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Abstract

The key open question of contemporary mathematical physics is the elucidation of the currently elusive
fundamental laws of strongly interacting “non-perturbative” quantum states, including bound states as mundane
as nucleons but more generally of quarks confined inside hadrons, as well as strongly correlated ground states
of topologically ordered quantum materials.

The seminal strategy of regarding such systems as located on branes inside a higher dimensional string-
theoretic spacetime (the “holographic principle”) shows all signs of promise but has been suffering from the ironic
shortcoming that string theory has also only really been defined perturbatively. However, string theory exhibits a
web of hints towards the nature of its non-perturbative completion, famous under the working title “M-Theory”
but still elusive. Thus, mathematically constructing M-theory should imply a mathematical understanding
of quantum brane worldvolumes which should solve non-perturbative quantum physics: the M-strategy for
attacking the Millennium Problem.

After a time of stagnation in research towards M-theory, we have recently formulated and tested a hypothesis
on the precise mathematical nature of at least a core part of the theory: We call this Hypothesis H since it
postulates that M-branes are classified by twisted co-Homotopy-theory in much the same way that D-branes
are expected to be classified by twisted K-theory (a widely held but not uncontested similar conjectural belief
which might analogously be called Hypothesis K). In fact, stabilized coHomotopy is equivalent to the algebraic
K-Theory over the “absolute base field F1”, as well as to framed Cobordism cohomology.

In these lecture notes, we give an introduction to (1.) the motivation and (2.) some consequences of
Hypothesis H, assuming an audience with a little background in electromagnetism, differential geometry, and
algebraic topology.
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These are notes under development,
prepared for a series of talks and lectures;
parts are still not more than a slide show.

The first part §1 aims to be elementary explanation of
Hypothesis H as a good question to ask about physics:

whether it is right or wrong, it deserves checking.

The second part §2 explains evidence
that Hypothesis H is in fact correct
and some insights gained from it.

The latest version of this document is kept at:
ncatlab.org/schreiber/show/Hypothesis+H
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The key open question of fundamental quantum physics is not
primarily the lack of coherent quantum gravity theory as such, as often
portrayed, but the general lack of non-perturbative quantum theory of
relevance1, due to which exotic quantum states of matter – such as topo-
logically ordered solid states thought to be needed for topological quantum
computation – but even mundane phenomena – such as room-temperature
matter, namely “confined” quarks in hadron bound states, reflected (just
as are topological phases!) in a “mass gap” – remain theoretically ill-
understood, to the extent that one speaks of an open Millennium Prob-
lem2.

The role of string theory. String theory originates as a model for these
elusive hadron bound states, specifically for the string-like “flux tubes” be-
tween pairs of quarks, conceptually explaining both their confinement and
their scattering behavior. The unexpected discovery that subtle quantum
effects make these hadronic strings propagate in an effectively higher di-
mensional space – with only their endpoint quarks attached to observed
3+1 dimensional spacetime (now: the “brane”) or else carrying gravitons
into an otherwise unobserved higher dimensional “bulk” – came to be
appreciated as a “holographic” description of non-perturbative quantum
physics.3

The role of M-theory. Ironically, string dynamics is itself primarily un-
derstood only perturbatively, which makes holography require the unreal-
istic assumption of a large (in fact: humongous) number N of coincident
branes, to be tractable. But understanding branes as physical objects
yields a web of hints as to what non-perturbative string theory should
be like, enough so that it famously has a working title (since 1995): “M-
theory”.

To highlight, in conclusion: One strategy for addressing the “Millennium
Problem” of formulating non-perturbative QFT is to mathematically for-
mulate M-theory:4 With this it ought to be possible to define and investi-
gate, with precision, individual quantum branes whose intersections should
exhibit non-perturbative quantum dynamics such as anyonic topological
order (which we discuss in §2.4) and eventually confined hadrodynamics.

The role of Algebraic Topology. After initial excitement, progress on
actually formulating M-theory had stagnated and efforts had been largely
abandoned5, arguably due to a lack of appropriate mathematical tools:
Where famous examples of physical theories were formulated within a
fairly well-understood framework of mathematical principles (e.g. general
relativity in differential geometry or quantum physics in functional analy-
sis), the real problem with formulating M-theory is (or was) that even its
underlying mathematical principles remained unclear. It was the vision of
[Sa10] (review in [FSS19]) that M-theory ought to find its formulation in
algebraic topology; initiating a program of looking for algebro-topological
patterns in the available information on M-brane physics, deducing clues
as to their fundamental mathematical meaning.

The role of Hypothesis H. This analysis eventually culminated in a
formulation of a hypothesis – Hypothesis H – of what M-theory really
is about [FSS20], namely about the generalized non-abelian cohomology
theory called CoHomotopy Theory. This we explain below in §1.3.
It is noteworthy here that algebraic topology is not a field of mathemat-
ics as any other, but has recently been understood to serve, in its guise
of homotopy theory, as an alternative foundation for mathematics itself
(HoTT6). Moreover, within algebraic topology, cohomotopy is not a (mul-
tiplicative) cohomology theory as any other, but is initial among all of
them. This may be more than a coincidence given that M-theory is meant
to be not just a theory of physics as any other, but the initial foundation
of all of them.
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1 Flux Quantization

In higher gauge theories [Al24, §2][BF+24], flux of field
lines is sourced by charged branes (§1.1), and flux quan-
tization makes fluxes/charges form a discrete space, re-
flecting individual brane sources (§1.2). A choice of flux
quantization is a hypothesis about or specification of the
non-perturbative completion of the given theory (§1.3).
Tradition, originating in the ancient past, is to define any
physical theory by a stationary action principle embodied
by a Lagrangian density (e.g. [HT92]), from which one
systematically extracts a perturbative phase space in the
guise of a BRST-BV complex. But flux-quantization laws
used to be imposed in ad-hoc fashion to “cancel anoma-
lies” (cf. pp. 25).

In contrast, we observe [SS23-FQ] that all admissible flux-
quantization laws A are algebro-topologically determined
by the duality-symmetric form of the Bianchi identity or
Gauß law (30) satisfied by the flux densities.

Hypothesizing an admissible flux quantization law A, the
non-perturbative phase space is the moduli stack of dif-
ferential A-cohomology on any Cauchy surface.
Among the admissible flux-quantization laws is typically
an “evident” one. In traditional examples like electro-
magnetic or RR-fields this evident choice is the traditional
choice, whose hypothetical nature tends to be forgotten.

The “Hypothesis H” is essentially nothing but the cor-
responding evident choice of flux quantization for the C-
field in 11d supergravity.

The reason why this was not so “evident” earlier is that
the admissible flux-quantization laws of the C-field are
non-abelian (unstable) forms of generalized cohomology
(owing to the non-linear sourcing of M2-brane flux by
M5-brane flux), whose theory was fully established only
in [?].

Survey of Part 1
Higher gauge field

of Maxwell-type
A-field
in D = 4

B&RR-field
in D = 10

C-field
in D = 11

Flux
densities

F⃗ ≡(
F (i) ∈ Ω

degi

dR (XD)
)
i∈I

F2 magnetic

G2 electric

H3 NS5

H7 F1

F2• D8−2•

G4 M5

G7 M2

§1.1 Self-
duality ⋆ F⃗ = µ⃗

(
F⃗
)

⋆F2 = G2
⋆H3 = H7

⋆F2• = F10−2•
⋆G4 = G7

Bianchi
identities d F⃗ = P⃗

(
F⃗
) dF2 = 0

dG2 = 0

dH3 = 0

dH7 = 0

dF2• = H3 ∧ F2•−2

dG4 = 0

dG7 =− 1
2G4 ∧G4

CE-algebra of
characteristic
L∞-algebra

CE(a) ≡
R
[
b⃗
]/(

d⃗b = P⃗ (⃗b )
) df2 = 0

dg2 = 0

dh3 = 0

dh7 = 0

df2• = h3 ∧ f2•−2

dg4 = 0

dg7 = − 1
2g4 ∧ g4

§1.2
Solution space
of fluxes on

XD = R0,1 ×Xd

Gauß law = a-closedness

ΩdR

(
Xd; a

)
clsd

≡
Hom

(
CE(a), Ω•

dR(X
d)
) Ω2

dR(X
d)clsd

×Ω2
dR(X

d)clsd
can. momenta

3-twisted
de Rham
cocycles

“4-twisted”
de Rham
cocycles

Characteristic
L∞-algebra

a bu(1)⊕ bu(1)
[
b2, v2•−1

]
= v2•+1

[
v3, v3

]
= v6

M-theory gauge algebra

as rational White-
head L∞-algebra

a ≃ lA l
(
B2Z×B2Z

)
l
(
(KU0�B2Z)×B7Z

)
l
(
S4

)
Evident choice of
classifying space

A B2Z×B2Z
Dirac’s hypothesis

(
KU0�B2Z

)
×B7Z

Hypothesis K

S4

Hypothesis H

§1.3 Corresponding
cohomology theory

generalized
cohomology

ordinary
cohomology

twisted
K-theory

unstable
CoHomotopy

Flux-quantized
phase space

ΩdR

(
Xd; a

)
clsd

×
LRA(Xd)

A(Xd) differential
cohomology

differential
twisted K-theory

differential
CoHomotopy

5



1.1 Branes imprinted on flux

The concept of branes (see [IU12, §6][Fr13, §7][HSS19,
§2]) is the core aspect of the historical re-thinking of
string theory that came to be known as the “second su-
perstring revolution” [Schw96], in that it is the key for
the non-perturbative completion of the theory [Du00]:
The “M” in “M-theory” originates [HW96, p. 2] as a
“non-committal” abbreviation for membrane.

Conversely this means that the precise meaning of
“brane” has been almost as elusive as that of “M-theory”
itself. Or rather: There is a range of specialized mean-
ings of the term, some versions of which do have precise
definitions, but it has remained unclear how exactly any
and all of these notions are aspects of a unified concept
of “branes”.

Our strategy for formalizing the concept of branes is by careful examination of the nature of the flux they source.
(1.) We recall here (§1.1) the notion of branes as higher-dimensional generalizations of poles and hence as sources of flux.
(2.) We express this notion in algebro-topological terms (§1.2), from which we motivate Hypothesis H (§1.3).
(3.) We observe a natural notion of light-cone quantization by passage to Pontrjagin homology algebras (§2.2).
(4.) All inspection of brane physics in §2 proceeds by mathematical unravelling of this algebro-topological stucture.

1.1.1 Branes as concentrations of flux

To get ground under our feet, it is expedient — our am-
bitious goal nonwithstanding — to start with elementary
reflections on flux lines (flux densities) sourced by charged
poles as originally conceived by Faraday in the 19th cen-
tury, and as more generally sourced by higher dimensional
charged branes, like the charged membranes already consid-
ered by [Dirac1962]. While most of these objects (famously
including magnetic mono-poles) are notorious for remain-
ing hypothetical entities not currently seen in experiment,
we highlight (p. 7) the example of vortex strings

in superconductors which have been observed in detail and
which — whether one likes to refer to them as “1-branes”
or not — do constitute an example of the general notion
of classical branes in question.a This highlights the rel-
evance of the distinction between singular and solitonic
branes (and their difference in dimension) which may not
to have received due attention before, cf. §2.3.3.

aA suggestion originally due to [Nielsen & Oleson 1973], cf.
also [Beekman & Zaanen 2011]. [Polyakov 12, p. 1] regrets not
to have understood electromagnetic vortices as strings.
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the right: Magnetic flux(-line) density as a differential 2-form (adapted from hyperphysics.phy-astr.gsu.edu/hbase/magnetic/fluxmg.html).

Solitonic vs. Singular branes. Imprinted on the flux densities may be two kinds of branes, to be called:7

(1.) singular branes (black branes) reflected in diverging flux density at singular loci in spacetime,

(2.) solitonic branes reflected in localized but finite flux density, namely vanishing at infinity, transversally

This distinction is often not made quite clear in the litera-
ture, but it is crucial for the analysis of brane effects (§2).

Therefore we first highlight the issue in the familar case of
electromagnetism:
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The singular branes of 4d electromagnetism are the (would-be) magnetic monopoles:
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But the solitonic branes of 4d electromagnetism are the vortex strings in type II super-conductors (“Abrikosov
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(6.101)]):
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∫
B dx1 dx2 = total magnetic flux

prop. to # vortices
(2)

magn
etic

flux
den

sity

v
o
rte

x
p
o
sitio

n

d
ista

n
c
e
fro

m
v
o
rte

x

vortex in electron current

magnetic flux lines

R
3

x1

x2

electron
density

current
density

electron
current

Figure adapted from
[Loudon & Midgley (2009) Fig. 1]

Dirac- monopoles
are the

singular branes
associated with the EM field,

Abrikosov- vortex strings solitonic branes

7Beware that, while the terminology “solitonic brane” is wide-spread, its exact meaning differs between authors (as does the term
“soliton” that it is derived from): It was introduced in [DKL92][DKL95][DL94] to mean (topologically stable) non-singular brane-like
solutions to (supergravity/flux) equations of motion, which is how we use it here. But already [St99] uses “solitonic” to instead mean
the “electromagnetic-dual singular brane”, e.g. calling the singular NS5 the soliton of the fundamental string, cf. (80). Somewhat
in this vein, many later authors (e.g. [Sm03]) use “solitonic” for any singular or non-singular brane-like supergravity solution, thus
regarding it as the antonym to the fundamental sigma-model branes discussed in §2.1.1. This is how we ourselves use it elsewhere.
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The formalization of the
difference between singular
and solitonioc branes is via
choices of domains on which
the flux densities are actually
defined (following [SS23-HpH2,
§2.1]).

Type of brane Spacetime domain of flux density

Singular brane
complement of singular worldvolume
locus Qp+1 inside spacetime Xd+1 Xd+1 \Qp+1

Solitonic brane
Transverse space Y d−p to worldvolume
equipped with a “point at infinity”

(
Y d−p, ∞Y

)
This is most transparent for the special case of “flat” branes in flat Minkowski spacetime:

– singular branes have spacetime singularities which are removed from spacetime: the field flux sourced by the singularity
is that through spheres in the normal bundle around these loci and would diverge at the singular brane locus (cf. (14)
below):

bulk

Rd+1 \

singular
brane

Rp+1 ≃
homeomorphism

punctured
transverse space(
Rd−p \ {0}

)
× Rp+1 ≃

homotopy equivalence

encircling sphere

Sd−p−1 (3)

– solitonic branes are witnessed by non-singular “local bumps” in the flux densities: Their flux vanishes at infinity, which
means that it is measured on the 1-point compactification of their transverse space, which is again a sphere:

solitonic
brane

Rp+1
+ ∧

transv.
space

Rd−p
∪{∞}

with
poi

nt

at infi
nity

≃
homotopy

Rd−p
∪{∞} ≃

homeo

transverse sphere

Sd−p

Rd−p
∪{∞} ≃ Sd−p

Rd−p

∞

(4)

Towards flux quantization. The
laws of flux discussed so far are laws
of “classical physics”: By themselves,
they do not explain, for instance, why
the flux carried by Abrikosov vor-
tices (p. 7) is quantized to appear
in integer multiples of a unit flux, or
why, as argued long ago by Dirac,
magnetic monopoles would be quan-
tized to appear in integer multiples of
unit charged monopoles. Apparently
the electromagnetic flux density F2 =
Ω2

dR(X) is just one aspect of the true
nature of the electromagnetic field.

In modern mathematical language,
the argument underlying Dirac charge
quantization says that an electromag-
netic field configuration on a space-
time X also involves a “charge map”
c : X −! BU(1) to the classifying space
of the circle group. This may be under-
stood as the infinite complex projective
space BU(1) ≃

whe
CP∞, but crucially it

is a classifying space for ordinary inte-
gral cohomology in degree 2, meaning
that homotopy classes of such maps are
in natural bijection with H2(X;Z).
Formalizing generalized flux quantiza-
tion is the topic of §1.2.

c
−−−−−−−−−−−−−−−−−−−−!

electromagnetic field
sourced by monopole

X := R3,1 \ R0,1 ≃ R0,1 × Rrad × S2

spacetime around magnetic monopole︷ ︸︸ ︷ BU(1) ≃ CP∞

classifying space for ordinary cohomology︷ ︸︸ ︷

monopole

CP 1

higher cells[c] ∈
{
X −! BU(1)

}/
hmpty

charge = homotopy class

≃ Z
charge
lattice

flux tube CP 1

0

∞

higher cells

X := R1,1 × R2
∪{∞} ≃ R1,1 × S2

spacetime seen by fields vanishing at transversal infinity︷ ︸︸ ︷
c

magn. field through plane

//
BU(1) = CP∞

classifying space for ordinary cohomology︷ ︸︸ ︷

[c] ∈
{
X −! BU(1)

}/
hmpty

total flux = homotopy class

≃ Z
charge
lattice
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1.1.2 Laws of flux

As we now turn to the equations of motion for flux densities (the analogs of Maxwell’s equations), the key move
towards identifying possible flux quantization laws (below in §1.2) is to arrange these equations, equivalently, as:
(i) a purely cohomological system of differential equations known as higher Bianchi identities,
(ii) a purely geometric system of linear equations expressing a Hodge self-duality,
the point being that the first item is entirely “algebro-topological” (homotopy-theoretic), while dependency on
geometry, namely on the spacetime metric (the field of gravity) is all isolated in the second item.

It turns out [SS23-FQ] that from such duality-symmetric laws of flux, the canonical phase space of the higher
gauge theory, including the flux-quantization structure may be obtained straightforwardly, without going through
the traditional and thorny route of BRST-BV analysis based on an action principle given by a Lagrangian density.

Bianchi identities
(cohomological)

Gauß law constraint
on Cauchy data

Canonical Phase space
with flux quantizationEquations of motion

for higher flux densities
in background gravity Self-Duality

(geometric)
Time evolution
of Cauchy data

Hamiltonian
on phase space

enhance flux densities to differential cohomology

§1.2.3

duality-symmetric formulation

§1.1.2

(5)

Duality-symmetric equations of motion The move of isolating “pre-metric flux equations” supplemented
by a “constitutive” duality constraint has a curious status in the literature. On the one hand, it is elemen-
tary and immediate as an equivalent re-formulation of the usual form of (higher) Maxwell-type equations of mo-
tion, and as such has been highlighted, in the case of electromagnetism (6), a century ago [Ko1922][Cartan1924,
§80][vDa1934][Whit1953, pp. 192], and re-amplified more recently under the name “pre(geo)metric electromag-
netism” [HO03][Del05][HIO16][Del]; but the broader community does not seem to have taken much note of this yet.
On the other hand, we may observe below in (8) and (10) that just the same “pregeometric” perspective, applied to
higher degree flux forms, evidently underlies what in supergravity and string thoery is called “duality-symmetric”
or (for better or worse: “democratic”) formulations of supergravity fields – see the following examples.

Electromagnetism. Concretely, Maxwell’s equations for electromagnetic flux encoded in the Faraday tensor F2

as shown on the left (cf. [Th78, v2 §1.3][Fr97, §7.2b][Na11, §2.2]) have (pre)geometric decomposition as shown on
the right (cf. already [Cartan1924, §80]):

dF2

dG2

=
=

0
J3dF2

d ⋆ F2

=
=

0
J3

G2 = ⋆F2

(6)

While trivially equivalent, some authors found deep significance to the pre-geometric decomposition on the
right of (6), (cf. the careful discussion of classical electromagnetism in [HO03]) highlighting that it maximally
disentangles gauge from gravitational degrees of freedom (already in [Whit1953, p. 192]8) and thus possibly
helping with understanding unification of the two (cf. [Del15]). None of what we say here refers to or relies on any
of these previous discussions of premetric electromagnetism, but the inclined reader may find value in comparing
to them.

Here we are interested in the “vacuum”-case where the electric current density J3 vanishes:

dF2

dG2

=
=

0
0

dF2

d ⋆ F2

=
=

0
0

G2 = ⋆F2

(7)

8[Whit1953, p. 192]: “Since the notion of metric is a complicated one, which requires measurements with clocks and scales, generally
with rigid bodies, which themselves are systems of great complexity, it seems undesirable to take metric as fundamental, particularly
for phenomena which are simpler and actually independent of it.”
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It is clear that an analogous transmutation – by first “doubling” the flux degrees of freedom and then cutting
them back down by half via a self-duality constaint – applies also to equations of motion for higher degree fluxes
(made explicit for instance in [Fr00, Ex. 3.8]):

RR-fields in 10d supergravity. In evident higher-degree generalization of vacuum electromagnetism, consider
a “higher gauge field” whose flux density is a tuple of differential forms F2p in every second degree smaller or
equal the spacetime dimension D: and satisfying the evident higher-degree generalization of Maxwell’s equations,
as shown on the left, where the equivalent pregeometric formulation shown on the right is rather more suggestive
in its conceptual simplicity (but its physical justification remains subtle, see below):

dF2•+σ = 0 ∀ 2•+σdF2•
d ⋆ F2•

=
=

0
0

∀ 2 •+σ ≤ 5
F

(10−2•−σ)
= ⋆F2•+σ

• ∈ N

σ =

{
0 for type IIA

1 for type IIB

(8)

More generally:

dF2•+σ = H3 ∧ F2•+σ−2
dH3 = 0
dH7 = · · ·

dF2•+σ = H3 ∧ F2•+σ−2

d ⋆ F2•+σ = H3 ∧ ⋆FD−2•−σ+2

dH3 = 0

d ⋆ H3 = · · ·
FD=2•−σ = ⋆F2•+σ H7 = ⋆H3

But this is just the situation of the “RR-fields” in D = 10-dimensional massive type IIA supergravity for the special
case where the background NS-fields besides the metric vanish (we discuss the more general case in §1.1.3): On the
left of (8) we have the equations of motion of the RR-field fluxes in their original “geometric” form (e.g. [Po95,
(3)][IU12, §4.2.5]), while on the right of (8) we have the RR-fields in their pregeometric form, now commonly called
the “duality-symmetric” or “democratic” form (see [CJLP98, §3][BKORV01][MV23]), this being the form which
plays into the “Hypothesis K” that D-brane charge is quantized in K-theory (56).

Self-dual higher gauge theory. In type IIB the equations (8) describe one flux density which is actually Hodge
dual (not just to another flux density in the tuple but) to itself:

F5 = ⋆F5 .

Such genuinely “self-dual higher gauge theories” are notoriously subtle to describe traditionally via Lagrange-
densities, but the equations of motion of their flux densities, at least, is just a particular special case of general
duality-symmetric equations of motion:

d F
D/2

= 0
equations of motion of

self-dual higher gauge field
in D = 4k + 2 F

D/2
= ⋆F

D/2

C-field in 11d supergravity. The primary example of interest here is that of “C-field flux” G4 in 11-dimensional
supergravity (aka the “3-index A-field” [CJS78], see [DF82, §p. 131][MiSc06, p. 32][vPF12, §10]), which is meant
to be the low-energy approximation of M-theory (see [Du00, §1]).

It is noteworthy that the C-field is the only field in D = 11 SuGra, besides the field of (super-)gravity itself
(quite in contrast to the zoo of fields that appear in lower dimensional supergravities). This may make it plausible
that the proper non-perturbative completion of the C-field alone may go at least halfway towards a full definition
of M-theory.

C-field

Hypothesis H:
C-field flux quantization
(non-perturbative completion)
is in unstable twisted CoHomotopy.

unaccessible before [FSS23-Char]
due to quadratic self-coupling with
non-abelian gauge algebra [v3, v3] = v6 ⇒:
C-field is in non-abelian diff. cohomologyField content

of M-theory
super-
gravity

(9)
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In any case, the higher Maxwell-type equations for the C-field flux are famously as follows:

dG4

dG7

=
=

0
− 1

2G4 ∧G4
dG4

d ⋆ G4

=
=

0
− 1

2G4 ∧G4

G7 = ⋆G4

(10)

On the left of (10) we have the equations of motion in their traditional geometric form ([DF82, p. 131], detailed
review in [CDF91, §III.8.53][MiSc06, (3.23)]), on the right their pregeometric form, known as the duality-symmetric
form, cf. [BBS98][CJLP98][BNS04, §2][Nu03, §3].

The double-dimensional reduction of these duality-symmetric equations of motion over a circle-bundle with
non-trivial first Chern class F2 is ([MaSa04, §4])

S1 Y 11

X10

p

d θ = p∗F2

G4 = p∗F4 − θ ∧ p∗H3

G7 = p∗H7 − θ ∧ p∗F6

dF2 = 0

dF4 = H3 ∧ F2

dF6 = H3 ∧ F4

dF8 = H3 ∧ F6

dH3 = 0

dH7 = − 1
2F4 ∧ F4

+F2 ∧ F6dimensionally reduced
equations of motion
of C-field flux in 11d

to B&RR-field flux in 10d
+ KK-monopole flux EoM

⋆F4 = F6

⋆F2 = F8

⋆H3 = H7

11d
C
-fi

e
ld

g
ra

v
ity

C
-fi

e
ld

g
ra

v
ity

Here the new gravitational flux density F2 is understood as witnessing singularD6-brane sources in the geometric
guise of “KK-monopoles” in 11d. Notice that its Hodge dual F8 := ⋆F2 is purely a reflection of the gravitational
field (the Hodge star encodes the 10d metric and F2 is an aspect of the 11d fiber geometry) and hence not
encoded by the equations for the C-field alone. But invoking the supergravity equations gives [CJLP98, (3.4)] that
dF8 = H3 ∧ F6.

Notice also the presence of non-linear Bianchi identity for H7 (cf. again [CJLP98, (3.4)])

B-field in 5d supergravity. Just to amplify that the pre-geometric decomposition of field-flux equations of
motion is a generic phenomenon, we briefly mention one more example:

The flux forms in 5-dimensional supergravity (cf. [CDF91, §III.5.70]) satisfy an equation of motion analogous
to the equation (10) for the C-field in 11-dimensional supergravity (cf. [GGHPR03, (2.2)]):

dF2

dH3

=
=

0
F2 ∧ F2

dF2

d ⋆ F2

=
=

0
F2 ∧ F2

H3 = ⋆F2

(11)

Summarizing this list of examples (which could be much expanded) of duality-symmetric equations of motion of
flux densities:
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Flux species
equations of motion
(of fields in background gravity)

⇔ Bianchi identities
(purely cohomological)

with duality constraint
(wrt background metric)

free A-field
in 4d gravity

d ⋆ F2 = 0

d F2 = 0

}
⇔

{
d G2 = 0

d F2 = 0
where G2 = ⋆F2

A-field & B-field
in 5d supergravity

d ⋆ F2 = F2 ∧ F2

d F2 = 0

}
⇔

{
d H3 = F2 ∧ F2

d F2 = 0
where H3 = ⋆F2

C-field
in 11d supergravity

d ⋆ G4 = G4 ∧G4

d G4 = 0

}
⇔

{
d G7 = G4 ∧G4

d G4 = 0
where G7 = ⋆G4

free RR-field
in 10d supergravity

d ⋆ F2•≤ 5 = 0

d F2•≤ 5 = 0

}
⇔

{
d F2• = 0 where F10−2• = ⋆F2•

(12)

The singular branes of string/M-
theory. The sources for the RR-field
flux (8) are, of course, the D-branes
originally proposed in [Po95, (14)]; and
for the present purpose this may be re-
garded as the definition of (classical) D-
branes: concentrations of RR-field flux
(cf. exposition in [Ha12]).
Similarly, we identify other (classical)
brane species as sources of correspond-
ing flux:

Field Flux Singular source

D=4 Maxwell theory A-field F2
monopole
0-branes

D=10 supergravity
B-field

H3 NS5-brane

H7 F1-branes

RR-field F8−p Dp-branes

D=11 supergravity C-field
G4 M5-branes

G7 M2-branes

(13)

More in detail, traditionally the singular branes of string/M-theory are defined as singular solutions of the
corresponding supergravity equations of motion (“black branes” in higher dimensional generalization of black
holes), preserving some amount of supersymemtry (“BPS branes”), for further pointers see [HSS19, §2.2].
But the near-horizon
geometry of > 1/4-BPS
black p-brane space-
times are all Cartesian
products of an anti-
de Sitter spacetime
with (a free discrete
quotient of) a sphere
around the singularity,
such that the result is
a warped metric cone
over the p-brane sin-
gularity, as shown here
([FF98, dMFF+09]).

Near horizon
spacetime

anti-de Sitter
spacetime

AdSp+2 × SD−p−2 /G︷ ︸︸ ︷
Metric in

horospheric coord.
R2

z2 ds
2
Rp,1 + R2

z2 dz
2 + ds2SD−p−2

Causal
chart

singularity

radial
direction

sphere around
singularity

Rp,1 × R+ × SD−p−2 /G︸ ︷︷ ︸
transversal space RD−p−2 \ {0}

Metric in
natural coord.

rn

ℓn ds
2
Rp,1 + ℓ2

r2 dr
2 + ℓ2 ds2SD−p−2︸ ︷︷ ︸

rn

ℓn
· Minkowski ℓ2

r2
· metric cone C(SD−p−2) \ {0}

(14)

On a causal chart of AdS-spacetime this is nothing but the topological complement considered in (3). For example:

Black brane Near horizon geometry Causal chart

M2 AdS4 × S7 R2,1 × R+ × S7

M5 AdS7 × S4 R5,1 × R+ × S4

(15)

This indicates that a good deal of the
nature of branes is actually indepen-
dent of the metric/gravitational pa-
rameters and instead controlled purely
algebro-topologically. We see why this
is so by analysing the phase space of the
flux fields sourced by the branes:
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The phase space. Abstractly, the phase space of a field theory is nothing but the space of all those field histories
that satisfy the given equations of motion (the “on-shell” field histories). Phrased this way, this is sometimes called
the covariant phase space ([Wi86, p. 314][ČW87][HT92, §17.1]; see [Kh14][GiS23] for rigorous discussion) to
emphasize that no choice of foliation of spacetime by Cauchy surfaces has been or needs to be made.

The more traditional canoni-
cal phase space is instead a
parameterization of the covari-
ant phase space by initial value
data on a given Cauchy sur-
face, after choosing a foliation
of spacetime by spatial hypersur-
faces (cf. [SS23-FQ, p. 5]). This
choice breaks the “manifest co-
variance” of the covariant phase
space. Nevertheless, if a Cauchy
surface exists at all (hence on
globally hyperbolic spacetimes),
then both these phase spaces
are equivalent, by definition, the
equivalence being the map that
generates from initial value data
the essentially unique on-shell
field history that evolves from it
(possibly up to gauge transfor-
mation).

CovariantPhaseSpace



on-shell
field history

Cauchy data } dt


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CanonicalPhaseSpace

{

on-shell
field history

canonical coordinate

can
o
n
ical

m
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m

} sp
a
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f

C
a
u
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y
d
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:=

∼
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Solution space of on-shell flux densities. At this point in our discussion, we do not yet know what the full field
content of our field theories really is – this will be implied by a choice of flux quantization in §1.2 – we only know
the corresponding flux densities. To remember this, we shall call the space of flux densities solving their equations
of motion the solution space, and we are after its incarnation as a canonical solution space of initial value data on a
Cauchy surface. But the canonical phase will simply consist of all flux-quantized gauge potentials compatible with
these flux solutions (cf. p. 24).

higher Maxwell-type
equations of motion in
duality-symmetric form

Bianchi identities

d F⃗ = P⃗
(
F⃗
)

⋆F = µ⃗
(
F⃗
)

self-duality

flux species

I ∈ Set ,
flux degrees(

degi ∈ N≥1

)
i∈I

,

flux densities

F⃗ ≡
(
F (i) ∈ Ω

degi

dR

(
XD

))
i∈I

P⃗ graded-symm. polynomial
flux self-sourcing

, µ⃗ invertible matrix
vacuum permittivity

(16)

Proposition 1.1 ([SS23-FQ]). On a globally hyperbolic spacetime XD ≃ R0,1 ×Xd, the solution space to higher
Maxwell-equations of motion brought into the duality-symmetric form (16) is isomorphic to the solution of the
Bianchi identities on any Cauchy surface ι : Xd ↪! XD, then to be called the higher Gauß law:

space of flux densities
on spacetime, solving

the equations of motion
SolSpace ≡


electromagnetic flux densities on spacetime

F⃗ ≡
(
F (i) ∈ Ω

degi

dR

(
XD

))
i∈I

∣∣∣∣∣∣∣∣
Bianchi identities

d F⃗ = P⃗
(
F⃗
)

⋆F = µ⃗
(
F⃗
)

self-duality

 covariant form

≃
ι∗


magnetic flux densities on Cauchy surface

B⃗ ≡
(
B(i) ∈ Ω

degi

dR

(
Xd

))
i∈I

∣∣∣∣∣∣
Gauß law

d B⃗ = P⃗
(
B⃗
)  canonical form

(17)

Gravity “decouples” on canonical phase space.
The inverse isomorphism (17) is given by time evolution
of initial value data. Notice that the background metric
(the background field of gravity) enters only in deter-
mining the nature of this isomorphism ι∗, but does not
affect the nature of the initial value data (of the canon-
ical phase space) as such (cf. [SS23-FQ]).

It is this “decoupling” on the canonical phase space of
the gravity/metric effects from the phase space Gauß
law constraint which allows to gain plenty of insight into
brane configurations from purely cohomological analy-
sis of fluxes on Cauchy surfaces, disregarding the full
solution of the coupled (super-)gravity equations of mo-
tion, cf. the examples in §1.1.3 and §2.
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In conclusion so far, when looking at classical flux densities sourced by branes, we are looking at systems of
differential forms on a (pseudo-)Riemannian manifold satisfying polynomial exterior differential equations subject
to a Hodge-duality constraint:

higher gauge field fluxes in gravitational background︷ ︸︸ ︷
( flu

x de
ns
iti
es

F (i) ∈ Ω
degi

dR (X)
)
i∈I

flux densities
differential forms on spacetime

de
Rh

am
diff

.

dF (i) =

po
lyn

om
ial

P (i)
({
F (j)

}
j∈I

)
Bianchi identities

cohomological part of field equations︸ ︷︷ ︸
pre-geometric cohomological aspect

But for which cohomology theory, really?
We answer this question in §1.2, §1.3.

Hod
ge

sta
r

⋆ F (i) =

pe
rm

itt
ivi

ty

µi
jF

(j)

Hodge self-duality
gravity-dependent part of field equations︸ ︷︷ ︸
Riemannian geometric aspect

Drops out in the canonical phase space.

(18)
The appearance of quadratic Bianchi identities in the above examples (12) — in particular for the C-field flux

in 11d supergravity (10) and generally of non-linear polynomial Bianchi identities (18) — is a crucial effect not
seen in ordinary electromagnetism and outside the scope of previous mathematical discussions of flux quantization.
It is to handle the quantization of such non-linear flux that we invoke the non-abelian character theory developed
in [?] and surveyed below in §1.2, which eventually allows identifying M-theory flux quantization in non-abelian
(namely: unstable) cohomotopy (in §1.3).

But first, we here discuss the physics encoded by non-linear terms in the pregeometric equations of motion of
flux.

1.1.3 Brane intersections imprinted in non-linear flux

Bound states of intersecting black branes are seen (e.g. [Sm03]) as solutions of full supergravity equations of motion;
but in the pre-geometric spirit of §1.1.2 we highlight here that the qualitative aspects of the brane intersection laws
may largely be deduced from the higher Gauß law on phase space (17) alone, as it ought to be by the nature of
phase space.

Namely, it is the non-linear (quadratic and higher) polynomial source terms which encode the possibility that
the branes which source these fluxes may “intersect” or “end on” each other in certain ways, as we explain now.
Notice that it is only “on” such brane intersections that modern string phenomenology (namely all type I/II/M/F
phenomenology, excluding only the traditional HET models) expects to model quasi-realistic physics (see [Ha12,
§6.1, §6.4][IU12][RZ16, §15]).

Branes ending on branes
(brane intersection laws)

Non-linear Gauß law
(polynomial Bianchi identities)

Non-abelian cohomology
(polynomial characters)

[?]

The relation on the left is fairly well-known in the case of D-branes ending on NS5-branes, to be briefly recalled now,
which is a “mild” form of non-linear flux since it may still be understood as “parameterized” or “twisted” linear
flux (see around (52) below) and as such can and has been discussed by conventional means of flux quantization:
D-branes ending on NS5-branes. From the perspective (13) of flux densities, NS 5-branes are what source
3-form flux H3 in type II supergravity, whose pregeometric equation of motion we may take to simply be9 dH3 = 0.
In the presence of such flux, the pregeometric equations for RR-field fluxes (8) are modified as follows (see references
around (8)):

dH3 = 0

dF0 = 0

dF2 = H3 ∧ F0

dF4 = H3 ∧ F2...

NS5
dF8−p = H3 ∧ F6−p

Dp
Dp+2 (19)

9We ignore here the dual NS-flux H7 = ⋆H3 in 10d supergravity: Its presence is actually a problem for the traditional Hypothesis K
(§1.3.1) that NS/D-brane charge is in 3-twisted K-theory, while it plays no direct role in the formulation of Hypothesis H that we are after
(§1.3.2). But interestingly, one proposal for incorporating H7 into Hypothesis K also proceeds via cohomotopy, see [arXiv:1405.5844,
§7.4] and [?, Ex. 3.6]
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These differential equations, in particular the one for F2, are not unlike the Maxwell equations (6) with a source
term J3, meaning here that NS5-branes via their H3-flux but also Dp+2-branes via their F6−p-flux act as a source
or sink for RR-field flux F8−p and hence for Dp-branes, in some way, suggesting that Dp-branes may emanate from
or end on NS5-branes and Dp+2-branes (cf. e.g. [EGKRS08] and references in [Fa17]).

The full supergravity equations of motion for such NS5/Dp/Dp+2-brane systems are complicated and satisfactory
discussion is hard to cite, but we can readily give a full qualitative analysis of the solutions to the pre-metric Gauß
(19) which already reveals the expected effects. This is going to be instructive for understanding the case of
M2/M5-brane intersections that we are after further below in (20):

D6-brane creation and the Hanany-Witten effect. A popular conjecture by [HW97] states that the expected
Dp-branes stretching between NS5 and Dp+2 are “created” as the Dp+2-branes are “dragged over” the NS5, intuitively
like a pole will cause a spike in a rubber sheet that is pulled over its tip. It was suggested in [Mar01, §2] that this
Hanany-Witten effect should be understandable entirely from analysis of the flux Bianchi identities (19). At least
for the case p = 6 of NS5/D6/D8-brane intersections [HZ98, §2.4][BLO98, p. 60] this is indeed the case, as we
explain now. Here the flux F0 of D8-branes (the “Romans mass”) is a locally constant function that vanishes in
the vacuum and jumps by N units across the locus of N D8-branes (cf. e.g. [Fa17, p. 40]). But this means that:

(1.) When the NS5-brane is located in the vacuum then its sourcing of F2-flux is “switched off” by the vanishing
F0-factor in (19), hence if F2 vanishes at infinity then the PDE demands it vanishes everywhere, reflecting the
absence of D6-branes.

(2.) When the NS5-brane is located on the other side of the D8-branes, where F0 = N , then the equation
(19) shows that F2-flux/D6-number density which vanishes far away will increase along the coordinate axis x9

orthogonal to the D8-branes in proportionality to the dx9-component of the flux H3, and hence pronouncedly so
as one crosses the NS5-brane locus.

1.

2.

F2 = 0F2 = 0

H3

k(=
∫
S3 H3) NS5N(= F0|x9<d) D8

x9
N

d

F0

dF2 = F0 ∧H3

= 0

F2 ∼ N
∫ d

−∞H3F2 ≫ 0F2 ∼ 0

H3

k(=
∫
S3 H3) NS5

kN(∼
∫
S2 F2) D6

N(= F0|x9<d) D8

x9
N

d

F0

dF2 = F0 ∧H3

= N H3
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D3-branes and M2-branes streching between 5-branes. Consider now the case of flux configurations which
should reflect branes stretching between pairs of 5-branes. By the previous discussion this occurs either for D3-
branes between NS5/D5-branes or for M2-branes between M5-branes, according to the following pregeometric
equations of motion:

D = 10 : dF5 = H3 ∧ F3 (19)

D = 11 : dG7 = 1
2G4 ∧G4 (10)

= G
(1)

4 ∧G(2)

4 G4 := G
(1)

4︸︷︷︸
homog.

+ G
(2)

4︸︷︷︸
homog.

(20)

Considering a background configuration given by a pair of parallel flat 5-branes at some positive distance 2d > 0:

R1,5
(i)

R1,D

(t, x⃗ ) 7−!
(
t, x⃗, (−1)id, 0⃗

)
hence reflected in flux densities of the following form (or any multiples of these, if you like)

H3 := dvolS3 ∈ Ω3
dR(S

3)
pr∗

S3

↪−−−−−−! Ω3
dR

(
R1,5

(1)
× R⊔{∞} × S3

)
≃ Ω3

dR

(
R1,9 \ R1,5

(1)

)
F3 := dvolS3 ∈ Ω3

dR(S
3)

pr∗
S3

↪−−−−−−! Ω3
dR

(
R1,5

(2)
× R⊔{∞} × S3

)
≃ Ω3

dR

(
R1,9 \ R1,5

(2)

)
G

(i)

4 := dvolS4 ∈ Ω4
dR(S

4)
pr∗

S4

↪−−−−−−! Ω4
dR

(
R1,5

(i)
× R⊔{∞} × S4

)
≃ Ω4

dR

(
R1,10 \ R1,5

(i)

)
and assuming that D3- or M2-brane flux vanishes at infinity, then these differential equations will imply D3- or

M2-brane flux, respectively as soon as the wedge products H3 ∧ F3 and G
(1)

4 ∧ G(2)

4 are multi-poles concentrated
roughly between the given pair of branes. That and why this is indeed the case is illustrated by the following figure.

Effective dipole of quadratic brane flux. The figure
on the right means to indicate the nature of the differential
2-form which is the wedge product of two copies of the pull-
back of dvolS1 to around either of the punctures (the brane
loci) in the 2-punctured plane, the 2-dimensional shadow of
the analogous wedge products on the right of (20). Here:
• the strength of the circular lines indicates the absolute
value of the flux density sourced by the respective 5-
brane,

• the arrows indicate the orientation of the flux density of
either 5-brane,

• the parallelograms indicate the orientation of their wedge
product.

Evidently the absolute value of the wedge product is
concentrated near the 5-branes and particularly between
them...

+

+
+

− −

+
+

− −

+

− −

+

+

−
−

−

−

−

−

+ +

−

+ +

−
−

+s

−

...but the orientation of the wedge prod-
uct changes sign across the axis con-
necting the branes, as shown. This
means that the flux sourced by this
wedge product, according to (20), is, if
vanishing at infinity, concentrated be-
tween the branes.
This sourced flux concentration (indi-
cated in red) witnesses a brane stretch-
ing between the two 5-branes.

+

+
+

− −

++

− −

+

−−
+

+

−
−
−

−

−

−

+ +

−

+ +

−−

+s

−

0

sourcing
flux

0

sourced
flux

M5

dG7 = 1
2G4 ∧G4

M2
M5

Such M5 ⊥ M2 ⊥ M5-brane intersections are expected in the literature (e.g. [HLV14, Fig. 3]), but their
demonstration as solutions of their flux equations of motion seems not to have been discussed before.
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M2-Branes ending on M1-waves and C-field tadpoles. Less widely appreciated is that M2-branes are also
argued [BPST10, §2.2.3][HSS19, Prop. 4.19] to possibly end on 1-brane-like loci known as “M-waves”. In terms of
pregeometric fluxes this means, by the previous arguments, that there ought to be an 9− 1 = 8-form flux density
I8 and a modification of the C-field flux Bianchi identity roughly of the form

dG7 = 1
2G4 ∧G4 + cI8 . (21)

A modified equation for M2-brane charge of just this form was earlier argued in [DM97, (1)], based on a string
perturbation-theoretic argument notorious as the “one-loop term” in the effective string action (obtained from
Hypothesis H in (69)).

But from the point of view of flux densities and flux quantization, a Bianchi identity of the form (21) means
that we need to understand both non-linear polynomial flux equations like that of the supergravity C-field (10) and
their further twisting, in M-theoretic analogy of (19), hence we need to understand twisted non-abelian cohomology
[?] – this we turn to in §1.2.4.
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[HW96] P. Hořava and E. Witten, Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B
460 (1996) 506-524 [hep-th/9510209]

[HSS19] J. Huerta, H. Sati and U. Schreiber, Real ADE-equivariant (co)homotopy and Super M-branes, Comm.
Math. Phys. 371 (2019) 425 [arXiv:1805.05987] [doi:10.1007/s00220-019-03442-3]

18

https://arxiv.org/abs/gr-qc/0508035
https://arxiv.org/abs/gr-qc/0508035
https://arxiv.org/abs/1512.05183
https://doi.org/10.1142/9789814719063_0023
https://ncatlab.org/nlab/files/Delphenich-PreMetricElectromagnetism.pdf
http://arxiv.org/abs/0909.0163
https://www.crcpress.com/The-World-in-Eleven-Dimensions-Supergravity-supermembranes-and-M-theory/Duff/9780750306720
https://arxiv.org/abs/hep-th/9112023
https://doi.org/10.1016/0550-3213(92)90025-7
https://arxiv.org/abs/hep-th/9412184
https://doi.org/10.1016/0370-1573(95)00002-X
https://arxiv.org/abs/hep-th/9306052
https://doi.org/10.1016/0550-3213(94)90586-X
https://arxiv.org/abs/hep-th/0005052
https://doi.org/10.1088/1126-6708/2000/08/046
https://arxiv.org/abs/1712.04447
https://arxiv.org/abs/hep-th/9807149
https://arxiv.org/abs/1903.02834
https://doi.org/10.1002/prop.201910017
https://doi.org/10.1142/13422
https://arxiv.org/abs/2009.11909
https://ncatlab.org/schreiber/show/The+Character+Map+in+Non-Abelian+Cohomology
https://doi.org/10.1017/CBO9781139061377
https://doi.org/10.1007/978-94-007-5443-0_7
https://arxiv.org/abs/hep-th/0209114
https://doi.org/10.1088/0264-9381/20/21/005
https://ncatlab.org/schreiber/show/Smooth+Sets+of+Fields
https://arxiv.org/abs/2312.16301
https://arxiv.org/abs/1406.0850
https://arxiv.org/abs/hep-th/9611230
https://doi.org/10.1016/S0550-3213(97)80030-2
https://arxiv.org/abs/hep-th/9706047
https://doi.org/10.1016/S0550-3213(98)00045-5
https://doi.org/10.1007/978-3-642-23574-0
https://arxiv.org/abs/1607.06159
https://doi.org/10.1142/S0218271816400162
https://doi.org/10.1007/978-1-4612-0051-2
https://press.princeton.edu/books/paperback/9780691037691/quantization-of-gauge-systems
https://www.jstor.org/stable/j.ctv10crg0r
https://arxiv.org/abs/hep-th/9510209
https://arxiv.org/abs/1805.05987
https://doi.org/10.1007/s00220-019-03442-3
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1.2 Brane charge quantization

We have seen that the densities of electromagnetic fluxes
satisfy a polynomial differential equation, the Gauß law
(17), which expresses how charged branes are the sources
of this flux.

But so far, with flux densities F⃗ witnessing the pres-
ence of a source brane, also a weighted rescaling of F⃗ by
real numbers will satisfy the Gauß law and hence poten-
tially witness the presence of fractional or even irrational
“numbers” of charged branes.

Hence brane charge quantization (in the sense of brane
charge discretization) means to adjoin further structure
to the Gauß law which enforces that integrated fluxes
take quantized (discretized) values, reflecting brane
charges which are essentially integral multiples of certain
unit charges.

Here by integrated fluxes we are to understand the defor-
mation classes of flux densities, reflecting the total flux
but not its local density profile.

In conclusion this means to impose brane charge quan-
tization by equipping systems of flux densities satisfying
their Gauß law with deformations to systems of flux den-
sities taken from a discrete space that are certified have
admissible quantized total flux.

The key to understanding which flux quantizations are
“admissible” (on purely mathematical grounds) is to un-
derstand the Gauß law constraint as the closure-condition
on differential forms with coefficients in a characteristic
L∞-algebra.

Via the non-abelian generalization of the Chern-Dold
character map from [FSS23-Char] this shows that the
admissible laws are generalized cohomology theories (in
general: non-abelian) such that the rational Whitehead
L∞-algebra of their classifying space coincides with the
characteristic L∞-algebra.

Remarkably, this construction equips the fluxes with
gauge potentials and hence produces the full phase space
of the higher gauge theory [SS23a].

Here we explain, in survey of [FSS23-Char]10, how this amounts to the following homotopy pullback of smooth ∞-groupoids:

§1.2.3

smooth phase space
∞-groupoid (-stack)

[SS23a, Def. 2.6]

ΩdR

(
Xd; lA

)
clsd

×
LRA(Xd)

A(Xd)

Discrete moduli stack
of flux quanta

A(Xd)

§1.2.1 ΩdR

(
Xd; a

)
clsd

Solution space: smooth set of
flux densities satisfying Gauß’ law

SΩdR

(
Xd; a

)
clsd

Deformations
of flux densities

character
map

§1.2.2
gaug

e pote
ntia

ls

:=
a ≃ lA

flux quant. law

M
ap

p
in
g

st
ac
k

Maps



C
au
ch
y

su
rf
ac
e

Xd ,

Moduli stack of canonical
differential A-cohomology

[FSS23-Char, Def. 9.3]

Â

Classifying space
for A-cohomology

A

ΩdR(−; lA)clsd
Sheaf of flat

Whitehead L∞-algebra
valued differential forms

SΩdR(−; lA)clsd
Concordances
of such forms

rationalization
hom

otop
y pull

bac
k

η
S

shape unit


(22)

This follows the seminal argument of Dirac charge quantization for electromagnetism [Dirac1931] (review in [Al85][Fr97,
§16.4e] [Fr00, §2]) and generalizes suggestions for charge quantization in higher gauge theories [Fr00][HS05] to the case of
fluxes with non-linear self-sourcing quantized in non-abelian (“unstable”) cohomology, such as the C-field in 11d supergravity
(10).

Some of the flux densities may serve as a fixed background. In this case, the above data appears in vibrations, defining
flux quantization in twisted cohomology:

10When we refer to equation-, definition-, proposition-, page-numbers in [FSS23-Char] we refer to the version published by World
Scientific — see ncatlab.org/schreiber/show/The+Character+Map#PublishedVersion — which differs from the numbering in the arXiv
version (otherwise the content is the same).
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§1.2.4



moduli fibration for
B-twisted

differential A-cohomology
[FSS23-Char, Def. 11.2]

Â

Xd B̂
background

gauge field
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ug
e fi

eld


≃



A

Xd B

ΩdR

(
−; lA

)
clsd

SΩdR

(
−; lA

)
clsd

ΩdR

(
−; lB

)
clsd

SΩdR

(
−; lB

)
clsd

background

flux
densities

flux
densities

background

charge sector

charge sector



(23)

§1.2.1 Total flux as Nonabelian de Rham cohomology

§1.2.2 Flux quantization laws as Nonabelian cohomology

§1.2.3 Phase spaces as Differential non-abelian cohomology

§1.2.4 Background fluxes as Twisting of nonabelian cohomology
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Differential-topological review of Dirac flux quantization of the electromagnetic (EM) field.

The EM flux density (Maxwell-Faraday tensor) F2 (6) F2 ∈ Ω2
dR(X)clsd

is not the full content of the EM-field.
First of all, there is also an integral class χ

[χ] ∈ H2(X;Z)

which coincides with the flux density in real cohomology.
This χ is the electromagnetic “instanton number”:
– On the complement of a magnetic monopole worldline
X ≡ R3,1\R1,1, this χ is the integer charge of the monopole.
– On the one-point compactification of a planar type II
superconductor X ≡ R1,1 × R2

∪{∞}, this
χ is the integer

number of Abrikosov vortices.

H2(X;Z) [χ] integral
charge

7!

character

Ω2
dR(X)clsd H2

dR(X) ch[χ]

flux
density

F2 7! [F2]

ch

integral
total flux

But the pair (F2, χ) is still not the full EM field content:

The remaining data is how F2 and χ are identified.
To understand this, notice that ordinary cohomology
groups have classifying spaces. In the case at hand, there
is the space whose weak homotopy class is variously known
as:

infi
nite
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plex
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Eilenberg-
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H2
(
X; Z

)
≃
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π0

of mapping space

Maps
(
X, BU(1)︸ ︷︷ ︸
classifying space

)

= π0
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
and recall the notion of higher homotopy groups πk of a
simply connected space X, in degree k ∈ N≥2 these are
abelian groups.

nth homotopy
group

πk(X) :=

space of maps
preserving base-point

Maps∗/
(
Sk︸︷︷︸

k-sphere

, X
)

∈ AbGrp

Now BU(1) is special in that its homotopy groups are con-
centrated in degree 2, there being the integers.

πk
(
BU(1)

)
≃

{
Z if k = 2
0 otherwise

In general, there is a (weakly homotopy-)unique connected
space whose homotopy groups are concentrated in a single
degree and there form an abelian group A, these are called
the Eilenberg-MacLane spaces K(A,n):

πk
(
K(A,n)

)
≃

A if k = n

0 otherwise

And these spaces happen to classify ordinary cohomology: Hn
(
X; A

)
≃ π0 Maps

(
X, K(A,n)

)
Hence in particular also de Rham cohomology: Hn

dR(X) ≃ π0 Maps
(
X, K(R, n)

)
Using this, we can refine the integrality condition on coho-
mology classes to a gauge transformation of fields:
Instead of asking the class of F2 to equal the class of ch(χ),

we have a homotopy Â between them. This is equivalently
[FSSt12, Prop. 3.2.26][FSS23-Char, Prop. 9.5] the final

component of the EM-field, the gauge potential Â.

Maps
(
X, K(Z, 2)

)
χ

7!

Ω2
dR(X)clsd Maps

(
X, K(R, 2)

)
ch(χ)

F2 7! η S(F2)

ch

η
S

Â
homot

op
y

The equivalence classes of such “full EM-field” triples
(F2, Â, χ) constitute the differential cohomology Ĥ2(X;Z).
Turns out to be equivalent to isomorphism classes of U(1)-

principal bundles with Chern class χ and connection Â.

[Â]
full EM-field
is cocycle in
ordinary

differential
cohomology

Ĥ2
(
X; Z

)
H2(X;Z)
charge sector
in ordinary
cohomology

Ω2
dR(X) flux density

differential form

∈ χ

F2

The reason that this is the correct incarnation of the
Maxwell field is that (F2, Â, χ) is exactly the required data
to “cancel the anomaly” (cf. p. 25) of the Lorentz force
coupling term (82) in the exponentiated action functional
of an electron propagating in an EM background field.

Ĥ2(X;Z)× C∞(S1, X) U(1)(
Â, γ

)
7! e2πi

∫
S1 γ∗Â

Up to modernized language, this is the original observation of [Dirac1931] (cf. [Al85][Fr97, §16.4e] [Fr00, §2]).
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The lesson is that:

The usual differential forms entering the Lagrangian densities
of (higher) gauge fields are not the full field content of the theory:
Non-perturbatively, fields subsume maps to a classifying space,
making the fields be cocycles in (generalized) differential cohomology
thus enforcing a flux-quantization law on the differential form data.

We next explain
how this works.
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Flux quantization of general higher gauge theories. We explain ([FSS23-Char][SS23a]) how Dirac’s flux
quantization generalizes to any higher gauge theory:

Higher Maxwell-type equations have a characteris-
tic L∞-algebra a: The flux densities are equivalently
a-valued differential forms, and the Gauß law (17) is
equivalently the condition that these be closed (i.e.:
flat, aka “Maurer-Cartan element”; in Italian SuGra
literature: “satisfying an FDA”).

SolSpace(Xd) ≃
flux densities on Cauchy surface

B⃗ ≡
(
B(i) ∈ Ω

degi

dR

(
Xd

))
i∈I

∣∣∣∣∣∣
satisfying Gauß’s law

d B⃗ = P⃗
(
B⃗
) 

≃ ΩdR

(
Xd; a

)
clsd

flat differential forms valued
in characteristic L∞-algebra

.

Also every topological space A (under mild condi-
tions) has a characteristic L∞-algebra: Its R-rational
Whitehead bracket L∞-algebra lA.

(homotopy type of)
a topological space

A ⇝
R-rationalization

lA Whitehead
L∞-algebra

The nonabelian Chern-Dold character map turns
A-valued maps into closed lA-valued differential
forms, generalizing the Chern character for A = KU0.

charge
(
χ : Xd ! A

)
7!

character map in A-cohomology

ch(χ) ∈ ΩdR

(
Xd; lA

)
clsd

The possible flux quantization laws for a given
higher gauge field are those spaces A whose White-
head L∞-algebra is the characteristic one.

FluxQuantLaws =

{
A

classifying
spaces

∣∣∣∣∣ lA ≃ a
whose rational homotopy
encodes the Gauß law

}

Given a flux quantization law A, the corresponding
higher gauge potentials are deformations of the
flux densities into characters of a A-valued map, wit-
nessing the flux densities as reflecting discrete charges
quantized in A-cohomology.
(It is not obvious that this reduces to the usual notion
of gauge potentials, but it does.)

χ charge

ch(χ)

flux
density F⃗ F⃗

character

shape

Â gauge potential

These non-perturbatively completed higher gauge
fields form a smooth higher groupoid: the “canonical
differential A-cohomology moduli stack”. Since
these are now the flux-quantized on-shell fields, this
is the phase space of the flux-quantized higher gauge
theory (p. 13).

flux-quantized
phase space

stack is

Â(Xd)
differential

A-cohomology
moduli stack

:=


 F⃗ ∈ ΩdR(X

d; lA)clsd flux

χ ∈ Map(X;A) charge

Â : ch(χ) ⇒ F⃗ gauge




The topological sector of the phase space. The flux-quantized phase space hence subsumes the “solitonic”
fields with non-trivial charge sectors χ, and as such is a non-perturbative completion of the traditional phase spaces
(which correspond to a fixed charge sector only, typically to χ = 0).

The shape (topological realization) of this phase
space stack is the space of topological fields,

S Â
(
Xd

)
≃ A(Xd) = Map

(
Xd, A

)
.

which implies that the ordinary homology of the
phase space stack constitutes the topological ob-
servables on the higher gauge theory.

H•

(
Â(Xd); C

)
≃ H•

(
A(Xd); C

)
Hence if we focus only on the solitonic or topological
field-content of the phase space, then we see plain
A-cohomology moduli of the Cauchy surface. and
the full phase space stack only serves to justify this
object.

flux-quantized
topological
phase space

A(Xd)
non-abelian

A-cohomology
moduli space

:=
{
χ ∈ Map(X,A)

}

Therefore the reader need not be further concernd
with higher stack theory for the present purpose.
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Before we start, as further motivation, notice that the failure of imposing brane charge quantization typically
shows up in unexpected behaviour of physical theories known as “anomalies”:

Anomaly cancellation and flux quantization. Se-
cretly, much of contemporary theory building in theo-
retical physics is a sophisticated process of trial, error
and improvisation: The trials are Lagrangian densities
(“action functionals”), the errors are “anomalies” ob-
structing their consistent quantization, and the impro-
visation is the invention of add-on rules to “cancel” the
anomalies. While there is a sense of accomplishment in
the community for identifying and cancelling anomalies

we should see it for what it is:

Anomaly cancellation is the patching-up of broken theo-
ries. This can and certainly has been useful for explor-
ing the space of physical theories, but it seems implau-
sible that truly fundamental theories will come to us in
broken form incrementally patched. Instead, eventually
we want to understand how to construct anomaly-free
and hence well-defined quantum theories right away.

Dirac charge quantization in integral cohomology (as recalled on p. 22) cancels the anomaly in the
Lorentz-coupling of the worldine theory of an electron in a background magnetic fields and is given by (in particular)
a lift in ordinary cohomology:

quantized
magnetic charges

H2(X; Z)
in integral cohomology

classical
magnetic charges

H2(X; R) ≃ H2
dR(X

4)

in real/de Rham cohomology

[q]
charge quantization⇝

lift

[F2]

(24)

Spin-/String-structure as charge quantization in non-abelian cohomology. Dirac’s argument only
concerns the charge of the electron. When one also considers the spin of the electron then its worldline theory has
another anomaly, which is cancelled by equipping the background spacetime with spin-structure (discussed this
way in [Wi85, p. 65-68]). An analogous argument shows that spinning strings have an anomaly in their worldsheet
theory which may be cancelled by equipping the background spacetime with string-structure (cf. [Bu11][SSS12]).
Here we are going to understand [FSS23-Char, §2] phenomena such as Spin- and String-structures as examples of
non-abelian cohomology with coefficients in a non-abelian group G ([Grothendieck55, §V][Fr1957], see also [We16,
§7]) or non-abelian 2-groups etc., thus conceptually unifying them with abelian cohomology such as in (24):

H1(X;G)
non-abelian cohomology

in degree 1

≃ π0Maps(X;BG)
homotopy classes of maps

into classifying space

≃ GPrinBund(X)/∼
isomorphism classes of

principal bundles

This way, we may understand the anomaly cancellation of the spinning electron by ambient spin-structure as of
the same general cohomological form as Dirac’s charge quantization (24):

“quantized”
gravitational charge

H1
(
X; String(1, d)

)
in String-cohomology

“quantized”
gravitational charge

H1
(
X; Spin(1, d)

)
in Spin-cohomology

gravitational charge

H1
(
X; O(1, d)

)
in nonabelian O-cohomology

[̂̂ω] string anomaly cancellation⇝

lift

[ω̂]
spin anomaly cancellation⇝

lift

[ω]
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1.2.1 Total flux as Nonabelian de Rham cohomology

We explain (30) how higher Bianchi identities (18) and their corresponding higher Gauß laws (17) are equivalently
the closure (flatness) conditions on differential forms valued in a characteristic L∞-algebra.

The notion of L∞- or strong homotopy Lie algebra [LS93][LM95] is finally becoming more widely appreciated in
physics, where they appear in various guises. Here we are concerned with L∞-algebras which are (i) nilpotent, (ii)
connective (iii) of finite type, in their joint incarnation as higher flux density coefficients and as higher Whitehead
brackets (all to be explained in a moment), which one might refer to as
the Flux Homotopy Lie algebra triality, in-
dicated on the right. Classically familiar as its
separate aspects are to their respective experts,
the full triality may still not be widely appreci-
ated but is key to our discussion here:
• By the FDA method in supergravity we
refer, with some hindsight, to the observa-
tions of [vN83][DF82][CDF91], as explained in
[FSS15][FSS18][HSS19], reviewed in [FSS19a].

• By rational homotopy we are referring here
specifically to the fundamental theorem of dg-
algebraic rational homotopy theory, mainly due
to Quillen, Sullivan and Bousfield & Gugen-
heim, as reviewed in [FSS23-Char, §5].

• The nonabelian character is the gener-
alization of the Chern-Dold character map
from topological K-theory and Whitehead-
generalized cohomology to higher non-abelian
cohomology, constructed in [FSS23-Char].

Whitehead brackets
of Classifying Spaces
(with R-rational coefficients,
for R-finite type)

L∞-Algebras
(nilpotent,
connective, finite-type)

Bianchi identities
on Flux densities
(for higher gauge fields)

S
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gr
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.
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n
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h
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to
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y

(25)

In particular, this means that L∞-algebras as used here are not directly to be understood as generalizations of
the gauge Lie algebras familiar from Yang-Mills theory, which are coefficients of the gauge potentials, but instead
as the coefficients of their flux densities.

L∞-algebras. Since we are assuming L∞-algebras to be connective and of finite type (meaning that they are de-
greewise finite-dimensional and concentrated in non-negative degrees) we may define them through their Chevalley-
Eilenberg (CE) algebras in the following manner, which is not only convenient for dealing with the otherwise intricate
sign rules, but also essential to their alternative perspectives in the above triality:

Chevalley-Eilenberg algebras of Lie algebras. Namely, for g a finite-dimensional Lie algebra (our ground
field is the real numbers, throughout) with Lie bracket a skew-symmetric linear map [−,−] : g⊗ g! g, its linear
dual vector space g∗ is equipped with the dual bracket [−,−]∗ : g∗ ! g∗∧g∗ which extends uniquely to a degree=1
derivation on the graded Grassmann algebra ∧•g :=

⊕
n∈N

g∗ ∧ · · · ∧ g∗︸ ︷︷ ︸
n factors

:

skew bracket on
fin-dim vector space

satisfying Jacobi identity

corresponds under passage
to the Grassmann algebra
on the linear dual space g∗

to a differential, i.e.
a degree=1 derivation whose
d2 = 0 is the Jacobi identity

g ∧ g g
[−,−] LieAlgfdim dgcAlgop(

g, [−,−]
)

7−!
(
∧• g∗, d[−,−]

)CE(−) ∧•g∗ ∧•g∗

∧1g∗ ∧2g∗ .

d[−,−]

deg=1 derivation

[−,−]∗

(26)

One readily checks that this derivation squares to zero iff the bracket satisfies its Jacobi identity(!):

Jacobi identity for [−,−] ⇔ d[−,−] ◦ d[−,−] = 0 .

The resulting differential graded-commutative (dgc) algebra (∧•g∗,d) is known as the Chevalley-Eilenberg complex
CE(g) whose cochain cohomology computes the Lie algebra cohomology of g (with trivial coefficients) — but the
key point at the moment is that its construction is a fully faithful contravariant functor embedding the category of
finite-dimensional Lie algebras into the opposite of that of dgc-algebras.
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L∞-algebras of finite type. With ordinary Lie algebras viewed as special dgc-algebras this way (26), it is
immediate to generalize them to the case where g may be a graded vector space of degreewise finite dimension (“of
finite type”): Namely, writing

(g∨)n ≡ (gn)
∗, ∧•g∨ ≡ Sym(g∨[1])

we can use verbatim the same construction:
A degree=1 derivation on ∧•g∨ is determined by its restriction to ∧1g∨, where it is a sum of co-n-ary linear

maps, whose linear duals we may think of as n-ary degree=(-1) brackets on g[1]:

Higher skew brackets
on graded vector space g

satisfying higher Jacobi identity

correspond under passage
to the graded symmetric algebra
on the degreewise dual space g∨

to a single differential, i.e.
a degree=1 derivation whose

d2 = 0 is the higher Jacobi identity

g[1] g[1]

g[1] ∧ g[1] g[1]

g[1] ∧ g[1] ∧ g[1] g[1]
...

...

[−]

[−,−]

[−,−,−]

L∞Algftp dgcAlgop(
g, [−], [−,−], [−,−,−], · · ·

)
7!

(
∧• g∨, d[−, · · · ,−]

)CE(−)
∧•g∨ ∧•g∨

∧1g∨
⊕
n∈N

∧n g∨

d[−,··· ,−]

[−]∗ ⊕ [−,−]∗

⊕ [−,−,−]∗ ⊕ ···

(27)

Here the simple condition that d[− · · · ,−] be a differential implies a tower of conditions on these brackets, which gener-
alize the Jacobi identity on an ordinary Lie algebra, known as the conditions that make

(
g, [−], [−,−], [−,−,−], · · ·

)
an L∞-algebra:

Higher Jacobi identity for

[−], [−,−], [−,−,−], · · ·
⇔ d[−, · · · ,−] ◦ d[−, · · · ,−] = 0 .

In other words, we may identify L∞-algebras of finite type as the formal dual to dgc-algebras whose underlying
graded-commutative algebra is free on a graded vector space (cf. [SSS09, Def. 13][FSSt12, §4.1][FSS23-Char,
(4.27)]). Some examples:

L∞-algebra g g∨[1] d
[−,··· ,−]

Line
Lie algebra

u(1) R⟨ω1⟩ dω1 = 0

Special unitary
Lie algebra

su(2) R
〈
ω
(1)
1 , ω

(2)
1 , ω

(3)
1

〉
dω

(i)
1 = ϵijk ω

(j)
1 ∧ ω(k)

1

Line
Lie 2-algebra

b u(1) R⟨ω2⟩ dω2 = 0

String
Lie 2-algebra
cf. [FSS14, §A]

string(3) R⟨ω(1)
1 , ω

(2)
1 , ω

(3)
1 , ω2⟩ dω

(i)
1 = − 1

2ϵijk ω
(j)
1 ∧ ω(k)

1

dω2 = ϵijk ω
(i)
1 ∧ ω(j)

1 ∧ ω(k)
1

Line
Lie 3-algebra

b2 u(1) R⟨ω3⟩ dω3 = 0

T-duality
Lie 3-algebra
[FSS18, §7]

bT1 R⟨ω(i)
2 , ω

(B)
2 , h3⟩

dω
(i)
2 = 0

dω
(B)
2 = 0

dh3 = ω
(i)
2 ∧ ω(B)

2

Line
Lie 4-algebra

b3 u(1) R⟨ω4⟩ dω4 = 0

M-theory gauge
Lie 7-algebra

cf. [SV22b, §2.2]
lS4 R⟨ω4, ω7⟩

dω4 = 0
dω7 = −ω4 ∧ ω4

Cyclified
M-theory gauge
Lie 7-algebra

[FSS17, Ex. 3.3]
[BMSS19, Ex. 2.47]

l
(
LS4�S1

)
R
〈
ω2, ω4, ω6

h3, h7

〉 dh3 = 0
dω2 = 0
dω4 = h3 ∧ ω2

dω6 = h3 ∧ ω4

dh7 = − 1
2ω4 ∧ ω4 + ω2 ∧ ω6

(28)
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Flat L∞-algebra valued differential forms now have an immediate definition from the perspective (27):
They are the dg-algebra homomorphism from their
CE-algebras into de Rham algebras (cf. [SSS09,
(261)][Def. 6.1][FSS23-Char], aka “MC elements”):

a ∈ L∞Algftp,

X ∈ SmthMfd

 ⊢
Ω1

dR(X; a)clsd ≡

HomdgAlg

(
CE(g), Ω•

dR(X)
)
.

(29)

CE
(
bu(1)

)
Ω•

dR
(X)

ω2 F

d
dR
F

0 0

7−!

7−
! d
bu(1)

7!

d
dR

7−!

CE
(
string(3)

)
Ω•

dR
(X)

ω
(i)
1 Ai

d
dR
Ai

− 1
2ϵijk ω

(j)
1 ∧ ω(k)

1 − 1
2A

i ∧Aj

ω2 B

d
dR
B

ϵijk ω
(i)
1 ∧ ω(j)

1 ∧ ω(k)
1 ϵijk A

i ∧Aj ∧Ak

7−!

7−
! d

string(3)

7!

d
dR

7−!

7−!

7−
! d

string(3)

7!

d
dR

7−!

CE
(
lS4

)
Ω•

dR(X)

ω4 G4

d
dR
G4

0 0

ω7 2G7

2d
dR
G7

−ω4 ∧ ω4 −G4 ∧G4

7−!

7−
! d

lS4

7−!

7−!

7−
! d

lS4

7−
! d

dR

7−!

CE
(
l(LS4�S1)

)
Ω•

dR(X)

h3 H3

d
dR
H3

0 0

ω2 F2

d
dR
F2

0 0

ω4 F4

d
dR
F4

h3 ∧ ω2 H3 ∧ F2

ω6 F6

d
dR
F6

h3 ∧ ω4 H3 ∧ F4

h7 H7

d
dR
H7

− 1
2ω4 ∧ ω4

+ω2 ∧ ω6

− 1
2F4 ∧ F4

+F2 ∧ F6

7−!

7−
! d

l(LS4�S1)

7−
!

7−!

7−!

7−
! d

l(LS4�S1)

7−
!

7−!

7−!

7−
! d

l(LS4�S1)

7−
!

7−!

7−!

7−
! d

l(LS4�S1)

7−
!

7−!

7−!

7−
! d

l(LS4�S1)

7−
!

7−!
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Flux densities satisfying Bianchi/Gauß laws are flat L∞-algebra-valued differential forms. Remarkably,

it follows that polynomials P⃗ defining Bianchi identities (18) and Gauß laws (17) are equivalently structure constants
of L∞-algebras a (27), such that the Bianchi/Gauß law is the flatness condition on a-valued forms:

sheaf of closed L∞-algebra-valued differential forms

Ω1
dR

(
−
insert spacetime

manifold here

; a
)
clsd

= HomdgAlg

(
CE(a), Ω•

dR(−)
)

=

{ systems of flux densities

B⃗ ≡
(
B(i) ∈ Ω

degi
dR (−)

) ∣∣∣satisfying this Gauß law

d B⃗ = P⃗
(
B⃗
)}

 
−!

Ch
ev
all

ey
-E

ile
nb

er
g

alg
eb

ra
of

CE(
L∞

-al
ge
br
a

a ) =

fre
e diff

er
en

tia
l g

ra
de

d-

co
mmut

at
ive

alg
eb

ra

R
[{ on

th
es
e gr

ad
ed

ge
ne

ra
to
rs

b
(i)
degi

}
i∈I

]/(satisfying these differential relations

d b⃗ = P⃗
(⃗
b
))

 
−!

L∞
-al

ge
br
a

a =

gr
ad

ed

ve
cto

r sp
ac
e sp

an
ne

d

R
〈{ by

th
es
e gr

ad
ed

ge
ne

ra
to
rs

v(i)

degi−1

}
i∈I

〉 equipped with these higher Lie brackets[
v(i1), · · · , v(in)

]
=

∑
i∈I P

(i)
i1 · · · in v

(i)

(30)

Again in more detail: Homomorphism from a CE-algebra to differential forms assign, as graded algebra homo-
morphisms, flux densities B(i) to each CE-generator b(i), and the respect for the differentials enforces on them the
Gauß law:

Ω•
dR(X

d) CE(g) = R[ b⃗ ]
/(

d⃗b = P⃗ ( b⃗ )
)

B(i) b(i)

dB(i)

P (i)
(
B⃗
)

P (i)( b⃗ )

dg-algebra
homomorphism

generator of degi

sent to degi-form

de Rham
differential

CE-differential

respect for differentials
is the flatness condition
hence the Gauß law algebra homomorphism

preserves polynomials

In summary so far this means that the flux solution space (17) of higher gauge theories is further identified
with space of closed (flat) differential forms (on the Cauchy surface) valued in a characteristic L∞-algebra a which
defines and is defined by the given Bianchi identities.

space of flux densities
on spacetime, solving

the equations of motion
SolSpace(XD) ≡


electromagnetic flux densities on spacetime

F⃗ ≡
(
F (i) ∈ Ω

degi

dR

(
XD

))
i∈I

∣∣∣∣∣∣∣∣
Bianchi identities

d F⃗ = P⃗
(
F⃗
)

⋆ F⃗ = µ⃗
(
F⃗
)

self-duality

 covariant form

≃
ι∗


magnetic flux densities on Cauchy surface

B⃗ ≡
(
B(i) ∈ Ω

degi

dR

(
Xd

))
i∈I

∣∣∣∣∣∣
Gauß law

d B⃗ = P⃗
(
B⃗
)  canonical form

≃ Ω1
dR

(
Xd; a

)
clsd

space of closed (flat)
a-valued differential forms

(31)
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Non-abelian de Rham cohomology. From the flux densitites we are to extract a measure for the total flux,
thought of as the integration of the flux densities. To make sense of general integrals of a-valued flux densities for
non-abelian L∞-algebras a, notice that in the abelian case the integrals of differential forms over cycles are exactly
what is captured by their de Rham cohomology class, which is equivalently their deformation class [FSS23-Char,
Prop. 6.4] in the sense of the following definition, which makes immediate sense also with L∞-algebraic coefficients:

We say [FSS23-Char, §6] that a pair B⃗0, B⃗1 ∈ ΩdR

(
Xd; a

)
clsd

of closed a-valued differential forms (29) are
cohomologous if they can can be deformed into each other, hence if they are concordant, in that they are boundary
data of a closed a-valued form on the cylinder Xd × [0, 1] over Xd:

deformation of flux densities

B⃗0 ∼ B⃗1 :⇔ ∃ F⃗ ∈ Ω1
dR

(
Xd × [0, 1]

)
clsd

with

 ι∗0F⃗ = B⃗0

ι∗1F⃗ = B⃗1

(32)

Xd

on-shell
field history

Cauchy data t1

Cauchy data t0

Ω•
dR(X

d)

Ω•
dR

(
Xd×[t0, t1]

)
CE(a)

Ω•
dR(X

d)

B⃗t1ι∗t1

ι∗t0

F⃗

B⃗t0

This is an equivalence relation whose equivalence classes we call
the a-valued non-abelian de Rham cohomology of X [FSS23-Char, Def. 6.3]:

deformation class
of flux densities[

B⃗
]

∈

a-valued
de Rham cohomology

H1
dR

(
Xd; a

)
:= π0


Ω•

dR(X
d) CE(a)

B⃗

cocycle (dga-hom)

B⃗′

another cocycle

coboundary
(concordance)


. (33)

closed a-valued
differential forms

Ω1
dR

(
Xd; a

)
clsd

nonabelian a-valued
de Rham cohomology

H1
dR

(
Xd; a

)
B⃗

flux densities

7−!
[
B⃗
]

total flux

Eg. for a ≡ bnu(1) being the abelian line Lie n-algebra (28), the above definition reduces to ordinary de Rham
cohomology [FSS23-Char, Prop. 6.4]:

H1
dR

(
X; bnR

)
≃ Hn+1

dR (X) .
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1.2.2 Flux quantization laws as Nonabelian cohomology

Classifying spaces for cohomology. Reasonable cohomology theories have classifying spaces (cf. [FSS23-Char,
§2]):

ordinary cohomology

Hn(X; Z) ≃ π0 Maps
(
X,

Ei
len

be
rg
-M

ac
La

ne

sp
ac
e

K(Z, n)
)

topological K-theory

K0(X) ≃ π0 Maps
(
X,

sp
ac
e of

Fr
ed

ho
lm

op
er
at
or
s

FredC
)

Whitehead-
generalized cohomology

En(X) ≃ π0 Maps
(
X,

sta
ge

in

sp
ec
tru

m
of

sp
ac
es

En

)
nonabelian cohomology

H1(X; G) ≃ π0 Maps
(
X,

cla
ssi

fin
g sp

ac
e of

pr
inc

ipa
l G

-b
un

dle
s

BG
)

coHomotopy

πn(X) ≃ π0 Maps
(
X,

sp
he

re

Sn
)

generalized
nonabelian cohomology

H1
(
X, ΩA

)
:= π0 Maps

(
X,

an
y sp

ac
e

A
)

= π0


X A

F
cocycle (map)

F ′
another cocycle

coboundary
(homotopy)



(34)
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Moreover, over smooth manifolds, reasonable cohomology theories have differential form representatives of their
non-torsion content,

via character maps. This is classical for generalized abelian and ordinary non-abelian cohomology (cf. [FSS23-Char,
§7, §8]):

Ordinary
integral cohomology

Hn(X; Z) Hn
dR(X) ≃ HomR

(
R⟨ωn⟩, H•

dR(X)
)

differential forms
in degree n

Traditional
nonabelian cohomology

H1(X; G) HomR
(
inv•(g), H•

dR(X)
)

differential forms for
g-invariant polynomials

Topological
K-theory

K0(X) HomR
(
R⟨ω0, ω2, ω4, · · · ⟩, H•

dR(X)
)

differential forms
in every even degree

abelian Whitehead-
generalized cohomology

En(X) HomR
(
(π•(E)⊗Z R)∨, H

•+n
dR (X)

) differential forms for
rational homotopy groups
of the classifying space

Generalized
non-abelian cohomology

H1
(
X; ΩA

)
H1

dR(X; lA) := HomdgAlgR

(
CE(lA), Ω•

dR(X)
)/

∼
differential forms with

coefficients in
Whitehead L∞-algebra

de Rham map

Chern-Weil homomorphism

Chern character

Chern-Dold character

nonabelian
character

Such character maps were not known in the generality of generalized non-abelian cohomology, such as CoHo-
motopy, but they do exist: the general non-abelian character map is constructed in [FSS23-Char, Part IV]:

This subsumes all the other cases. We now indicate how this works.
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Aside: Reduced cohomology and solitonic charges. For the charge quantization of solitonic branes (in §2.3)
one needs to implement in cohomology theory their localization in space (cf. §1.1.1) which forces their fluxes to
vanish at infinity.

We may observe that a formalization of this phenomenon is already captured by the standard notion of reduced
cohomology on pointed spaces if we regard the basepoint of a domain space as its point-at-infinity and the basepoint
of a coefficient space as its zero-element

domain space X A coefficient space

basepoint is
point at ∞ {∞} {0} basepoint is

0-element

flux cocycle

in reduced A-cohomology

flux vanishes at infinity

reduced
higher

non-abelian
cohomology

H̃1
(
X; ΩA

)
:= π0 Maps∗/

(
(X,∞), (A, 0)

)
=



X A

{∞} {0}

F0

cocycle (map)

F1
cocycle

coboundary
(homotopy)

vanishing at ∞

/
∼

(35)

Notice that the point at infinity may or may not be reachable by continuous paths in the space:

X a plain space ⊢
X⊔{∞} disjoint point adjoined paths starting in cnctd X never reach ∞

X∪{∞} one-point-compactification paths starting in cnctd X may reach ∞
(36)

Given a pointed space, we may first delete the point at infinity and then adjoint it back disjointly, making it
un-reachable:

(X,∞) a pointed space ⊢
(
X \ {∞}

)
⊔{∞} make ∞ un-reachable (37)

Plain cohomology (34) is subsumed in reduced cohomology as the case where the point at infinity is unreachable
(36)

H1
(
X; ΩA

)
≃ H̃1

(
X⊔{∞}; ΩA

)
and making ∞ unreachable (37) projects reduced into plain cohomology.

The charges that thus disappear existed only due to their localization, hence are purely solitonic,
while those that do not vanish at ∞ are purely singular (cf. §1.1.1):

purely
solitonic charges

ker
(
ϵι∗X

) reduced
cohomology

H̃1
(
X; ΩA

)
reduced

cohomology
for disjoint ∞

H̃1
((
X \ {∞}

)
⊔{∞}; ΩA

) plain cohomology

H1
(
X \ {∞}; ΩA

) purely
singular charges

coker
(
ϵι∗X

)
X

(
X \ {∞}

)
⊔{∞}

make ∞ unreachable

ϵι∗X =

ϵιX

(38)

(...)

Notice the mapping space adjunction

Maps∗/
(
X, Maps∗/(Y, Z)

)
≃ Maps∗/

(
X ∧ Y, Z

)
≃ Maps∗/

(
Y, Maps∗/

(
X, Z

))
(39)
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The Whitehead bracket L∞-algebra lA of topological spaces A.

Quillen-Sullivan theorem. [FSS23-Char, Prop. 4.23, 5.6
& 5.13]
For a topological space A which is
(1.) simply connected: π0(i) = ∗, π1(i) = 1,
(2.) of finite rational type: dimQ

(
Hn(A;Q)

)
<∞.

there is a unique-up-to-iso polynomial dgc-algebra over R,
whose:
(1.) generators are the R-rational homotopy groups of A,

CE(lA) =
(
∧• (π•(ΩA)

⊗ZR
)∨
, dCE(lA)

)
(2.) cochain cohomology is the R-cohomology of A.

H•(CE(lA)
)
= H•(A; R)

This is the CE-algebra of the Whitehead L∞-algebra of A,
without unary bracket; the binary bracket is Whitehead’s.

Notice. Every connected homotopy type A is
equivalently the classifying space of its loop ∞-
group ΩA (cf. [FSS23-Char, Prop. 2.2 ]):

A ≃ B(ΩA) . (40)

In this sense all A-cohomology is higher gauge
theory for a gauge ∞-group G ≃ ΩA.

The Whitehead bracket L∞-algebra may be
thought of as a homotopical version of the would-
be Lie algebra of this ∞-group:

(lA)• ≃ π•
(
ΩA

)
⊗ZR (41)

The “Sullivan model” of A is the CE-algebra
of this L∞-algebra.

Examples:

Circle: A ≡ S1 ≃ BZ.(
π•(S

1)⊗ZR
)∨ ≃ R⟨ω1⟩, H•(S1;R) ≃ R[ω1]

Since R[ω1] is already the correct cohomology ring,
it must be that dS1 = 0 and hence

CE
(
lS1

)
≃ R[ω1]

/(
dω1 = 0

)

While the circle is not simply connected, it is a
“nilpotent space”, and Sullivan’s theorem actually
applies in this generality.
Nilpotent spaces have nilpotent fundamental
group (eg.: abelian) such that all higher homo-
topy groups are nilpotent modules (eg.: trivial
modules).

2-Sphere: A ≡ S2.(
π•(S

2)⊗ZR
)∨ ≃ R⟨ω2, ω3⟩, H•(S2;R) ≃ R[ω2]/

(
ω2
2

)
The differential on R[ω2, ω3] needs to remove ω2

2 and ω3

from cohomology, hence it must be that:

CE
(
lS2

)
≃ R

[
ω3,
ω2

]/(
dω3 =− 1

2ω2 ∧ ω2

dω2 = 0

)
The homotopy group coresponding to the gener-
ator ω3 is that represented by the complex Hopf
fibration

S3 hC−! S2 .

3-Sphere: A ≡ S3.(
π•(S

3)⊗ZR
)∨ ≃ R⟨ω3⟩, H•(S3;R) ≃ R[ω3]

Since R[ω3] is already the correct cohomology ring,
it must be that dS3 = 0 and hence

CE
(
lS3

)
≃ R[ω3]

/(
dω3 = 0

)

While S3 ≃ SU(2), we see that l SU(2) is different
from su(2). But the former captures the cocycles
of the latter:

su(2) l SU(2)

CE
(
su(2)

)
CE

(
lSU(2)

)
tr
(
−, [−,−]

)
 [ ω3

4-Sphere: A ≡ S4.(
π•(S

4)⊗ZR
)∨ ≃ R⟨ω4, ω7⟩, H•(S4;R) ≃ R[ω4]/

(
ω2
4

)
The differential on R[ω4, ω7] needs to remove ω2

4 and ω7

from cohomology, hence it must be that:

CE
(
lS4

)
≃ R

[
ω7,
ω4

]/(
dω7 =− 1

2ω4 ∧ ω4

dω4 = 0

)
The homotopy group corresponding to the gen-
erator ω7 is that represented by the quaternionic
Hopf fibration

S7 hH−! S4
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Complex Projective space: A ≡ CPn.(
π•(CPn)⊗ZR

)∨ ≃ R⟨ω2, ω2n+1⟩,
H•(CPn;R) ≃ R[ω2]/

(
ωn+1
2

)
The differential on R[ω2, ω2n+1] needs to remove ωn+1

2

from cohomology, hence it must be that:

CE
(
lCPn

)
≃ R

[
ω2n+1,
ω2

]/(
dω2n+1 =−ωn+1

2

dω2 = 0

)

This is related to the above sequence of examples
by the fact that CPn is an S1-quotient of S2n+1:

S1 S2n+1

CPn

Infinite Projective space: A ≡ CP∞ ≃ BU(1) ≃ B2Z.(
π•(CP∞)⊗ZR

)∨ ≃ R⟨ω2⟩, H•(CPn;R) ≃ R[ω2]
Since R[ω2] is already the correct cohomology ring,
it must be that dCP∞ = 0:

CE
(
lCP∞)

≃ R
[
ω2

] / (
dω2 = 0

)
This is the Lie 2-algebra of the shifted circle group:

lBU(1) ≃ b u(1)

Eilenberg-MacLane space: A ≡ BnU(1) ≃ Bn+1Z.(
π•(B

n+1Z)⊗ZR
)∨ ≃ R⟨ωn+1⟩, H•(Bn+1Z) ≃ R[ωn+1]

Since R[ωn+1] is already the correct cohomology ring,
it must be that dBn+1Z = 0:

CE
(
lBn+1Z

)
≃ R

[
ωn+1

] / (
dωn+1 = 0

)
This is the Lie (n+1)-algebra of the circle (n+1)-
group:

lBnU(1) ≃ bn u(1)

Classifying space: A ≡ BG of cpt. 1-conn. Lie group.
H•(BG;R) ≃ inv•(g) the invar. polynomials on Lie alg.
(Chern-Weil theory)
Since H•(BG;R) is already a free graded-symmetric ring
it must be that d

BG
= 0 (cf. [FSS23-Char, Lem. 8.2]):

CE
(
lBG

)
≃ inv•(g)

/
(d

BG
= 0)

lBG captures all the curvature invariants
hence all the invariant flux densities
of g-connections A ∈ Ω1

dR(X)⊗ g,

e.g.
CE

(
lBSU(2)

)
Ω•

dR(X)

tr(−,−) 7! δijF
(i)
A ∧ F (j)

A

The M-Theory gauge algebra models is the Whitehead bracket of the 4-sphere. Of particular interest
to us, for the formulation of Hypothesis H in §1.3, is the example of the Whitehead L∞-algebra of the 4-sphere,
because this happens to coincide [Sa10, §4][SV22b, §2.2] with the M-theory gauge algebra ([CJLP98, (2.5)]):

Homotopy type

(topological space)

Sullivan model

(“FDA”)

Quillen model

(Whitehead L∞-algebra)

A CE(lA) lA

S4 R
[
ω7,
ω4

]/(
dω7 = − 1

2ω4 ∧ ω4

dω4 = 0

)
R
〈
v6,
v3

〉
, [v3, v3] = v6

4-sphere
abstract Bianchi identity of

duality-symmetric C-field fluxes
C-field gauge algebra

(42)

On the right we are including a factor 1
2 to match physics normalization conditions. The subtle deeper origin

of this factor, which goes beyond rational homotopy theory, is discussed in detail in [FSS19b], in the context of the
M5-brane model (see §2.1).
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Rational homotopy theory: Discarding torsion in non-abelian cohomology. From the perspective that
any topological space A serves as the classifying space of a generalized non-abelian cohomology theory (34), the
idea of Rational Homotopy Theory (survey in [He07][FSS23-Char, §4]) becomes that of extracting the non-torsion
content of such a cohomology theory, which we will see is that shadow of it which, over smooth manifolds, can be
reflected in the non-abelian de Rham cohomology of lA-valued differential forms.

Homotopy theory Rational Sullivan model

Nonabelian cohomology Non-torsion de Rham cohomology

regard spaces as
classifying spaces

Now, in a sense, the signature of any A-cohomology theory is its reduced cohomology groups (35) on spheres,
equal to the homotopy groups of the classifying space:

reduced A-cohomology
of the n-sphere

H̃1
(
Sn; ΩA

)
≡ π0 Map∗/

(
Sn, A

)
≡ πn(A) nth homotopy group

of classifying space

Assuming throughout (for ease of exposition) that A is simply-connected, the remaining non-trivial homotopy
groups are abelian πn≥2(i) ∈ AbGrp. Discarding torsion elements (nilpotent group elements) from these groups is
achieved by tensoring with the abelian group of rational numbers:

reduced A-cohomology
of the n-sphere

H̃1(Sn; ΩA) ≃ πn(i) πn(i)⊗Z Q
rationalized

reduced A-cohomology
of the n-sphere

[c] with k · [c] = 0 7−! [c]⊗ 1 = [c]⊗ k · 1
k = k · [c]⊗ 1

k = 0

rationalization

This is a “projection operation” (jargon: “localization”), in that doing it twice has no further effect:

double rationalizaton πn(i)⊗Z Q⊗Z Q πn(i)⊗Z Q single rationalizaton

[c]⊗ p1

q1
⊗ p2

q2
= [c]⊗ p1

q1
⊗ q1

p2

q1q2
 ! [c]⊗ p1p2

q1q2

isomorphic

∼

Hence to have a classifying space for the non-torsion part of A-cohomology means to ask for:

The rationalization of A:

A topological space LQA

all whose homotopy groups have
the structure of Q-vector spaces

πn
(
LQA

)
∈ ModQ

equipped with a map from A A LQA
ηQ
A

which induces isomorphisms on
rationalized homotopy groups

πn(i)⊗ZQ πn
(
LQA

)
⊗Z Q

ηQ
A⊗ZQ
∼

and is universal
with this property

For example, the rationalization of BnZ classifies ordinary rational cohomology, mapping further to ordinary de
Rham cohomology:

integral
EM-space

BnZ LQBnZ ≃

rational
EM-space

BnQ

real
EM space

BnR

π0Map
(
X, BnZ

)
π0Map

(
X, BnQ

)
π0Map

(
X, BnR

)
Hn(X; Z)

integral
ordinary cohomology

Hn(X; Q)
rational

ordinary cohomology

Hn(X; R)
real

ordinary cohomology

Hn
dR(X)

de Rham
cohomology

ηQ
BnZ

rationalization extension of scalars

Bn
(
(−)⊗QR

)

≃ π0Map
(
X, ηQ

BnZ

)

≃ π0Map
(
X,Bn((−)⊗QR)

)

≃

ordinary character map

cohomology operation cohomology operation de Rham

isomorphism

(43)

We may regard this as the archetype of a character map and ask for its generalization to any A-cohomology
theory. The pivotal observation of [FSS23-Char] is that for this purpose one may invoke the fundamental theorem
of dg-algebraic rational homotopy theory:
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The Fundamental Theorem of dg-Algebraic Rational Homotopy Theory (reviewed as [FSS23-Char, Prop.
5.6]) says that the homotopy theory of rational spaces (simply-connected with fin-dim rational cohomology) is all
encoded by their Whitehead L∞-algebra (41) over the rational numbers.

In particular, for X a CW-complex one gets

Map
(
X, LQA

)
/homotopy

≃ HomdgAlg

(
CE

(
lQA

)
, Ω•

PLdR(X)
)
/concordance,

(44)

where on the right we have something called the “piecewise linear de Rham complex” of the topological space X.
Notice that the right-hand side looks close to the definition of lA-valued de Rham cohomology in (33). In order

to actually connect to such smooth differential forms, we need to extend the scalars from the rational to the real
numbers:
Rational homotopy theory over the Re-
als. [FSS23-Char, Def. 5.7, Rem. 5.2] The con-
struction (44) also works over R (but is then not
a “localization”) to give the R-rationalization
[FSS23-Char, Def. 5.7, Prop. 5.8]:
With this “derived extension of scalars”
[FSS23-Char, Lem 5.3] and forX a smooth man-
ifold, the fundamental theorem (44) does relate
to smooth differential forms (33) [FSS23-Char,
Lem. 6.4] via a non-abelian de Rham theorem
[FSS23-Char, Thm. 6.5]:

The R-rationalization of A:

A topological space LRA

equipped with a map LQA LRA
ηext

LQA

which on homotopy groups
is extension of scalars

πn
(
LQA

)
πn

(
LRA

)πn

(
ηext

LQA

)
=(−)⊗QR

suitably universal as such.

non-abelian
rational cohomology

H1
(
X; LQΩA

) non-abelian
real cohomology

H1
(
X; LRΩA

)

π0Map
(
X, LQA

)
π0Map

(
X, LRA

)

HomdgAl

(
CE(lQA), Ω•

PLdR(X)
)
/cncd

HomdgAl

(
CE(lA), Ω•

dR(X)
)
/cncd

H1
dR

(
X; lA

)
non-abelian

de Rham cohomology

derived extension of scalars

non-abelian

de
R
ham

theorem

∼
π0Map

(
X, ηext

LQA

)
fundamental theorem

of dg-algebraic
rational homotopy

∼ ∼

extension of

scalars
≡

(45)

In abelian (ie. Whitehead-generalized) cohomology theories both the rationalization step and the subsequent
extension of scalars to R can be more easily described as forming the smash product of the coefficient spectrum
with the Eilenberg-MacLane spectrum HR [FSS23-Char, Ex. 5.7]. This is how the Chern-Dold character map over
R is tacitly used in all the literature on abelian Whitehead-generalized differential cohomology theory (e.g. [BN19,
Def. 4.2]):

Spectra Spectra Spectra
(−)∧HQ

rationalization
localization

(−) ∧HR
rationalization over R

(−)∧
HQHR

extension
of scalars

(46)

The point of the non-abelian de Rham theorem (45) from [FSS23-Char] is to generalize the real-ifification
of spectra (46) to non-abelian cohomology, such as to Cohomotopy; and the key result that makes this work is
the fundamental theorem of dg-algebraic homotopy theory (44). This, ultimately, is the ‘reason’ why L∞-valued
differential forms relate fluxes to their flux-quantization laws.

The general non-abelian character map is now immediate [FSS23-Char, Def. IV.2]: It is the cohomology
operation induced by R-rationalization of classifying spaces, seen under the non-abelian de Rham theorem (45):

H1(X; ΩA) H1
(
X; LQΩA

)
H1

(
X; LRΩA

)
H1

dR

(
X; lA

)
π0Map

(
X, A

)
π0Map

(
X, LQA

)
π0Map

(
X, LRA

)
HomdgAlg

(
CE(lA), Ω•

dR(X)
)
/cncrd

rationalization

character map on A-cohomology

extension

of scalars

nonabelian

de Rham theorem

(ηQ
A)∗ (ηext

LQA)∗ ∼

fundamental theorem
of dg-algebraic RHT

(47)
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Summary so far:

A
Sullivan model of A

CE(lA)
Chevalley-Eilenberg algebra of

its Whitehead L∞-algebra

Whitehead L∞-algebra

lA =
“infinitesimal version

Lie(ΩA) of loop group”

Eilenberg-MacLane space

K(Z, n) R[cn]
/
(d cn = 0)

classifying space of
principal G-bundles

BG
(invariant polynomials

on the Lie algebra

inv•(g), d = 0
)

space of
Fredholm operators

FredC R
[
{f2k | k ∈ N}

]/(
d f2k = 0

)
stage in

spectrum of spaces

En

(
Sym

(
HomZ(π•(En), R)

)
, d = 0

)
even-dimensional

sphere

S2k R[g2k, g4k−1]
/(

d g4k−1 = g2k ∧ g2k

d g2k = 0

)

R-rationalization

This is an equivalence between:

weak rational homotopy types of
nilpotent connected spaces with
degreew. fin-dim rational cohomology

≃

quasi-isomorphism types of
nilpotent connective L∞-algebras on
degreew. fin-dim Q-vector spaces

here shown/used after
extension of scalars from Q to R

notice the difference to L∞-algebras of
gauge potentials: su(n), string(n), ...
which are not nilpotent

here: L∞-algebras of gauge fields/fluxes

The general non-abelian character map chA universally approximates A-cohomology classes by lA-valued de Rham
classes:

non-abelian
cohomology

H1
(
Xd; ΩA

) non-abelian
de Rham cohomology

H1
dR

(
Xd; lA

)
c

total charge

7!
[
B⃗
]

total flux

specializing to:
ordinary cohomology

Hn(Xd; Z) Hn
dR(X

d)

nonabelian cohomology

H1(Xd; G) HdR

(
Xd; inv(g)

)
topological K-theory

K0(Xd) ⊕
k∈N

H2k
dR(X

d)

Whitehead
generalized cohomology

En(Xd) ⊕
k∈Z

Hn+k
dR

(
Xd; πk(E)⊗Z R

)
coHomotopy in
even degree

π2k(Xd) H1
dR

(
Xd; lS2k

)
{
G4k−1 ∈ Ω4k−1

dR (Xd)

G2k ∈ Ω2k
dR(X

d)

∣∣∣∣ dG4k−1 = G2k ∧G2k

dG2k = 0

}/
concordance

chA

non-abelian character

de Rham map

Chern-Weil homomorphism

Chern character

Chern-Dold character

coHomotopical character

(48)

38



With the general character map in hand, we may finally state a general definition of flux quantization:

The first idea of flux quantization. Higher
gauge fields on a spatial Cauchy surface satis-
fying their Gauß law constraint are equivalently
closed L∞-valued forms for some characteristic
L∞-algebra a.
These flux densities should be thought of as
mere characters of the hidden true field content
which encompasses also lifts of these characters
to charge classes in A-cohomology, where any
choice of A with lA ≃ a serves as a compatible
flux quantization law.

choice of
A-cohomology
with lA ≃ a

H1
(
Xd; A

)

∗ Ω1
dR(X

d; a)clsd H1
dR(X

d; a)
a-valued

de Rham cohomology

chA(Xd)
sourced flux

B⃗

flux densities on Cauchy surface
satisfying their higher Gauß law

cha
rge

qua
ntu

m in A-c
oho

molo
gy

c

total flux

Since the character map generally...

...fails to be surjective, ie. has a cokernel:

⇒ flux quantization is a condition on fluxes

...fails to be injective, ie. has a kernel:

⇒ flux quantization is a choice of “torsion”

kernel consisting of
all compatible charges

H1(Xd; ΩA)[B⃗] H1(Xd; ΩA) ∗

∗ H1
dR

(
X; lA

)
H1

dR

(
X; lA

)/
H1(Xd; ΩA)

cokernel consisting of
total fluxes violating

the flux quantization law

(pb)
chA(Xd)

sourced flux
(po)

[B⃗]
given total flux

In fact, the actual field content is larger still, involving also the gauge potentials – we come to this in §1.2.3 below.

Example: Quantization of electromagnetic flux. The pregeometric fluxes of electromagnetism are (6):

(F,G) ∈ Ω2
dR(X)clsd × Ω2

dR(X)clsd ≃ ΩdR

(
X; bu(1)⊕ bu(1)

)
clsd

Admissible electromagnetic flux-quantization laws are
Spaces A whose rationalization is B2Q×B2Q:

B2Q︸︷︷︸
mag

×B2Q︸︷︷︸
el

this choice imposes essentially
no flux quantization –
tacit choice since [Maxwell1873]
until [Dirac1931]

B2Z︸︷︷︸
mag

×B2Q︸︷︷︸
el

this choice imposes
integrality of magnetic flux but
no further condition on electric flux —
tacit common choice since [Dirac1931],
explicit e.g. in [Fr00, Ex. 2.1.2]

B2Z︸︷︷︸
mag

×B2Z︸︷︷︸
el

this choice imposes
integrality of magnetic flux and
integrality of electric flux —
considered in [FMS07a][FMS07b]
hupf

B2Z︸︷︷︸
mag

⋊BK ⋉B2Z︸ ︷︷ ︸
el

for a finite group K ! Z/2 = Aut(Z),
this choice induces non-commutativity
between el/el- and el/mag-fluxes —
this was considered in [SS23b]

Charge quantization of Dirac monopole:

Z×Z︷ ︸︸ ︷
H2

(
R3,1 \ R0,1; Z

)2

∗ H2
dR

(
R3,1 \ R0,1

)2︸ ︷︷ ︸
R×R

[F,⋆F ]

(1,
0)
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1.2.3 Phase spaces as Differential non-abelian cohomology

In the spirit of the (higher) gauge principle, flux quantization should ultimately not be imposed just as an equality of
cohomology classes as in eq. (47), but as a specified coboundary between cocycles, namely as an explicit deformation
of flux densities. We discuss how these coboundaries are the higher gauge potentials for the given field fluxes – this
is the principle of differential cohomology in the way first understood in [HS05] and now generlized to non-abelian
cohomology via [FSS23-Char, §9].

Higher deformations of flux densities. Recall from (32) that a coboundary in a-valued de Rham cohomology
is a “concordance” of flux densities, to be thought of as a path of smooth variations of the flux densities, subject
to their Bianchi identities:

deformation paths
of flux densities

Ω1
dR

(
Xd × [0, 1]; a

)
clsd

{
B⃗0

B⃗[0,1]
−−−−! B⃗1

}

Ω1
dR(X

d; a)clsd

flux densitites satisfying
their Bianchi identities

{
B⃗
}

(−)0
take starting point
of deformation path

(−)1
take endpoint of
deformation path

pr∗X

≡

≡

But in higher gauge theories, we are also to consider deformations-of-deformations. It is intuitively plausible
that these should be given by deformation paths-of-paths parameterized by squares [0, 1]2, next by cubes [0, 1]3,
etc. It turns out to be equivalent but technically more convenient to parameterize them instead by triangles, then
tetrahedra and generally by “n-simplices”:

∆3 := 3

1

20

deformation paths
of deformation paths
of deformation paths

of flux densities

Ω1
dR

(
Xd ×∆3; a

)
clsd

∆2 :=

1

20

deformation paths
of deformation paths

of flux densities
Ω1

dR

(
Xd ×∆2; a

)
clsd

∆1 := 0 1
deformation paths
of flux densities

Ω1
dR

(
Xd ×∆1; a

)
clsd

{
B⃗0

B⃗[0,1]
−−−−! B⃗1

}

flux densitites satisfying
their Bianchi identities

Ω1
dR(X

d; a)clsd
{
B⃗
}

(−)[1,2,3] (−)[0,2,3] (−)[0,1,3] (−)[0,1,2]

(−)[1,2](−)[0,2](−)[0,1]

≡

(−)0
take starting point
of deformation path

(−)1
take endpoint of
deformation path

pr∗X

≡

≡

Such a system of sets indexed by higher simplices is called a simplicial set.
In its contravariant dependence on X ∈ SmthMfd it is called a simplicial presheaf
As such, we here denote it SΩ1

dR

(
−; a

)
[FSS23-Char, Def. 9.1]
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Such simplicial presheaves live in differential homotopy theory:

Differential homotopy theory.
The geometry of higher gauge theory must unify:

differential forms like flux densities F

& homotopy types of classifying spaces A

in differential homotopy theory

This unified context is naturally provided by higher
topos theory. We briefly indicate how this works –
for more exposition and pointers see [Sch24].
The impatient reader may want to skip this and just
take note of important consequence (50) below.

Simplicial presheaves modelling geometric homotopy types. For the present purpose we consider:

the site CartSp of abstract smooth charts

an abstract coordinate chart is a Cartesian space Rn for any n ∈ N

an abstract coordinate transformation is any smooth function Rn1 ! Rn2

a covering of coordinate charts

is an open cover
{
Rn ≃ Ui ↪! Rn

}
i∈I

which is differentiably good in that
finite non-empty intersections Ui1 ∩ · · · ∩
Uin

are all diffeomorphic to Rn

Given any site of Charts, serving as local model spaces:
• A generalized space X probeable by such charts is bootstrapped into existence
by declaring the simplicial sets of ways of plotting out abstract coordinate charts inside X :

X : Chartsop sSets

Rn 7! Plots(Rn,X )

Such simplicial presheaves naturally form an sSet-enriched category sPSh
Charts

; denote its simplicial hom-
complexes by:

sPShop
Charts

× sPSh
Charts

sSet(
X , Y

)
7! Maps

(
X , Y

)
• Any U ∈ Charts becomes a generalized space by declaring its plots to be the morphisms of charts (representable
presheaf):

U : Chartsop sSets

V 7! Charts(V, U)

• Consistency of this bootstrap of generalized spaces demands:
(1.) natural identifications between plots by and maps from charts:

U ∈ Charts, X ∈ sPSh
Charts

⊢ Plots(U, X ) ≃ Maps
(
U , X

)
This is the case by the (enriched) Yoneda lemma.

(2.) that maps of generalized spaces are equivalences — to be denoted (f : X ! Y) ∈ W —

iff
locally on all charts

they are
higher gauge equivalence, i.e.:

i.e.: stalk-wise simplicial weak homotopy equivalences

this we enforce by simplicial localization, yielding the ∞-topos H := LWsPSh
Charts

by this principle: (probes of) spaces are:

locality principle sheaves on charts with

& higher gauge principle values in simplicial sets

= homotopy topos of simplicial sheaves on charts
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Specifically for Charts = CartSp we obtain SmoothGrpd∞ := LWsPShCartSp [FSS23-Char, Ex. 1.20][SS21]:

In SmthGrpd∞ all ingredients of higher gauge field theory find a natural home:

smooth moduli space
of closed lA-valued forms
(genuine differential structure)

Ω1
dR(−; lA)clsd : CartSpop sSet

Rn 7−! Ω1
dR(Rn; lA)clsd

smooth moduli stack
of deformations of

closed lA-valued forms
(rational homotopy type of A)

S Ω1
dR(−; lA)clsd : CartSpop sSet

Rn 7−! Ω1
dR

(
Rn ×∆•; lA

)
clsd

homotopy type of A
(geometrically discrete ∞-groupoid)

A : CartSpop sSet
Rn 7−! Sing(i)

stacky R-rationalization
[FSS23-Char, Lem. 9.1]

LRA ≃
lwh

SΩ1
dR

(
−; lA

)
clsd

The moduli stack of flux-quantized higher gauge fields. With this, we may enhance the flux quantization
of eq. (47) to moduli stacks [FSS23-Char, Def. 3.9]

choice of
A-cohomology
with lA ≃ a

A

LRA

X Ω1
dR(–; lA)clsd SΩ1

dR(–; lA)clsd

chA
stacky

character

ηR
A

ga
ug

e po
ten

tia
l

∼

F

pregeometric flux densities
satisfying their Bianchi ident.
on smooth spacetime mnfld X

flux quan
ta

η
S

subjecting them to
higher deformations

 !

moduli stack of
higher gauge potentials
for A-quantized fluxes

Â A

X Ω1
dR(−; lA)clsd SΩ1

dR(−; lA)clsd

chAhom
oto

py

pu
llb
ackflu

x
A-

qu
an
tiz

ed

hig
he
r g

au
ge

fie
ld

F

flux densities

η
S

(49)

– The mapping stack Map(X, Â ) is the moduli stack of flux-quantized higher gauge fields on X.
– Its global points give the non-abelian differential A-cohomology of X.

The canonical phase space of flux-quantized higher gauge fields is this differential cohomology stack:
Since higher Maxwell-type equations (§1.1.2) constrain exclusively the flux densities and since therefore every

gauge potential with on-shell flux density is itself on-shell, the phase space must be the enhancement of the solution
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space (31) by all compatible flux-quantized gauge potentials. This is exactly the construction of the differential
cohomology stack (1.2.3).

The physics literature is mostly familiar with the infinitesimal approximation to this higher stack, which is a
higher Lie algebroid known as the BRST complex (e.g. [HT92]). The full higher phase space is to the BRST
complex as a Lie group is to its Lie algebra, hence may be thought of as the integrated BRST complex (in the
sense of Lie integration).

The plain moduli space of flux-quantized gauge potentials. For X a smooth manifold, the underlying
homotopy type of the stack of flux-quantized gauge fields on X is the mapping space from X into A:

shape of moduli stack
of A-quantized fluxes
on smooth mfd X

mapping space
into A

SMap
(
X, Â

)
≃ Map

(
SX, S Â

)
≃ Map

(
SX, A

)
.

smooth Oka cohesion

(50)

Notice that this is what is seen by the ordinary homology of the gauge moduli stack, considered as the topological
quantum observables on fluxes, below in §2.2:

H•

(
Map

(
X, Â

)
; C

)
≃ H•

(
SMap

(
X, Â

)
; C

)
≃
(50)

H•
(
Map(X, A); C

)
. (51)
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1.2.4 Background fluxes as Twisting of nonabelian cohomology

All these considerations generalize to fluxes in twisted cohomology [FSS23-Char, §V], describing dependency on
background fluxes.

Twisted RR-fields as a fibration. Notice that the twisted RR-fields (19) form a fibration over the twisting NS
B-field whose fiber is (a torsor over) the untwisted RR-fields.

flux of free
RR-fields

{
F2• ∈ Ω2•

dR(X)
∣∣∣dF2• = 0

}  H3 ∈ Ω3
dR(X)

∣∣∣ dH3 = 0

F2• ∈ Ω2•
dR(X)

∣∣∣ dF2• = H3 ∧ F2•−2

 flux of
RR-fields coupled
to NS B-field

{0}
{
H3 ∈ Ω3

dR(X)
∣∣∣dH3 = 0

}
NS B-field

(pb) (52)

In general, in the case of branes ending on branes, the Bianchi identities for the latter fluxes include polynomial
“twists” by the former

de
Rh

am
diff

.

dF (i) =

po
lyn

om
ial

P (i)

({
F (j)

}
j∈I

,
{ tw

ist
ing

flu
xes

H(k)
}
k∈K

)
,

twisted higher “Bianchi identities”

and the previous classifying spaces (34) generalize to classifying fibrations

intersected
branes

A A�G brane
intersections

BG intersecting
branes

classifying spaces for...

c
la
ssify

in
g

fi
b
ra

tio
n
s

which classify twisted non-abelian cohomology theories:

Twisted
non-abelian
cohomology

H1+τ
(
X; ΩA

)
:=

vertical homotopy classes
of slice maps

π0 Maps
(
(X, τ), A�G

)
BG =



X A�G

BG

twisting cocycle

τ

twisted cocycle

Fτ

F ′
τ

/
∼

on which the twisted non-abelian character map

twisted
non-abelian
cohomology

H1+τ
(
X; ΩA

)
twisted

non-abelian
de Rham cohomology

H1+τdR
dR

(
X; lA

)
c

twisted charge
7−!

[
B⃗
]

total flux

chA

twisted non-abelian character
(53)
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computes the classes of underlying flux densities satisfying twisted Bianchi identities:

τdR-twisted
lA-valued

non-abelian
de Rham cohomology

H1+τdR

dR

(
X; lA

)
:=



Ω•
dR(X) CE

(
l(A�G)

)

CE(lBG)

(
F (i)

)twisted cocycle (dga-hom)

(
F (i)

ra

)′

coboundary
(concordance)

τdR
twisting cocycle

/
∼

.
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1.3 Hypothesis H on M-theory

With a general understanding of flux-quantization in
hand (§1.2) we are in position to motivate and state
Hypothesis H (§1.3.2) on M-brane charge quantization.

In order to put this in perspective, we first review
(§1.3.1) the widely accepted Hypothesis K that D-brane
charges are quantized in twisted K-theory.

In the special case of flat spacetimes X possibly with a point at infinity adjoined (36), Hypothesis H postulates
the following, in direct analogy, with Dirac’s EM-charge quantization (p. 22):

Hypothesis H on flat spacetimes says that
the non-perturbative completion of the C-field
in 11d supergravity (10) involves a map χ
from spacetime to the homotopy type of the
4-sphere, so that the C-field gauge potentials
(Ĉ3, Ĉ6) exhibit the flux densities (G4, G7) as
R-rational representatives of χ.

Maps
(
X; S4

)
χ Cohomotopical

charge sector
7!

Ω1
dR

(
X; lS4

)
clsd

Maps
(
X, LRS4

)
ch(χ)(

G4, G7

)
C-field flux densities

7! η S(G4, G7)

ch

η
S

(Ĉ
3
,Ĉ6

)

ga
ug

e po
te
nt
ial

s

In other words, on flat spacetimes Hypo-
thesis H postulates that the non-perturbative
C-field is a cocycle in canonical differential
non-abelian 4-Cohomotopy [FSS15-M5WZW,
§4][GrS20, §3.1][Char, Ex. 9.3].

As an immediate plausibility check: This im-
plies, from the well-known homotopy groups
of spheres in low degrees, cf. (60) below:

(
Ĉ3, Ĉ6

)
full nonperturbative
11d SuGra C-field

canonical differential
non-abelian (unstable)

4-Cohomotopy

π̂4(X)

plain
non-abelian (unstable)

4-Cohomotopy

π4(X)

HdR

(
X; lS4

)
de Rham cohomology
with coefficients in

Whitehead L∞-algebra
of the 4-sphere

∈ χ

topological sector

(G4,G7)
flux

densities

integral quantization of charges carried by sin-
gular M5-brane branes and

π4
(
R10,1 \ R5,1

)
= π4

(
R5,1 × R+ × S4

)
= π4(S4) = π4(S

4) = Z
integral quantization of charges carried by sin-
gular M2-branes... plus a torsion-contribution
(a first prediction of Hypothesis H).

π4
(
R10,1 \ R2,1

)
= π4

(
R2,1 × R+ × S7

)
= π4(S7) = π7(S

4) = Z ⊕ Z12

To generalize this to non-flat spacetimes, it remains to
discuss the twisting (according to §1.2.4) of Cohomo-
topy received by the gravitational background field.

To appreciate this it may be helpful to recall that also
the B-field in 10d may be understood as part of the
“generalized geometric” gravitational background flux.

Hypothesis H on gravitational backgrounds. In the following we explain this gravitationally coupled twisted
version of Hypthesis H, in parallel to traditional Hypothesis K:

Hypothesis K – §1.3.1 Hypothesis H – §1.3.2

KU0�PU(H)

X9 BPU(H)

B2U(1)

twisted
K-theoryRR-fie

ld

twist by
background
B-field

∼

S4�Ŝp(2)

T 2 ×X8 BŜp(2)

BSpin(8)

twisted
Cohomotopy

Fivebrane structure

C-fie
ld

twist bybackgroundgravity

To distinguish M2/M5-charge, the
tangential twisting needs to pre-
serve the H-Hopf fibration ⇒ tan-
gential Sp(2) ↪! Spin(8)-structure
[FSS20-HpH1, §2.3]. With this, in-
tegrality of M2’s Page charge &
anomaly-cancellation of the M5’s
Hopf-WZ term follows from trivial-
ization of the Euler 8-class, which
means lift to the Fivebrane 6-group

Ŝp(2)! Sp(2) [FSS21-M5a, §4].

This implies [FSS20-HpH1][FSS21-M5a]:
(1.) half-integrally shifted quantization (65) of
M5-brane charge in curved backgrounds, and

[G̃4] := [G4]︸︷︷︸
C-field
4-flux

+ 1
2

(
1
2p1(TX

8)︸ ︷︷ ︸
integral Spin-

Pontrjagin class

)
∈ H4

(
X8; Z

)

(2.) integral quantization of the “Page
charge” of M2-branes (75).

2[G̃7] := 2
(
[G7] +

1
2 [H3 ∧ G̃4]

)
∈ H7(X̂8;Z)

Both of these quantization conditions on M-brane charge
are thought to be crucial for M-theory to make any sense.

Previously the first had remained enigmatic and the
second had remained wide open.
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Double dimensional reduction of Hypothesis H. [FSS18-T, §3][BMSS19, §2.2][SS23-Cyc, p. 6][SV23].

Cyclicfication of classifying spaces. The free
loop space of a (classifying space) carries a canon-
ical S1-action by rotation of loops, its homotopy
quotient is the cyclification.

cyclified free loop space

Cyc(A) := Maps
(
S1, A

)
�S1

Topological KK-Reduction. For a principal cir-
cle bundle X10

M ! X9
IIA, the moduli of topological

A-fields on X10
M are equivalent to those of topolog-

ical Cyc(A)-fields on X9
IIA sliced over BS1

Maps
(
X11,A

)
Maps/BS1

(
X10, Cyc(A)

)KK-reduction

≃
KK-oxidation

This is double dimensional reduction in that
with the domain space dimension also the degree of
the fluxes is reduced, if they “wrap” the KK-fiber.

e.g. Cyc
(
Bn+1Z

)
≃

(
BnZ

wrappe
d fluxe

s
×Bn+1Z

non-w
rappe

d fluxe
s

)
�S1

D0-W
Z term

Hence for flat X10
M (eg. a torus bundle over a Eu-

clidean space with a point at infinity), Hypothesis
H implies that fluxes in type IIA string theory are
quantized in Cyc(S4)-cohomologly.

X10
M S4

X9
IIA Cyc(S4)

BS1

c3

cohomotopical C-field flux

fib(f2)

f2

c̃3

and its KK-reduction

Rationally this cyclification is indeed like twisted
K-theory, but without the “Romans mass” term F0

sourced by singular D8-branes (we find solitonic D8-
branes in hupf).
Hence in IIA, Hypothesis H predicts a non-abelian
modification of the traditional Hypothesis K.

ΩdR

(
X9

IIA, lCyc(S
4)
)
clsd

[FSS17-Sph, Ex. 3.3]
=

dF2 = 0

dF4 = H3 ∧ F2

dF6 = H3 ∧ F4

dH3 = 0

dH7 = F2 ∧ F6 − 1
2F4 ∧ F4


U-Duality. This process of double dimensional re-
duction by cyclification of the 4-sphere coefficients
continues to yield, rationally, the expected U-duality
symmetries of M-theory [SV23, p. 5]:
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1.3.1 Hypothesis K — RR/B-flux quantization in K-CoHomology.

The original plain Hypothesis K. The conjec-
ture/hypothesis that D-brane charges and RR-fluxes
are quantized in topological K-theory (for more review
and pointers see [BMSS19, §1]) originates with the ob-
servation [GHV97][MM97] that the differential RR-flux
form data (8) which apparently characterizes D-brane
charge has the form of the Chern character on topolog-
ical K-theory classes (cf. [FH00, p. 8][BMRS08, §2.2]

Since [MM97], many authors insist on multiplying the Chern
character with a differential form representative of the square

root
√

Â of the A-roof genus of the tangent bundle of space-
times before referring to it as D-brane charge. However, since√
Â is multiplicatively invertible (being a unit plus a sum of in-

homogeneous differential forms which are nilpotent under wedge
product), this is not intrinsic to the notion of D-brane charge
and may be disregarded for the purpose of charge quantization
(cf. [FH00, ftn. 12]) — its role is rather in making the Chern
character natural under push-forward (cf. [BMRS08, §2]).:

Hypothesis K for vanishing NS flux:

D-brane charges are quantized in topological K-theory, hence
RR-field flux densities are in the image of the Chern character

K(X) HdR(X; lKU0) =
{
F2• ∈ Ω2•

dR(X) | dF2• = 0
}/

concordance

ch

(54)

Here we have written the Chern character in the form reviewed in §1.2 (see [Char, Ex. 7.2]), highlighting (for
comparison below in §1.3.2) that it may be understood as defined on homotopy classes of maps to the classifying

space KU0 for complex topological K-theory complex topological
K-cohomology (deg 0)

K(X) =
{
X KU0

K-cocycle
}/

homotopy

and as taking values in differential
forms with coefficients in its Whitehead
L∞-algebra:

RR-field flux
away from NS5

Pre-geometric
equations of motion
of flux densities

dF2• = 0 (8)

Corresponding
Sullivan model

dg-algebra (“FDA”)
d f2• = 0

e.g. [FOT08, §1.81, 1.86]

Candidate
classifying space

KU0 ≃ BU× Z

Cohomology theory
classified by
this space

topological K-theory

K(X) := π0Maps(X,KU0)
e.g. [Kar78, §II Thm. 1.33]

Rational evidence for Hypothesis K. Important to
notice here is that all formulas in [GHV97][MM97] which
led to the original Hypothesis K (54) concern differential
form expressions and as such are purely “rational”. It is
(only) the resemblance of the differential relations satis-
fied by these differential forms with the image of a char-
acter map which suggests that the non-rational domain

of this character map (here: K-theory) may be the true
home of the brane charges: Among all cohomology the-
ories with this form of character images, K-theory seems
to be the most natural or immediate choice (for one, it is
essentially the only choice with an established name and
geometric interpretation, certainly when the twisting is
incorporated below), but it is not the only choice.

Hypothesis K beyond rational: Brane/Antibrane annihilation. The
(single) argument meaning to justify the choice of K-theory beyond its ra-
tional approximation was then given in [Wi98, §3], who observed that the
expected brane/anti-brane annihilation (by tachyon condensation in the open
super-strings stretching between them) broadly resembles the Grothendieck
equivalence relation which famously expresses (eg. [Kar78, §II 1]) the K-
cohomology group K(X) for a compact space X as the equivalence classes
of pairs of vector bundles and “anti-bundles” (virtual bundles) subject to a
relation expressing that equal but opposite vector bundles cancel.

V W W ⇌ V
pair

creation

(55)

pair
annihilation

D-branes
anti-

D-brane

Th‘is argument is rather hand-wavy (tachyon condensation in superstrings remains poorly understood) but quite
suggestive of the actual physics captured by Hypothesis K: D-brane charge should be (the) invariant of D-brane
pair-annihilation/pair-creation processes.
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Various further consistency checks for Hypothesis K have been claimed, but unresolved issues remain, pointing
to a need for a more refined description.

Hypothesis K in the presence of NS-flux. In view of our above discussion, the more general conjecture [Wi98,
§5.3][BM01] that D-brane charges in the presence of NS 5-brane charges are classified by 3-twisted K-theory (see
[GS22] for more) is now fairly immediate from the observation (cf. [Char, Rem. 10.1]) that the differential relations
satisfied by the twisted Chern character are just the pregeometric equations of motion (19):

RR-field flux
in presence of NS-flux

Pre-geometric
equations of motion
of flux densities

dF2• = H3 ∧ F2•−2

dH3 = 0 (19)

Corresponding
relative Sullivan model
dg-algebra (“FDA”)

d f2• = h3 ∧ f2•
dh3 = 0 [FHT07, p. 6]

[BMSS19, Lem. 2.31]
Candidate

classifying fibration
KU0 �BU(1) −! B2U(1)

Cohomology theory
classified by
this fibration

twisted K-theory

Kτ (X) := π0ΓX

(
τ∗(KU0 �BU(1))

) [FHT07, (2.6)]
[AS04, Def. 3.3]

(56)

And so the general conjecture for D-branes, widely (though not universally) expected, is this:

Hypothesis K:

D-brane charges are quantized in twisted topological K-theory, hence
RR-field fluxes are in the twisted Chern character

Kτ (X) Hτ
dR

(
X; lB2U(1)KU0 �BU(1)

)
=

{
F2• ∈ Ω2•

dR(X)
∣∣ dF2• = H3 ∧ F2•−2

}/
concordance

ch

(57)
Here we have written the twisted Chern character in the form reviewed in §1.2 (see [Char, Ex. 6.6, Prop. 10.1]),
highlighting (for comparison below in §1.3.2) that it is defined on homotopy classes of sections of pullbacks along
the twisting map of the universal KU0-bundle ([FHT07, (2.6)][Char, Ex. 3.4]) and takes values in differential forms
with coefficients in its relative Whitehead L∞-algebra:

twisted
topological K-theory

Kτ (X) =


X KU0 �BU(1)

B2U(1)

τ
twist

cocycle

/
rel homotopy

In the next section §1.3.2 we develop Hypothesis H in close analogy to this now classical argument for Hypothesis
K, which is possible due to the understanding [Char] of the (twisted) Chern character on K-theory as just a special
case of a general notion of (twisted) characters on non-abelian generalized cohomology theories whose images
capture also non-linear Bianchi identities such as those of the C-field in 11d supergravity.
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1.3.2 Hypothesis H — M-brane flux quantization in CoHomotopy.

We are finally ready to motivate, state and explain Hypothesis H. To make it transparent, we start with its formu-
lation on flat spacetimes and then incrementally bring in the coupling to gravitational background charges in the
form of appropriate tangential twisting of the charge cohomology theory. The logic [Sa13, §2.5][FSS20-HpH1][GS1]
is summarized by the following schematic diagram:

Pregeometric C-field equations of
motion in 11d supergravity are valued
in Whitehead L∞-algebra of 4-sphere

C-field charge quantization
is classified by the 4-sphere,
hence is in 4-Cohomotopy.

Since the only other field in 11D
is (super-)gravity, this must be
tangentially twisted 4-Cohomotopy

Pure M2-brane charge among
all M-brane charge is isolated
by quaternionic Hopf fibration/
Atiyah-Penrose twistor fibration.

For tangential twist to respect
pure M2-brane charge it must be
by Spin(1, 2)× Sp(2)-structure

Hypothesis H
C-Field flux/M-brane charge is quantized

in tangentially Sp(2)-twisted 4-Cohomotopy

Alongside the development of the hypothesis we highlight here its foremost implications on M-brane charge
quantization:

• (66) the shifted flux quantization of the C3-field and hence of M5-brane charge,
• (77) the shifted flux quantization of the C6-field and hence of M2-brane charge (“Page charge”).

Further implications are discussed in following sections, notably the resulting topological M5-brane model in §2.1.

Remark: Plain reduced and un-reduced Cohomotopy coincide. For the following discussion notice:

For plain Cohomotopy (as opposed to its differential refine-
ment considered below) the reduced and unreduced theories
on a given pointed space actually coincide. This follows from
the long exact sequence of homotopy groups applied to the
fibration which exhibits the reduced moduli as the homotopy
fiber of the base-evaluation map on unreduced moduli.

Map∗/
(
X, S4

)
Map

(
X, S4

)

∗ Map
(
∗, S4

)︸ ︷︷ ︸
S4

ev(pb)

π1(S
4) π0

(
Map∗/

(
X,S4

))
π0

(
Map

(
X,S4

))
π0(S

4)

1 π̃4(X)
reduced Cohomotopy

π4(X)
un-reduced Cohomotopy

∗∼
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C-Field flux on flat spacetimes. By the discussion in §1.2, the admissible flux quantizations of the pre-geometric
C-field flux (10) in 11-dimensional supergravity on flat spacetimes are classified by spaces whose minimal Sullivan
dg-algebra satisfies the analogous equations. But in rational homotopy theory just these equations are well-known
as the Sullivan model for the 4-sphere! [Sa13, §2.5], see also [FSS17-Sph, §2][QStruc, p. 14]. This means, by the
discussion in §1.2, that the cohomology theory classified by the 4-sphere is an admissible quantization law for the
C-field flux in 11-dimensional supergravity: This cohomology theory is 4-Cohomotopy:

C-field flux
on flat spacetimes

Bianchi identities/
higher Gauß law
on flux densities

dG4 = 0
dG7 =− 1

2G4 ∧G4
(10)

Corresponding
Sullivan model

dg-algebra (“FDA”)

d g4 = 0
d g7 =− 1

2g4 ∧ g4
e.g. [De76, Ex. 3.5 (a)]

[FHT00, p. 142]

[Me15, §1.2]Candidate
classifying space 4-sphere: S4

Whitehead bracket
L∞-algebra

π3(ΩS
4)⊗ R = R⟨γ3⟩

π6(ΩS
4)⊗ R = R⟨γ6⟩

[γ3, γ3] = γ6

cf. [CJLP98, (2.6)][LLPS99, (3.4)]
[KS03, (75)] [BNS04, (86)]
[Sa10, (4.9)][SV22, (13)]

Cohomology theory
classified by
this space

4-Cohomotopy:

π4(X) := π0Maps(X,S4)

[Pontrjagin1938]
[Spanier1949]
[Peterson1956]

plain 4-coHomotopy π4(X) :=

{
spacetime

X
4-sphere

S4c3
cocycle

}/
homotopy

Moreover, the 4-sphere is the minimal such choice of flux-quantization law for 11-dimensional supergravity, in
that it is the smallest CW-complex with this property. In this sense, the universal choice of C-field flux quantization
is by 4-cohomotopy. The hypothesis that this universal choice is the correct choice of flux quantization for M-theory
is:

Hypothesis H over flat spacetimes ([Sa13, §2.5][SS23-HpH2]):

M-brane charges are quantized in 4-cohomotopy, hence
C-field fluxes are in the 4-cohomotopical character

π4(X) HdR(X; lS4) =

G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

∣∣∣∣∣∣ dG4 = 0,
dG7 = − 1

2G4 ∧G4

/
concordance

chπ4

(58)

Perspective. To re-iterate how Hypothesis H comes about:
The general theory of flux quantization (§1.2) says
that any cohomology theory flux-quantizing the C-field
fluxes (10) has a classifying space whose Sullivan model
has as generators the pre-geometric field species subject
to differential relations of the same form as the pre-
geometric Bianchi identities of the C-field; and ratio-
nal homotopy theory shows that these are precisely the
spaces of the rational homotopy type of the 4-sphere.
Among all of these, the 4-sphere itself (and hence the
coHomotopy cohomology theory that it classifies) is in
some sense the canonical/universal choice — therefore
it is natural to hypothesize that this is the choice needed
for M-theory.

Should Hypothesis H be false (not quite correspond
to M-theory), it would mean that we have to add
cells to the 4-sphere (without changing its rational
homotopy type) in order to find the correct classifying
space for flux quantization in M-theory. Since there
are infinitely many choices involved in doing so, it
will help to know how Hypothesis H fails, if it does,
as this will indicate how the canonical choice of
classifying space S4 needs to be adjusted. In this
sense, the analysis of the predictions of Hypothesis H
is essentially an inevitable step towards understand-
ing flux- & charge-quantization in M-theory, either way.
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Cohomotopical M-brane charges and homotopy groups of spheres. The character map in (58) is given
by the abstract rationalization construction described in §1.2, but in degree 4 we may readily describe it explicitly:
Given a cocycle c3 : X −! S4 in 4-cohomotopy, the corresponding 4-flux density G4 is the pullback along c3 of
the volume form dvolS4 , hence its real cohomology class may be identified with the pullback of the fractional Euler
class 1

2
χ4 on the 4-sphere:

cocycle in 4-cohomotopy X S4

induced 4-flux Ω•
dR(X) Ω•

dR(S
4)

G4  − [ dvolS4

induced M5-charge
in integral cohomology

H•(X; Z) H•(S4; Z
)

≃ Z
[
1
2
χ4

]
[G4]  − [ 1

2
χ4

c3

c∗3

c∗3

(59)

Hence Hypothesis H implies, first of all, that singular
flat M5-branes R1,5 ↪! R1,10 carry integral charge, as
expected.

Generally, Hypothesis H implies that brane charges on
flat spacetimes are given by the homotopy groups of the
4-sphere (cf. [SS23-HpH2]):

singular
p-brane charge

π̃4
(
R1,10

⊔{∞} \ R
1,

p︷ ︸︸ ︷
9− n

⊔{∞}

)

=

4th co-homotopy group
of n-sphere

π̃4(Sn) =
{
Sn S4c3 }/

homotopy
= πn(S

4) n-th homotopy group
of 4-sphere

=

solitonic
p-brane charge

π̃4
(
R1,

p︷ ︸︸ ︷
10− n

⊔{∞} ∧ Rn
∪{∞}

)
(60)

n = 0 1 2 3 4 5 6 7 8 9 10 · · ·

πn(S
4) ∗ 1 0 0 Z Z2 Z2 Z× Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3 · · ·

singularity: M9

(p. 87)

exotic branes
(§2.3.2)

M5

(15)

M2

(15)

All these groups are finite (hence are “torsion effects” predicted by charge-quantization not seen on differential
form data) except in exactly two dimensions, corresponding to the existence of integer charged singular M5-branes
and M2-branes, respectively:

cohomotopy charge of flat
singular M5-branes

π4
(
R1,10 \ R5,1

)
≃ π4

(
R5,1 × R⊔{∞} × S4

)
≃ π4

(
S4

)
≃ π4

(
S4

)
≃ Z

cohomotopy charge of flat
singular M2-branes

π4
(
R1,10 \ R1,2

)
≃ π4

(
R1,2 × R⊔{∞} × S7

)
≃ π4

(
S7

)
≃ π7

(
S4

)
≃ Z⊕ torsion

To amplify this point: Any classifying space for charge quantization in 11d which implies integer-charged singular
p-branes exactly for the expected values p = 2 and p = 5 will need to have non-torsion homotopy groups precisely
in degree 9− 2 = 7 and 9− 5 = 4. The 4-sphere is the minimal cell complex with this property.

The reason for this is the existence of the quaternionic Hopf fibration:

53



Cohomotopical M2-brane charge and the
quaternion Hopf fibration. The generator
of the integer summand Z ⊂ π7(S4) in (60) is
the homotopy class of a S3-fibration called the
quaternionic Hopf fibration (cf. [FSS20-HpH1,
pp. 4]):

S3

quaternionic
Hopf fibration

S7

S4

hH

[
S7 hH−! S4

]
= 1 ∈ Z ↪! π7(S

4) .

But this means that we may regard S7 as the clas-
sifying space of integral M2-brane charges and the
quaternionic Hopf fibration as classifying the co-
homology operation which injects pure M2-brane
charge into the full set of M-brane charges:

S7 ∈ π7(X) pure
M2-brane charges

mapping into

X S4 ∈ π4(X) full
M-brane charges

hH (hH)∗
c6

c3 =(hH)∗c6

(61)

Remark: Flat solitonic M-branes. With the pre-
diction of flat singular 5-branes, Hypothesis H neces-
sarily also predicts (60) integer-charged solitonic 6-
branes (cf. p. 6).

We discuss in §2.3 (following [SS22-Qnt1]) how these may
be identified with the non-singular (and thus “solitonic”)
6-brane-like solutions of 11d-supergavity known as the
KK-monopole, the M-theoretic incarnation of D6-branes.

Remark: Cohomotopy is the absolute K-theory.

The abelianized shadow (stabilization)
of Cohomotopy (cf. p. 83), happens to
be a form of K-theory, namely the al-
gebraic K-theory of the “absolute base
field” F1 (cf. [CLS12, Thm. 5.9])

non-abelian
Cohomotopy

π•

stable
Cohomotopy

S•
stable framed
Cobordism

MFr•

KF •
1

algebraic K-theory of
“field with one element”

linearize

(i.e.: stabilize) Barratt-Priddy

&
Quillen

Pontrjagin & Thom

This being so, Witten’s argument (55)
that the eponymous equivalence classes
defining K-theory (“K” is for Ger-
man Klasse) correctly reflects brane/anti-
brane annihilation applies equally to sta-
ble Cohomotopy theory, only that now
the role of Chan-Paton vector bundles is
played by “normal framings” (see p. 83).

V W W ⇌ V
pair

creation

(62)

pair
annihilation

M-branes
anti-

M-brane
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Coupling to gravitational charges and tangential twisting. We motivate the generalization of Hypothesis
H to spacetimes which are not necessarily flat:
As indicated in (9), 11-dimensional supergravity stands
out in its C-field being the only field besides that of
gravity. This means that possible twistings of the C-
field flux-quantization can only be by the gravitational
field, namely by the Spin-frame-bundle of spacetime X
(the principal bundle underlying its tangent bundle).
By the general rules of twisted cohomology (§1.2.4) and
assuming

Hypothesis H on flat spacetimes (58) this means that
possible twistings are given by ∞-actions of (subgroups
of) the Spin-group on the 4-sphere. The canonicala

such action is that of Spin(5) via the defining action of
SO(5) on S4 = S(R5) regarded as the unit sphere in
R5.

aThere is an isomorphic but subtly different action of Sp(2) ≃
Spin(5) on S4, which we come to further below.

This leads to tangentially twisted 4-cohomotopy theory [FSS20-HpH1, §2.1], consisting of homotopy classes of
sections of the 4-sphere bundle associated with a Spin(5)-structure τ on spacetime:

tangentially twisted
4-coHomotopy

π4+τ (X) :=


spacetime

X

universal orthogonal
4-sphere bundle

S4 � Spin(5)

BSpin(D) BSpin(5)

⊢Fr(X) τtwist

c3
cocycle

/
homotopy

(63)

(Such nonabelian/unstable twisted cohomotopy had previously been considered in [Cr03, Lem. 5.2]; for more see
[FSS20-HpH1, §2.1].)

Remark: The role of G-structure [FSS20-HpH1, §2.2]. Using the tangentially twisted 4-cohomotopy (63)
for flux quantization means that a choice of Spin(5)-structure on spacetime is part of the flux-quantized C-field
datum (or rather of isomorphic but subtly different Sp(2)-structure, which we come to in a moment.) Lest this
seems overly restrictive, notice that the structure group of the tangent bundle may still be all of Spin(1, 5)×Spin(5)
in order that τ exists. On the other hand, the existence and choice of a cocycle in π4+τ (X) then equivalently means
that and how the Spin(5)-structure factor is further reduced to Spin(4), due to

S4

universal orthogonal
4-sphere bundle

S4�Spin(5)

Spin(5)/Spin(4) BSpin(4)

∗ BSpin(5)

∼

(pb)

(64)

Shifted C-field flux quantization. Hence the generalization of Hypothesis H (58) away from the special case of
flat spacetimes should say that C-field flux is quantized not in plain 4-cohomotopy π4, but in tangentially twisted
4-cohomotopy π4+τ (63). In a moment we will refine this statement a little further, but first to record the following:

The first non-trivial check of the tangential twisting is its implication of the notorious shifted integral flux
quantization of the 4-flux density, an unusual-looking condition which however is a widely expected hallmark of
M-theory (originally proposed in [Wi97a][Wi97b], see also [Wi00, §2][GS02, p. 21][CS12a][CS12b]) – it says that
not the de Rham cohomology class of G4 but its shift by one fourth of the Pontrjagin 4-form p1(∇) on spacetime
(for any connection ∇ on the tangent bundle) is the real image of an integral cohomology class:

M5-brane charge image
in ordinary cohomology

class of
shifted 4-flux density[
G̃4

]
:=

[
G4 +

1
4p1

]
∈

integral cohomology

H4(X; Z) −! H4(X; R) . (65)

Notice that the desire for a deeper cohomological understanding of this condition was previously the motivation for
the seminal development of abelian (i.e. stable) generalized differential cohomology in [HS05]. But in our context
of non-abelian cohomology the condition falls out naturally:

Namely ([FSS20-HpH1, §3.4]), the integral cohomology of S4 � Spin(5) ≃ BSpin(4) (64) is generated from 1
2p1

and the combination 1
2
χ4 +

1
4p1 [CV98a, Lem 2.1]. But since the pullback of half the Euler class, 1

2
χ4, being the
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volume form on the S4-fibers [BC98, §2 ], is interpreted (59) as the G4-flux under Hypothesis H, and since the
pullback of the universal 1

4p1 is the actual such class on spacetime X by the nature of tangential twisting, this
means that G4 + 1

4p1 is the image of the pullback of an integral form, and hence itself integral ([FSS20-HpH1,
§3.4]):

cocycle in
tangentially twisted

4-cohomotopy
X S4�Spin(5) ≃ BSpin(4)

BSpin(d)

induced charge in
real cohomology

H•(X; R
)

H•(BSpin(4); R
)
= R

[
p1, χ4

]
[
p1(∇)

]
 − [ p1 first Pontrjagin class[

G4

]
 − [ 1

2
χ4 fractional Euler class

induced charge in
integral cohomology

H•(X; Z) H•(BSpin(4); Z
)
= Z

[
1
2p1,

1
2
χ4 +

1
4p1

]
integral class of

shifted C-field flux

[
G4 +

1
4p1(∇)

]︸ ︷︷ ︸
[G̃]

 − [ 1
2
χ+ 1

4p1
universal integral
characteristic class

c3

⊢Fr(X)

c∗3

c∗3

(66)

Isolating M2-brane charge on curved spacetimes [FSS20-HpH1, §2.3]. We saw in (61) that the quaternionic

Hopf fibration S4 hH−! S4 serves to identify pure M2-brane charge inside all M-brane charges, under Hypothesis
H on flat spacetimes. To retain such an identification as we generalize M-brane charges to curved spacetimes via
tangentially twisted cohomotopy (63), we need to find a Spin-group which acts on both S4 and S7 in a compatible
way, namely such that the Hopf fibration is equivariant under this action.

Remarkably, the quaternionic Hopf fibration is indeed Spin(5)-equivariant — or rather it is equivariant under
the isomorphic quaternionic unitary group Sp(n) ≃ U(n,H) ⊂ GL(n,H) (cf. [M5b, §A]) in quaternionic dimension
2, via its canonical action on S7 = S(H2), due to the following coset-space realization of the quaternionic Hopf
fibration [HT09, Tab. 1][GWZ, Prop. 4.1]:

S3 S7 S4

Sp(1)×Sp(1)
Sp(1)

Sp(2)
Sp(1)

Sp(2)
Sp(1)×Sp(1)

Spin(4)
Spin(3)

Spin(5)
Spin(3)

Spin(5)
Spin(4)

fib(hH)

∼

hH

∼

Sp(2)

∼∼

Sp(2)

∼

ι
id

∼

id
q 7! (q,1)

∼

(67)

An important subtlety here is that Spin(5) and Sp(2), while isomorphic as abstract Lie groups, are not iso-
morphic as subgroups of Spin(8), but as such they are exchanged under the triality automorphism tri : Spin(8) −!
Spin(8). This subtlety is ultimately responsible for the appearance of the “one-loop term” I8 (21) from Hypothesis
H (see below), in that [FSS20-HpH1, (97)]:

BSp(2) BSpin(5)

BSpin(8) BSpin(8)

H•(BSp(2); R
)

H•(BSpin(5); R
)

1
2p1  [ 1

2p1

( 14p1)
2 − 24 · I8  [ 1

4p2

∼

Btri
∼

(Btri)∗
(68)
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Namely, by [CV97, 2.2, 4.1, 4.2] and [CV98b, 8.1, 8.2] we have, respectively:

H8
(
BSpin(8)

)
H8

(
BSpin(8)

)
H8

(
BSp(2)

)
1
2p1 ↔ 1

2p1 7! 1
2p1

1
4

(
p2 − ( 12p1)

2
)
− 1

2
χ8 ↔ −χ8 7! − 1

2

(
p2 − 1

4 (p1)
2
)

and hence 1
4p2 ↔

−χ8 +
1
4 (

1
2p1)

2

− 1
2

(
1
4

(
p2−(

1
2p1)2

)
− 1

2
χ8

) 7! ( 14p1)
2 − 1

2

(
p2 − 1

4 (p1)
2
)︸ ︷︷ ︸

=: 48·I8

(Btri)∗

(69)

This way we arrive at the general form of (58):

Hypothesis H ([FSS20-HpH1]):

M-brane charges are quantized in tangentially Sp(2)-twisted 4-cohomotopy, hence
C-field fluxes are in the twisted 4-cohomotopical character

πτ (X) Hτ
(
X; lS4

)
=

G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

)
∣∣∣∣∣∣ dG7 = − 1

2 G̃4 ∧ (G̃4 − 1
2p1)− 12 · I8

dG4 = 0

/
concordance

chτ

(70)

tangentially
Sp(2)-twisted
4-coHomotopy

π4+τ (X) :=



spacetime

X S4 � Sp(2)

universal orthogonal
4-sphere bundle

S4 � Spin(5)

BSp(2) BSpin(5)

BSpin(1, 2)
×BSpin(8) BSpin(8) BSpin(8)

⊢
F
r(X

)

ta
n
g
e
n
t
stru

c
tu

re

τtwist

c3
cocycle

(pb)

∼

∼
Btri

/
rel. homotopy

(71)

That the twisted cohomotopical character is of this form (70) follows [FSS20-HpH1, Prop. 3.8] essentially by the
formula for the Sullivan model of Spin(5)-associated S4-fibrations, which in itself gives [FSS20-HpH1, Prop. 2.5]
d 2G7 = −G4 ∧G4 + 1

4p2(∇
Spin(5)) and then plugging in the expression for 1

4p2 from (68) to account for the fact
that the twist is actually by Sp(2)-structure. Finally, we have cleaned up the formula by completing the resulting

square in terms of the shifted flux density G̃4 (65):

−G4 ∧G4 + 1
4p1 ∧

1
4p1 = −(G4 +

1
4p1) ∧ (G4 − 1

4p1) = −G̃4 ∧ (G̃4 − 1
2p1)

Notice that the factor Spin(1, 2) may be included in the spacetime tangent structure in (71) without changing this
conclusion nor that of the shifted flux quantization (66), since it contributes neither to p1 nor to p2.

Remark: Normalization of the one-loop term in the Bianchi identity. The factor of “12” in (70) may
seem unexpected, since an old argument [SVW96, p. 2][DM97, (1)] (which, incidentally, neglects the shifting (65))
might lead one to expect a factor of “1” here, instead — but this depends in turn on the prefactor which translates
between the integrated flux density

∫
S7 G7 and the actual number of M2-branes. In [FSS20-HpH1, p. 12-13] we

argue that proper counting of 2-brane charge in Cohomotopy does resolve this apparent discrepancy.
On the other hand, we discuss next that in order for the “M2 Page-charge” to be integral and the M5-brane

sigma-model in the background of M2-brane flux to be well-defined, this characteristic polynomial has to vanish (an
M-theoretic form of anomaly cancellation by “Fivebrane structure”), in which case this issue disappears anyway,
see (78) below.

M2-charge quantization and the Hopf-Wess-Zumino coupling in the M5. Hypothesis H in the form (70)
implies (by design, recalling (61) and (67)) that a notion of pure M2-brane charge is retained after M-brane charge
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quantization in twisted Cohomotopy, namely given by those twisted 4-Cohomotopy cocycles which factor through
the BSp(2)-parameterized quaternionic Hopf fibration hH � Sp(2) up to homotopy, or more specifically, by the
choice (c6, b2) of such a homotopy-factorization:

S7�Sp(2) ∈ π3+c3(X) π7+τ (X) pure
M2-brane charges

X S4�Sp(2) ∈ π4+τ (X) full
M-brane charges

BSp(2)

hH�Sp(2) (hH�Sp(2))∗
c6

c3 =(hH�Sp(2))∗(c6)

τ

b2
(72)

Here for fixed c3 we may interpret the compatible M2-brane charges (c6, b2) with the c3-twisted non-abelian coho-
mology classified by S7 �Sp(2). This is a twisted form of 3-Cohomotopy, because the homotopy fiber of hH �Sp(2)
is still the 3-sphere ([GS1, Lem. 2.8]):

S3 S7 � Sp(2)

∗ S4 � Sp(2)

(pb)
hH�Sp(2) (73)

As such we have the corresponding character differential forms for pure M2-brane charge, which pick up a 3-form
flux H3 ([FSS20-HpH1, Prop. 3.20], cf. (94) below):

Implication of Hypothesis H on M2-brane charge:

pure M2-brane charges in given background M2/M5-charge c3 are quantized in c3-twisted 3-cohomotopy,
hence (C6, B2)-field fluxes are in the twisted 3-cohomotopical character

πc3(X) Hc3
dR

(
X; l

(
S7�Sp(2)

))
=


G4 ∈ Ω4

dR(X)

G7 ∈ Ω7
dR(X)

H3 ∈ Ω3
dR(X)

∣∣∣∣∣∣∣∣
dG4 = 0,

dG7 = − 1
2 G̃4 ∧

(
G̃4 − 1

2p1
)
− 12 · I8

dH3 = G̃4 − 1
2p1

/
concordance

ch

(74)

The literature on M2-brane charge expects (though throughout ignoring the shift by p1 in G̃4 (65)) that
given such an H3-“potential” in 11d supergravity (then typically regarded as the C-field gauge potential and
denoted “C3”) the following expression — known as the Page charge — is the M2-brane charge [Pa83, (8)][DS91,
(43)][BLMP13, p. 21]:

M2-brane charge image
in ordinary cohomology

[G̃7] :=
[
G7 + 1

2H3 ∧ G̃4

]
∈ H7

(
X;R

)
. (75)

The same expression gives the “Hopf-Wess-Zumino term” in the action functional of the M5-brane sigma-model
(we come to this in §2.1), hence the coupling of the fundamental five-brane to the background C-field analogous to
the coupling of an electron the electromagnetic field.

What had remained open (and hardly discussed at all) is that, how and why this term is integral: Regarded as
M2-brane charge such an integrality is necessary at least to justify common discussion of M2-brane counting, while
regarded as the Hopf-WZ term for the M5-brane such an integrality is necessary for the M5-brane sigma-model to
actually be well-defined (anomaly-free) — by the exact same argument of Dirac charge quantization, up to degree,
we expand on this in §2.1.

Experience with the NS5-brane sigma-model suggests that its anomaly-cancellation requires a topological con-
dition on spacetime that is a higher-degree analog of “String structure” (whence called “Fivebrane structure” in
[SSS09]) requiring an degree-8 polynomial in the Pontrjagin forms of spacetime to vanish.
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The M-theoretic analog of Fivebrane structure as implied by Hypothesis H is the trivialization of the Euler
class, hence of (12 times) the “one loop term” χ8 = 24 ·I8 (69), which we may refer to as M5-brane structure [M5b,
Ex. 3.2 ]:

BŜp(2) ∗

X B
(
Sp(1, 2)× Sp(2)

)
BSp(2) BSpin(5) B8Z

(pb)

⊢Fr(X)

M5-bra
ne struc

ture

∼
χ8

(76)

in that this is what, under Hypothesis H, implies the (half-)integrality of the M2-brane Page charge, hence of the
Hopf-WZ terms of the M5-brane sigma-model:

Theorem 1.2 ([FSS21-M5a, Thm. 4.8]). Hypothesis H (70) implies that, on spacetimes admitting M5-brane
structure (76), the resulting M2-brane charge quantization (74) makes twice the Page charge/Hopf-WZ term (75)
an integral cohomology class:

M2-brane charge image
in ordinary cohomology

class of
shifted 7-flux density

2
[
G7 +

1
2H3 ∧ G̃4

]
∈
integral cohomology

H7
(
X;Z

)
−! H7

(
X;R

)
(77)

Discussion and interpretation of the factor of 2 here is given in [FSS21-M5a, (3)][M5b, p. 3].

For example, the condition of M5-brane structure is satisfied if the structure group reduces further along
Sp(1) × Sp(1) ↪−! Sp(2) (since the Euler of a direct sum of vector bundles is the cup product of that of the
summands, but the Euler 8-class of a single BSp(2) vanishes by degree reasons). This special case subsumes the
important example of M5-branes at ADE-singularities, see [M5e, (1)].

Hence if one insists — which is reasonable — that M-brane charge quantization should imply Page charge
quantization (77) and thus consistency of the M5-brane sigma model in charged backgrounds, then one will want

to include the demand of M5-brane Ŝp(2)-structure (76) into the hypothesis (70):

Hypothesis Ĥ ([FSS21-M5a]):

M-brane charges are quantized in tangentially Ŝp(2)-twisted 4-cohomotopy, hence
C-field fluxes are in the twisted 4-cohomotopical character

π4+τ (X) Hτ
(
X; lS4

)
=

 G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

)
∣∣∣∣∣∣ dG7 = − 1

2 G̃4 ∧
(
G̃4 − 1

2p1
)

dG4 = 0

/
concordance

chτ

(78)

Tangentially

Ŝp(2)twisted
4-coHomotopy

π4+τ (X) :=



spacetime

X S4�Ŝp(2) S4 � Sp(2)

universal orthogonal
4-sphere bundle

S4 � Spin(5)

BŜp(2)
M5-brane structure

BSp(2) BSpin(5)

BSpin(1, 2)
×BSpin(8) BSpin(8) BSpin(8)

⊢
F
r(X

)

ta
n
g
e
n
t
stru

c
tu

re

τtwist

c3
cocycle

(pb) (pb)

∼

∼
Btri

/
rel. homotopy

(79)

Hypothesis H for heterotic M-theory. Finally, Hypothe-
sis H generalizes to (and maybe comes into full bloom) in “het-
erotic M-theory” (Hořava-Witten theory), where Cohomotopy
is enhanced to “twistorial Cohomotopy”, now represented by
the “twistor space” CP 3 covering the 4-sphere through the
Calabi-Penrose fibration.

This is discussed in [FSS20-GS][SS20-GS].
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2 Quantized Flux

In this second part, we explore consequences of Hypothesis H (§1.3)
and match them to expected phenomena in the M-theory folklore.

§2.1 Resulting M5-brane model.
First is the observation that Hypothesis H for the bulk C-field im-
plies a good deal of subtle structure for the fundamental M5-brane
probing this bulk. In particular, we find that the enigmatic 3-form
flux expected on M5-brane worldvolumes appears and is implied to,
in turn, be flux-quantized in a twisted form of 3-Cohomotopy. This
means that with Hypothesis H, we may investigate the nature of
branes (defects) inside the M5-worldvolume.

§2.2 Brane lightcone quantization.
For investigating such individual quantum branes beyond the tradi-
tional large-N limit, we need to obtain genuine quantum observables
on flux-quantized fields. In previous lack of a general prescription
for such non-perturbative quantization of non-Lagrangian fields, we
make the following observation ([SS23-Qnt], in itself independent of
Hypothesis H, but to be combined with it):
For flux-quantized fields on spacetimes with a circle factor (such as
in M/IIA duality), the homology Pontrjagin algebra of the looping
of the flux-quantized phase space stack (from ??) is a good algebra
of topological quantum observables (on the discretized light cone,
as familiar from the BFSS matrix model).

§2.3 Resulting quantum branes.
We work out the phase spaces, under Hypothesis H, of various in-
tersecting solitonic branes, by intersecting their respective Coho-
motopical phase spaces (§1.2.3); then we determine the algebras of
quantum observables according to §2.2:
– For D8 ⊥ D6 intersections on NS5s we find this way much of
the structure of Hanany-Witten brane systems and, M/IIA-dually,
quantum observables of M2/M5 bound states as expected from the
BMN matrix model ([SS22-Cnf][CSS23]).
– For M5⊥M5 intersections on codimension=2 defects inside M5 we
find anyonic quantum observables whose quantum states are braid
group representations.

§2.4 Resulting worldvolume CFT.
Finally, we describe in more detail the quantum states, implied this
way by Hypothesis H, on these M5 ⊥ M5-intersections, and find
them [SS23-Dfc1][SS23-Dfc2] to be MacLaughlin wavefunctions of
su(2)-anyons (at any admissible level), namely conformal blocks of
the su(2)-WZW 2d conformal field theory on the M5 transverse to
the intersecting M5, at any admissible (possibly fractional) level.
Notice that the CFT expected in codimension=2 on M5-branes has
previously been argued, informally, to be the su(2)-WZW model
([Wi10, p. 22]).

Hypothesis
H

M5
model

lightcone
quantization

quantum
bound
states

worldvolume
CFT

Conclusion and outlook. In summary, we seem to
have substantial evidence that Hypothesis H gets close
to the expected non-perturbative completion of 11d su-
pergravity, aka M-theory. Better yet, it seems to pro-
vide a mathematical context for nonperturbative quan-
tum physics (such as anyonic topological order) which
can be analyzed rigorously and independently of the
string/M-theory folklore.

In order to become a complete such theory, what is
clearly missing from Hypothesis H, so far, is the incor-
poration of dynamical (super-)gravity. But we may ob-
serve that the Whitehead L∞-algebra lS4 also controls
the exceptional super-Minkowski spacetime of which
11d supergravity should be the higher Cartan geom-
etry. This points to a gravitational enhancement of
Hypothesis H, but details remain to be worked out.
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2.1 Resulting M5-brane model

After a brief recollection of the meaning of fundamental sigma-model branes in §2.1.1, we survey in §2.1.2 how
Hypothesis H implies global consistency of the (Hopf-)Wess-Zumino gauge coupling of the fundamental 5-brane
sigma model by implying flux quantization of the worldvolume B-field in twisted 3-Cohomotopy underlying which
is a “nonabelian gerbe field” for worldvolume gauge group Sp(1) ≃ SU(2) — this result is from [FSS20-HpH1,
§3.7][FSS21-M5a][FSS21-M5b].11

2.1.1 Fundamental sigma-model branes

Besides the singular/solitonic classical branes of §1.1 there are supposed to be “fundamental” or “sigma-model”-
branes which are not imprinted on flux, but which are effected by flux. Here

fundamental brane : singular brane

is like

fundamental particle : black hole

in that fundamental branes are supposed to be “massless” cousins of black branes, which have analogous attributes,
but instead of impacting spacetime by their backreaction on it they trace out trajectories ϕ : Σ1+p −! X in a fixed
background spacetime X subject to forces exerted by spacetime fields. These forces include the force of gravity
and the generalized Lorentz force exerted by the background gauge field. In the spirit of pre-geometric fluxes as
discussed in §1.1.2 here we focus on these Lorentz forces.

In fact, fundamental branes include, with the fundamental particles that they derive their name from, the most
prominent brane species: notably the fundamental string which gives its name to string theory and the fundamental
membrane from which the term M-theory is derived:

Flux densities on spacetime σ-model with target spacetime

black branes
singular

source of flux

fundamental brane
subject to forces from such

background flux

Electromagnetism magnetic monopole
fundamental particle

(electron)

String theory NS5-brane fundamental string

M-theory
M5-brane fundamental membrane

M2-brane fundamental fivebrane

(80)

The fundamental 0-branes in electromagentism are simply the electrons – these being fundamental particles
in the sense of particle physics, whence the general term “fundamental brane”.

The following graphics shows12 the generic trajectory of an electron in the vicinity of a magnetic monopole:
The Lorentz force felt by the electrically charged electron when moving in a background magnetic field deforms the
otherwise straight trajectory into a helix whose radius of curvature is the smaller the stronger the magentic flux
density. In the case of the magnetic field sourced by a monopole (cf. p. 7) this makes the electron trajectories lie

11Hypothesis H also implies information about the dynamical (i.e. geometric, non-topological) sector of the Sp(1)-gauged M5-brane
sigma-model: this is discussed in [FSS20-M5d][FSS21-M5e].

12This is discussed for instance in Ferraro (1956) Electromagnetism Theory, §137. The helical trajectory in (81) is adapted from
Ferraro’s Fig. 161.
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on a cone in space whose vertex is the singular locus of the monopole:

m
agnetic monopole spa

cet
im

e

tra
j.

electr.

worldline trajectory spacetime

Σ1+0 X

R1,0 R1,3 \ R1,0 R1,0 × R⊔{∞} × S2

ϕ

≃

(81)

This means in particular that there exist circular electron trajectories which lie entirely in a plane in space and are
periodic in time, winding around one of the radial flux lines. Since the Faraday tensor F2 sourced by a magnetic
monopole has no temporal (electric field) component, we may consistently ignore the temporal translation of these
trajectories and understand them as maps from a circular “worldline” into space:

worldline trajectory space gauge potential
gauge coupling action functional

⇝ Lorentz force

S1 R⊔{∞} × S2 B̂2Z exp
(
2πi

∫
S1ϕ

∗Â1

holonomy

)
∈ R/Z

Ω2
cl(−)

ϕ Â1

F2

(82)

The gauge-coupling part of the “exponentiated action” (in the sense of classical Lagranian physics) of such a

trajectory is the holonomy of the gauge potential 1-form Â1 (§1.2.3) around this closed curve, in that the variation
of this functional gives the contribution to the Euler-Lagrange equations of motion of the electron which expresses
the Lorentz force.13

Recall here that it is the definition of the differential cohomology coefficients B̂2Z (§1.2.3) which implements
the Dirac charge quantization condition and makes the action functional take values in R/Z ≃ U(1):

Ω2
dR(−)flat

electron
worldline

Σ1+0 X B̂2Z B2R

B2Z

ϕ

F2

background flux density

background magnetic charge

Â1

“vector potential”
gauge field

ch

(pb)
(83)

Fundamental p-brane sigma-models. In straightforward generalization of the above situation for fundamental
particles, one considers maps into space(-time) from p + 1-dimensional manifolds Σ1+p — which we may assume
to be closed, for simplicity and following (82) — regarded as worldvolumes of fundamental p-branes. These may

13See for instance Misner, Thorne & Wheeler (1973) Gravitation, Exc 7.2 on p. 179, or Frankel (1997) The Geometry of Physics,
§16.4b.
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have higher Lorentz-force couplings to higher background gauge fields Âp+1 represented by cocycles in differential
cohomology of degree p+ 2:

p-brane worldvolume embedding field target spacetime higher gauge potential

Σ1+p X B̂p+2Z

Bp+1R/Z
moduli stack of (flat)

differential cohomology

ϕ

ϕ∗Âp+1

Âp+1

(84)

C∞(
Σ1+p, X

)
Hp+1

(
Σp+1;R/Z

)
R/Z

ϕ 7−!
[
ϕ∗Âp+1

]
=: exp

(
2πi

∫
Σp+1

ϕ∗Âp+1
gauge coupling/
Lorentz force/

Wess-Zumino term

)
exponentiated action functional

(85)

This may be understood as defining (the gauge-coupling topological sector of) a field theory on Σ1+p whose:
• Fields are the brane trajectories, namely the smooth maps ϕ : Σ1+p −! X – then often called “embedding
fields”, though not not actually required to constitute an embedding Σ1+p ↪! X.

• Action functional is the higher holonomy functional (85).
Such field theories – whose fields are maps to a given target space X this way – are known as non-abelian sigma-
models, for historical reasons. For the full geometric dynamics of fundamental branes one is to add another
contribution (the “Nambu-Goto action”) to the action functional, which we disregard here (in the pre-geometric
spirit of §1.1.2), so that the “gauge coupling sector” of fundamental p-branes which we retain may be understood
as a worldvolume topological field theory, here a topological sigma-model also called a homotopical field theory, see
[MW20] for detailed discussion (at the classical non-quantum level) in the case at hand.

Fundamental membrane sigma-model. For example, the sigma-model for the fundamental membrane prop-
agating along a trajectory ϕ : Σ1+2 −! U ↪! X inside a chart U of an 11d supergravity target spacetime X is
meant [BST87][HS05, §4.4] to couple to the background C-field flux G4|U via an (exponentiated) action functional
that is locally of the form ϕ 7!

∫
Σ1+2 ϕ

∗C3, where C3 ∈ Ω3
dR(U) is a local gauge potential for the C-field, in that

dC3 = G4|U .
It is rarely (if ever) discussed in the string theory literature that the global definition (85) of this coupling term

requires an integral charge quantization of G4; but the expected shifted integrality condition [G4 + 1
4p1(∇)] ∈

H4(X;Z) (65) on the C-field flux — which is a consequence of Hypothesis H by (66) — serves this purpose if one
enhances the local conditions to

dC3 = G4|U + 1
4p1(∇|

U
) . (86)

Globally such C3 is to be the 3-form connection Ĉ3 on a 2-gerbe with characteristic class [G4 +
1
4p1(∇)] and makes

the fundamental membrane sigma-model be well-defined, via (85):

Ω4
dR(−)flat

membrane
worldvolume

Σ1+2 X B̂4Z B4R

B4Z

ϕ

G4+
1
4p1(∇)

background flux density

[
G4+

1
4p1

]
background M5-brane charge

Ĉ3

C-field gauge potential

ch

(pb)
(87)

The analogous situation for the fundamental fivebrane is richer and more subtle, this we turn to in §2.1.2.
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2.1.2 The fundamental Fivebrane sigma-model under Hypothesis H
The Fivebrane sigma-model is that whose
topological (“Hopf”-)WZ term is the back-
ground M2-brane’s Page charge, which by
Hypothesis H is classified on the tangen-
tially twisted quaternionic Hopf fibration
over the 4-sphere coefficient of the back-
ground M5-brane charge. [FSS21-M5a].

H3 cohomotopical flux-quantization.
Since the fiber of the quaternionic Hopf
fibration is the 3-sphere, it follows from
Hypothesis H that the worldvolume H3-
flux on the Fivebrane is quantized in 3-
Cohomotopy twisted by the pullback of the
bulk C-field along the Fivebrane’s embed-
ding field [FSS20-HpH1, §3.7] [FSS21-M5a,
§4][SS20-GS].

extended
worldvolume

Σ1+6

extended
spacetime

X̂c3 S7�Ŝp(2) B7Z

spacetime X S4�Ŝp(2)

BŜp(2)

(ϕ, b
2 )

worldvolume field
b2

ϕ

e
m
b
ed

d
in
g
field

Hopf WZ term

hH�Ŝp(2)
M5-brane structured

quaternionic Hopf fibration

H3∧G̃4+2G7

M2-brane
Page charge

c3

bulk C-field

τ
M
5-brane

structure

homotopy
pullback

In particular, when the backround C-field
vanishes, then the worldvolume B-field is
flux-quantized in the plain 3-Cohomotopy
of the Fivebrane’s extended worldvolume.

c3 = 0

with
Hypoth. H

⇒


H3 ∈ Ωdr

(
Σ1+6; lS3

)
b2 ∈ Maps

(
Σ1+6, S3

)
B̂2 : H3 ⇒ ch(b2)


Non-abelian gerbe structure. It turns out
[FSS21-M5b] that this 3-Cohomotopical flux quantiza-
tion makes the Fivebrane’s worldvolume B-field behave
like a “non-abelian gerbe” field (as originally suggest
by [Wi04, p. 16 & 15]) with structure a twisted String-
2-group (as previously hypothesized in [SäSc18]).

On two coincident M5s. Indeed, careful analysis
[FSS21-M5a, Thm. 4.8] shows that it is only twice the
traditional Hopf WZ term which is generally integral,
and (hence) that flux quantization in Cohomotopy sees
the Fivebrane sigma model as that of two coincident
M5-branes, carrying a non-abelian SU(2)-gauge field.
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The fundamental fivebrane sigma-model in the literature. Apart from its dimensionality, the sigma-
model for the fundamental fivebrane on 11d supergravity target spacetimes [HS97][HSW97][PST97][BLNPST97] is
crucially different from the previous examples (§2.1.1) in that, besides the “embedding field” ϕ : Σ1+5 −! X (84),
there is supposed to be a higher gauge field propagating on its worldvolume – the B-field – with a 3-form flux
density H3 ∈ Ω3

dR(Σ
1+5) which:

1. is sourced by the restriction ϕ∗G4 of the C-field flux on X to the 5-brane worldvolume: dH3 = ϕ∗G4 ([HS97,
(36)][So00, (5.75)])

2. is subject to a notoriously subtle self-duality constraint (not quite H3 = ⋆H3, cf. [HS97, below (41)])

dH3 = ϕ∗G4B-field flux on
fundamental 5-brane

ϕ : Σ1+5 −! X
subtle self-duality

(88)

3. enters the Wess-Zumino (WZ) term (85) for the gauge-coupling to the background M2-brane flux G7, deforming
it to the Hopf-WZ term [Ah96, p. 10][BLNPST97, (1)][PST97, (17)][In00, (2.4)] which for trajectories ϕ :
Σ1+5 −! U ↪! X inside a chart U of X is meant to be of this form (cf. [FSS21-M5a, §2]):

(ϕ,H3) 7!

∫
Σ1+5

(
C6 − 1

2H3 ∧ C3

)
, where

C3 ∈ Ω3
dR(U), dC3 = G4|U

C6 ∈ Ω6
dR(U), dC6 = G7|U + 1

2C3 ∧G4|U
. (89)

An enormous (and ongoing) effort – motivated by arguments going back to [Wi02][Wi10] – has been devoted to
understanding the self-duality constraint in (88), while the global understanding of the Bianchi identity dH3 = ϕ∗G4

and its role in the fivebrane’s peculiar gauge coupling term (90) has received little to no attention in the community.
In the spirit of the pre-geometric perspective §1.1.2 we proceed here contrariwise:

Since it is likely premature to discuss the geometric self-duality constraint on the H3-flux before its flux quanti-
zation law has been identified, we discuss the latter – deriving it as a consequence of Hypothesis H, proving that it
implies the necessary “level quantization” of the Hopf-WZ term (from [FSS21-M5a]) and anlyzing the “non-abelian
gerbe”-field on the 5-brane worldvolume which makes this happen.

Level-quantization of the 5brane’s Hopf-WZ term. Assuming for a moment that the H3-flux is defined not
just on Σ1+5 but on all of X as in (74) or at least on a 7-dimensional “extended worldvolume” [FSS21-M5a, (5)]

Σ̂1+6 ! X we may observe that on flat spacetimes the Hopf-WZ term (89) is a local potential for the M2-brane
Page charge (75)

d
(
C6 − 1

2H3 ∧ C3

)
=

(
G7 +

1
2H3 ∧G4

)
|
U
,

and on curved spacetimes we may adapt it to include the necessary shifting (which the literature ignores) by p1(∇)
(65) along the lines of (86), see [FSS21-M5a, (11,16)] for details.

Therefore Hypothesis Ĥ (78) implies, via Thm. 1.2, that (twice) the Hopf-WZ term for pure M2-brane back-

ground charge (72) on Σ̂1+6 is properly level-quatized and hence indeed a globally consistent gauge coupling —
this is the main result of [FSS21-M5a]:

Ω7
dR(−)flat

fivebrane
worldvolume

Σ1+5 Σ̂1+6 B̂7Z B7R

B7Z

ϕ

H3∧G̃4+2G7

background flux density

background M2-brane charge (Page charge)

Hopf WZ-term

ch

(pb)
(90)

Charge quantization and non-abelian gerbe field on fivebrane worldvolume. We analyze in more detail
what it is that makes the fivebrane worldvolume “anomaly cancellation” (90) work, in terms of peculiar worldvolume
field content that is implied by Hypothesis H – this is the main result from [FSS21-M5b].
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We left off in §1.3.2 with observing that “pure” M2-brane charge – “Page charge” (75) – is reflected, via
Hypothesis H, in factorizations (72) of the full cohomotopical M-brane charge through the (M5-brane structured)

quaternionic Hopf fibration hH � Ŝp(2). That such factorizations imply the existence of a 3-flux H3 (74) which
trivializes the background M5-charge (relative to the pertinent shift of the vacuum by 1

2p1) is part of what it means
for the M2-brane charge to be “pure” (no M5-brane charge admixtures) but it also means that the existence of
such lifts on all of spacetime are strongly constrained.

However, to make sense of the M5-brane sigma-model coupled to the Page charge, we only need such lifts to exists
on the worldvolume Σ1+5 of the M5, hence after pulling back the C-field along an embedding field ϕ : Σ1+5 −! X
— and there the side-effect of trivializing the (shifted) G4-flux by a 3-flux now makes perfect sense and identifies
the 3-flux H3 with the worldvolume 3-flux H3 expected on the M5, which is sourced by the 1-branes inside M5-
worldvolumes known as “self-dual strings” or “M-strings”:

M5-brane
worldvolume
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spacetime X S4�Ŝp(2)

BŜp(2)

e
m
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e
d
d
in
g
fi
e
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worldvolume field
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M5-brane structured
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H3∧G̃4+2G7

M2-brane Page charge

c3

bulk C-field

τ
M5-brane structure

b2

(91)

Such “homotopy cones” (as indicated by the dashed arrows) are equivalently maps into the corresponding homotopy
pullback (of the M5-structured quaternionic Hopf fibration along the cohomotopy cocycle c3 for the C-field), which

we denote X̂c3 and think of as the C-field extended spacetime [FSS20-HpH1, Def. 3.16] [FSS20-M5d, Rem.
3.9][FSS21-M5b, p. 7] :

M5-brane
worldvolume

Σ5+1

extended
spacetime

X̂c3 S7�Ŝp(2) B7Z

spacetimeX S4�Ŝp(2)

BŜp(2)

(ϕ, b2 )

M5 σ-model field

ϕ

em
bedding

field
Hopf WZ term

hH�Ŝp(2)
M5-brane structured

quaternionic Hopf fibration

H3∧G̃4+2G7

M2-brane Page charge

c3

bulk C-field

τ

M
5-brane structure

(pb) (92)

This means that for given background C-field c3 on a spacetime X, the extended spacetime X̂c3 is the correct
“target space” for (the topological sector of) the M5-brane sigma-model, unifying the actual target spacetime X
with a classifying space for the worldvolume B-field on the M5-brane.

69



B-field flux quantization of M5-worldvolumes In fact, from (73) and pasting law, it follows that the extended

spacetime X̂c3 is a 3-sphere fibration over spacetime:

3-sphere
fiber

S3
x

extended
spacetime

X̂c3 S7�Ŝp(2) S7�Sp(2)

{x}
any point

X
spacetime

S4�Ŝp(2) S4�Sp(2)

BŜp(2) BSp(2)

(pb) (pb) (pb)

c3

(pb)

(93)

Since it is this 3-sphere fiber which, locally, classifies the H3-flux, we find, in mild that variation of (74) implies
that the B-field on fivebrane worldvolumes is flux-quantized in a form of twisted 3-cohomotopy:

Implication of Hypothesis Ĥ on M5-worldvolumes ([FSS21-M5b, p. 7]):

M-string charges in M5 worldvolumes are quantized in ϕ∗(c3)-twisted 3-cohomotopy, hence
B-field fluxes on M5 worldvolumes are in a twisted 3-cohomotopical character

(94)

Bckgr. C-field-twisted
3-Cohomotopy

π3+ϕ∗(c3)
(
Σ1+5

)
:=



Σ1+5 X̂c3 S7�Ŝp(2) S7�Sp(2)

X S4�Ŝp(2) S4�Sp(2)

b2

worldvolume
B-field

ϕ

em
bedding

field

(pb) hH�Ŝp(2) (pb) hH�Sp(2)

c3

background C-field

/
rel. homotopy

(95)

We re-iterate that this twisted 3-cohomotopical flux-quantization of the worldvolume B-field implies that the
fivebrane’s Hopf-WZ gauge coupling term is globally well defined – a key requirement for consistency of the M5-
brane sigma model whose solution had been a wide-open problem. All the more is the following consequence
noteworthy:

Emergence of a non-abelian higher gauge field on the M5-worldvolume. Remarkably, this particular form
of twisted 3-cohomotopy (95) also has an equivalent gauge-theoretic interpretation, due to the coset space realization
(67) of the quaternionic Hopf fibration – which implies that its tangentially twisted version is equivalently a map
of classifying spaces of Sp(1) ≃ SU(2)-gauge fields:

S7�Sp(2) BSp(1)L × ∗ BSp(1)L

S4�Sp(2) BSp(1)L × BSp(1)R BSpin(4)

H•(BSp(1);Z
)

⊕ H•(BSp(1);Z
)

H•(BSpin(4); Z
)

cL2 + cR2
1
2p1

first fractional Pontrjagin class/
C-field background charge

cL2
1
2
χ4 +

1
4p1 = G̃4

shifted integral
C-field charge

−cR2 G̃4 − 1
2p1

C-field charge relative
to background charge

hH�Sp(2)

∼ ∼

∼ ∼

∼

=

=

=

The decomposition of the cohomology generators as shown in the last line (using [CV98a, Lem 2.1], see [FSS20-HpH1,
Lem. 3.9]) shows that the pullback of the fractional Pontrjagin class along the parameterized quaternionic Hopf
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fibration equals the Chern class on the “gauge factor” BSp(1)L:

(
hH � Sp(2)

)∗ 1
2p2 = c2 ⇔

S7�Sp(2) BSp(1)L

B4Z

S4�Sp(2) BSpin(4)

hH�Sp(2)

∼

c2

∼

∼

1
2p1

But this means that the worldvolume B-field on the fundamental 5-brane according to (95) may be regarded as
having an underlying Sp(1)-gauge field a1 equipped with a “Green-Schwarz term” H3 that identifies the gauge-fields
Chern class (instanton density) with the first fractional Potrjagin class (pulled back to the worldvolume), hence as
having an underlying Stringc2(4)-valued higher gauge field:

Σ1+5 S7�Sp(2)

X S4�Sp(2)

ϕ

b2

hH�Sp(2)

c3

⇒

Σ1+5 BSp(1)L

BStringc2(4) B3U(1)

X BSpin(4)

ϕ

a1

c2

H3

⊢Fr(X)

1
2p1

Speculation that such a “non-abelian gerbe field” might emerge on M5-branes originates with [Wi02, p. 6, 15] and
the particular possibility of String(G)-fields for G = SU(2) was explored in [SäSc18] but had remained guesswork.
Here the expected kind of structure drops out as a consequence of Hypothesis H, complete with its subtle charge-
quantization law. For more discussion, including more pointers to related literature, see [FSS21-M5b][SS20-GS].
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2.2 Brane lightcone quantization

As we now turn to the actual non-perturbative quanti-
zation of phase space stacks of flux-quantized higher
gauge fields (§1.2.3) and hence of the corresponding
branes (§1.1) there is little traditional theory to go by,
since: (1.) we have no Lagrangian density and (2.) our
fields are not sections of an ordinary field bundle, the
usual definition of pre-symplectic structure on (covari-
ant) phase space (p. 13) fails on several accounts).

But we may observe that the ordinary homology of the
phase space stack looks just like topological observables
on higher gauge fields (cf. p. 24). Moreover, on space-
times with a circle factor (such as for M/IIA duality)
the homology algebra inherits a non-commutative prod-
uct (Pontrjagin product) which makes it a star-algebra
as suitable for quantum observables in “discretized light
cone gauge” [SS23-Qnt][SS19-Qnt][CSS23-Qnt].

Non-perturbative light-cone quantization. The solution to the problem of non-perturbative quantization
of a relativistic Lagrangian field theory appears in principle straightforward: Choose a foliation of spacetime by
non-timelike hypersurfaces and then consider the Hamiltonian dynamics of evolution along the leaves.

It is for technical and computational problems encountered with carrying this out for the näıve choice of spacelike
foliations that the Hamiltonian approach to relativistic QFT was largely abandoned, long ago, in favor of Schwinger-
Tomonoga-Feynman-Dyson perturbation theory, which is now often but erroneously regarded as synonymous with
“quantum field theory”.

However, one may also consider foliation by lightlike hypersurfaces (light wave fronts, [Dirac1949, §5]), and
the resulting light-cone quantization turns out to be mathematically natural and more tractable, especially in
application to hadronic bound states in strongly coupled QCD (e.g. [BMPP93][Zh94][BPP98][Ba+13]).

spacelike foliation lightlike foliation

The greatest practical progress with non-perturbative computations in QCD has
been made by additionally assuming that spacetime is periodic along one light-like
direction so that the light-cone momentum values are discrete, whence one speaks
of discretized light-cone quantization [MY76][Ca76][Th77][Th78][PB85][Pa99].
This may be understood [Sei97] as the physics seen by a lightlike observer travelling
along a periodic spatial dimension.

ti
m
e

periodic spaceS1
A

R1,0

(96)

But in itself, while computationally succesful, the fact that a spacelike periodicity is required and singled out here
is puzzling from the point of view of physics in 1+3-dimensional.

M-Theory as R1,0×S1A light-cone quantum mechanics. However, exactly such a circle-factor S1
A in spacetime

is meant to appear in strongly coupled type IIA string theory in the guise of M-theory (cf. p. 3), where the radius
of S1

A scales with the string coupling seen in 10d [DHIS87][To95][Wi95, §2.3] (review in [Du96, §2(ii)][OP99, §2.1]).
Indeed, one early proposal for making sense of M-theory is (see [NH98, §10]) to regard it as the lightcone

quantum mechanics of the fundamental membrane (80) propagating on a spacetime of the form (96)

X1,d = R1,0 × S1
A × Xd−1 (97)

with lightcone momentum along the circle S1
A, which in the small radius limit is thought to reduce to the D0-brane

dynamics described by the BFSS matrix model [BFSS97][Susk97][Sei97] or rather the BMN matrix model [BMN02,
§5] (review in [Yd18]).

A key consistency check of these M-theory matrix models have been computations recovering 11d supergravity
in the form of graviton scattering amplitudes [BBPT97][HPSW99][HM23] — but brane charge quantization such
as in K-theory (§1.3.1) is not reflected in these models (cf. [AST02]). Contrariwise, we now explain a lightcone
quantization of pre-geometric brane charges in general cohomology theories.
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2.2.1 Quantum observables on flux-quantized fields.

Recall:
Quantum observables and quantum states.

Given a star-algebra of quantum observables
consider their

(
Obs, · , (-)∗

)
expectation values for a given quantum state
(which is defined thereby) ⟨−⟩ : Obs

linear
−−−! C

respecting involution A ∈ Obs ⊢ ⟨A∗⟩ = ⟨A⟩
and being “positive” on normal observables. A ∈ Obs ⊢ ⟨A∗A⟩ ∈ R≥0 ⊂ C

From this a (Hilbert-)space of states is induced H := Obs
/{
A ∈ Obs

∣∣ ⟨A∗ ·A⟩ = 0
}

(the GNS construction) with “ground” state |ψ0⟩ := [1]

supporting an operator-state correspondence A|ψ0⟩ = [A]

for the induced inner product, reproducing ⟨Aψ0, |Bψ0⟩ = ⟨ψ0|A∗B|ψ0⟩ := ⟨A∗B⟩

the expectation values in this ground state. ⟨ψ0| − |ψ0⟩ = ⟨−⟩

Non-perturbative quantization
of a Poisson-manifold phase space {−,−} : C∞(P )⊗ C∞(P )! C∞(P )

is a bundle of C∗-algebras
{
Obs

(−)ℏ
↠ Obsℏ ∈ C∗Alg

}
ℏ∈R

,
f ∈ C0(R), A ∈ Obs ⊢

fA ∈ Obs , (fA)ℏ = f(ℏ)Aℏ

which continuously ∀
A∈Ôbs

(
ℏ 7! |Aℏ|

)
∈ C0(R) , |A| = supℏ |Aℏ|

deforms the classical observables Q : C∞
cpt(P )! Obs , Q(−)0 : C∞

cpt(P )
dense
↪−−−! A0

satisfying Dirac’s quantization condition. lim
ℏ!0

∣∣∣[Q(f)ℏ, Q(g)ℏ
]
− iℏQ

(
{f, g}

)
ℏ

∣∣∣ = 0 .

Yang-Mills flux observables.
in g-Yang-Mills theory on R0,1×X3, with
an oriented closed surface Σ2 ↪! X3 mea-
sure the weighted integrals of the electric
& magnetic flux densities over Σ

Φω
E =

∫
Σ
⟨ω,E⟩

Φω
B =

∫
Σ
⟨ω,B⟩

for ω ∈ Ω0
dR(X

3; g)

Proposition [SS23-Qnt]: Non-perturbative quantum observables on quantized YM fluxes.

A non-perturbative quantization of the ΦE and ΦA for a choice of Lie group G with Lie algebra g

is the Fréchet-group convolution algebra
of semidirect product group-valued functions on Σ

Obs = C∞(
Σ, G⋊ g0/Λ

)

Hence the topological flux observables form a convo-
lution group algebra of cohomology of Σ:

Obstop = C
[
π0 C

∞(
Σ; G⋉BΛ

)]
≃ C

[
H0

(
Σ;G

)
⋉H1(Σ; Λ)

]
For Maxwell theory on R1,1 × Σ this coincides with
the Pontrjagin-Hopf algebra of loops in the moduli
of flux-quantized topological field sectors on Σ

≃ H0

(
ΩMaps

(
Σ, BU(1)×BU(1)

))
This remarkable re-formulation of quantization

Non-perturbative quantum
observables on topological
flux observables in Yang-
Mills theory on R1,1 × Σ.

 −−!
Pontrjagin-Hopf algebra
of loops in flux-quantized
topological fields on Σ.

we next take as the blueprint for the quantization of topological fluxes in M-theory.

74



Lightcone quantization of topological flux observables
for flux-quantization in A-theory [SS23-Qnt].

Nonprtrbtv BRST complex of topological fields.
The observables on charge (super-selection) sectors are
evidently the linear combinations of π0Maps

(
Xd, A

)
.

Obs0(X
d,A) = H0

(
Maps

(
Xd, A

)
; C

)
.

The higher homotopies πnMaps
(
Xd, A

)
are higher

gauge transformations, whence higher chains are (topo-
logical) higher “BRST-ghost” field observables.

BRST•(X
d,A) = C•

(
Maps

(
Xd, A

)
; C

)
Therefore the gauge invariant observables are the chain-
homology of this BRST complex, hence are the complex
homology of the topological phase space.

Obs•(X
d,A) = H•

(
Maps

(
Xd, A

)
; C

)
Non-perturbative M-theory spacetime domain.
In lifting a type IIA spacetime domain. X9

IIA (a pointed
space) to fully non-perturbative M-theory, the IIA-
circle fiber S1

A is meant to appear decompactified as R1.
But assuming that fluxes vanish at infinity along this
direction, the corresponding fiber domain is R1

∪{∞} and

hence the M-theory spacetime domain is R1
∪{∞}∧X

9
IIA.

Makes topological phase space a loop space. This
implies that the phase space of flux-quantized topolog-
ical fields in M-theory is a based loop space:

Maps∗/
(
X10

M , A
)

≡ Maps∗/
(
R1

∪{∞} ∧X
9
IIA, A

)
≃ ΩMaps∗/

(
X9

IIA, A
)

M-theory quantizes itself. From
this, the topological observables inherit a
non-commutative Pontrjagin-Hopf algebra
structure, which makes them be quantum
observables [CSS23-Qnt]:

QObs•
(
X10

M , A
)

= H•

(
ΩMaps

(
X9

IIA, A
))

whose operator product is given by by
translation followed by “fusion” of solitons
in the M-theory circle-direction.

The Discrete lightcone emerges. But,
generally, the operator product of quantum
observables reflects temporal order (origi-
nally observed by [Fey42, p. 35][Fey48, p.
381], cf. [Ong]), whence we are faced with
a topological version of “discretized light
cone” quantization (cf. [BFSS97][Susk97]).

H•
(
ΩY

)
⊗H•

(
ΩY

)
H•

(
ΩY × ΩY

)
H•

(
ΩY

)
ΩY × ΩY ΩY

∼
Künneth

Pontrjagin product

(-)·(-) := µ∗

pushforward in homology
µ

concatenation of loops

ti
m
e

periodic space

R9
IIA

∞ ∞
R1

R9
IIA

∞ ∞
R1

R9
IIA

∞ ∞R1

µ∗

The star-involution of Light-cone time-reversal
must hence be the combination of the Pontrjagin an-
tipode (spatial inversion) with complex conjugation
(plain temporal inversion), which together makes the
quantum observables into a complex Hopf algebra.

H•
(
ΩY

)
H•

(
ΩY

)
ΩY ΩY

inv∗

Pontrjagin antipode

inv

reversal of loops

ti
m
e

periodic spaceS1
A

R0,1 H•
(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)

H•(ΩY ; (-)∗)

complex conjugation
time inversion

(-)∗
light-cone parameter inversion

H•(in
v;C)Pont

rjagi
n-an

tipo
de

S
1
A
-inve

rsion

H•(ΩY ; (-)∗) H•(in
v; (-)

∗ )

ti
m
e

periodic spaceS1
A

R1,0

Quantum states of topological fields are
therefore the positive linear functionals on this
complex Pontrjagin-Hopf homology algebra:

QStates
(
X10

M ,A
)

={
ρ : QObs•

(
X10

M ,A
) linear
−−−! C

∣∣∣ ∀
O

ρ
(
O∗ · O

)
∈ R≥0 ⊂ C

}
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In order to appreciate the concept of higher quantum observables that we are about to consider, it may be useful
to recall the following standard conceptualization of algebraic (quantum) mechanics, schematically:

The fundamental concepts of quantum physics in “algebraic” form are the following (good exposition in
[Gl09][Gl11], for more see [La17]):
• The covariant phase space of a physical system is really the space of solutions to the classical equations of
motion [Wi86, §5][CW87][HT92, §17.1], hence the space of physically possible (“on shell”) field histories of the
system.

PhsSpc =

{
solutions to equations of motion
hence: possible field histories

}
.

• The classical observables on a physical system are encoded in compactly supported14 complex-valued functions
on field histories, understood as assigning to a field history the value that the observable takes there.
In the simplistic but relevant special case where the phase space is just a discrete set (cf. [La17, §1.2]), this
means that the space of observables is the linear span of formal linear combinations of field histories:

PhsSpc ∈ Sets ⇒ Obsrvbls = C[PhsSpc] (98)

• The quantum observables are a choice of the structure of a (non-commutative) complex star-algebra15 on the
Obsrvbls:16

QObsrvbls =
(
Obsrvbls, (-)·(-), (-)∗

)
,

(
O1 · O2

)∗
= O∗

2 · O∗
1 ,

(
(a+ ib) · O

)∗
= (a− ib) · O∗ (99)

Observable algebra and temporal order. Physically, the (dependency of the non-commutative product on
the) order of quantum observables reflects temporal order (originally observed by [Fey42, p. 35][Fey48, p. 381]
as reviewed in [Ong]), which implies that the star-operation (−)∗ expresses time-reversal.

(Non-)Lagrangean origin of quantum observables. In the case of Lagrangean field theories there is an
elaborate prescription, subject to a multitude of ad-hoc choices, occupying most of the large and still growing
literature on the subject (e.g. [HT92]), for how to choose the quantum observables as a deformation controlled
by Poisson structure on the phase space, at least perturbatively. But we cannot expect M-theory to be the
quantization of a Lagrangean field theory (already the sector of coincident fivebranes inside M-theory is expected
not to be Lagrangean) and will instead discover a natural star-algebra of quantum observables right away (107),
without detour through a classical field theory.

• The quantum states for given quantum observables are the linear maps on the quantum observables (under-
stood as assigning to an observable the value that it takes in the given state) which are “positive” (semidefinite),
in that on elements of the form A∗A they take non-negative real values.

QStates =
{
ρ : QObsrvbls

linear
−−−! C

∣∣∣ ∀
O

ρ
(
O∗ · O

)
∈ R≥0 ⊂ C

}
(100)

But in the presence of higher gauge fields, these traditional structures of quantum physics are to be promoted
to higher structures:

Higher observables. The notion of higher observables on a higher phase is not widely discussed, but from
the Dao of homotopy theory it is clear that the coefficient ring is to be promoted to a higher ring, namely a ring
spectrum R. Then the higher analog of topological observables (98) is the R-homology:

TopObsrvbls = R•
[
Maps(X, A)

]
. (101)

If R = HC is the Eilenberg-MacLane spectrum of the complex numbers, then this is ordinary homology (51):

TopObsrvbls = HC•
[
Maps(X, A)

]
= H•

(
Maps(X, A); C

)
. (102)

14In C∗-algebraic formulations of mechanics the algebra of classical observables on a phase space is often taken to be the C∗-algebra
C0(P ) of continuous functions vanishing at infinity (e.g. [La17, §3]). But this may be understood as the C∗-completion of the “actual”
observable algebra of compactly-supported functions Cc(P ) ⊂ C0(P ), see e.g. [La98, p. 55, 116][La17, p. 528].

15This means to require structure like that of a C∗-algebra but disregarding the completeness condition for a Banach algebra. In
our application to “topological” charge sectors below the space of (higher) observables is (graded and) degreewise finite-dimensional,
so that this (graded) Banach-algebra structure is automatic.

16In (99) we tacitly assume that the underlying space of quantum observables coincides with that of the “classical” observables. This
turns out to be the case of relevance here (107). In traditional discussion the space of quantum observables can also be larger (such as
in formal deformation quantization) or smaller (such as in geometric quantization) than the space of classical observables.
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Higher quantum observables. In general there is no canonical (star-)algebra structure on pregeometric higher
observables (101) — but if spacetime has a circle factor (97) then the pregeometric higher phase space is the loop
space of the transverse phase space:

pregeometric phase space

Maps
(
S1 ×Xd−1, A

)

mixed states

⇝

based loop space of
transverse phase space

ΩcMaps
(
Xd−1, A

)
Maps

(
S1, Maps(Xd−1, A)

)

{c} Maps
(
Xd−1, A

)
transverse phase space

⇝ pure states

(pb)

(103)

This means that the following basic fact of algebraic topology provides us with a canonical discrete light-cone
quantization of charges:

The Pontrjagin-Hopf algebra structure on the homology of loop spaces. [BoSa53][Br61, p. 36][Ha02,
§3.C]
The homology of a based loop space

ΩY :=
{
γ : [0, 1]

cntns
−−−! Y

∣∣ γ(0) = γ(1)
}

with coefficients in a field becomes
• a graded algebra17 under concatenation of loops,

H•
(
ΩY

)
⊗H•

(
ΩY

)
H•

(
ΩY × ΩY

)
H•

(
ΩY

)
ΩY × ΩY ΩY

(γ1, γ2) 7!
(
t 7!

{
γ(t/2)

γ(t/2− 1/2)

for 0 ≤ t ≤ 1/2

for 1/2 ≤ t ≤ 1

)
∼

Künneth

Pontrjagin product

(-)·(-) := H•(µ;C)
pushforward in homology

µ (104)

• a graded star-algebra under reversal of loops

H•
(
ΩY

)
H•

(
ΩY

)
ΩY ΩY

γ 7−! γ
(
1− (–)

)
H•(inv)

Pontrjagin antipode

inv (105)

The Pontrjagin product on these observables is “fusion” of solitons along the lightcone direction:

Σ

∞ ∞
R1

Σ

∞ ∞
R1

Σ

∞ ∞R1

17In fact, together with the canonical coproduct in homology the Pontrjagin product (104) becomes a Hopf algebra structure with
the star-involution (105) being a Hopf antipode.
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Notice that this is not quite a complex star-algebra in the sense of (99) yet, since the Pontrjagin-antipode18

(105) acts trivially on the coefficient field – but we do get a complex star-algebra by composing the Pontrjagin
antipode with complex conjugation on the coefficients

ti
m
e

periodic spaceS1
A

R0,1 H•
(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)
H•

(
ΩY ; C

)

H•(ΩY ; (-)∗)

complex conjugation
time inversion

(-)∗
light-cone parameter inversion

H•(in
v;C)Pont

rjagi
n-an

tipo
de

S
1
A
-inve

rsion

H•(ΩY ; (-)∗) H•(in
v; (-)

∗ )

ti
m
e

periodic spaceS1
A

R1,0

(106)

This way we have obtained higher quantum observables on the light-cone for pregeometric brane charges
in spacetimes of the form (97):

QObsrvblsc =
(
H•

(
ΩcMaps(Xd−1, A); C

)
, (-) · (-), (-)∗

)
. (107)

whose star-involution is light-cone parameter inversion.
Notice here that

Ω0Map
(
X, A

)
≃ Map∗/

(
S1, Map∗.(X⊔{∞}, A)

)
≃ Map∗/

(
X⊔{∞}, Map∗.(S1, A)

)
≃ Map∗/

(
X⊔{∞}, Ω0A

)
≃ Map

(
X, Ω0A

)
.

(108)

The corresponding light-cone quantum states are hence (100) those cohomology classes which are (semi-
)positive-definite:

QStatesc =

{
ρ ∈ H•

(
ΩcMaps

(
Xd−1, A

)
; C

) ∣∣∣ ∀
O
ρ(O∗O) ≥ 0

}
. (109)

In §2.3 we discuss examples of 11d spacetime domains whose light-cone quantum states (109) of pregeometric
(intersecting) brane charges include, under Hypothesis H:

§2.3.3 quantum states of Hanany-Witten NS/D-brane configurations,
example 2.1 quantum states of transverse M5-branes,
§2.3.4 quantum states of M5 ⊥ M5 intersections,

with provable properties of the kind expected in the string theory literature.

Pontrjagin rings as deformation quantization. For context, we indicate how Pontrjagin rings (107) are related
to more familiar notions of quantization.

First recall from §1.2 that every connected coefficient space A is equivalently the delooping of its based loop
group (40), the latter understood as an ∞-group. In this sense A describes (the topological sectors of) higher gauge
theory whose higher gauge group has the homotopy type of the ∞-group G := ΩA. Moreover, the Whitehead
L∞-algebra lA of A may be understood as the L∞-algebra of this ∞-group, in that its underlying graded vector
space is that of the rationalized homotopy groups of ΩA (41).

A ≃ B
(
ΩA

)
≃ ∗�ΩA , (lA)n ≃ πn

(
ΩA)⊗Z R .

In the case that Xd−1 is contractible, this is already our pre-phase space (107): Maps(Xd−1, A) ≃ A ≃ ∗�ΩA.
Phase spaces whose homotopy type is of this form are those arising from Lie-Poisson structures, whose symplectic

groupoid is the coadjoint action groupoid g∗�G [We91, Ex. 3.2][BC05, Ex. 4.3][Nui13, pp. 111, cf. Prop. 5.2.12].
Since the underlying space of g∗ is contractible, the underlying homotopy type (shape) of this action groupoid is
BSG ≃ ∗�SG, where SG is the underlying homotopy type of G (e.g. [Orb, Prop. 3.4]):

SmthGrpd∞ Grpd∞

g∗�G 7−! ∗�SG

S

18The term “Pontrjagin antipode” is not standard, but it is the natural name for the antipode of the Pontrjagin-Hopf algebra
structure.
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Now, the deformation quantization of Lie-Poisson manifolds g∗ is well-known to be the universal enveloping
algebra U(g) of the Lie algebra g [Gu83, (4.2)][Gu11, §2.2]. Notice also that for connected compact Lie groups G,
U(g) plays the role of the convolution algebra of G ([Ho81, §XVI][Tj92, pp. 9]), while the latter of course exists
also for discrete groups.

The Pontrjagin ring of ΩA unifies these two perspectives: It gives the group algebra on π0(ΩA)

π≥1

(
ΩA

)
≃ ∗ ⇒ H•

(
ΩA; C

)
≃ C

[
π0(ΩA)

]
and the universal enveloping algebra of the binary super Lie bracket of the connected components of ΩA [MiMo65,
Apd.][FHT00, Thm. 16.13]:

π0
(
ΩA

)
≃ ∗ ⇒

Po
nt
rj
ag
in

al
ge
br
a

H•
( of

lo
op

∞-g
ro
up

ΩA; R
)

≃
un
iv
er
sa
l e
nv
el
op
e

U
( of

bi
na
ry

Bin

W
hi
te
he
ad

br
ac
ke
t

(lA)
)

deformation quantization
of Bin(lA)∗

Example – M-Theoretic Quantum Cohomology. The Pointrjagin ring of the loop space of the 4-sphere is,
by the above and using (42),

H•
(
ΩS4; C

)
≃ U

(
[v3, v3] = v6

)
= C[v3, v6]/

(
v23 − v6

)
. (110)

Notice that this is a deformation of the cohomology ring of S3

H•(S3;C) ≃ C[v3]/
(
v23
)

in the same way (up to degree shifts) that the quantum cohomology of S2 = CP 1:

QH•(CP 1
)

≃ C[v2, v4]
/(
v22 − v4

)
is a deformation of the ordinary cohomology ring

H•(CP 1
)

≃ C[v2]
/(
v22
)
.

This quantum cohomology reflects the interaction of topological strings propagating on CP 1. But since S3 is an S1-
bundle over S2 = CP 1, it stands to reason that (110) is an M-theoretic lift of this situation, possibly characterizing
the interaction of topological membranes propagating on S3.

Example: Topological quantum observables in vacuum Maxwell theory. [SS23-Qnt] (...)
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2.3 Resulting quantum branes

We discuss the nature of solitonic M-branes (§1.1), according to Hypothesis H (§1.3), and their lightcone quantum
mechanics (§2.2).

Worldvolumes of solitonic branes. Traditionally,
the notion of worldvolumes for solitonic branes —
whose presence is reflected only in localized concen-
trations of flux density, cf. §1.1 — is far from clear,
even classically, and yet it is widely assumed to make
sense.
But assuming Hypothesis H (§1.3), we may observe:

(1.) That [SS23-Mf, §2.2] [SS20-Orb, §2.1] flux in Co-
homotopy is tightly related to actual submanifolds as
envisioned for brane worldvolumes, due to Pontrjagin’s
theorem [Po38][Ko93, §IX]. In fact, (un-)stable Coho-
motopy is equivalent to (un-)stable frame Cobordism
cohomology, and under this equivalence Cohomotopy
charge reflects exactly the (cobordism classes of) nor-
mally submanifolds in spacetime, where the “normal
framing” is a form of charge carried by these submani-
folds that locally reflects brane/antibrane annihilation
in quite the way traditionally envisioned for Hypothe-
sis K.

(2.) That [SS22-Cnf] the analog of the Pontrjagin the-
orem (§2.3.1) in the case of exotic branes, under Hy-
pothesis H, is the May-Segal theorem [May72, Thm.
2.7][Segal73, Thm. 3] which, with Hypothesis H, equiv-
alently says [SS22-Cnf, Prop. 2.5] that the moduli
space of flat solitonic branes of low codimension ≤ 3
is (homotopy equivalent to) a configuration space of
unodered points in their transverse space.

(3.) That [SS22-Cnf], therefore, the intersections with
codimension=1 branes form an ordered configuration
space of points, so that the light-cone quantum observ-
ables (according to §2.2) on such solitonic brane inter-
sctions are given by the homology of the loop space of
ordered configurations. This is described by the Fadell-
Husseini theorem, and we observe that it reflects var-
ious structures expected in Hanany-Witten theory of
such brane intersections.

§2.3.1 – Solitonic brane cobordism via Pontrjagin’s theorem
§2.3.2 – Exotic brane configurations via the May-Segal theorem
§2.3.3 – Quantum D6⊥D8-branes via Fadell-Husseini’s theorem
§2.3.4 – Quantum M5⊥M5-branes via Gelfan-Raikov theorem

Remark. The definition of phase spaces of solitonic branes that
we used above and now in §2.3.1 and §2.3.2 is, while rarely made
as formally explict, by and large tacitly understood in the lit-
erature. However, despite the popularity of “intersecting brane
models” there has been no previous attempt to cast into a defi-
nition what their phase spaces should actually be in the case of
solitonic branes, given that they not imprinted in localized singu-
larities of their flux densities. Therefore, as we proceed to discuss
this matter in §2.3.3, we have to introduce such a definition (from
[SS22-Cnf]), which is a postulate about physics on top of Hypoth-
esis H. However, the postulate is most natural: We declare that
the phase space of intersecting solitonic branes is the fiber product
of the phase spaces of the separate solitonic branes that partici-
pate in the intersection. Conversely, this defines what it means to
speak of intersecting solitonic branes, in the first place.
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2.3.1 Solitonic brane cobordism via Pontrjagin’s Theorem

Remarkably, there is a tight relation between Cohomotopy of spacetime and cobordism classes of submanifolds that
behave like branes carrying a corresponding Cohomotopy charge (cf. [SS23-Mf, §2.2] [SS20-Orb, §2.1]):
The Pontrjagin theorem
[Po38][Ko93, §IX] identifies
the unstable n-Cohomotopy
of a closed manifold with the
cobordism classes of its nor-
mally framed submanifolds
of co-dimension n.

The Cohomotopy charge
of a normally framed sub-
manifold (aka scanning
map or Pontrjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighbourhood, else to ∞.

Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

Under this relation,
homotopy of charge maps
corresponds to nrml. framed
cobordism of submnflds.

The cobordism relation ex-
hibits a form of pair cre-
ation/annihilation of sub-
manifolds carrying opposite
Cohomotopy charges.

normal
framing
in space

brane

opposite
normal
framing

anti-brane
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in spacetime

spacetime
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n

space

fframing
charge w w ⇌ f

creation /
annihilation

branes
anti-
brane

When making more ambi-
ent dimensions available, the
cobordism classes eventually
(quickly) exhibit stabiliza-
tion on abelian cobordism
cohomology groups. (This
might relate Hypothesis H to
Vafa’s cobordism conjecture
cf. [SS23-Mf, §4]).

This “linearized” Cohomo-
topy/Cobordism is a form
of K-theory: algebraic K-
theory over the “absolute
base field F1” (cf. [CLS12,
Thm. 5.9]).

non-abelian
Cohomotopy

π•

stable
Cohomotopy

S•
stable framed
Cobordism

MFr•

KF •
1

algebraic K-theory of
“field with one element”

linearize

(i.e.: stabilize) Barratt-Priddy

&
Quillen

Pontrjagin & Thom
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2.3.2 Exotic brane configurations via May-Segal’s theorem

Cohomotopy charge in low
codimension. The Pontrja-
gin theorem (§2.3.1) suggests
that every solitonic brane seen
by n-Cohomotopy “wants to
be” a d−n-brane. Indeed, if
the available transverse space
is < n-dimensional as for ex-
otic branes (e.g. the M9), then
the May-Segal theorem [May72,
Thm. 2.7][Segal73, Thm. 3]
may be understood as saying
that n-Cohomotopy still sees
(d− n)− branes, but “delocal-
ized” to look like exotic branes.

Transverse n-space Visualization
of exotic p-branes with point at infinity as Penrose diagram

Rn−d+p
⊔{∞}︸ ︷︷ ︸

...but not necessarily
along these

∧

fluxes vanish at infinity
along these directions︷ ︸︸ ︷

Rd−p
∪{∞} Rn−d+p

extra
longitudinal
directions

∞

∞

Rd−p näıve
transverse

space

Rn

∞

∞

Rd−p

Rn−d+p

Rn

May-Segal’s theorem indeed
identifies the n-Cohomotopy
moduli of < n-dimensional
transverse spaces with the
configurations of (unordered)
points in Rn which are dis-
tinct as points in Rd−p (and
as such look like transverse po-
sitions of flat p-branes) while
their “core” may escape to in-
finity in the tangential direc-
tion, reflecting the fact that the
n-Cohomotopy flux is not con-
strained to vanish at infinity in
these directions.
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∞∞

Rn−d+p

Rd−p

projection to Rd−p

projections are
all > 2ϵ > 0
from each other

point in Rn ≃
Rd−p × Rn−d+p
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to infinity
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Notice the dichotomy: If branes can not escape to ∞ then
their fluxes vanish at ∞ and vice versa. This is why in pass-
ing from the Cohomotopy charge to the corresponding brane
configurations the subscripts swap as (-)⊔{∞} ↔ (-)∪{∞}.
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Conf
(
Rd−p

⊔{∞}, R
n−d+p
∪{∞}

)
is the pointed space of

• un-ordered tuples of points in Rn ≃ Rd−p × Rn−d+p — as such they look like flat solitonic d−n-branes.
• which have pairwise distinct projections to Rd−p — as such they look like flat solitonic p-branes

• and may escape to or emerge from ∞ along Rn−d+p
∪{∞} — like partially de-localized d−n-brane solitons

(NB: These configuration spaces are connected: The moduli are all in higher homotopy, invisible to traditional treatment.)

Pontrjagin’s Cohomotopy charge map still exhibits the equivalence of the May-Segal theorem, now known
as the inverse “electric field map” [Segal73, §1][McD75, §1] or “scanning map” and evaluated on the configuration
space by [Segal73, §3], assigning to each point in the configuration the unit (d−p)-cohomotopy charge of a solitonic
p-brane, but regarded after inclusion into the cohomotopy charge space of solitonic (d− n)-branes:

Moduli space
of solitonic
p-branes

Conf
(
Rd−p, Rn−d+p

∪{∞}

)
π̃πd−p

(
Rd−p
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π̃πn

(
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single-brane
subspace

Rd−p × Rn−d+p Maps∗/
(
Rd−p
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Maps∗/
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∪{∞}, R
n
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)
(
x, y

)
7−!

x′ 7!


x′−x

exp
(

1
(|x′−x|−ϵ)2

)
∞

if |x′ − x|2 < ϵ

otherwise

 7−!

x′ 7!


(
x′−x, y)

exp
(

1
(|x′−x|−ϵ)2

)
∞

if |x′ − x| < ϵ

otherwise



n-cohomotopy charge map for solitonic p > d− n-branes

pure solitonic
p-brane charge

regarded as solitonic
d−n-brane charge

(111)
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A cohomotopical ADHM construction.
Pullback of the volume
form on Sn along the
Cohomotopy charge map
(111) assigns to solitonic
codim < n branes (p.
84) their flux density, cf.
eq. (2).
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[SS24-Cnf]: This map
Φ represents the coho-
motopical character, and
thus induces a shape-
equivalence Φ̂ to differen-
tial Cohomotopy, showing
that the configuration
space is a gauge-fixed
phase space of multi-
core solitons represent-
ing every solitonic Coho-
motopy charge sector.
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Intersecting solitonic brane charges in Cohomotopy. Noticing that the n-flux density arising this way
has vanishing cup-square (simply by degree reasons in low codimension) hence behaves linearly, the gauge-fixed
phase space of intersecting flat branes of low codimension must be the fiber product of these configuration spaces
[SS22-Cnf, Ex. 2.3].

Gauge enhancement on domain wall intersections. In the special case that one of the intersecting brane
species is of codimension=1 something remarkable happens [SS22-Cnf, Prop. 2.4. 2.11]: The fiber product of the
“labelled” configuration spaces (p. 84) is homotopy-equivalent to a configuration space of ordered points in the
remaining n− 1 transverse dimensions that may no longer escape to ∞:
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(112)

Now, the homotopy type of such configuration spaces where points are no longer allowed to escape to ∞ is quite
rich (see eg. [Kn18]) considerably richer than that of the “labeled” configuration spaces on p. 84. With Hypothesis
H this provides a substantiation of the expection of rich physics appearing on intersecting branes. We next check
this by computing the lightcone quantum observables of these configurations.

85



Exotic branes. In the string theory literature, by a non-standard brane [BR12] or exotic brane [dBS13] one means,
foremost, a p-brane species of low codimension D − (1 + p) ≤ 2 — which in M-theory generally corresponds to
codimensions D− (1+p) ≤ 3. (We observe that this are exactly the solitonic branes which have vanishing classical
charge under Hypothesis H, according to (60).)

The most familiar examples of exotic branes in 10d string theory are the comparatively well-understood D7

branes (of codimension 2, hence “defect branes” [BOR12]), the D8-branes (of codimension 1, hence “domain walls”)
and the D9 (codimension 0). Beyond these there is expected a plethora of further exotic branes (cf. [dBS13, Fig 1])
whose existence is argued indirectly by assumption of the famous but largely hypothetical “U-duality”-symmetry
of string/M-theory, but which are not known to arise as supergravity solutions.

Already the low-codimension D-branes push the boundaries of common string theory lore: For instance the
SL(2,Z)-charges crucially meant to be carried by D7-branes had no reflection in Hypothesis K (§1.3.1, a shortcoming
which we argue is resolved by Hypothesis H, see §2.3.3) and the lift of D8-branes to M-theory had remained at
least subtle, even by informal arguments:

The problem with the D8-brane is part of the general problem of integrating the relevant “massive” variant
of type IIA string theory into the non-pertubative picture of M-theory, which fails in its most naive form since 11d
supergravity provably does not admit the analogous “massive” deformation. While it has been argued that massive
type IIA supergravity does arise from plain 11d supergravity, after all, by twisting the usual KK-compactification
by U-duality transformations (which remain fairly conjectural themselves), the nature of the resulting lift of the
D8-brane, commonly called the M9-brane, remained so elusive that more recent authors argued it should rather be
called the M8-brane to be understood only somewhat tautologically as ‘an object that exists only as a lift of the
D8-brane”.19

Notice that the traditional Hypothesis K (§1.3.1) inherits all these conceptual problems since the “Romans
mass”-term F0 (the flux sourced by the D8-brane) which is at the root of the problem is key part of its pre-
geometric derivation (19). But in §2.3.3 we will argue in detail that and how the D8-brane in its M-theoretic
incarnation as an M9/M8-brane is implied by Hypothesis H.

Higher observables of exotic branes. Indeed, Hypothesis H implies right away, via (60), that there is no charge
sourced by flat solitonic exotic branes (and most other admissible flux-quantization laws for the C-field would imply
the same) but that (102) there are non-trival higher observables of exotic branes, encoded in the higher homotopy
type of the Cohomotopy cocycle space

X a flat space(time) with a (base)point (at) ∞ ⊢
4-Cohomotopy flux moduli space

π̃π4(X)
:= Maps∗/

(
X, S4

)
pointed mapping space into 4-sphere

(113)

in that
exotic solitonic M-branes carry no clasical charge

π̃4
(
R1,p

⊔{∞} ∧ Rp≤3
∪{∞}

)
≃ πp≤3(S

4) = 0 but

have non-trivial higher observables

π̃π4
(
R1,p

⊔{∞} ∧ Rp≤3
∪{∞}

)
̸= ∗ .

We will argue in §2.3.3 for the example of M9-brane intersections that these higher observables on Cohomotopy
moduli indeed reflect a wealth of expected patterns in D8-brane intersections. This way, Hypothesis H seems to
nicely capture the ethereal nature of exotic branes.

19 [BMO18, p. 65]: “However, as remarked in [OP99, p. 109], [the M9 brane] should more properly be called an M8-brane or
perhaps KK8 following its mass formula designation 8(1,0). It is, perhaps, to be understood as an object that exists only as a lift of
the D8-brane of Type IIA.”
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Solitonic M9-Branes. We obtain now from Hypothesis H a rigorous definition of the otherwise elusive M9-brane
(cf. p. 86) and can investigate it by mathematical analysis.

Namely, given that the (flat) M9 is supposed to be:
1. solitonic

(as there is no corresponding singular supergravity solution)
2. as such localized along a single transverse direction

(since this is what it means to be a 9-brane in 11d)
3. but necessarily compactified on the M-theory circle S1

A,
(since it “exists only as a lift of the D8-brane of type IIA”, cf. ftn. 19)

the (flat) M9-brane should, assuming Hypothesis H, be addressed as whatever it is that 4-Cohomotopy sees on the
following spacetime domain:

R1,0
⊔{∞} ∧ R5

⊔{∞} ∧ R1
∪{∞} ∧ R3

⊔{∞} × S1
⊔{∞}

M9

(114)

Here the bar shows, in the tradition of brane diagrams, across which dimensions the M9-brane is extended
(which we have decomposed in anticipation of the brane intersections below in §2.3.3) — but the light shading is
to indicate that this remains somewhat ambiguous – since we are dealing with an exotic brane of low codimension
so that the Pontrjgin theorem (§2.3.1) does not apply, while also the May-Segal theorem (p. 84) does not quite
apply, due to the presence of the S1

⊔{∞}-factor. Therefore one cannot quite translate the cohomotopical M9-brane

moduli on (114) into submanifolds in a spacetime domain. Of course, just such an ambiguity is expected for the
M9 brane (aka M8-brane), cf. ftn. 19.

On the other hand, by the above discussion we can describe the M9 moduli quite explicitly: They are given by
loops in the configuration space of solitonic 6-branes which are delocalized in 3 transverse directions:

M9-brane moduli

π̃π4(R1,8
⊔{∞} ∧ S

1
⊔{∞} ∧ R1

∪{∞}
)

:= Maps∗/
(
R1,5

⊔{∞} ∧ R1
∪{∞} ∧ R3

⊔{∞} ∧ S
1
⊔{∞}, S

4
)

charge moduli space (113) on M9-domain (114)

≃ Maps∗/
(
R1

∪{∞} ∧ R3
⊔{∞} ∧ S

1
⊔{∞}, S

4
)

R1,5 is contractible

≃ Maps∗/
(
S1
⊔{∞}, Maps∗/

(
R1

∪{∞} ∧ R3
⊔{∞}, S

4
))

mapping space adjunction (39)

≃ Maps∗/
(
S1
⊔{∞}, Conf

(
R1

⊔{∞}, R
3
∪{∞}

))
May-Segal theorem (p. 84)

= LConf
(
R1

⊔{∞}, R
3
∪{∞}

)
loop space of configuration space
of 3-fold delocalized 6-branes

(115)

In order to say more about the M9-brane, we need to see it interact (intersect) with other branes. This we turn
to in §2.3.3 below.
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2.3.3 Quantum D6⊥D8-branes via Fadell-Husseini’s theorem

Cohomotopy Moduli of Hanany-Witten brane configurations.
Consider the situation
(112) for M-theory on S1

with D6⊥D8-intersections
on NS5-cores: hence for
n = 4, d = 9, p = 6.

[SS22-Cnf, Rem. 2.14]

R1,0 × R5 × R1 × R3

NS5
D6

D8

Quantum observables on Hanany-Witten configurations.
It follows with the discussion in §2.2 that the light-cone quantum
observables on these brane configurations form, for each numberN
of D8-branes, the homology Pontrjagin-algebra of the based loop
space of the ordered configuration space (112). Remarkably, by
the Fadell-Husseini theorem [FH01, Thm. 2.2] this is isomorphic
to the algebra of horizontal chord diagrams on N -strands modulo
the “2T- and 4T-relations” [SS22-Cnf, Prop. 2.18]:
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1 2 · · · N





modulo

/



 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l


2T relations

∼

 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

i j k l

 ,


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

∼

and 4T relations


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k

+


· · · · · · · · · · · ·

· · · · · · · · · · · ·

i j k




In their classical limit (graded-symmetric
chord algebra) these relations match the
brane intersection rules expected in
Hanany-Witten theory [SS22-Cnf, §4.10]:

hor.
chord
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54321

D8

Dp

NS5
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Generally, chord diagrams serve as observables on the geometry
of fuzzy 2-spheres [SS22-Cnf, §4.2] as expected for fuzzy funnels
connected D6 to D8-branes. Fuzzy 2-spheres are indeed quantum

states of these brane configurations,
in that they constitute positive linear
functionals on these quantum observ-
ables [CSS23][Co23].
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on chord diagrams
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in Penrose notation.
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M2/M5-Brane states in their matrix model.
From the 11d perspective, these D6 ⊥D8 configura-
tions are – as anything classified by 4-Cohomotopy
in 11d – certain M2/M5-brane states, as also sug-
gested by the expected string theory dualities (cf.
[BLMP13, p. 37]).

Traditionally, the BMN matrix model — which is
meant to be the lightcone quantization of Membranes
on (Penrose limits of) singular M2/M5-brane back-
grounds — suggests [MSJVR03][AIST17][AIST18]
that the supersymmetric quantum ground states of
transverse M2/M5-brane bound states are fuzzy 2-
spheres, namely su(2)-modules.
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i /N N
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i /N

With quantum Hypothesis H we find these su(2)-modules as quantum states of
branes such that these limits make sense: Namely as weight systems on chord
diagrams [SS22-Cnf, §4.9]

M2-brane state in BMN model
(multiple of su(2)C-weight system)︷ ︸︸ ︷

4π 4n((
N

(M5)
)2

−1

)1/2+n wN
(M5)

Single-trace observable
(round chord diagram)︷ ︸︸ ︷

 = 4π√(
N

(M5)
)2

−1

TrN(M5)

(
Xa ·Xa ·Xb ·Xc ·Xb ·Xc

)

=

∫
S2

N(M5)

(R2)3 M2-brane quantum fluctuation amplitude
(fuzzy 2-sphere shape coefficient)

Fuzzy 2-sphere geometries
(metric representations of su(2)C)

su(2)CMetMod/∼

≃

��

M2-M5-brane bound states
(normalized Lie algebra weights)

Ψ(−) //

Supersymmetric states of BMN matrix model
(weight systems on Sullivan chord diagrams)∏

n∈N
Wn

OO

� ?
⊕
i∈N

( Charges carried by
ith stack of branes︷ ︸︸ ︷
N

(M2)

i︸ ︷︷ ︸
multiplicity

·N
(M5)

i︸ ︷︷ ︸
irrep of

dimC = N
(M5)

i

) ∣∣∣∣∣
{(
N

(M2)

i , N
(M5)

i

)}
i∈N

∈ ⊕
i∈N

(N× N)

 //


Mixture︷ ︸︸ ︷
1∑

i∈N
N

(M2)

i

∑
i∈N

Normalized radii︷ ︸︸ ︷
N

(M2)

i 4π 22n((
N

(M5)

i

)2 − 1
)1/2+n

Lie weights︷ ︸︸ ︷
w

N
(M5)

i

∣∣∣∣∣
{(
N

(M2)

i , N
(M5)

i

)}
i∈N

∈ ⊕
i∈N

(N× N≥1)

/
∼

N
(M2)

i

N
(M5)

i

· · ·

· · ·

· · ·

· · ·
...

...
...

...
. . .

7!

N
(M2)

i

N
(M5)

i

∞

∞

fi
n
it
e

n
u
m

b
e
r

o
f
M

5
-b

r
a
n
e
s

in
t
h
e
ir

la
r
g
e
-N

li
m

it

finite number of M2-branes
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(116)
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Example 2.1 (M5/M2-Brane states). Light-cone quantum states of M5/M2-Brane bound states. In the
vein that, for n = 4, (112) gives the moduli of (nearly) coincident solitonic quantum M5-branes in M(embrane)-
theory, we should find the light-cone quantum observables from p. 88 also to match those in the membrane matrix
model (p. 73) describing M5-branes.

This is indeed the case [SS22-Cnf, §4.9]: The light-cone quantum ground states of the BMN matrix model
are superpositions of fuzzy 2-spheres, and in suitable arrangements these encode either pure M5-brane states or
generally M2/M5-brane bound states [BMN02, (5.5)][MSvR03][AIST17][AIST18]. In particular, the quantum state
given by multiples of the N (M5)-dimensional irrep of su(2)C should correspond to N (M5) 5-branes in the ground
state.

No-ghost theorem for M5-branes. Therefore, with the light-cone quantum mechanics established in §2.2, we
may ask which of these light-cone quantum states are proper quantum states in that they are positive (non-ghost)
states. In [SS22-Cnf, Ex. 3.11][CSS23] we showed that, beyond the trivial case of N (M5) = 1 this is the case
for fundamental representation with N (M5) = 2 [SS22-Cnf, Ex. 3.5][CSS23]. In [Co23] it is claimed that the
same conclusion still holds for all symmetric and exterior powers of the fundamental representation, which would
establish the positivity (no-ghost theorem) for the corresponding mixed M2/M5-brane bound states.
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2.3.4 Quantum M5⊥M5-branes via Gelfand-Raikov theorem.

Now consider moduli of the 3-cohomotopical H3

flux, which in §2.1 we saw appears on the am-
bient space20of 5-branes. For the moduli space
of codim=2 D4⊥NS5 IIA/M

⇝ M5⊥M5 defects in-
side 5-branes [CHKS21, Fig. 1 & 3 ][SS23-Dfc1,
pp. 28], we are to consider the situation (112) for

n = 3, d = 7, p = 4 , which yields configurations
of ordered points in the transverse C-plane.

To understand the light-cone quantization (§2.2)
of these brane moduli, observe that the homo-
topy type of this configuration space is the classi-
fying space of the pure21 braid group PBr (cf.
[MySS23, pp. 12]), being the group of motions of
the codim = 2 defects (Def3) around each other
in the transverse M5-worldvolume C.
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This implies that the light-cone quantum observ-
able algebra (107) is the pure braid group algebra.
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)
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[
PBr(N)

]
group
algebra

The Quantum states. Thus with the Gelfand-
Raikov theorem [Di77, Thm. 13.4.5.(ii)] it fol-
lows that the light-cone quantum states are given
by unitary pure braid representations, hence are
anyonic states (“topologically ordered” quan-
tum states) [SS23-Dfc2].

QStatesNM5⊥M5 ≃{
ρ : C

[
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]
! C

∣∣∣∣∣ g 7! ρ(g) = ⟨ψ|U(g)|ψ⟩
forU ∈ PBr(N) ↷H, |ψ⟩ ∈ H

}
.

transverse plane

wI/κ

defect brane

time
braiding

C

k
I

k
I

some quantum state for
fixed brane positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉 Berry phase
unitar

y transf
ormation

= adiab
atic quant

um gate

∣∣ψ(t2)〉
another quantum state for

fixed brane positions
k1, k2, · · · at time t2

20Hence with the M-theory circle included, the ambient space of the 5-brane on which we consider the H3-flux is 8-dimensional.
21Our figures show im-pure braids, just for ease of illustration.
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2.4 Resulting worldvolume CFT

We have seen in example 2.1 that general light-cone quantum states of M5-brane insertions transverse to a complex
plane in an ambient M5-brane are elements of unitary representations of the pure braid group. Here we discuss
the specific such representation states that are singled out by the cohomology of the transverse phase space (103),
which turn out to be given by the conformal blocks of su2-affine conformal field theory.

This result is from [SS23-Dfc1], implications are developed in [SS23-Dfc2][TQC1][TQC2].

2.4.1 Conformal blocks of M5-observables

The spectral prequantum line bundle. These configuration spaces are non-simply connected: their fundamen-
tal group is the pure22 braid group — being the group of motions of the M5⊥M5-intersections around each other
in the ambient M5-worldvolume:

π1

(
Conf

{1, · · · , n}
(C2)

)
≃ PBr(n) =




(117)

Hence the corresponding twisted ordinary cohomology (aka: “local system cohomology”) is that whose cocycles
are sections of “Eilenberg-MacLane-spectrum line bundles” pulled back from the classifying space BZ/κ of a cyclic
group:

twisted cohomology
of configuration space

H [ω1]
(
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{1, · · · , n}

(
C2

))

quantum state space

=
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local coefficient
bundle

BkC�Z/κ
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e
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hmtp

(118)

(Closer analysis reveals [SS23-Dfc1, §3] that κ equals the order of the Aκ−1-singularity at which dual D7/D3-branes
are placed.)

In order to analyze these quantum states,
we may decompose the problem by:

(1.) holding fixed N of the branes,
(2) letting nmobile branes move around them.

n-configuration space
of N -punctured plane

Conf
{1, · · · , n}

(
C \ {z1, · · · , zN}

) fibration of
configuration spaces

Conf
{1, · · · , N + n}

(
C2

)

∗ Conf
{1, · · · , N}

(
C2

)(pb) forget n points

(z1,··· ,zN )

pick N-configuration

(119)
In the simple case of a single mobile brane moving – along a dashed line in (121) – among N fixed branes, we

have
Conf

{1, · · · , 1}

(
C \ {z1, · · · , zN}

)
= C \ {z1, · · · , zN} (120)

and the twist ω1 (118) is fixed by:

22Our figures show im-pure braids just for ease of illustration.
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κ := k + 2 “level”

wI ∈ {0, · · · , k} “weights”

zI ∈ {z1, · · · , zN} “punctures”

as ω1 :=
∑

I −
wI

κ
dz

z−zI

transverse plane

ω1

defect brane

C

∞
z
I

(121)

Brane states identified with worldvolume correlators. Curiously, such sets of labels coincide with those
of “conformal blocks” – namely chiral correlation functions – in the ŝu2k-conformal quantum field theory on the
punctured Riemann sphere

CP 2 \
{
z1, · · · , zN , ∞

}
≃ C2 \

{
z1, · · · , zN

}
. (122)

And indeed, a well-but-not-widely known theorem called the hypergeometric integral construction identifies these
conformal blocks of “degree=1” inside the twisted cohomology (118) of the punctured plane (122)

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2k

(w⃗, z⃗)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(
Ω•

dR

(
C \ {z⃗}

)
, d + ω1 ∧

)
natural
inclusion

↪−−−−−−! KU1+ω1

((
C \ {z⃗}

)
× ∗�Cκ; C

)
inner local system-twisted deg=1
K-theory of Aκ−1-singularity

[SS23-Dfc1, Prop. 2.16]

(123)

and generally the conformal blocks of any degree n inside n-configuration space of points, if we set

ω1 :=
∑

1≤i≤n

∑
I

−wI

κ

dz

z − zI
+

∑
1≤i<j≤n

2

κ

dz

zi − zj
on Conf

{1, · · · , n}

(
C \ {z⃗}

)
. (124)

namely:

su(2)-affine deg=n
conformal blocks

CnfBlckn
ŝl2k

(w⃗, z⃗) ↪−−−!

1-twisted deg=n de Rham cohomology
of configuration space of n points

Hn

(
Ω•

dR

(
Conf

{1, · · · , n}

(
C \ {z⃗}

))
, d + ω1 ∧

)
↪−−−! KUn+ω1

((
Conf

{1, · · · , n}

(
C \ {z⃗}

))
× ∗�Cκ; C

)
inner local system-twisted deg=n K-theory

of configurations in Aκ−1-singularity

[SS23-Dfc1, Thm. 2.18]

(125)

Concretely, this inclusion is given by sending the canonical basis elements of conformal blocks to “Slater-determinant”-
like expressions, as follows:

CnfBlckn
ŝl2k

(w⃗, z⃗) Hn

(
Ω•,0

dR

(
Conf

{1, · · · , n}

(
C \ {z⃗}

))
|∂=0, ∂ + ω1(w⃗, κ) ∧

)
fI1 · · · fIn |v01 · · · , v0N ⟩ 7−!

[
det

((
wIj

κ
1

zi−zIj

)n

i,j=1

)
dz1 ∧ · · · ∧ dzn

]

e.g. f
I
f
J
|v01 · · · , v0N ⟩ =

[
· · · , (f · v0

I
), · · · , (f · v0

J
), · · ·

] generators

7−!
[
w

I

κ
dz1

(z1−z
I
)
∧ w

J

κ
dz2

(z2−z
J
)
+

w
I

κ
dz2

(z2−z
I
)
∧ w

J

κ
dz1

(z1−z
J
)

]
.

(126)
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In summary, we have derived, from Hypothesis H, that:

Quantum states of
brane configurations

inside an M-theoretic bulk

 are identified with

 Quantum correlators of
a conformal field theory
on their worldvolume

(127)

This is just the form of “holographic duality” that is expected in string/M-theory, here specifically in “Theory-
S”-compactifications of M5-branes on Riemann surfaces such as (122). Our result that su2-conformal blocks appear
on M5-branes compactified on a Riemann surface matches the conclusion in [Wi10, p. 22].

Strongly coupled holographic quantum materials. In [SS23-Dfc2] we give a detailed argument that the
worldvolume CFT which we see here is that of anyonic defects in topologically ordered ground states of crystalline
quantum materials which are in a topological phase of matter.

This being a strongly coupled QFT on a small number κ of branes, it is outside the realm of perturbative string
theory and would indeed be expected to require M-theory for its holographic description (cf. p. 3).

2.4.2 Anyon braiding

We close by indicating how the “topological dynamics” of M5⊥M5 (their adiabatic movement in moduli space)
acts on their quantum states just as expected for quantum logic gates in topological quantum computers based on
anyon braiding – as they should by the duality (127). Detailed discussion may be found in [TQC1][TQC2].

Modular functor of M5 ⊥ M5 Hilbert
spaces. The fibration of configuration spaces
(119) induces on its fiberwise twisted cohomol-
ogy groups (125) a flat connection — called a
Gauss-Manin connection, which on the spaces
of conformal blocks restricts to the Knizhnik-
Zamolodchikov connection.
The parallel transport of this connection com-
putes the unitary transformations on the
branes’ quantum states induced by their adi-
abatic movement in moduli space:

H1

topological brane state propagation

H2

path in transverse brane config space

H
[ω1]
dR

(
Conf

{1, · · · , n}

(
C \ {−1, · · · ,−N}

))

Conf
{1, · · · , N}

(C)

transverse plane

wI/κ

defect brane

time
braiding

C

k
I

k
I

some quantum state for
fixed brane positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉 Berry phase
unitar

y transf
ormation

= adiab
atic quant

um gate

∣∣ψ(t2)〉
another quantum state for

fixed brane positions
k1, k2, · · · at time t2

Under the above holographic duality, such brane braiding translates to the braiding of anyonic defects in
topologically ordered quantum materials, which is thought to potentially serve as quantum logic gates for topological
quantum computers.
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