brane flux,
respectively as soon as the wedge products H3 ∧F3 and G

(1)

4 ∧G
(2)

4 are multi-poles concentrated roughly between the given
pair of branes. That and why this is indeed the case is illustrated by the following figure.

Effective dipole of quadratic brane flux. The figure on the right
means to indicate the nature of the differential 2-form which is the
wedge product of two copies of the pullback of dvolS1 to around
either of the punctures (the brane loci) in the 2-punctured plane, the
2-dimensional shadow of the analogous wedge products on the right
of (13). Here:
• the strength of the circular lines indicates the absolute value of

the flux density sourced by the respective 5-brane,
• the arrows indicate the orientation of the flux density of either

5-brane,
• the parallelograms indicate the orientation of their wedge product.
It is evident that the absolute value of the wedge product is concen-
trated near the 5-branes and particularly between them when they
are close. But the point is that the orientation of the wedge prod-
uct changes sign across the axis connecting the branes, as shown.
This means that the flux sourced by this wedge product, according
to (13), is, if vanishing at infinity, concentrated between the branes.

+

+
+

− −

+
+

− −

+

− −

+

+

−
−

−

−

−

−

+ +

−

+ +

−
−

+s

−

Such M5/M2/M5-brane intersections are expected in the literature (eg. [HLV14, Fig. 3]) but rarely discussed in more detail.

M2-Branes ending on M1-waves and C-field tadpoles. Less widely appreciated is that M2-branes are also argued [BPST10,
§2.2.3][HSS19, Prop. 4.19] to possibly end on 1-brane-like loci known as “M-waves”. In terms of pregeometric fluxes this
means, by the previous arguments, that there ought to be an 9−1 = 8-form flux density I8 and a modification of the C-field
flux Bianchi identity roughly of the form

dG7 = 1
2 G4 ∧G4 + cI8 . (14)

A modified equation for M2-brane charge of just this form was earlier argued in [DM97, (1)], based on a string perturbation-
theoretic argument notorious as the “one-loop term” in the effective string action (obtained from Hypothesis H in (38)).

But from the point of view of flux densities and flux quantization, a Bianchi identity of the form (14) means that we need
to understand both non-linear polynomial flux equations like that of the supergravity C-field (8) and their further twisting, in
M-theoretic analogy of (12), hence we need to understand twisted non-abelian cohomology [Char] – this we turn to in §2.
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2 Brane charge quantization
Anomaly cancellation and flux quantization. Secretly, much of contemporary theory building in theoretical physics is a
sophisticated process of trial, error and improvisation: The trials are Lagrangian densities (“action functionals”), the errors are
“anomalies” obstructing their consistent quantization, and the improvisation is the invention of add-on rules to “cancel” the
anomalies. While there is a sense of accomplishment in the community for identifying and cancelling anomalies (typically
a demanding task) we should see it for what it is: Anomaly cancellation is the patching-up of broken theories. This can
(and certainly has been) useful for exploring the space of physical theories, but it seems implausible that truly fundamental
theories will come to us in broken form incrementally patched. Instead, eventually we want to understand how to construct
anomaly-free and hence well-defined quantum theories right away.

Dirac charge quantization in integral cohomology. An early example of what we may recognize as anomaly cancel-
lation is Dirac’s charge quantization (p. 7) – and we are going to promote this to a rather general principle of brane charge
quantization. In modern paraphrase, Dirac observed:
1. that the worldline theory of the electron in the background of a magnetic monopole has, in general, a quantum anomaly,
2. that this anomaly vanishes if – hence is cancelled by demanding that – electromagnetic charges are quantized in integer

multiples of a unit charge, or more precisely that the fluxes witnessing these charges are quantized in integral cohomology.
The latter is really the fundamental condition, whence one also speaks of flux quantization.

More in detail, the anomaly cancellation demand — an ad hoc addition to classical Maxwell theory — is that the Faraday
tensor 2-form F2, in addition to satisfying Maxwell’s equations (4), also satisfies the constraint that its class in de Rham
cohomology, which under de Rham’s theorem is identified with R-valued cohomology, is in fact in the image of Z-valued
cohomology:

quantized
magnetic charges

H2(X ; Z)
in integral cohomology

classical
magnetic charges

H2(X ; R) ≃ H2
dR(X

4)
in real/de Rham cohomology

[q]
charge quantization⇝

lift
[F2]

(15)

This cohomology operation of extension-of-scalars we are also going to refer to as the character map in integral cohomology
(think of the differential forms in its image as “real characterizations”, if you wish, of integral cohomology classes).

Notice that in general this map is not an injection (its kernel is the torsion subgroup of integral classes). Eventually we
understand charge quantization not just as the condition that physical fields be in the image of this map, but we regard the
actual physical fields as containing extra structure consisting of a choice of pre-image through this map (and yet a little more,
see §2.5).

Spin-/String-structure as charge quantization in non-abelian cohomology. Dirac’s argument only concerns the charge
of the electron. When one also considers the spin of the electron then its worldline theory has another anomaly, which is
cancelled by equipping the background spacetime with spin-structure (discussed this way in [Wi85, p. 65-68]). An analogous
argument shows that spinning strings have an anomaly in their worldsheet theory which may be cancelled by equipping the
background spacetime with string-structure (cf. [Bu11][SSS12]).

Here we are going to understand [Char, §2] phenomena such as Spin- and String-structures as examples of non-abelian
cohomology with coefficients in a non-abelian group G ([Grothendieck55, §V][Fr1957], see also [We16, §7]) or non-abelian
2-groups etc., thus conceptually unifying them with abelian cohomology such as in (15):

H1(X ;G)
non-abelian cohomology

in degree 1

≃ π0Maps(X ;BG)
homotopy classes of maps

into classifying space

≃ GPrinBund(X)/∼
isomorphism classes of

principal bundles

This way, we may understand the anomaly cancellation of the spinning electron by ambient spin-structure as of the same
general cohomological form as Dirac’s charge quantization (15):

“quantized”
gravitational charge

H1
(
X ;String(1,d)

)
in String-cohomology

“quantized”
gravitational charge

H1
(
X ;Spin(1,d)

)
in Spin-cohomology

gravitational charge
H1

(
X ;O(1,d)

)
in nonabelian O-cohomology

[ ̂̂ω]
string anomaly cancellation⇝

lift
[ω̂]

spin anomaly cancellation⇝

lift
[ω]
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Cohomology rules. This shows that, at least in key examples, “anomaly cancellation” amounts to understanding that
fields/fluxes which a priori seem to be given by differential forms actually need to be flux quantized by promoting them to
cocycles in possibly non-abelian generalized cohomology theories. Together with the observation in §1.2 that pre-geometric
equations of motion always form a kind of non-abelian de Rham cohomology, this paints a compelling picture that quantum
fields want to be understood as pre-geometric cocycles in non-abelian generalized cohomology theories.

We now explain – in survey of [Char] – that:
§2.1 Bianchi identities characterize flux densities as flat nilpotent L∞-algebra-valued differential forms.
§2.2 Flat nilpotent L∞-algebra valued forms are cocycles in non-abelian de Rham cohomology.
§2.3 Non-abelian de Rham cohomology is the target of the character map on higher non-abelian cohomology.
§2.4 Higher non-abelian cohomology theories thus serve as the flux quantization laws for higher fluxes.

Schematically:

non-abelian
cohomology

A(X)

non-abelian
de Rham cohomology

HdR
(
X ; lA

)
[
F

]
class of

A-quantized flux

7!
[(

F (a)
ra

)
1≤a≤dim[π•(A),R]

class of
underlying flux densities

]chA

non-abelian character

§2.5 These flux quantization laws determine the moduli ∞-stack of the higher gauge potentials.
§2.6 Twisted versions of these cohomology theories encode brane intersections.

This follows the seminal argument of Dirac charge quantization for electromagnetism [Di31] (review in [Al85][Fr97, §16.4e]
[Fr00, §2]) and generalizes suggestions for charge quantization in higher gauge theories [Fr00][HS05] to the case of non-
abelian (“unstable”) fluxes, such as the C-field in 11d supergravity (8).

2.1 Bianchi identities characterize flux densities as flat nilpotent L∞-algebra valued forms
The structure of a system of higher Bianchi identities (11) is all encoded in the polynomials P(a). At the same time, the de
Rham condition d2 = 0 imposes constraints on systems of polynomials that may arise. With these constraints, the coefficients
of P(a) in the expansion

P(a)
(
{F (b)}

)
=

∞

∑
n=0

P(a)
a1 · · ·an

F (a1)∧·· ·∧F (an)

are equivalently the structure constants of an L∞-algebra a, namely the unique L∞-algebra whose Maurer-Cartan equation (the
higher flatness condition) is the given Bianchi identities:

Flux densities satisfying Bianchi identities are flat L∞-algebra-valued differential forms.
sheaf of flat L∞-algebra-valued differential forms

ΩdR
(
−

insert spacetime

manifold here

; a
)

flat = HomdgAlg

(
CE(a), Ω•

dR(−)
)

=

{systems of flux densities

F (a) ∈ Ω
ra
dR(−)

∣∣∣ satisfying these Bianchi identities

dF (a) = P(a)
({

F (b)
}

b≤a

)}
1≤a≤amax

 
!

Chevalley-Eilenberg

algebra of

CE(
L∞

-algebra

a) =

free diffe
rential graded-

commutative algebra

R
[{ on these graded

generators

f (a)
}

1≤a≤amax

]/( satisfying these differential relations

d f (a) = P(a)
({

f (b)
}

b≤a

))

 
!

L∞
-algebra

a =

graded

vector space spanned

R
〈{ by these graded

generators

f(a)
}

1≤a≤amax

〉 equipped with these higher Lie brackets[
f(a1), · · · , f(an)

]
= P(a)

a1 · · ·an
f(a)
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2.2 Flat nilpotent L∞-algebra-valued forms are cocycles in non-abelian de Rham cohomology

Say that a pair
(
{F (a)

0 }a, {F (a)
1 }a

)
of flat a-valued differential forms are cohomologous if they can can be deformed into each

other, hence if they are concordant, in that they are boundary data of a flat a-form on the cylinder X × [0,1] over X :

deformation of flux densities{
F (a)

0

}
1≤a≤amax

∼
{

F (a)
1

}
1≤a≤amax

:⇔ ∃

Ω•
dR(X)

Ω•
dR
(
X × [0,1]

)
CE(a)

Ω•
dR(X)

{
F0

(a)
}

1≤a≤amaxi0∗

i1∗

{
F̂ (a)

}
1≤a≤amax{

F1
(a)
}

1≤a≤amax

This is an equivalence relation whose equivalence classes we call
the flat a-valued non-abelian de Rham cohomology of X :

deformation class
of flux densities[{

F (a)
}

1≤a≤amax

]
∈

a-valued
de Rham cohomology

HdR
(
X ; lA

)
:=


Ω•

dR(X) CE(lA)

{
F(a)

0

}cocycle (dga-hom)

{
F(a)

1

}
another cocycle

coboundary
(concordance)

/
∼

.

2.3 Nonabelian de Rham cohomology is target of character map on nonabelian cohomology
Classifying spaces for cohomology. Notice that reasonable cohomology theories have classifying spaces:

ordinary cohomology

Hn(X ; Z) ≃ π0 Maps
(

X ,

Eilenberg-MacLane

space

K(Z,n)
)

nonabelian cohomology

H1(X ; G) ≃ π0 Maps
(

X ,

classifi
ng space of

principal G-bundles

BG
)

topological K-theory

K0(X) ≃ π0 Maps
(

X ,

space of

Fredholm
operators

FredC
)

Whitehead
generalized cohomology

En(X) ≃ π0 Maps
(

X ,

stage in

spectrum of spaces

En

)
coHomotopy

πn(X) ≃ π0 Maps
(

X ,
sphere

Sn
)

hence consider:

higher
non-abelian
cohomology

A(X) := π0 Maps
(

X ,
any space

A
)

=


X A

F0

cocycle (map)

F1
another cocycle

coboundary
(homotopy)

/
∼

(16)
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Reduced cohomology and solitonic charges. For the charge quantization of solitonic branes (in §6) one needs to implement
in cohomology theory their localization in space (cf. §1.1) which forces their fluxes to vanish at infinity.

We may observe that a formalization of this phenomenon is already captured by the standard notion of reduced cohomol-
ogy on pointed spaces if we regard the basepoint of a domain space as its point-at-infinity and the basepoint of a coefficient
space as its zero-element

domain space X A coefficient space

basepoint is
point at ∞

{∞} {0} basepoint is
0-element

flux cocycle
in reduced A-cohomology

flux vanishes at infinity

reduced
higher

non-abelian
cohomology

Ã(X) := π0 Maps∗/
(
(X ,∞), (A,0)

)
=


X A

{∞} {0}

F0

cocycle (map)

F1
cocycle

coboundary
(homotopy)

vanishing at ∞

/
∼

Notice that the point at infinity may or may not be reachable by continuous paths in the space:

X a plain space ⊢ X⊔{∞} disjoint point adjoined paths starting in cnctd X never reach ∞

X∪{∞} one-point-compactification paths starting in cnctd X may reach ∞
(17)

Given a pointed space, we may first delete the point at infinity and then adjoint it back disjointly, making it un-reachable:

(X ,∞) a pointed space ⊢
(
X \{∞}

)
⊔{∞} make ∞ un-reachable (18)

Plain cohomology (16) is subsumed in reduced cohomology as the case where the point at infinity is unreachable (17)

A(X) ≃ Ã
(
X⊔{∞}

)
and making ∞ unreachable (18) projects reduced into plain cohomology.

The charges that thus disappear existed only due to their localization, hence are purely solitonic,
while those that do not vanish at ∞ are purely singular (cf. §1.1):

(X ,∞)
pntd space ⊢

purely
solitonic charges

ker
(
A(ειX )

) reduced
cohomology

Ã(X)

reduced
cohomology

for disjoint ∞

Ã
((

X \{∞}
)
⊔{∞}

) plain cohomology

A
(
X \{∞}

) purely
singular charges

coker
(
Ã(ειX )

)
X

(
X \{∞}

)
⊔{∞}

make ∞ unreachable

A(ειX ) =

ειX

(19)

(...)

Notice the mapping space adjunction

Maps∗/
(

X , Maps∗/
(
Y, Z

))
≃ Maps∗/

(
X ∧Y, Z

)
≃ Maps∗/

(
Y, Maps∗/

(
X , Z

))
(20)

With generalized/non-abelian cohomology theory understood via classifying spaces this way, the fundamental theorem of
dg-algebraic rational homotopy theory provides the generalization of the Chern character:
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(1) The rational homotopy type of any nilpotent (classifying) space A is encoded in its Whitehead bracket L∞-algebra lA
whose Chevalley-Eilenberg algebra is the minimal Sullivan model of A:

A
Sullivan model of A

CE
(
lA
)

Chevalley-Eilenberg algebra of
its Whitehead L∞-algebra

Whitehead L∞-algebra

lA =
“infinitesimal version

Lie(ΩA) of loop group”

Eilenberg-MacLane space

K(Z,n) R
[
cn
]/(

dcn = 0
)

classifying space of
principal G-bundles

BG
(invariant polynomials

on the Lie algebra
inv•(g), d = 0

)
space of

Fredholm operators
FredC R

[{
f2k |k ∈ N

}]/(
d f2k = 0

)
stage in

spectrum of spaces
En

(
Sym

(
HomZ(π•(En), R)

)
,d = 0

)
even dimensional

sphere

S2k R
[
g2k, g4k−1

]/(
dg4k−1 = g2k ∧g2k

dg2k = 0

)

rationalization

This is an equivalence between:

weak rational homotopy types of
nilpotent connected spaces with
degreew. fin-dim rational cohomology

≃

quasi-isomorphism types of
nilpotent connective L∞-algebras on
degreew. fin-dim Q-vector spaces

here shown/used after
extension of scalars from Q to R
notice the difference to L∞-algebras of
gauge potentials: su(n), string(n), ...
which are not nilpotent

here: L∞-algebras of gauge fields/fluxes

(2) The higher non-abelian character map chA universally approximates A-cohomology classes by lA-valued de Rham
classes:

non-abelian
cohomology

A(X)

non-abelian
de Rham cohomology

HdR
(
X ; lA

)
[
F

]
class of

A-quantized flux

7!
[(

F (a)
ra

)
1≤a≤dim[π•(A),R]

class of
underlying flux densities

]

specializing to:
ordinary cohomology

Hn
(
X ; Z

)
Hn

dR(X)

nonabelian cohomology
H1

(
X ; G

)
HdR

(
X ; inv(g)

)
topological K-theory

K0
(
X
) ⊕

k∈N
H2k

dR(X)

Whitehead
generalized cohomology

En
(
X
) ⊕

k∈Z
Hn+k

dR

(
X ; πk(E)⊗Z R

)
coHomotopy in

even degree

π2k
(
X
)

HdR
(
X ; lS2k

)
{

G4k−1 ∈ Ω
4k−1
dR (X)

G2k ∈ Ω2k
dR(X)

∣∣∣∣ dG4k−1 = G2k ∧G2k

dG2k = 0

}/
concordance

chA

non-abelian character

de Rham map

Chern-Weil homomorphism

Chern character

Chern-Dold character

coHomotopical character

(21)
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2.4 Higher non-abelian cohomology theories serve as flux quantization laws
We have now seen that

the cohomological sector of classical higher gauge theory exhibits
the flux densities as classes in a-valued de Rham cohomology, a ∈ L∞Alg
which is the character shadow of A-cohomology, for any A ∈ Spaces with lA ≃ a

Thus flux quantization in A-cohomology means to:
impose the constraint that the deformation classes of the fluxes
must be in the image of the character map (the “charge lattice”).

For example, quantization of electromagnetic flux in integral cohomology means to require F2 to have integral periods:

naı̈ve
flux densities

Ω2
dR(X)

EM-flux {F2} H2
dR(X) deformation classes

of naı̈ve flux densities

H2(X ; Z)
integral cohomology

H2
dR(X)int

charge lattice
forget torsion

ch

But this is not enough...

2.5 Flux quantization laws determine the moduli ∞-stack of the higher gauge potentials
Instead of just asking that there exists an A-cohomology class [F ] whose character image is deformation equivalent to the
a-valued flux densities F (a), the A-cocycle F and the gauge equivalence chA(F )≃ {F (a)} should be part of the field content.

In order to achieve this, one needs a unified context which accommodates both

differential forms like flux densities F (a)

& homotopy types of classifying spaces A
in differential homotopy theory

In order to handle differential structures it is convenient to model them on the basic charts.
In order to handle homotopy types of spaces it is convenient to model them as simplicial sets.

For the present purpose we consider:

the site CartSp of abstract smooth charts

an abstract coordinate chart is a Cartesian space Rn for any n ∈ N

an abstract coordinate transformation is any smooth function Rn1 ! Rn2

a covering of coordinate charts

is an open cover
{
Rn ≃Ui ↪! Rn

}
i∈I

which is differentiably good in that
finite non-empty intersections Ui1 ∩·· ·∩Uin
are all diffeomorphic to Rn

Given any site of Charts, serving as local model spaces:
• A generalized space X probeable by such charts is bootstrapped into existence

by declaring the simplicial sets of ways of plotting out abstract coordinate charts inside X :

X : Chartsop sSets

Rn 7! Plots(Rn,X )
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Such simplicial presheaves naturally form an sSet-enriched category sPShCharts ; denote its simplicial hom-complexes by:

sPShop
Charts

× sPShCharts sSet(
X , Y

)
7! Maps

(
X , Y

)
• Any U ∈ Charts becomes a generalized space by declaring its plots to be the morphisms of charts (representable presheaf):

U : Chartsop sSets

V 7! Charts(V,U)

• Consistency of this bootstrap of generalized spaces demands:
(1.) natural identifications between plots by and maps from charts:

U ∈ Charts, X ∈ sPShCharts ⊢ Plots(U, X ) ≃ Maps
(
U , X

)
This is the case by the (enriched) Yoneda lemma.

(2.) that maps of generalized spaces are equivalences — to be denoted ( f : X ! Y ) ∈ W —

iff
locally on all charts

they are
higher gauge equivalence, i.e.:

i.e.: stalk-wise simplicial weak homotopy equivalences
this we enforce by simplicial localization, yielding the ∞-topos H := LWsPShCharts

by this principle: (probes of) spaces are:

locality principle sheaves on charts with

& higher gauge principle values in simplicial sets

= homotopy topos of simplicial sheaves on charts

Specifically for Charts = CartSp we obtain the cohesive ∞-topos SmoothGrpd∞ := LWsPShCartSp

In SmthGrpd∞ all ingredients of higher gauge field theory find a natural home:

smooth moduli space
of flat lA-valued forms

(genuine differential structure)
ΩdR(−; lA)flat : CartSpop sSet

Rn 7! ΩdR(Rn; lA)flat

smooth moduli stack
of deformation classes
of flat lA-valued forms

(rational homotopy type of A)

S ΩdR(−; lA)flat : CartSpop sSet

Rn 7! ΩdR
(
Rn ×∆•

smth; lA
)

flat

homotopy type of A
(geometrically discrete ∞-groupoid) A : CartSpop sSet

Rn 7! Sing(A)
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Now given a choice of flux quantization law A, the correspond-
ing moduli stack Â of potentials or gauge fields is the homotopy
pullback of the sheaf of flux densities along the character map.

This classifies (higher non-abelian) differential cohomology, in
a way that takes care of all “Dirac strings” of gauge fields and of
higher gauge fields (“conts. higher form symmetries”).

moduli stack of higher gauge fields

with A-quantized flux densities

Â ΩdR(−; lA)flat

flux quant. law A SΩdR(−; lA)flat≃ AR .

flux densities

charges

chA

character map =
rationalization over the reals

poten
tia

ls

(pb)
(22)

2.6 Brane intersections and twisted cohomology
Finally, all these considerations generalize to fluxes in twisted cohomology, describing brane intersections.

Twisted RR-fields as a fibration. Notice that the twisted RR-fields (12) form a fibration over the twisting NS B-field whose
fiber is (a torsor over) the untwisted RR-fields.

flux of free
RR-fields

{
F2• ∈ Ω2•

dR(X)
∣∣∣dF2• = 0

}  H3 ∈ Ω3
dR(X)

∣∣∣ dH3 = 0

F2• ∈ Ω2•
dR(X)

∣∣∣ dF2• = H3 ∧ F2•−2

 flux of
RR-fields coupled

to NS B-field

{0}
{

H3 ∈ Ω3
dR(X)

∣∣∣dH3 = 0
}

NS B-field

(pb) (23)

In general, in the case of branes ending on branes, the Bianchi identities for the latter fluxes include polynomial “twists”
by the former

de Rham diff.

dF (a)
ra =

polynomial

Pra

({
F (b)

rb

}
b≤a,

{ twisti
ng fluxes

H(i)
ri

}
1≤ i≤ imax

)
,

twisted higher “Bianchi identities”

and the previous classifying spaces (16) generalize to classifying fibrations

intersected
branes A A�G brane

intersections

BG intersecting
branes

classifying spaces for...

classifying

fibrations

which classify twisted non-abelian cohomology theories:

twisted
non-abelian
cohomology

Aτ(X) :=

vertical homotopy classes
of slice maps

π0 Maps
(
(X ,τ), A�G

)
BG

=


X A�G

BG

twisting cocycle

τ

twisted cocycle
Fτ

F ′
τ

/
∼
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on which the twisted non-abelian character map

twisted
non-abelian
cohomology

Aτ(X)

twisted
non-abelian

de Rham cohomology

HτdR
dR

(
X ; lA

)
[
FH

]
H -twisted class of
A-quantized flux

7!
[(

F (a)
ra

)
1≤a≤dim[π•(A),R]

class of
underlying flux densities

]chA

twisted non-abelian character

(24)

computes the classes of underlying flux densities satisfying twisted Bianchi identities:

[(
F(a)

rA

)
1≤a≤dim[π•(A),R]

]
∈

τdR-twisted
lA-valued

non-abelian
de Rham cohomology

HτdR
dR

(
X ; lA

)
:=



Ω•
dR(X) CE

(
l(A�G )

)

CE(lBG )

(
F(a)

ra

)twisted cocycle (dga-hom)

(
F(a)

ra

)′
coboundary

(concordance)

τdR
twisting cocycle

/
∼

.
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3 Hypothesis H on M-theory
With a general understanding of charge quantization in hand (§2) we are in position to motivate and state Hypothesis H (§3.2).
In order to put this hypothesis in perspective, we first review (§3.1) the widely accepted Hypothesis K that D-brane charges
are quantized in twisted K-theory:

3.1 Hypothesis K — D/NS-brane flux quantization in K-CoHomology.
The conjecture that D-brane charges are quantized in topological K-theory (for more review and pointers see [BMSS19, §1])
originates with the observation [GHV97][MM97] that the differential RR-flux form data (5) which apparently characterizes
D-brane charge has the form of the Chern character on topological K-theory classes (cf. [FM00, p. 8][BMRS08, §2.2]11):

Hypothesis K for vanishing NS flux:

D-brane charges are quantized in topological K-theory, hence
RR-field fluxes are in the Chern character

K(X) HdR(X ; lKU0) =
{

F2• ∈ Ω2•
dR(X)

∣∣∣ dF2• = 0
}/

concordance

ch

(25)

Here we have written the Chern character in the form reviewed in §2 (see [Char, Exp. 7.2]), highlighting (for comparison
below in §3.2) that it may be understood as defined on homotopy-classes of maps to the classifying space KU0 for complex
topological K-theory

complex topological
K-cohomology (deg 0) K(X) =

{
X KU0

K-cocycle
}/

homotopy

and as taking values in differential forms with coefficients in its Whitehead L∞-algebra:

RR-field flux
away from NS5

pre-geometric
equations of motion

of flux densities
dF2• = 0 (5)

corresponding
Sullivan model

dg-algebra (“FDA”)
d f2• = 0

e.g. [FOT08, §1.81, 1.86]

candidate
classifying space KU0 ≃ BU×Z

cohomology theory
classified by

this space

topological K-theory
K(X) := π0Maps(X ,KU0)

e.g. [Kar78, §II Thm. 1.33]

Perspective. Important to notice here is that all formulas in [GHV97][MM97] which led to the original Hypothesis K
(25) concern differential form expressions and as such are purely “rational”. It is (only) the resemblance of the differential
relations satisfied by these differential forms with the image of a character map which suggests that the non-rational domain
of this character map (here: K-theory) may be the true home of the brane charges: Among all cohomology theories with this
form of character images, K-theory seems to be the most natural or immediate choice (for one, it is essentially the only choice
with an established name and geometric interpretation, certainly when the twisting is incorporated below).
An argument meaning to justify the choice of K-theory beyond its rational approximation
was then given in [Wi98, §3], where it is observed that the expected brane/anti-brane
annihiliation (by tachyon condensation in the open super-strings stretching between them)
broadly resembles the Grothendieck equivalence relation which famously expresses (eg.
[Kar78, §II 1]) the K-cohomology group K(X) for a compact space X as the equivalence
classes of pairs of vector bundles and “anti-bundles” (virtual bundles) subject to a relation
expressing that equal but opposite vector bundles cancel.

V W W ⇌ V
pair

creation

pair
annihilation

D-branes anti-
D-brane

11Starting with [MM97], many authors insist on multiplying the Chern character with a differential form representative of the square root
√

Â of the A-roof
genus of the tangent bundle of spacetimes before referring to it as D-brane charge. But since

√
Â is multiplicatively invertible (being a unit plus a sum of

inhomogeneous differential forms which are nilpotent under wedge product) this is not intrinsic to the notion of D-brane charge and may be disregarded for
the purpose of charge quantization (cf. [FM00, ftn. 12]) — its role is rather in making the Chern character natural under push-forward (cf. [BMRS08, §2]).
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Hypothesis K in the presence of NS-flux. In view of our above discussion, the more general conjecture [Wi98, §5.3][BM01]
that D-brane charges in the presence of NS 5-brane charges are classified by 3-twisted K-theory (see [GS22] for more) is now
fairly immediate from the observation (cf. [Char, Rem. 10.1]) that the differential relations satisfied by the twisted Chern
character are just the pregeometric equations of motion (12):

RR-field flux
in presence of NS-flux

pre-geometric
equations of motion

of flux densities

dF2• = H3 ∧F2•−2
dH3 = 0 (12)

corresponding
relative Sullivan model

dg-algebra (“FDA”)

d f2• = h3 ∧ f2•
dh3 = 0 [FHT07, p. 6]

[BMSS19, Lem. 2.31]
candidate

classifying fibration KU0 �BU(1)−! B2U(1)

cohomology theory
classified by
this fibration

twisted K-theory
Kτ(X) := π0ΓX

(
τ∗(KU0 �BU(1))

) [FHT07, (2.6)]
[AS04, Def. 3.3]

(26)

And so the general conjecture for D-branes, widely (though not universally) expected, is this:

Hypothesis K:

D-brane charges are quantized in twisted topological K-theory, hence
RR-field fluxes are in the twisted Chern character

Kτ(X) Hτ
dR

(
X ; lB2U(1)KU0 �BU(1)

)
=

{
F2• ∈ Ω2•

dR(X)
∣∣∣ dF2• = H3 ∧F2•−2

}/
concordance

ch

(27)

Here we have written the twisted Chern character in the form reviewed in §2 (see [Char, Exp. 6.6, Prop. 10.1]), highlighting
(for comparison below in §3.2) that it is defined on homotopy classes of sections of pullbacks along the twisting map of the
universal KU0-bundle ([FHT07, (2.6)][Char, Exp. 3.4]) and takes values in differential forms with coefficients in its relative
Whitehead L∞-algebra:

twisted
topological K-theory Kτ(X) =


X KU0 �BU(1)

B2U(1)

τtwist

cocycle
/

rel homotopy

In the next section §3.2 we develop Hypothesis H in close analogy to this now classical argument for Hypothesis K, which
is possible due to the understanding [Char] of the (twisted) Chern character on K-theory as just a special case of a general
notion of (twisted) characters on non-abelian generalized cohomology theories whose images capture also non-linear Bianchi
identities such as those of the C-field in 11d supergravity.
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3.2 Hypothesis H — M-brane flux quantization in CoHomotopy.
We are finally ready to motivate, state and explain Hypothesis H. To make it transparent, we start with its formulation on
flat spacetimes and then incrementally bring in the coupling to gravitational background charges in the form of appropriate
tangential twisting of the charge cohomology theory. The logic [Sa13, §2.5][HpH1][GS1] is summarized by the following
schematic diagram:

Pregeometric C-field equations of
motion in 11d supergravity are valued
in Whitehead L∞-algebra of 4-sphere

C-field charge quantization
is classified by the 4-sphere,
hence is in 4-Cohomotopy.

Since the only other field in 11D
is (super-)gravity, this must be
tangentially twisted 4-Cohomotopy

Pure M2-brane charge among
all M-brane charge is isolated
by quaternionic Hopf fibration/
Atiyah-Penrose twistor fibration.

For tangential twist to respect
pure M2-brane charge it must be
by Spin(1,2)×Sp(2)-structure

Hypothesis H
C-Field flux/M-brane charge is quantized

in tangentially Sp(2)-twisted 4-Cohomotopy

Alongside the development of the hypothesis we highlight here its foremost implications on M-brane charge quantization:
• (35) the shifted flux quantization of the C3-field and hence of M5-brane charge,
• (46) the shifted flux quantization of the C6-field and hence of M2-brane charge (“Page charge”).

Further implications are discussed in following sections, notably the resulting topological M5-brane model in §4.
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C-Field flux on flat spacetimes. By the discussion in §2, the admissible flux quantizations of the pre-geometric C-field flux
(8) in 11-dimensional supergravity on flat spacetimes are classified by spaces whose minimal Sullivan dg-algebra satisfies
the analogous equations. But in rational homotopy theory just these equations are well-known as the Sullivan model for
the 4-sphere! [Sa13, §2.5], see also [Sphe, §2][QStruc, p. 14]. This means, by the discussion in §2, that the cohomology
theory classified by the 4-sphere is an admissible quantization law for the C-field flux in 11-dimensional supergravity: This
cohomology theory is 4-Cohomotopy:

C-field flux
on flat spacetimes

pre-geometric
equations of motion

of flux densities

dG4 = 0
dG7 =− 1

2 G4 ∧G4 (8)

corresponding
Sullivan model

dg-algebra (“FDA”)

dg4 = 0
dg7 =− 1

2 g4 ∧g4
e.g. [De76, Exp. 3.5 (a)]
[FHT00, p. 142]
[Me15, §1.2]candidate

classifying space 4-sphere: S4

Whitehead bracket
L∞-algebra

π3(ΩS4)⊗R = R⟨γ3⟩
π6(ΩS4)⊗R = R⟨γ6⟩
[γ3,γ3] = γ7

cf. [CJLP98, (2.6)][LLPS99, (3.4)]
[KS03, (75)] [BNS04, (86)]
[Sa10, (4.9)]

cohomology theory
classified by

this space

4-Cohomotopy:
π4(X) := π0Maps(X ,S4)

[Pontrjagin1938]
[Spanier1949]
[Peterson1956]

plain 4-coHomotopy π
4(X) :=

 spacetime
X

4-sphere
S4c3

cocycle
/

homotopy

Moreover, the 4-sphere is the minimal such choice of flux-quantization law for 11-dimensional supergravity, in that it is the
smallest CW-complex with this property. In this sense the universal choice of C-field flux quantization is by 4-cohomotopy.
The hypothesis that this universal choice is the correct choice of flux-quantization for M-theory is:

Hypothesis H over flat spacetimes ([Sa13, §2.5][HpH2]):

M-brane charges are quantized in 4-cohomotopy, hence
C-field fluxes are in the 4-cohomotopical character

π4(X) HdR(X ; lS4) =

 G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

∣∣∣∣∣∣ dG4 = 0,
dG7 = − 1

2 G4 ∧G4

/
concordance

ch
π4

(28)

Perspective. To re-iterate how this hypothesis comes about: The general theory of flux quantization (§2) says that any
cohomology theory flux-quantizing the C-field fluxes (8) has a classifying space whose Sullivan model has as generators the
pre-geometric field species subject to differential relations of the same form as the pre-geometric Bianchi identities of the
C-field; and rational homotopy theory shows that these are precisely the spaces of the rational homotopy type of the 4-sphere.
Among all of these, the 4-sphere itself (and hence the coHomotopy cohomology theory that it classifies) is in some sense the
canonical/universal choice — therefore it is natural to hypothesize that this is the choice needed for M-theory.

Should Hypothesis H be false (not quite correspond to M-theory), it would mean that we have to add cells to the 4-sphere
(without changing its rational homotopy type) in order to find the correct classifying space for flux quantization in M-theory.
Since there are infinitely many choices involved in doing so, it will help to know how Hypothesis H fails, if it does, as this will
indicate how the canonical choice of classifying space S4 needs to be adjusted. In this sense the analysis of the predictions of
Hypothesis H is essentially an inevitable step towards understanding charge-quantization in M-theory, either way.
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Cohomotopical M-brane charges and homotopy groups of spheres. The character map in (28) is given by the abstract
rationalization construction described in §2, but in degree 4 we may readily describe it explicitly: Given a cocycle c3 : X −! S4

in 4-cohomotopy, the corresponding 4-flux density G4 is the pullback along c3 of the volume form dvolS4 , hence its real
cohomology class may be identified with the pullback of the fractional Euler class 1

2
χ4 on the 4-sphere:

cocycle in 4-cohomotopy X S4

induced 4-flux Ω•
dR(X) Ω•

dR(S
4)

G4  − [ dvolS4

induced M5-charge
in integral cohomology H•(X ; Z

)
H•(S4; Z

)
≃ Z

[ 1
2

χ4
]

[G4]  − [ 1
2

χ4

c3

c∗3

c∗3

(29)

Hence Hypothesis H implies, first of all, that singular flat M5-branes R1,5 ↪! R1,10 carry integral charge, as expected.

Generally, Hypothesis H implies that brane charges on flat spacetimes are given by the homotopy groups of the 4-sphere
(cf. [HpH2]):

singular
p-brane charge π4

(
R1,10 \R1,

p︷︸︸︷
9−n

)

=

4th co-homotopy group
of n-sphere π4(Sn) =

{
Sn S4c3

}/
homotopy

= πn(S4) n-th homotopy group
of 4-sphere

=

solitonic
p-brane charge π4

(
R1,

p︷ ︸︸ ︷
10−n ×Rn

∪{∞}

)
(30)

n = 1 2 3 4 5 6 7 8 9 10 · · ·

πn(S4) 0 0 0 Z Z2 Z2 Z×Z12 Z2 ×Z2 Z2 ×Z2 Z24 ×Z3 · · ·

exotic branes
(§6.2)

M5 M2

All these groups are finite (hence are “torsion effects” predicted by charge-quantization not seen on differential form
data) except in exactly two dimensions, corresponding to the existence of integer charged singular M5-branes and M2-branes,
respectively:

cohomotopy charge of flat
singular M5-branes π4

(
R1,10 \R5,1

)
≃ π4

(
R5,1 ×R⊔{∞}×S4

)
≃ π4

(
S4
)

≃ π4
(
S4
)

≃ Z

cohomotopy charge of flat
singular M2-branes π4

(
R1,10 \R1,2

)
≃ π4

(
R1,2 ×R⊔{∞}×S7

)
≃ π4

(
S7
)

≃ π7
(
S4
)

≃ Z⊕ torsion

To amplify this point: Any classifying space for charge quantization in 11d which implies integer-charged singular p-branes
exactly for the expected values p = 2 and p = 5 will need to have non-torsion homotopy groups precisely in degree 9−2 = 7
and 9−5 = 4. The 4-sphere is the minimal cell complex with this property.

The reason for this is the existence of the quaternionic Hopf fibration:

Cohomotopical M2-brane charge and the quaternion Hopf fibration. The generator of the integer summand Z ∈ π7(S4)
(30) is the homotopy class of a S3-fibration called the quaternionic Hopf fibration:

S3

quaternionic
Hopf fibration

S7

S4

hH

[
S7 hH−! S4] = 1 ∈ Z ↪! π7(S4) .

But this means that we may regard S7 as the classifying space of integral M2-brane charges and the quaternionic Hopf fibration
as classifying the cohomology operation which injects pure M2-brane charge into the full set of M-brane charges:
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S7 ∈ π7(X) pure
M2-brane charges

on flat spacetimes X

X S4 ∈ π4(X) full
M-brane charges

hH (hH)∗
c6

c3 =(hH)∗c6

(31)

Remark: Flat solitonic M-branes. With the prediction of flat singular 5-branes, Hypothesis H necessarily also predicts
(30) integer-charged solitonic 6-branes (cf. p. 5). We discuss in §6 (following [Qnt1]) how these may be identified with the
non-singular (and thus “solitonic”) 6-brane-like solutions of 11d-supergavity known as the KK-monopole, the M-theoretic
incarnation of D6-branes.

Cohomotopy as K-theory over F1. The argument for Hypothesis H to this point is the fairly complete M-theoretic analog of
the original argument for D-brane charge quantization in K-theory from inspection of the nature of the flux forms, as reviewed
above in §3.1. There we highlighted that, beyond this “rational” evidence, the particular choice of topological K-theory as
the charge quantization law for D-branes is further justified by the observation that the Grothendieck-equivalence relation on
virtual vector bundles which defines topological K-theory reflects, at least informally, the expected cancellation of Chan-Paton
gauge bundles under expected brane/anti-brane creation/annihilation processes.

But the characterization in terms of such Grothendieck equivalence relations is not specific to “topological” K-theory: It
applies (in degree 0) also to “algebraic” K-theory over any ring.

If we forget the non-linear effects of non-abelian Cohomotopy by passing to its shadow in stable Cohomotopy (80),
then the same plausibility check regarding brane/anti-brane annihiliation holds, in that stable CoHomotopy is also a form of
K-theory, namely12 the algebraic K-theory of the absolute base “field” F1.

12For pointers see ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
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Coupling to gravitational charges and tangential twisting. We motivate the generalization of Hypothesis H to spacetimes
which are not necessarily flat:

As remarked in (7), 11-dimensional supergravity stands out in its C-field being the only field besides that of gravity. This
means that possible twistings of the C-field flux-quantization can only be by the gravitational field, namely by the Spin-frame-
bundle of spacetime X (the principal bundle underlying its tangent bundle). By the general rules of twisted cohomology (§2.6)
and assuming Hypothesis H on flat spacetimes (28) this means that possible twistings are given by ∞-actions of (subgroups of)
the Spin-group on the 4-sphere. The canonical13 such action is that of Spin(5) via the defining action of SO(5) on S4 = S(R5)
regarded as the unit sphere in R5.

This leads to tangentially twisted 4-cohomotopy theory [HpH1, §2.1], consisting of homotopy classes of sections of the
4-sphere bundle associated with a Spin(5)-structure τ on spacetime:

tangentially twisted
4-coHomotopy π

4+τ(X) :=


spacetime

X

universal orthogonal
4-sphere bundle

S4 �Spin(5)

BSpin(D) BSpin(5)

⊢Fr(X) τtwist

c3
cocycle

/
homotopy

(32)

(Such nonabelian/unstable twisted cohomotopy had previously been considered in [Cr03, Lem. 5.2], for more see [HpH1,
§2.1].)

Remark: The role of G-structure [HpH1, §2.2]. Using the tangentially twisted 4-cohomotopy (32) for flux quantization
means that a choice of Spin(5)-structure on spacetime is part of the flux-quantized C-field datum (or rather of isomorphic but
subtly different Sp(2)-structure, which we come to in a moment.) Lest this seems overly restrictive, notice that the structure
group of the tangent bundle may still be all of Spin(1,5)×Spin(5) in order that τ exists. On the other hand, the existence
and choice of a cocycle in π4+τ(X) then equivalently means that and how the Spin(5)-structure factor is further reduced to
Spin(4), due to

S4

universal orthogonal
4-sphere bundle
S4�Spin(5)

Spin(5)/Spin(4) BSpin(4)

∗ BSpin(5)

∼

(pb)

(33)

Shifted C-field flux quantization. Hence the generalization of Hypothesis H (28) away from the special case of flat space-
times should say that C-field flux is quantized not in plain 4-cohomotopy π4, but in tangentially twisted 4-cohomotopy π4+τ

(32). In a moment we will refine this statement a little further, but first to record the following:
The first non-trivial check of the tangential twisting is its implication of the notorious shifted integral flux quantization

of the 4-flux density, an unusual-looking condition which however is a widely expected hallmark of M-theory (originally
proposed in [Wi97a][Wi97b], see also [Wi00, §2][GS02, p. 21][CS12a][CS12b]) – it says that not the de Rham cohomology
class of G4 but its shift by one fourth of the Pontrjagin 4-form p1(∇) on spacetime (for any connection ∇ on the tangent
bundle) is the real image of an integral cohomology class:

M5-brane charge image
in ordinary cohomology

class of
shifted 4-flux density[

G̃4
]

:=
[
G4 +

1
4 p1

]
∈

integral cohomology

H4(X ; Z)−! H4(X ; R) . (34)

Notice that a deeper cohomological understanding of this condition was the motivation for the seminal development of abelian
(i.e. stable) generalized differential cohomology in [HS05]. But in our context of non-abelian cohomology the condition falls
out naturally:

Namely ([HpH1, §3.4]), the integral cohomology of S4 � Spin(5) ≃ BSpin(4) (33) is generated from 1
2 p1 and the com-

bination 1
2

χ4 +
1
4 p1 [CV98a, Lem 2.1]. But since the pullback of half the Euler class, 1

2
χ4, being the volume form on the

S4-fibers [BC98, §2 ], is interpreted (29) as the G4-flux under Hypothesis H, and since the pullback of the universal 1
4 p1 is the

13There is an isomorphic but subtly different action of Sp(2)≃ Spin(5) on S4, which we come to further below.
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actual such class on spacetime X by the nature of tangential twisting, this means that G4 +
1
4 p1 is the image of the pullback

of an integral form, and hence itself integral ([HpH1, §3.4]):

cocycle in
tangentially twisted

4-cohomotopy
X S4�Spin(5) ≃ BSpin(4)

BSpin(d)

induced charge in
real cohomology H•(X ; R

)
H•(BSpin(4); R

)
= R

[
p1, χ4

]
[
p1(∇)

]
 − [ p1 first Pontrjagin class[

G4
]

 − [ 1
2

χ4 fractional Euler class

induced charge in
integral cohomology H•(X ; Z

)
H•(BSpin(4); Z

)
= Z

[
1
2 p1,

1
2

χ4 +
1
4 p1

]
integral class of

shifted C-field flux

[
G4 +

1
4 p1(∇)

]︸ ︷︷ ︸
[G̃]

 − [ 1
2

χ + 1
4 p1

universal integral
characteristic class

c3

⊢Fr(X)

c∗3

c∗3

(35)

Isolating M2-brane charge on curved spacetimes [HpH1, §2.3]. We saw in (31) that the quaternionic Hopf fibration

S4 hH−! S4 serves to identify pure M2-brane charge inside all M-brane charges, under Hypothesis H on flat spacetimes. In order
to retain such an identification as we generalize M-brane charges to curved spacetimes via tangentially twisted cohomotopy
(32), we need to find a Spin-group which acts on both S4 and S7 in a compatible way, namely such that the Hopf fibration is
equivariant under this action.

Remarkably, the quaternionic Hopf fibration is indeed Spin(5)-equivariant — or rather it is equivariant under the isomor-
phic quaternionic unitary group Sp(n) ≃ U(n,H)⊂ GL(n,H) (cf. [M5b, §A]) in quaternionic dimension 2, via its canonical
action on S7 = S(H2), due to the following coset-space realization of the quaternionic Hopf fibration [HT09, Tab. 1][GWZ,
Prop. 4.1]:

S3 S7 S4

Sp(1)×Sp(1)
Sp(1)

Sp(2)
Sp(1)

Sp(2)
Sp(1)×Sp(1)

Spin(4)
Spin(3)

Spin(5)
Spin(3)

Spin(5)
Spin(4)

fib(hH)

∼

hH

∼

Sp(2)

∼∼

Sp(2)

∼

ι

id

∼

id
q 7!(q,1)

∼

(36)

An important subtlety here is that Spin(5) and Sp(2), while isomorphic as abstract Lie groups, are not isomorphic as
subgroups of Spin(8), but as such they are exchanged under the triality automorphism tri : Spin(8)−! Spin(8). This subtlety
is ultimately responsible for the appearance of the “one-loop term” I8 (14) from Hypothesis H (see below), in that [HpH1,
(97)]:

BSp(2) BSpin(5)

BSpin(8) BSpin(8)

H•(BSp(2); R
)

H•(BSpin(5); R
)

1
2 p1  [ 1

2 p1

( 1
4 p1)

2 −24 · I8  [ 1
4 p2

∼

Btri
∼

(Btri)∗
(37)
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Namely, by [CV97, 2.2, 4.1, 4.2] and [CV98b, 8.1, 8.2] we have, respectively:

H8
(
BSpin(8)

)
H8

(
BSpin(8)

)
H8

(
BSp(2)

)
1
2 p1 ↔ 1

2 p1 7! 1
2 p1

1
4

(
p2 − ( 1

2 p1)
2
)
− 1

2
χ8 ↔ −χ8 7! − 1

2

(
p2 − 1

4 (p1)
2
)

and hence 1
4 p2 ↔

−χ8 +
1
4 (

1
2 p1)

2

− 1
2

(
1
4

(
p2−(

1
2 p1)2

)
− 1

2
χ8

) 7! ( 1
4 p1)

2 − 1
2

(
p2 − 1

4 (p1)
2)︸ ︷︷ ︸

=:48·I8

(Btri)∗

(38)

This way we arrive at the general form of (28):

Hypothesis H ([HpH1]):

M-brane charges are quantized in tangentially Sp(2)-twisted 4-cohomotopy, hence
C-field fluxes are in the twisted 4-cohomotopical character

π4+τ(X) Hτ
(
X ; lS4

)
=

 G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

)
∣∣∣∣∣∣ dG7 = − 1

2 G̃4 ∧ (G̃4 − 1
2 p1)−12 · I8

dG4 = 0

/
concordance

chτ

(39)

tangentially
Sp(2)-twisted

4-coHomotopy
π

4+τ(X) :=



spacetime
X S4 �Sp(2)

universal orthogonal
4-sphere bundle

S4 �Spin(5)

BSp(2) BSpin(5)

BSpin(1,2)
×BSpin(8) BSpin(8) BSpin(8)

⊢
Fr(X

)

tangentstructure

τtwist

c3
cocycle

(pb)

∼

∼
Btri

/
rel. homotopy

(40)

That the twisted cohomotopical character is of this form (39) follows [HpH1, Prop. 3.8] essentially by the formula for the Sul-
livan model of Spin(5)-associated S4-fibrations, which in itself gives [HpH1, Prop. 2.5] d2G7 = −G4 ∧G4 +

1
4 p2(∇

Spin(5))

and then plugging in the expression for 1
4 p2 from (37) to account for the fact that the twist is actually by Sp(2)-structure.

Finally we have cleaned up the formula by completing the resulting square in terms of the shifted flux density G̃4 (34):

−G4 ∧G4 +
1
4 p1 ∧ 1

4 p1 = −(G4 +
1
4 p1)∧ (G4 − 1

4 p1) = −G̃4 ∧ (G̃4 − 1
2 p1)

Notice that the factor Spin(1,2) may be included in the spacetime tangent structure in (40) without changing this conclusion
nor that of the shifted flux quantization (35), since it contributes neither to p1 nor to p2.

Remark: Normalization of the one-loop term in the Bianchi identity. The factor of “12” in (39) may seem unex-
pected, since an old argument [SVW96, p. 2][DM97, (1)] (which, incidentally, neglects the shifting (34)) might lead one to
expect a factor of “1” here, instead — but this depends in turn on the prefactor which translates between the integrated flux
density

∫
S7 G7 and the actual number of M2-branes. In [HpH1, p. 12-13] we argue that proper counting of 2-brane charge in

Cohomotopy does resolve this apparent discrepancy.
On the other hand, we discuss next that in order for the “M2 Page-charge” to be integral and the M5-brane sigma-model

in the background of M2-brane flux to be well-defined, this characteristic polynomial has to vanish (an M-theoretic form of
anomaly cancellation by “Fivebrane structure”), in which case this issue disappears anyway, see (47) below.

M2-charge quantization and the Hopf-Wess-Zumino coupling in the M5. Hypothesis H in the form (39) implies (by
design, recalling (31) and (36)) that a notion of pure M2-brane charge is retained after M-brane charge quantization in
twisted Cohomotopy, namely given by those twisted 4-Cohomotopy cocycles which factor through the BSp(2)-parameterized
quaternionic Hopf fibration hH � Sp(2) up to homotopy, or more specifically, by the choice (c6,b2) of such a homotopy-
factorization:
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S7�Sp(2) ∈ π3+c3(X) π7+τ(X) pure
M2-brane charges

X S4�Sp(2) ∈ π4+τ(X) full
M-brane charges

BSp(2)

hH�Sp(2) (hH�Sp(2))∗
c6

c3 =(hH�Sp(2))∗(c6)

τ

b2 (41)

Here for fixed c3 we may interpret the compatible M2-brane charges (c6,b2) with the c3-twisted non-abelian cohomology
classified by S7 � Sp(2). This is a twisted form of 3-Cohomotopy, because the homotopy fiber of hH � Sp(2) is still the
3-sphere ([GS1, Lem. 2.8]):

S3 S7 �Sp(2)

∗ S4 �Sp(2)

(pb)
hH�Sp(2) (42)

As such we have the corresponding character differential forms for pure M2-brane charge, which pick up a 3-form flux H3
([HpH1, Prop. 3.20], cf. (63) below):

implication of Hypothesis H on M2-brane charge:

pure M2-brane charges in given background M2/M5-charge c3 are quantized in c3-twisted 3-cohomotopy, hence
(C6,B2)-field fluxes are in the twisted 3-cohomotopical character

π3+c3(X) Hc3
dR

(
X ; l

(
S7�Sp(2)

))
=


G4 ∈ Ω4

dR(X)

G7 ∈ Ω7
dR(X)

H3 ∈ Ω3
dR(X)

∣∣∣∣∣∣∣∣
dG4 = 0,

dG7 = − 1
2 G̃4 ∧ G̃4 − 1

2 p1 −12 · I8

dH3 = G̃4 − 1
2 p1

/
concordance

ch

(43)

The literature on M2-brane charge expects (though throughout ignoring the shift by p1 in G̃4 (34)) that given such an
H3-“potential” in 11d supergravity (then typically regarded as the C-field gauge potential and denoted “C3”) the following
expression — known as the Page charge — is the M2-brane charge [Pa83, (8)][DS91, (43)][BLMP13, p. 21]:

M2-brane charge image
in ordinary cohomology [G̃7] :=

[
G7 +

1
2 H3 ∧ G̃4

]
∈ H7(X ;R

)
. (44)

The same expression gives the “Hopf-Wess-Zumino term” in the M5-brane sigma-model (we come to this in §4), hence the
coupling of the fundamental five-brane to the background C-field analogous to the coupling of an electron the electromagnetic
field.

What had remained open (and hardly discussed at all) is that, how and why this term is integral: Regarded as M2-brane
charge such an integrality is necessary at least to justify common discussion of M2-brane counting, while regarded as the
Hopf-WZ term for the M5-brane such an integrality is necessary for the M5-brane sigma-model to actually be well-defined
(anomaly-free) — by the exact same argument of Dirac charge quantization, up to degree, we expand on this in §4.

Experience with the NS5-brane sigma-model suggests that its anomaly-cancellation requires a topological condition on
spacetime that is a higher-degree analog of “String structure” (whence called “Fivebrane structure” in [SSS09]) requiring an
degree-8 polynomial in the Pontrjagin forms of spacetime to vanish.

The M-theoretic analog of Fivebrane structure as implied by Hypothesis H is the trivialization of the Euler class, hence of
the “one loop term” χ8 = 24 · I8 (38), which we may refer to as M5-brane structure [M5b, Exp. 3.2 ]:

BŜp(2) ∗

X B
(
Sp(1,2)×Sp(2)

)
BSp(2) BSpin(5) B8Z

(pb)

⊢Fr(X)

M5-brane structure

∼
χ8

(45)

in that this is what, under Hypothesis H, implies the (half-)integrality of the M2-brane Page charge, hence of the Hopf-WZ
terms of the M5-brane sigma-model:
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Theorem 3.1 ([M5a, Thm. 4.8]). Hypothesis H (39) implies that, on spacetimes admitting M5-brane structure (45), the
resulting M2-brane charge quantization (43) makes twice the Page charge/Hopf-WZ term (44) an integral cohomology class:

M2-brane charge image
in ordinary cohomology

class of
shifted 7-flux density[
2G7 +H3 ∧ G̃4

]
∈
integral cohomology

H7(X ;Z
)
−! H7(X ;R

)
(46)

Discussion and interpretation of the factor of 2 here is given in [M5a, (3)][M5b, p. 3].

For example, the condition of M5-brane structure is satisfied if the structure group reduces further along Sp(1)×Sp(1) ↪−!
Sp(2) (since the Euler of a direct sum of vector bundles is the cup product of that of the summands, but the Euler 8-class
of a single BSp(2) vanishes by degree reasons). This special case subsumes the important example of M5-branes at ADE-
singularities, see [M5e, (1)].

Hence if one insists — which is reasonable — that M-brane charge quantization should imply Page charge quantization
(46) and thus conistency of the M5-brane sigma model in charged backgrounds, then one will want to include the demand of
M5-brane Ŝp(2)-structure (45) into the hypothesis (39):

Hypothesis Ĥ ([M5a]):

M-brane charges are quantized in tangentially Ŝp(2)-twisted 4-cohomotopy, hence
C-field fluxes are in the twisted 4-cohomotopical character

π4+τ(X) Hτ
(
X ; lS4

)
=

 G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

)
∣∣∣∣∣∣ dG7 = − 1

2 G̃4 ∧ (G̃4 − 1
2 p1)

dG4 = 0

/
concordance

chτ

(47)

tangentially
Ŝp(2)twisted

4-coHomotopy
π

4+τ(X) :=



spacetime
X S4�Ŝp(2) S4 �Sp(2)

universal orthogonal
4-sphere bundle

S4 �Spin(5)

BŜp(2)
M5-brane structure

BSp(2) BSpin(5)

BSpin(1,2)
×BSpin(8) BSpin(8) BSpin(8)

⊢
Fr(X

)

tangentstructure

τtwist

c3
cocycle

(pb) (pb)

∼

∼
Btri

/
rel. homotopy

(48)

Hypothesis H for heterotic M-theory. Finally, Hypothesis H gen-
eralizes to (and maybe comes into full bloom) in “heterotic M-
theory” (Hořava-Witten theory), where Cohomotopy is enhanced to
“twistorial Cohomotopy”, now represented by the “twistor space”
CP3 covering the 4-sphere through the Calabi-Penrose fibration.
This is discussed in [GS1][GS2].
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4 Resulting M5-brane model
After a brief recollection of the meaning of fundamental sigma-model branes in §4.1, we survey in §4.2 how Hypothesis H
implies global consistency of the (Hopf-)Wess-Zumino gauge coupling of the fundamental 5-brane sigma model by implying
flux quantization of the worldvolume B-field in twisted 3-Cohomotopy underlying which is a “nonabelian gerbe field” for
worldvolume gauge group Sp(1)≃ SU(2) — this result is from [HpH1, §3.7][M5a][M5b].14

4.1 Fundamental sigma-model branes
Besides the singular/solitonic classical branes of §1 there are supposed to be “fundamental” or “sigma-model”-branes which
are not imprinted on flux, but which are effected by flux. Here

fundamental brane : singular brane

is like

fundamental particle : black hole

in that fundamental branes are supposed to be “massless” cousins of black branes, which have analogous attributes but instead
of impacting spacetime by their backreaction on it, they trace out trajectories φ : Σ1+p −! X in a fixed background spacetime
X subject to forces exerted by spacetime fields. These forces include the force of gravity and the generalized Lorentz force
exerted by the background gauge field. In the spirit of pre-geometric fluxes as discussed in §1.2 here we focus on these
Lorentz forces.

In fact, fundamental branes include, with the fundamental particles that they derive their name from, the most prominent
brane species: notably the fundamental string which gives its name to string theory and the fundamental membrane from
which the term M-theory is derived:

flux densities on spacetime σ -model with target spacetime

black branes
singular

source of flux

fundamental brane
subject to forces from such

background flux

electromagnetism magnetic monopole fundamental particle
(electron)

string theory NS5-brane fundamental string

M-theory
M5-brane fundamental membrane

M2-brane fundamental fivebrane

(49)

The fundamental 0-branes in electromagentism are simply the electrons – these being fundamental particles in the sense
of particle physics, whence the general term “fundamental brane”.

The following graphics shows15 the generic trajectory of an electron in the vicinity of a magnetic monopole: The Lorentz
force felt by the electrically charged electron when moving in a background magnetic field deforms the otherwise straight
trajectory into a helix whose radius of curvature is the smaller the stronger the magentic flux density. In the case of the
magnetic field sourced by a monopole (cf. p. 6) this makes the electron trajectories lie on a cone in space whose vertex is the

14Hypothesis H also implies information about the dynamical (i.e. geometric, non-topological) sector of the Sp(1)-gauged M5-brane sigma-model: this is
discussed in [M5d][M5e].

15This is discussed for instance in Ferraro (1956) Electromagnetism Theory, §137. The helical trajectory in (50) is adapted from Ferraro’s Fig. 161.
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singular locus of the monopole:

magnetic monopole spacetime

trajectory

electron

worldline trajectory spacetime

Σ1+0 X

R1,0 R1,3 \R1,0 R1,0 ×R⊔{∞}×S2

φ

≃

(50)

This means in particular that there exist circular electron trajectories which lie entirely in a plane in space and are periodic
in time, winding around one of the radial flux lines. Since the Faraday tensor F2 sourced by a magnetic monopole has no
temporal (electric field) component, we may consistently ignore the temporal translation of these trajectories and understand
them as maps from a circular “worldline” into space:

worldline trajectory space gauge potential gauge coupling action functional
⇝ Lorentz force

S1 R⊔{∞}×S2 B̂2Z exp
(

2πi
∫

S1φ ∗Â1
holonomy

)
∈ R/Z

Ω2
cl(−)

φ Â1

F2

(51)

The gauge-coupling part of the “exponentiated action” (in the sense of classical Lagranian physics) of such a trajectory is the
holonomy of the gauge potential 1-form Â1 (§2.5) around this closed curve, in that the variation of this functional gives the
contribution to the Euler-Lagrange equations of motion of the electron which expresses the Lorentz force.16

Recall here that it is the definition of the differential cohomology coefficients B̂2Z (§2.5) which implements the Dirac
charge quantization condition and makes the action functional take values in R/Z ≃ U(1):

Ω2
dR(−)flat

electron
worldline

Σ1+0 X B̂2Z B2R

B2Z

φ

F2

background flux density

background magnetic charge

Â1

“vector potential”
gauge field

ch

(pb)
(52)

Fundamental p-brane sigma-models. In straightforward generalization of the above situation for fundamental particles,
one considers maps into space(-time) from p+ 1-dimensional manifolds Σ1+p — which we may assume to be closed, for
simplicity and following (51) — regarded as worldvolumes of fundamental p-branes. These may have higher Lorentz-force

16See for instance Misner, Thorne & Wheeler (1973) Gravitation, Exc 7.2 on p. 179, or Frankel (1997) The Geometry of Physics, §16.4b.
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couplings to higher background gauge fields Âp+1 represented by cocycles in differential cohomology of degree p+2:

p-brane worldvolume embedding field target spacetime higher gauge potential

Σ1+p X B̂p+2Z

Bp+1R/Z
moduli stack of (flat)

differential cohomology

φ

φ ∗Âp+1

Âp+1

(53)

C∞
(
Σ1+p, X

)
H p+1

(
Σp+1;R/Z

)
R/Z

φ 7−!
[
φ ∗Âp+1

]
=: exp

(
2πi

∫
Σp+1

φ ∗Âp+1
gauge coupling/
Lorentz force/

Wess-Zumino term

)
exponentiated action functional

(54)

This may be understood as defining (the gauge-coupling topological sector of) a field theory on Σ1+p whose:
• Fields are the brane trajectories, namely the smooth maps φ : Σ1+p −! X – then often called “embedding fields”, though

not not actually required to constitute an embedding Σ1+p ↪! X .
• Action functional is the higher holonomy functional (54).

Such field theories – whose fields are maps to a given target space X this way – are known as non-abelian sigma-models, for
historical reasons. For the full geometric dynamics of fundamental branes one is to add another contribution (the “Nambu-
Goto action”) to the action functional, which we disregard here (in the pre-geometric spirit of §1.2), so that the “gauge
coupling sector” of fundamental p-branes which we retain may be understood as a worldvolume topological field theory,
here a topological sigma-model also called a homotopical field theory, see [MW20] for detailed discussion (at the classical
non-quantum level) in the case at hand.

Fundamental membrane sigma-model. For example, the sigma-model for the fundamental membrane propagating along a
trajectory φ : Σ1+2 −!U ↪! X inside a chart U of an 11d supergravity target spacetime X is meant [BST87][HS05, §4.4] to
couple to the background C-field flux G4|U via an (exponentiated) action functional that is locally of the form φ 7!

∫
Σ1+2 φ ∗C3,

where C3 ∈ Ω3
dR(U) is a local gauge potential for the C-field, in that dC3 = G4|U .

It is rarely (if ever) discussed in the string theory literature that the global definition (54) of this coupling term requires
an integral charge quantization of G4; but the expected shifted integrality condition [G4 +

1
4 p1(∇)] ∈ H4(X ;Z) (34) on the

C-field flux — which is a consequence of Hypothesis H by (35) — serves this purpose if one enhances the local conditions to

dC3 = G4|U + 1
4 p1(∇|U ) . (55)

Globally such C3 is to be the 3-form connection Ĉ3 on a 2-gerbe with characteristic class [G4 +
1
4 p1(∇)] and makes the

fundamental membrane sigma-model be well-defined, via (54):

Ω4
dR(−)flat

membrane
worldvolume

Σ1+2 X B̂4Z B4R

B4Z

φ

G4+
1
4 p1(∇)

background flux density

[
G4+

1
4 p1

]
background M5-brane charge

Ĉ3

C-field gauge potential

ch

(pb)
(56)

The analogous situation for the fundamental fivebrane is richer and more subtle, this we turn to in §4.2.
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4.2 The fundamental fivebrane
The fundamental fivebrane sigma-model in the literature. Apart from its dimensionality, the sigma-model for the funda-
mental fivebrane on 11d supergravity target spacetimes [HS97][HSW97][PST97][BLNPST97] is crucially different from the
previous examples (§4.1) in that, besides the “embedding field” φ : Σ1+5 −! X (53), there is supposed to be a higher gauge
field propagating on its worldvolume – the B-field – with a 3-form flux density H3 ∈ Ω3

dR(Σ
1+5) which:

1. is sourced by the restriction φ ∗G4 of the C-field flux on X to the 5-brane worldvolume: dH3 = φ ∗G4 ([HS97, (36)])
2. is subject to a notoriously subtle self-duality constraint (not quite H3 = ⋆H3, cf. [HS97, below (41)])

dH3 = φ ∗G4B-field flux on
fundamental 5-brane

φ : Σ1+5 −! X subtle self-duality

(57)

3. enters the Wess-Zumino (WZ) term (54) for the gauge-coupling to the background M2-brane flux G7, deforming it to the
Hopf-WZ term [Ah96, p. 10][BLNPST97, (1)][PST97, (17)][In00, (2.4)] which for trajectories φ : Σ1+5 −!U ↪! X inside
a chart U of X is meant to be of this form (cf. [M5a, §2]):

(φ ,H3) 7!
∫

Σ1+5

(
C6 − 1

2 H3 ∧C3
)
, where

C3 ∈ Ω3
dR(U), dC3 = G4|U

C6 ∈ Ω6
dR(U), dC6 = G7|U + 1

2C3 ∧G4|U
. (58)

An enormous (and ongoing) effort – motivated by arguments going back to [Wi02][Wi10] – has been devoted to under-
standing the self-duality constraint in (57), while the global understanding of the Bianchi identity dH3 = φ ∗G4 and its role
in the fivebrane’s peculiar gauge coupling term (59) has received little to no attention in the community. In the spirit of the
pre-geometric perspective §1.2 we proceed here contrariwise:

Since it is likely premature to discuss the geometric self-duality constraint on the H3-flux before its flux quantization
law has been identified, we discuss the latter – deriving it as a consequence of Hypothesis H, proving that it implies the
necessary “level quantization” of the Hopf-WZ term (from [M5a]) and anlyzing the “non-abelian gerbe”-field on the 5-brane
worldvolume which makes this happen.

Level-quantization of the 5brane’s Hopf-WZ term. Assuming for a moment that the H3-flux is defined not just on Σ1+5

but on all of X as in (43) or at least on a 7-dimensional “extended worldvolume” [M5a, (5)] Σ̂1+6! X we may observe that
on flat spacetimes the Hopf-WZ term (58) is a local potential for the M2-brane Page charge (44)

d
(
C6 − 1

2 H3 ∧C3
)
=

(
G7 +

1
2 H3 ∧G4

)
|U ,

and on curved spacetimes we may adapt it to include the necessary shifting (which the literature ignores) by p1(∇) (34) along
the lines of (55), see [M5a, (11,16)] for details.

Therefore Hypothesis Ĥ (47) implies, via Thm. 3.1, that (twice) the Hopf-WZ term for pure M2-brane background charge
(41) on Σ̂1+6 is properly level-quatized and hence indeed a globally consistent gauge coupling — this is the main result of
[M5a]:

Ω7
dR(−)flat

fivebrane
worldvolume

Σ1+5 Σ̂1+6 B̂7Z B7R

B7Z

φ

H3∧G̃4+2G7

background flux density

background M2-brane charge (Page charge)

Hopf WZ-term

ch

(pb)
(59)

Charge quantization and non-abelian gerbe field on fivebrane worldvolume. We analyze in more detail what it is that
makes the fivebrane worldvolume “anomaly cancellation” (59) work, in terms of peculiar worldvolume field content that is
implied by Hypothesis H – this is the main result from [M5b].

We left off in §3.2 with observing that “pure” M2-brane charge – “Page charge” (44) – is reflected, via Hypothesis H, in
factorizations (41) of the full cohomotopical M-brane charge through the (M5-brane structured) quaternionic Hopf fibration
hH � Ŝp(2). That such factorizations imply the existence of a 3-flux H3 (43) which trivializes the background M5-charge
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(relative to the pertinent shift of the vacuum by 1
2 p1) is part of what it means for the M2-brane charge to be “pure” (no

M5-brane charge admixtures) but it also means that the existence of such lifts on all of spacetime are strongly constrained.
However, to make sense of the M5-brane sigma-model coupled to the Page charge, we only need such lifts to exists on

the worldvolume Σ1+5 of the M5, hence after pulling back the C-field along an embedding field φ : Σ1+5 −! X — and there
the side-effect of trivializing the (shifted) G4-flux by a 3-flux now makes perfect sense and identifies the 3-flux H3 with the
worldvolume 3-flux H3 expected on the M5, which is source by the 1-branes inside M5-worldvolumes known as “self-dual
strings” or “M-strings”:

M5-brane
worldvolume Σ1+5 S7�Ŝp(2) B7Z

spacetime X S4�Ŝp(2)

BŜp(2)

em
bedding

field

φ

worldvolume field

Hopf WZ term

hH�Ŝp(2)
M5-brane structured

quaternionic Hopf fibration

H3∧G̃4+2G7

M2-brane Page charge

c3

bulk C-field
τ

M5-brane structure

b2

(60)

Such “homotopy cones” (as indicated by the dashed arrows) are equivalently maps into the corresponding homotopy pullback
(of the M5-structured quaternionic Hopf fibration along the cohomotopy cocycle c3 for the C-field), which we denote X̂c3 and
think of as the C-field extended spacetime [HpH1, Def. 3.16] [M5d, Rem. 3.9][M5b, p. 7] :

M5-brane
worldvolume Σ5+1

extended
spacetime

X̂c3 S7�Ŝp(2) B7Z

spacetime X S4�Ŝp(2)

BŜp(2)

(φ ,b2 )

M5
σ-model field

φ

em
bedding field

Hopf WZ term

hH�Ŝp(2)
M5-brane structured

quaternionic Hopf fibration

H3∧G̃4+2G7

M2-brane Page charge

c3

bulk C-field
τ

M5-brane structure

(pb) (61)

This means that for given background C-field c3 on a spacetime X , the extended spacetime X̂c3 is the correct “target space”
for (the topological sector of) the M5-brane sigma-model, unifying the actual target spacetime X with a classifying space for
the worldvolume B-field on the M5-brane.

B-field flux quantization of M5-worldvolumes In fact, from (42) and pasting law, it follows that the extended spacetime X̂c3
is a 3-sphere fibration over spacetime:

3-sphere
fiber

S3
x

extended
spacetime

X̂c3 S7�Ŝp(2) S7�Sp(2)

{x}
any point

X
spacetime

S4�Ŝp(2) S4�Sp(2)

BŜp(2) BSp(2)

(pb) (pb) (pb)

c3

(pb)

(62)
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Since it is this 3-sphere fiber which, locally, classifies the H3-flux, we find, in mild that variation of (43) implies that the
B-field on fivebrane worldvolumes is flux-quantized in a form of twisted 3-cohomotopy, :

implication of Hypothesis Ĥ on M5-worldvolumes ([M5b, p. 7]):

M-string charges in M5 worldvolumes are quantized in φ ∗(c3)-twisted 3-cohomotopy, hence
B-field fluxes on M5 worldvolumes are in a twisted 3-cohomotopical character

(63)

bckgr. C-field-twisted
3-Cohomotopy π

3+φ∗(c3)
(
Σ

1+5) :=



Σ1+5 X̂c3 S7�Ŝp(2) S7�Sp(2)

X S4�Ŝp(2) S4�Sp(2)

b2

worldvolume
B-field

φ

embedding field

(pb) hH�Ŝp(2) (pb) hH�Sp(2)

c3
background C-field

/
rel. homotopy

(64)

We re-iterate that this twisted 3-cohomotopical flux-quantization of the worldvolume B-field implies that the fivebrane’s
Hopf-WZ gauge coupling term is globally well defined – a key requirement for consistency of the M5-brane sigam model
whose solution had been a wide open problem. All the more is the following consequence remarkable:

Emergence of a non-abelian higher gauge field on the M5-worldvolume. Remarkably, this particular form of twisted
3-cohomotopy (64) also has an equivalent gauge-theoretic interpretation, due to the coset space realization (36) of the quater-
nionic Hopf fibration – which implies that its tangentially twisted version is equivalently a map of classifying spaces of
Sp(1) ≃ SU(2)-gauge fields:

S7�Sp(2) BSp(1)L × ∗ BSp(1)L

S4�Sp(2) BSp(1)L×BSp(1)R BSpin(4)

H•(BSp(1);Z
)
⊕H•(BSp(1);Z

)
H•(BSpin(4); Z

)
cL

2 + cR
2

1
2 p1

first fractional Pontrjagin class/
C-field background charge

cL
2

1
2

χ4 +
1
4 p1 = G̃4

shifted integral
C-field charge

−cR
2 G̃4 − 1

2 p1
C-field charge relative
to background charge

hH�Sp(2)

∼ ∼

∼ ∼

∼

=

=

=

The decomposition of the cohomology generators as shown in the last line (using [CV98a, Lem 2.1], see [HpH1, Lem. 3.9])
shows that the pullback of the fractional Pontrjagin class along the parameterized quaternionic Hopf fibration equals the Chern
class on the “gauge factor” BSp(1)L:

(
hH �Sp(2)

)∗ 1
2 p2 = c2 ⇔

S7�Sp(2) BSp(1)L

B4Z

S4�Sp(2) BSpin(4)

hH�Sp(2)

∼

c2

∼

∼

1
2 p1

But this means that the worldvolume B-field on the fundamenal 5-brane according to (64) may be regarded as having
an underlying Sp(1)-gauge field a1 equipped with a “Green-Schwarz term” H3 that idenfies the gauge-fields Chern class
(instanton density) with the first fractional Potrjagin class (pulled back to the worldvolume), hence as having an underlying
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Stringc2(4)-valued higher gauge field:

Σ1+5 S7�Sp(2)

X S4�Sp(2)

φ

b2

hH�Sp(2)

c3

⇒

Σ1+5 BSp(1)L

BStringc2(4) B3U(1)

X BSpin(4)

φ

a1

c2

H3

⊢Fr(X)

1
2 p1

Speculation that such a “non-abelian gerbe field” might emerge on M5-branes originates with [Wi02, p. 6, 15] and the
particular possibility of String(G)-fields for G = SU(2) was explored in [SäSc18] but had remained guesswork. Here the
expected kind of structure drops out as a consequence of Hypothesis H, complete with its subtle charge-quantization law. For
more discussion, including more pointers to related literature, see [M5b][GS2].
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5 Brane lightcone quantization
We explain here how every charge-quantization of branes (§2) induces a notion of lightcone quantum system of pregeometric
brane charges (§1.2) on spacetimes with a circle factor (66), due to the fact that in this case the pregeometric phase space
(70) is a loop space, so that homological brane observables become a star-algebra under the Pontrjagin product (with star-
involution given by lightcone time inversion), making them quantum observables in the sense of algebraic quantum theory.

This approach to brane quantum systems is due to [Qnt1][Qnt2] where it is applied to the case of M5-brane intersections
under Hypothesis H (§3), to which we come in §6.

Non-perturbative light-cone quantization. The solution to the problem of non-perturbative quantization of a relativistic
Lagrangian field theory appears in principle straightforward: Choose a foliation of spacetime by non-timelike hypersurfaces
and then consider the Hamiltonian dynamics of evolution along the leaves.

It is for technical and computational problems encountered with carrying this out for the naı̈ve choice of spacelike folia-
tions that the Hamiltonian approach to relativistic QFT was largely abandoned, long ago, in favor of Schwinger-Tomonoga-
Feynman-Dyson perturbation theory, which is now often but erroneously regarded as synonymous with “quantum field the-
ory”.

However, one may also consider foliation by lightlike hypersurfaces (light wave fronts, [Dirac1949, §5]), and the resulting
light-cone quantization turns out to be mathematically natural and more tractable, especially in application to hadronic bound
states in strongly coupled QCD (eg. [BMPP93][Zh94][BPP98][Ba+13]).

spacelike foliation lightlike foliation

The greatest practical progress with non-perturbative computations in QCD has been made
by additionally assuming that spacetime is periodic along one light-like direction so that the
light-cone energy is quantized, whence one speaks of discretized light-cone quantization
[PB85][Pa99].
This may be understood [Sei97] as the physics seen by a lightlike observer travelling along
a periodic spatial dimension.

tim
e

periodic space S1
A

R1,0

(65)

But in itself, while computationally succesful, the fact that a spacelike periodicity is required and singled out here is puzzling
from the point of view of physics in 1+3-dimensional.

M-Theory as R1,0 ×S1
A light-cone quantum mechanics. However, exactly such a circle-factor S1

A in spacetime is meant to
appear in strongly coupled type IIA string theory in the guise of M-theory (cf. p. 3), where the radius of S1

A scales with the
string coupling seen in 10d [DHIS87][To95][Wi95, §2.3] (review in [Du96, §2(ii)][OP99, §2.1]).

Indeed, one early proposal for making sense of M-theory is (see [NH98, §10]) to regard it as the lightcone quantum
mechanics of the fundamental membrane (49) propagating on a spacetime of the form (65)

X1,d = R1,0 × S1
A × Xd−1 (66)

with lightcone momentum along the circle S1
A, which in the small radius limit is thought to reduce to the D0-brane dynamics

described by the BFSS matrix model [BFSS97][Su97][Sei97] or rather the BMN matrix model [BMN02, §5] (review in
[Yd18]).

A key consistency check of these M-theory matrix models have been computations recovering 11d supergravity in the
form of graviton scattering amplitudes [BBPT97][HPSW99] — but brane charge quantization such as in K-theory (§3.1) is
not reflected in these models (cf. [AST02]). Contrariwise, we now explain a lightcone quantization of pre-geometric brane
charges in general cohomology theories.
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In order to appreciate the concept of higher quantum observabes that we are about to consider, it may be useful to recall
the following standard conceptualization of algebraic (quantum) mechanics, schematically:

The fundamental concepts of quantum physics in “algebraic” form are the following (good exposition in [Gl09][Gl11], for
more see [La17]):
• The covariant phase space of a physical system is really the space of solutions to the classical equations of motion [Wi86,

§5][CW87][HT92, §17.1], hence the space of physically possible (“on shell”) field histories of the system.

PhsSpc =

{
solutions to equations of motion

hence: possible field histories

}
.

• The classical observables on a physical system are encoded in compactly supported17 complex-valued functions on field
histories, understood as assigning to a field history the value that the observable takes there.
In the simplistic but relevant special case where the phase space is just a discrete set (cf. [La17, §1.2]), this means that the
space of observables is the linear span of formal linear combinations of field histories:

PhsSpc ∈ Sets ⇒ Obsrvbls = C[PhsSpc] (67)

• The quantum observables are a choice of the structure of a (non-commutative) complex star-algebra18 on the Obsrvbls:19

QObsrvbls =
(

Obsrvbls, (-)·(-), (-)∗
)
,

(
O1 ·O2

)∗
= O∗

2 ·O∗
1 ,

(
(a+ ib) ·O

)∗
= (a− ib) ·O∗ (68)

In the case of Lagrangean field theories there is an elaborate prescription, occupying most of the large and still growing
literature on the subject (e.g. [HT92]), for how to choose the quantum observables as a deformation controlled by Poisson
structure on the phase space, at least perturbatively. But we cannot expect M-theory to be the quantization of a Lagrangean
field theory (already the sector of coincident fivebranes inside M-theory is expected not to be Lagrangean) and will instead
discover a natural star-algebra of quantum observables right away (78), without detour through a classical field theory.

• The quantum states for given quantum observables are the linear maps on the quantum observables (understood as as-
signing to an observable the value that it takes in the given state) which are “positive” (semidefinite), in that on elements
of the form A∗A they take non-negative real values.

QStates =
{

ρ : QObsrvbls linear
−−−! C

∣∣∣ ∀
O

ρ
(
O∗ ·O

)
∈ R⊔{∞} ⊂ C

}
(69)

But in the presence of higher gauge fields, these traditional structures of quantum physics are to be promoted to higher
structures:

The higher phase space is a higher groupoid/stack whose
• objects are the field histories,
• higher morphisms are their higher gauge transformations.
The physics literature is mostly familiar with the infinitesimal approximation to this higher stack, which is a higher Lie

algebroid known as the BRST complex (eg. [HT92]). The full higher phase space is to the BRST complex as a Lie group is
to its Lie algebra, hence may be thought of as the integrated BRST complex (in the sense of Lie integration).

Concretely, if Â is the moduli stack (22) of a (nonabelian, generalized) cohomology theory expressing the flux quantization
law (§2) of a higher gauge theory, and if we consider only the pre-geometric field equations (§1.2), then the pregeometric

17In C∗-algebraic formulations of mechanics the algebra of classical observables on a phase space is often taken to be the C∗-algebra C0(P) of continuous
functions vanishing at infinity (eg. [La17, §3]). But this may be understood as the C∗-completion of the “actual” observable algebra of compactly-supported
functions Cc(P)⊂C0(P), see eg. [La98, p. 55, 116][La17, p. 528].

18This means to require structure like that of a C∗-algebra but disregarding the completeness condition for a Banach algebra. In our application to
“topological” charge sectors below the space of (higher) observables is (graded and) degreewise finite-dimensional, so that this (graded) Banach-algebra
structure is automatic.

19In (68) we tacitly assume that the underlying space of quantum observables coincides with that of the “classical” observables. This turns out to be the
case of relevance here (78). In traditional discussion the space of quantum observables can also be larger (such as in formal deformation quantization) or
smaller (such as in geometric quantization) than the space of classical observables.
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higher phase space20 is the mapping stack from spacetime into Â:

pregeometric
higher phase space/

integrated BRST complex

Maps
(
X , Â

)
=


X Â

gauge field (map)

F̂

F̂ ′

gauge field

gauge transfo.
(homotopy)


. (70)

Underlying this higher moduli stack — after forgetting the gauge potentials and flux densities only remembering the corre-
sponding charges — is the plain homotopy type of charges, the cocycle space of X in A-cohomology:

PrePhsSpc =

pregeometric
higher phase space
of brane charges

Maps
(
X , A

)
=


X A

charges (map)
c

c′

charges

gauge transfo.
(homotopy)


. (71)

We will focus on this pre-phase space now, which may be regarded as reflecting the purely “topological” (non-geometric)
sector of the higher phase space.

Higher observables. The notion of higher observables on a higher phase (70) is not widely discussed, but from the Dao of
homotopy theory it is clear that the coefficient ring is to be promoted to a higher ring, namely a ring spectrum R. Then the
higher analog of observables (67) on the topological sector (71) of a higher pregeometric phase space, is the R-homology:

PreObsrvbls = R•
[
Maps

(
X , A

)]
. (72)

If R = HC is the Eilenberg-MacLane spectrum of the complex numbers, then this is ordinary homology:

PreObsrvbls = HC•
[
Maps(X , A)

]
= H•

(
Maps

(
X , A

)
; C

)
. (73)

Higher quantum observables. In general there is no canonical (star-)algebra structure on pregeometric higher observables
(72) — but if spacetime has a circle factor (66) then the pregeometric higher phase space is the loop space of the transverse
phase space:

pregeometric phase space

Maps
(

S1 ×Xd−1, A
)

mixed states

⇝

based loop space of
transverse phase space

ΩcMaps
(
Xd−1, A

)
Maps

(
S1, Maps

(
Xd−1, A

))

{c} Maps
(
Xd−1, A

)
transverse phase space

⇝ pure states

(pb)

(74)

This means that the following basic fact of algebraic topology provides us with a canonical discrete light-cone quantization
of charges:

The Pontrjagin-Hopf algebra structure on the homology of loop spaces. [BoSa53][Br61, p. 36][Ha02, §3.C]
The homology of a based loop space

ΩY :=
{

γ : [0,1] cntns
−−−! Y

∣∣γ(0) = γ(1)
}

with coefficients in a field becomes

20The genuine higher phase space is obtained from the pregeometric higher phase space by adjoining at least a background field of gravity and then
imposing the remaining self-duality conditions (3).
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• a graded algebra21 under concatenation of loops,

H•
(
ΩY

)
⊗H•

(
ΩY

)
H•

(
ΩY ×ΩY

)
H•

(
ΩY

)
ΩY × ΩY ΩY(

γ1, γ2
)

7!

(
t 7!

{
γ(t/2)
γ(t/2−1/2)

for 0 ≤ t ≤ 1/2
for 1/2 ≤ t ≤ 1

)
∼

Künneth

Pontrjagin product

(-)·(-) := H•(µ;C)
pushforward in homology

µ (75)

• a graded star-algebra under reversal of loops

H•
(
ΩY

)
H•

(
ΩY

)
ΩY ΩY

γ 7−! γ
(
1− (-)

)

H•(inv)

Pontrjagin antipode

inv (76)

Notice that this is not quite a complex star-algebra in the sense of (68) yet, since the Pontrjagin-antipode22 (76) acts
trivially on the coefficient field – but we do get a complex star-algebra by composing the Pontrjagin antipode with complex
conjugation on the coefficients

tim
e

periodic space S1
A

R1,0 H•
(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)

H•(ΩY ;(-) ∗)

complex conjugationtime inversion

(-)∗
light-cone parameter inversion

H•(in
v;C)Pontrjagin-antipode

S1
A
-inversion

H•(ΩY ;(-) ∗) H•(in
v;(-)

∗ )

tim
e

periodic space S1
A

R1,0

(77)

This way we have obtained higher quantum observables on the light-cone for pregeometric brane charges in spacetimes
of the form (66):

QObsrvblsc =

(
H•

(
ΩcMaps

(
Xd−1, A

)
; C

)
, (-) · (-), (-)∗

)
. (78)

whose star-involution is light-cone parameter inversion. Notice that the Pontrjagin product Hopf-algebra (78) is (by [MiMo65,
App.]) the universal enveloping algebra of the Whitehead bracket Lie algebra lMaps(Xd−1,A) (2.3) of the charge moduli
space, and that universal envelopes are a standard deformation quantization of Poisson-Lie structures (eg. [Gu11, §2.2]).

The corresponding light-cone quantum states are hence (69) those cohomology classes which are (semi-)positive-
definite:

QStatesc =

{
ρ ∈ H•(

ΩcMaps
(
Xd−1, A

)
; C

) ∣∣∣∣ ∀O ρ(O∗O)≥ 0
}
. (79)

In §6 we discuss examples of 11d spacetime domains whose light-cone quantum states (79) of pregeometric (intersecting)
brane charges include, under Hypothesis H:

§6.3.1 quantum states of Hanany-Witten NS/D-brane configurations,
§6.3.2 quantum states of transverse M5-branes,
§6.3.3 quantum states of M5 ⊥ M5 intersections,
§6.3.4 quantum states of topological strings,

with provable properties of the kind expected in the string theory literature.

21In fact, together with the canonical coproduct in homology the Pontrjagin product (75) becomes a Hopf algebra structure with the star-involution (76)
being a Hopf antipode.

22The term “Pontrjagin antipode” is not standard, but it is the natural name for the antipode of the Pontrjagin-Hopf algebra structure.
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6 Resulting quantum branes
We discuss the nature of solitonic M-branes (§1), according to Hypothesis H (§3), and their lightcone quantum mechanics
(§5).

Worldvolumes of solitonic branes. Much of existing literature insists of thinking of branes as worldvolume submanifolds
in spacetime. But in general, solitonic branes are whatever is seen by the reduced charge-cohomology theory Ã (19), hence
solitonic branes under Hypothesis H are whatever is seen by reduced 4-Cohomotopy π̃ . In general there need not and will
not be an identifiable worldvolume manifold sourcing such cohomology classes — but classical theorems about Cohomotopy
assert that in this case such geometric worldvolumes often do have meaning:

§6.1 – the Pontrjagin theorem.
§6.2 – the May-Segal theorem.

6.1 Solitonic branes and their Cobordism classes
Solitonic branes seen in Cohomotopy are equivalently cobordism classes of normally framed submanifolds [HpH2, §2.2]
[Orb1, §2.1]:

For example, let
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This equivalence of CoHomotopy with un-
stable framed Cobordism reflects exactly
the expected brane/anti-brane reactions:

normal framing
in space

brane

opposite
normal framing

anti-brane

normal framing

in spacetime

spacetime

annihilation
↼−−−−−−−−−−⇁

pair creation

space

In fact, in linear approximation to the Bianchi identities, the resulting
stable CoHomotopy is equivalent to framed Cobordism Cohomology

non-abelian
Cohomotopy

π•

abelian
Cohomotopy

S•
framed

Cobordism
Mfr•

KF •
1

algebraic K-theory of
“field with one element”

linearize
(i.e.: stabilize)

Barratt-Priddy-Quillen

Pontrjagin-Thom

(80)

Linearized Hypothesis H:
M-brane flux is quantized in (tangentially twisted) framed Cobordism.

(Possibly this relates Hypothesis H to Vafa’s cobordism conjecture
cf. [HpH2, §4]).

In conclusion: the Pontrjagin theorem and its variants give, under
Hypothesis H, a detailed description of worldvolumes of M-branes as
(cobordism classes of normally framed) sub-manifolds of spacetime.

E.g. this allows to study exotic defect branes in low codimension −!
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6.2 Exotic branes and their configuration spaces
Exotic branes. In the string theory literature, by a non-standard brane [BR12] or exotic brane [dBS13] one means, foremost,
a p-brane species of low codimension D− (1+ p) ≤ 2 — which in M-theory generally corresponds to codimensions D−
(1+ p) ≤ 3. (We observe that this are exactly the solitonic branes which have vanishing classical charge under Hypothesis
H, according to (30).)

The most familiar examples of exotic branes in 10d string theory are the comparatively well-understood D7 branes (of
codimension 2, hence “defect branes” [BOR12]), the D8-branes (of codimension 1, hence “domain walls”) and the D9 (codi-
mension 0). Beyond these there is expected a plethora of further exotic branes (cf. [dBS13, Fig 1]) whose existence is argued
indirectly by assumption of the famous but largely hypothetical “U-duality”-symmetry of string/M-theory, but which are not
known to arise as supergravity solutions.

Already the low-codimension D-branes push the boundaries of common string theory lore: For instance the SL(2,Z)-
charges crucially meant to be carried by D7-branes had no reflection in Hypothesis K (§3.1, a shortcoming which we argue
is resolved by Hypothesis H, see §6.3) and the lift of D8-branes to M-theory had remained at least subtle, even by informal
arguments:

The problem with the D8-brane is part of the general problem of integrating the relevant “massive” variant of type IIA
string theory into the non-pertubative picture of M-theory, which fails in its most naive form since 11d supergravity provably
does not admit the analogous “massive” deformation. While it has been argued that massive type IIA supergravity does arise
from plain 11d supergravity, after all, by twisting the usual KK-compactification by U-duality transformations (which remain
fairly conjectural themselves), the nature of the resulting lift of the D8-brane, commonly called the M9-brane, remained so
elusive that more recent authors argued it should rather be called the M8-brane to be understood only somewhat tautologically
as ‘an object that exists only as a lift of the D8-brane”.23

Notice that the traditional Hypothesis K (§3.1) inherits all these conceptual problems since the “Romans mass”-term F0
(the flux sourced by the D8-brane) which is at the root of the problem is key part of its pre-geometric derivation (12). But
in §6.3 we will argue in detail that and how the D8-brane in its M-theoretic incarnation as an M9/M8-brane is implied by
Hypothesis H.

Higher observables of exotic branes. Indeed, Hypothesis H implies right away, via (30), that there is no charge sourced
by flat solitonic exotic branes (and most other admissible flux-quantization laws for the C-field would imply the same) but
that ((73)) there are non-trival higher observables of exotic branes, encoded in the higher homotopy type of the Cohomotopy
cocycle space

X a flat space(time) with a (base)point (at) ∞ ⊢
4-Cohomotopy flux moduli space

π̃π
4(X

)
:= Maps∗/

(
X , S4)

pointed mapping space into 4-sphere

(81)

in that
exotic solitonic M-branes carry no clasical charge

π
4
(
R1,p
⊔{∞}∧Rp≤3

∪{∞}

)
≃ πp≤3(S4) = 0 but

have non-trivial higher observables

π̃π
4
(
R1,p
⊔{∞}∧Rp≤3

∪{∞}

)
̸= ∗ .

We will argue in §6.3 for the example of M9-brane intersections that these higher observables on Cohomotopy moduli indeed
reflect a wealth of expected patterns in D8-brane intersections. This way, Hypothesis H seems to nicely capture the ethereal
nature of exotic branes.

23 [BMO18, p. 65]: “However, as remarked in [OP99, p. 109], [the M9 brane] should more properly be called an M8-brane or perhaps KK8 following its
mass formula designation 8(1,0). It is, perhaps, to be understood as an object that exists only as a lift of the D8-brane of Type IIA.”
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Configuration spaces of exotic branes. We observe [Qnt1] that the analog of the Pontrjagin theorem (§6.1) in the case of
exotic branes, under Hypothesis H, is the May-Segal theorem [May72, Thm. 2.7][Segal73, Thm. 3] which, with Hypothesis
H, equivalently says [Qnt1, Prop. 2.5] that the moduli space of flat solitonic p ≥ 7-branes in 11d is (homotopy equivalent to)
a configuration space of points in their transverse space:

cohomotopical moduli space of

π̃π
4
( flat solito

nic p ≥
7-branes with

R1,p
⊔{∞}∧

≤ 3-dim. transverse
space

R10−p
∪{∞}

)
:= Maps∗/

(
R1,p
⊔{∞}∧R10−p

∪{∞}, S4
)

Maps∗/
(
R10−p
∪{∞}, S4

)

Conf
(
R10−p
⊔{∞}, R

p−6
∪{∞}

)
configuration space of points

in transverse space

=

≃

cohomotopy
charge
map

∼
M

ay
-S

eg
al

th
eo

re
m

 R10−p×{0} R10−p×{∞}R10−p×{∞}

projection to R10−p

projections are
all > 2ε > 0
from each other

point
in R4

point
in R4

point
disappeared

to infinity
along Rp−6

∪{∞}



(82)

Conf
(
R10−p
⊔{∞}, R

p−6
)

is the pointed space of

• un-ordered tuples of points in R4 ≃ R10−p ×Rp−6 — as such they look like flat solitonic 6-branes.

• which have pairwise distinct projections to R10−p — as such they look like flat solitonic p-branes

• and may escape to (or emerge from) ∞ along Rp−6
∪{∞} — like partially de-localized 6-brane solitons

Indeed, the cohomotopy charge map (82) (aka inverse “electric field map” [Segal73, §1][McD75, §1] or “scanning map”) eval-
uates on the configuration space by [Segal73, §3] assigning to each point in the configuration the unit (10− p)-cohomotopy
charge of a solitonic p-brane, but regarded after inclusion into the cohomotopy charge space of solitonic 6-branes.

moduli space of
solitonic p-branes Conf

(
R10−p, Rp−6

∪{∞}

)
π̃π

10−p
(
R10−p
∪{∞}

)
π̃π

4
(
R10−p
∪{∞}

)

single-brane
subspace R10−p ×Rp−6 Maps∗/

(
R10−p
∪{∞}, R

10−p
∪{∞}

)
Maps∗/

(
R10−p
∪{∞}, R

4
∪{∞}

)
(
x, y

)
7−!

x′ 7!


x′−x

exp
(

−1
ε−|x′−x|2

)
∞

if |x′− x|< ε

otherwise

 7−!

x′ 7!


(

x′−x, y)

exp
(

−1
ε−|x′−x|2

)
∞

if |x′− x|< ε

otherwise



4-cohomotopy charge map for solitonic p ≥ 7-brane

pure solitonic
p-brane charge

regarded as solitonic
6-brane charge

(83)
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Notice the dichotomy:
• If branes can not escape to ∞

• then their fluxes vanish at ∞. and vice versa.

This is nicely brought out by notationally retaining a contractible wedge factor in the general statement of the May-Segal
theorem, because then the passage between the configuration space of branes and the spacetime domain on which their charges
are evaluated is given by swapping the subscripts (-)⊔{∞}↔ (-)∪{∞}

brane
configuration space

Conf
(
Rn−q
⊔{∞}, R

q
∪{∞}

)
Maps∗/

(
Rn−q
∪{∞}∧Rq

⊔{∞}, Sn
)

=

flux
cocycle space

π̃π
n
(
Rn−q
∪{∞}∧Rq

⊔{∞}

)cohomotopy
charge map

∼ (for n > q > 0) (84)

Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram

fluxes vanish at infinity
along these directions︷ ︸︸ ︷
Rn−q
∪{∞} ∧ Rq

⊔{∞}︸ ︷︷ ︸
...but not necessarily

along these

Rp

∞

∞

Rn−q
∞

∞

Rn−q

Rq

M9-Branes. We obtain now from Hypothesis H a rigorous definition of the otherwise elusive M9-brane (cf. p. 54) and can
investigate it by mathematical analysis.

Namely, given that the (flat) M9 is supposed to be:
1. solitonic

(as there is no corresponding singular supergravity solution)
2. as such localized along a single transverse direction

(since this is what it means to be a 9-brane in 11d)
3. but necessarily compactified on the M-theory circle S1

A,
(since it “exists only as a lift of the D8-brane of type IIA”, cf. ftn. 23)

the (flat) M9-brane should, assuming Hypothesis H, be addressed as whatever it is that 4-Cohomotopy sees on the following
spacetime domain:

R1,0
⊔{∞} ∧ R5

⊔{∞} ∧ R1
∪{∞} ∧ R3

⊔{∞} × S1
⊔{∞}

M9

(85)

Here the bar shows, in the tradition of brane diagrams, across which dimensions the M9-brane is extended (which we have
decomposed in anticipation of the brane intersections below in (88)) — but the light shading is to indicate that this remains
somewhat ambiguous – since we are dealing with an exotic brane of low codimension so that the Pontrjgin theorem (§6.1)
does not apply, while also the May-Segal theorem (82) does not quite apply, due to the presence of the S1

⊔{∞}-factor. Therefore
one cannot quite translate the cohomotopical M9-brane moduli on (85) into submanifolds in a spacetime domain. Of course,
just such an ambiguity is expected for the M9 brane (aka M8-brane), cf. ftn. 23.

On the other hand, by the above discussion we can describe the M9 moduli quite explicitly: They are given by loops in
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the configuration space of solitonic 6-branes which are delocalized in 3 transverse directions:

M9-brane moduli

π̃π
4(R1,8

⊔{∞}∧S1
⊔{∞}∧R1

∪{∞}
)

:= Maps∗/
(
R1,5
⊔{∞}∧R1

∪{∞}∧R3
⊔{∞}∧S1

⊔{∞}, S4
)

charge moduli space (81) on M9-domain (85)

≃ Maps∗/
(
R1
∪{∞}∧R3

⊔{∞}∧S1
⊔{∞}, S4

)
R1,5 is contractible

≃ Maps∗/
(

S1
⊔{∞}, Maps∗/

(
R1
∪{∞}∧R3

⊔{∞}, S4
))

mapping space adjunction (20)

≃ Maps∗/
(

S1
⊔{∞}, Conf

(
R1
⊔{∞}, R

3
∪{∞}

))
May-Segal theorem (82)

= L Conf
(
R1
⊔{∞}, R

3
∪{∞}

)
loop space of configuration space

of 3-fold delocalized 6-branes

(86)

In order to say more about the M9-brane, we need to see it interact (intersect) with other branes. This we turn to in (88)
below.
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6.3 Solitonic brane intersections
The situation in (84) suggests that to measure the charges and hence the presence of intersecting solitonic branes we need to
evaluate cohomotopy on a kind of amalgamation of their respective domains (84):

Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram

transverse space
of p1-soliton

fluxes vanish at infinity
along these directions︷ ︸︸ ︷
Rd−p1
∪{∞} ∧ Rd−p2

⊔{∞}︸ ︷︷ ︸
...but not necessarily

along these

Rd−p2

∞

∞

Rd−p1
∞

∞

Rd−p1

Rd−p2

transverse space
of p2-soliton Rd−p1

⊔{∞}︸ ︷︷ ︸
...but not necessarily

along these

∧

fluxes vanish at infinity
along these direction︷ ︸︸ ︷
Rd−p2
∪{∞}

Rd−p1

∞

∞

∞ ∞

Rd−p2

∞

∞

Rd−p1

Rd−p2

The topos theory of intersecting solitonic brane spaces. A sensible amalgamation of these transverse spaces does not exist
as a topological space. But we may pass to the universal mathematical context where it does exist: this is the presheaf topos
over the category of “Penrose diagrams” of this form [Qnt1, Def. 2.2]: In this topos, the amalgamation space transverse to
flat intersecting branes is the “pushout” or “cofiber coproduct” of the two separately compactified transverse spaces over the
uncompactified transverse space, hence their “gluing” according to the following diagram:


Rd−p1
∪{∞}∧Rd−p2

⊔{∞} Rd−p1
+ ∧Rd−p2

∪{∞}

R2d−p1−p2
⊔{∞}

/ O
iL

__

/ �
iR

??


∞

∞

Rd−p1

Rd−p2

∞

∞

Rd−p1

Rd−p2

Rd−p1

Rd−p2

- M

iL

\\
1�

iR

BB

Intersecting brane charges in Cohomotopy. Furthermore, we may understand the May-Segal theorem (82) as providing a
differential refinement of cohomotopy on such spaces, in that the configuration space canonically carries the structure of a
manifold which represents the homotopy type of the cohomotopy space.
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This provides a formalization of what it means to detect intersecting solitonic brane charges in Cohomotopy theory.
Assuming this, the basic laws of topos theory imply that the (differential) Cohomotopy moduli space for intersecting solitonic
branes as above is the fiber product of the two configuration spaces (84) for each solitonic brane separately [Qnt1, Exp. 2.3].

Gauge enhancement on domain wall intersections. In the special case that one of the intersecting brane species is of codi-
mension=1 something remarkable happens, as then this fiber product of un-ordered configuration spaces becomes homotopy-
equivalent to a configuration space of ordered points in the remaining n−1 transverse dimensions [Qnt1, Prop. 2.4. 2.11]:

n-Cohomotopy moduli of
solitonic codim = 1-branes︷ ︸︸ ︷

Conf
(
R1
⊔{∞}, R

n−1
∪{∞}

)
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)
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)
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induced ordering //{0}×R1

projection
to R1

projection to R3
Point
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R
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

(87)

But the homotopy type of ordered configuration spaces is quite rich (see eg. [Kn18]) considerably richer than that of the
un-ordered configuration spaces (82) where points may escape to ∞. With Hypothesis H this provides a substantiation of the
expected phenomenon: There is rich physics appearing on brane intersections.

6.3.1 Hanany-Witten Dp+2-Dp-NS5-brane intersections

We discuss how Hypothesis H implies a lift to M-theory of the NS5-D6-D8-brane intersections (p. 11), now incarnated as
solitonic (§1.1) quantum (§5) M5-MK6-M9-brane intersections – this is from [Qnt1][Qnt2].

Moduli of Hanany-Witten brane configuration. Now we can analyze the intersections of M9-branes (85) with solitonic
6-branes on 5-branes in 11d, corresponding in 10d to a solitonic incarnation of the NS5-D6-D8-brane intersections whose
incarnation as singular branes we discussed on p. 11, as shown by the following brane diagrams:

R1,0 × R5 × R1 × R3 × S1
A

M5

M6

M9

⇝

R1,0 × R5 × R1 × R3

NS5

D6

D8

(88)
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By applying the argument for the M9-brane moduli (86) analogously to
the other factors in the fiber product (87) and using that forming (free)
loop spaces Maps∗/(S1

⊔{∞}, -) is a right adjoint (20) and hence preserves
these fiber products, we find with (87) that the moduli of these brane
intersections (88) is the loop space

L ⊔
N∈N

Conf
{1, · · · ,N}

(
R3) ≃ ⊔

N∈N
L Conf

{1, · · · ,N}

(
R3)

of the space of ordered configurations of points in R3, identified here
(88) as the space of configurations of flat solitonic 6-branes inside
the transverse D8-brane that they are intersecting along an NS5-brane
[Qnt1, Prop. 2.11].
Another way of looking at all this — if we focus just on the points in the
configurations (the green dots in the diagram) which the mathematical
analysis gives us — is that in them we have found the solitonic incarna-
tion of the M5/NS5-brane. (Notice that also singular 1

2 BPS M5-branes
necessarily sit on 6-branes once coincident, [HSS19, Exp. 2.2.6]. )

D8s

D6s
NS5

i =

Chan-Paton labels
= ordering

1 2 3 4 5 6

m
on

op
ol

e

(89)

Quantum observables on Hanany-Witten configurations. It follows now with the discussion in §5 that the light-cone
quantum observables on these brane configurations form, for each number N of D8-branes, the homology Pontrjagin-algebra
of the based loop space of the ordered configuration space (89). Remarkably, this is isomorphic to the algebra of horizontal
chord diagrams on N-strands modulo certain relations [Qnt1, Prop. 2.18]

QObsrvbsD8-D6-NS5

H•
(

Ω Conf
{1, · · · ,N}

(R3)
)

∼

Span



Horizontal chord diagrams
1 2 · · · N
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
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/
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 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


2T relations
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· · · · · · · · · · · · · · ·

i j k l

 ,


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

∼

and 4T relations
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· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k


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(90)

On the skew-symmetric sector of the algebra, these relations may be identified with the brane intersection rules expected in
Hanany-Witten theory [Qnt1, §4.10]:

hor.
chord

strand

54321

D8

Dp

NS5

Dp

(91)
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On the other hand, the full observable algebra (90) may
naturally be identified with an observables on fuzzy 2-
spheres [Qnt1, §4.2], which are expected to describe the
quantum nature of the D8 ⊥ D6-brane intersections.∫

S2
N

(R2)3

= 4π√
N2−1

Tr
(
Xa ·Xa ·Xb ·Xc ·Xb ·Xc)

a

b

c

Xa

Xa

XcXb

Xc

Xb

∫
S2

N

(R2)3

= 4π√
N2−1

Tr
(
Xa ·Xa ·Xb ·Xb ·Xc ·Xc)

a

b

c
Xa

Xa

XbXb

Xc

Xc

In fact, Dp+2 ⊥ Dp-brane intersections for any p are
meant to all be T-dual to each other, and all share this
fuzzy funnel-form of their quantum intersection.
Among these the D4 ⊥ D2 are meant to be dual to M5 ⊥
M2-brane intersections.

ρ

N

D8-brane

N coincident
Dp-branes

fuzzy funnel

su(2)C -rep

6.3.2 M5/M-Branestates

Light-cone quantum states of M5/M2-Brane bound states. In the vein that (89) gives the moduli of (nearly) coincident
solitonic quantum M5-branes in M(embrane)-theory, we should find the above light-cone quantum observables (90) to match
those in the membrane matrix model (p. 46) describing M5-branes.

This is indeed the case [Qnt1, §4.9]: The light-cone quantum ground states of the BMN matrix model are superposi-
tions of fuzzy 2-spheres, and in suitable arrangements these encode either pure M5-brane states or generally M2/M5-brane
bound states [BMN02, (5.5)][MSvR03][AIST17][AIST18]. In particular, the quantum state given by multiples of the N(M5)-
dimensional irrep of su(2)C should correspond to N(M5) 5-branes in the ground state.

No-ghost theorem for M5-branes. Therefore, with the light-cone quantum mechanics established in §5, we may ask which
of these light-cone quantum states are proper quantum states in that they are positive (non-ghost) states. In [Qnt1, Exp.
3.11][Qnt2] we showed that, beyond the trivial case of N(M5) = 1 this is the case for fundamental representation with N(M5) = 2
[Qnt1, Exp. 3.5][Qnt2]. In [Co23] it is claimed that the same conclusion still holds for all symmetric and exterior powers
of the fundamental representation, which would establish the positivity (no-ghost theorem) for the corresponding mixed
M2/M5-brane bound states.
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6.3.3 M5 ⊥ M5-Brane intersections.

Applying the analogous analysis to the 3-cohomotopy fields in 7d which in §4 we saw appear on fivebranes, we find a moduli
space of 3-branes inside 5-branes, just as expected for M5⊥M5-brane intersections [Dfc1, pp. 28], to be given by the
configuration space of points in the transverse complex plane:

R1,0 × R3 × R1 × C
M3

M′
5

M5

R!

"
C

MK6

x1

M5

z1
M51

M31

x2<

z2

x3<

z3

(92)

To find the light-cone quantization (§5) of these brane intersections notice that the homotopy type of this configuration
space is the classifying space of the pure braid group (cf. [TQC2])

Ω Conf
{1, · · · ,N}

(C) L Conf
{1, · · · ,N}

(C)

Conf
{1, · · · ,N}

(C)

≃

PBr(N) L Conf
{1, · · · ,N}

(C)

BPBr(N)

This means that the light-cone quantum observable algebra (78) in this case is the braid group algebra . Thus with
the Gelfand-Raikov theorem24 we find that the corresponding light-cone quantum states are given by unitary pure braid
representations:

QObscrblsNM5⊥M5
≃ C

[
PBr(N)

]
QStatesNM5⊥M5 ≃

{
ρ : C

[
PBr(N)

]
! C

∣∣∣∣ ∃
U∈

PBr(N) ↷H ,
|ψ⟩∈H

∀
g∈PBr(N)

ρ(g) = ⟨ψ|U(g)|ψ⟩
}
.

But also the quantum states on the base moduli BPr(N) gives rise to braid representations, this we discuss in §7.

6.3.4 Topological string states

Another interesting special case is the solitonic spacefilling brane on the flat fivebrane worldvolume. By the discussion in §4,
its moduli under Hypothesis H form the loop space of the 3-sphere:

π̃π
3(R1,5

⊔{∞}
)

≃ Maps∗/
(
R1,5
⊔{∞}, S3) ≃ S3 .

Hence its light-cone quantum observables (78) form the Pontrjagin algebra of the based loop space of the 3-sphere, which is
known25 to surject onto (become isomorphic under inversion of some elements to) the “quantum cohomology” of CP1, hence
to the quantum algebra of 3-point functions of the topological string with target space CP1:

QObsrvbls ≃ H•
(
ΩS3) ≃ H•

(
ΩSU(2)

)
↠ HQ•(CP1) .

24For pointers see: ncatlab.org/nlab/show/state+on+a+star-algebra#StatesOnGroupAlgebrasAreUnitaryRepresentations.
25For pointers see ncatlab.org/nlab/show/Pontrjagin+ring#ReferencesOnQuantumCohomologyAsPontrjaginRings.
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7 Resulting worldvolume CFT
We have seen in §6.3.2 that general light-cone quantum states of M5-brane insertions transverse to a complex plane in an
ambient M5-brane are elements of unitary representations of the pure braid group. Here we discuss the specific such repre-
sentation states that are singled out by the cohomology of the transverse phase space (74), which turn out to be given by the
conformal blocks of su2-affine conformal field theory.

This result is from [Dfc1], implications are developed in [Dfc2][TQC1][TQC2].

7.1 Conformal blocks of M5-observables
The spectral prequantum line bundle. These configuration spaces are non-simply connected: their fundamental group
is the pure26 braid group — being the group of motions of the M5⊥M5-intersections around each other in the ambient
M5-worldvolume:

π1

(
Conf
{1, · · · ,n}

(C2)
)

≃ PBr(n) =




(93)

Hence the corresponding twisted ordinary cohomology (aka: “local system cohomology”) is that whose cocycles are
sections of “Eilenberg-MacLane-spectrum line bundles” pulled back from the classifying space BCκ of a cyclic group:

twisted cohomology
of configuration space

H [ω1]
(

Conf
{1, · · · ,n}

(
C2))

quantum state space

=



local coefficient
bundle

BkC�Cκ

Conf
{1, · · · ,n}

(
C
)

phase space

BCκ

prequantum
line bundle

ω1

twiste
d cocyle

quntm state

/
hmtp

(94)

(Closer analysis reveals [Dfc1, §3] that κ equals the order of the Aκ−1-singularity at which dual D7/D3-branes are placed.)

In order to analyze these quantum states,
we may decompose the problem by:

(1.) holding fixed N of the branes,
(2) letting n mobile branes move around them.

n-configuration space
of N-punctured plane

Conf
{1, · · · ,n}

(
C\{z1, · · · ,zN}

) fibration of
configuration spaces

Conf
{1, · · · ,N +n}

(
C2

)

∗ Conf
{1, · · · ,N}

(
C2

)(pb) forget n points

(z1,··· ,zN)

pick N-configuration

(95)
In the simple case of a single mobile brane moving – along a dashed line in (97) – among N fixed branes, we have

Conf
{1, · · · ,1}

(
C\{z1, · · · ,zN}

)
= C\{z1, · · · ,zN} (96)

and the twist ω1 (94) is fixed by:

26Our figures show im-pure braids just for ease of illustration.
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κ := k+2 “level”

wI ∈ {0, · · · ,k} “weights”

zI ∈ {z1, · · · ,zN} “punctures”

as ω1 := ∑I −wI
κ

dz
z−zI

transverse plane

ω1

defect brane

C

∞

zI

(97)

Brane states identified with worldvolume correlators. Curiously, such sets of labels coincide with those of “conformal
blocks” – namely chiral correlation functions – in the ŝu2k-conformal quantum field theory on the punctured Riemann sphere

CP2 \
{

z1, · · · ,zN , ∞
}

≃ C2 \
{

z1, · · · ,zN
}
. (98)

And indeed, a well-but-not-widely known theorem called the hypergeometric integral construction identifies these conformal
blocks of “degree=1” inside the twisted cohomology (94) of the punctured plane (98)

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2

k (⃗w,⃗z)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(

Ω•
dR
(
C\ {⃗z}

)
, d+ω1 ∧

)
natural

inclusion
↪−−−−−−! KU1+ω1

((
C\ {⃗z}

)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1-singularity

[Dfc1, Prop. 2.16]

(99)

and generally the conformal blocks of any degree n inside n-configuration space of points, if we set

ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
. (100)

namely:

su(2)-affine deg=n
conformal blocks

CnfBlckn
ŝl2

k (⃗w,⃗z) ↪−!

1-twisted deg=n de Rham cohomology
of configuration space of n points

Hn
(

Ω•
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
, d+ω1 ∧

)
↪−! KUn+ω1

((
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
×∗�Cκ ; C

)
inner local system-twisted deg=n K-theory

of configurations in Aκ−1-singularity

[Dfc1, Thm. 2.18]

(101)

Concretely, this inclusion is given by sending the canonical basis elements of conformal blocks to “Slater-determinant”-like
expressions, as follows:

CnfBlckn
ŝl2

k (⃗w,⃗z) Hn
(

Ω
•,0
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
|
∂=0, ∂ +ω1(⃗w,κ)∧

)
fI1 · · · fIn |v0

1 · · · ,v0
N⟩ 7−!

[
det

((wI j
κ

1
zi−zI j

)n

i, j=1

)
dz1 ∧·· ·∧dzn

]

e.g. fI fJ |v0
1 · · · ,v0

N⟩ =
[
· · · , ( f · v0

I
), · · · , ( f · v0

J
), · · ·

] generators

7−!
[

wI
κ

dz1

(z1−zI )
∧ wJ

κ

dz2

(z2−zJ )
+

wI
κ

dz2

(z2−zI )
∧ wJ

κ

dz1

(z1−zJ )

]
.

(102)
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In summary, we have derived, from Hypothesis H, that:

quantum states of
brane configurations

inside an M-theoretic bulk

 are identified with

 quantum correlators of
a conformal field theory

on their worldvolume
(103)

This is just the form of “holographic duality” that is expected in string/M-theory, here specifically in “Theory-S ”-
compactifications of M5-branes on Riemann surfaces such as (98). Our result that su2-conformal blocks appear on M5-branes
compactified on a Riemann surface matches the conclusion in [Wi10, p. 22].

Strongly coupled holographic quantum materials. In [Dfc2] we give a detailed argument that the worldvolume CFT which
we see here is that of anyonic defects in topologically ordered ground states of crystalline quantum materials which are in a
topological phase of matter.

This being a strongly coupled QFT on a small number κ of branes, it is outside the realm of perturbative string theory and
would indeed be expected to require M-theory for its holographic description (cf. p. 3).

7.2 Anyon braiding
We close by indicating how the “topological dynamics” of M5⊥M5 (their adiabatic movement in moduli space) acts on their
quantum states just as expected for quantum logic gates in topological quantum computers based on anyon braiding – as they
should by the duality (103). Detailed discussion may be found in [TQC1][TQC2].

Modular functor of M5⊥M5 Hilbert spaces. The
fibration of configuration spaces (95) induces on its
fiberwise twisted cohomology groups (101) a flat
connection — called a Gauss-Manin connection,
which on the spaces of conformal blocks restricts
to the Knizhnik-Zamolodchikov connection.
The parallel transport of this connection computes
the unitary transformations on the branes’ quantum
states induced by their adiabatic movement in mod-
uli space:

H1

topological brane state propagation

H2

path in transverse brane config space

H [ω1]
dR

(
Conf
{1, · · · ,n}

(
C\{−1, · · · ,−N}

))

Conf
{1, · · · ,N}

(C)

transverse plane

wI/κ

defect brane

time
braiding

C

kI

kI

some quantum state for
fixed brane positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

another quantum state for
fixed brane positions

k1,k2, · · · at time t2

Under the above holographic duality, such brane braiding translates to the braiding of anyonic defects in topologically
ordered quantum materials, which is thought to potentially serve as quantum logic gates for topological quantum computers.
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