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Abstract

Modern classical local field theory, in the guise of variational calculus on jet bundles, has become a
highly sophisticated theory. Nevertheless there are subtle but important global aspects that have found
little attention yet, phenomena that in mechanics are known as prequantization and as cancellation of
classical anomalies.

First, for locally variational field theories to admit an action functional, the locally defined Lagrangian
forms need to be promoted to horizontal connections on p-gerbes with band R/~Z over a site of partial
differential equations. We develop the theory of such Euler-Lagrange p-gerbes and show from first princi-
ples that their curving is given by the Euler-Lagrange form whose vanishing locus is the Euler-Lagrange
equation of motion.

Second, Kostant-Souriau’s concept of prequantum line bundles for mechanical systems needs to be
localized for local field theories such as to produce prequantizations of covariant phase spaces naturally
for every choice of codimension-1 (Cauchy-)surface. We show how this is achieved by lifting Euler-
Lagrange p-gerbes through a canonical codimension filtration to what we call Lepage p-gerbes, and then
transgressing these.

Third, we highlight the little known sharp version of Noether’s first theorem, which characterizes
equivalence classes of conserved currents as a Lie algebra extension of infinitesimal symmetries by equiv-
alence classes of locally trivial but globally nontrivial topological currents. Then we show that the
infinitesimal symmetries of Euler-Lagrange p-gerbes promote this statement to an L∞-algebra extension
of infinitesimal symmetries by actual currents and higher currents. Correspondingly the infinitesimal
symmetries of the Lepage p-gerbes give the multisymplectic refinement of the canonical Poisson bracket
to an L∞-bracket. In fact we obtain the integrated extension of the group of finite symmetries by the
higher moduli stack of higher topological current symmetries, producing a Noether theorem also for
discrete, finite topologically nontrivial symmetries.

Finally we apply this general theory to the case of field theories of higher dimensional parameterized
WZW type that appear prominently in solid state physics (topological phases of matter) and in string/M-
theory (super p-branes). These systems are only locally variational in general. Specifically for the case
of the GS-WZW models for super p-branes on curved supermanifolds, we discuss how the resulting
higher Noether currents promote the BPS brane charge extensions of superisometry algebras to super-
L∞-extensions by p-brane currents.

This document, with accompanying material, is kept online at
ncatlab.org/schreiber/show/Local+prequantum+field+theory.
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In

• 1 – Classical local Lagrangian field theory

we review classical local Lagrangian field theory with an emphasis on aspects of relevance here. Then in

• 2 – Prequantum local Lagrangian field theory

we develop the prequantum theory. In

• 3 – Application to field theories of higher WZW type

we discuss some aspects of applications. Finally in the appendix

• 4 – Category theory

we collect statement and references for those general abstract results which we use in the main text.

For motivation, exposition and survey, see

ncatlab.org/schreiber/show/Higher+Prequantum+Geometry .

1 Classical local Lagrangian Field theory

We give here a self-contained account of the basic definitions and facts in modern variational calculus for
classical local Lagrangian field theories in terms of jet geometry [Ol93, And89]. While nothing in this section
is new, our review puts an emphasis on certain aspects that will be crucial below in section 2 and that are
somewhat hidden in the standard literature. These aspects include:

• the comonadicity of the category of partial differential equations due to [Marvan86];

• the functoriality of the Euler-Lagrange complex over the site of differential operators, implicit in
[And89].

• the sharp version of Noether’s first variational theorem, due to [Vi84];

1.1 Jet bundles, Differential operators and PDEs

Throughout, let

• p ∈ N;

• Σ be a (p+ 1)-dimensional manifold, regarded as the spacetime/worldvolume of the field theory,

• E → Σ be a smooth bundle, called the field bundle, whose smooth sections φ ∈ Γ(E) are the field
configurations of the field theory.

Definition 1.1. Any smooth bundle may be extended to a sequence of k-jet bundles JkE → Jk−1E, each
an affine bundle over the preceding one, with J0E = E. The projective limit

J∞E := lim←− J
•E ,

regarded as a bundle over Σ, is the (∞-)jet bundle of E.
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Remark 1.2. The intuition is that a section of Jk(E) over a point x ∈ Σ is equivalently a section of E over
the order-k infinitesimal neighbourhood Dn(k) of x:

E

��
Dn(k)

<<

� � // Σ

'

Jk(E)

��
∗

==

// Σ

This intuition becomes a precise statement [Kock80, section 2] after embedding smooth manifolds into a
model for synthetic differential geometry, such as [Dubuc79, MoerdijkReyes91], where formal manifolds such
as Dn(k) genuinely exist. We come back to this below in section 2.1. The synthetic formulation has models
also in algebraic geometry, where the construction of jet bundles is known in the language of “crystals of
schemes” or “D-geometry,” see for instance [Lurie09].

Remark 1.3. While J∞E is not finite dimensional, it is nearly so, because any smooth function on it must
depend only on a finite number of coordinates, with the number bounded at least locally. Technically this
means that J∞E is defined a projective limit of a tower of affine bundles over E. It follows in particular
that J∞Σ has the same de Rham cohomology as E, Hp(J∞E) ∼= Hp(E).

Definition 1.4. Write SmoothMfd for the category of pro-finite dimensional smooth manifolds (maybe
point to [GuPf13]). For Σ a smooth manifold, write SmoothMfd↓Σ for the category of surjective submersions
of pro-finite dimensional smooth manifolds over Σ.

By remark 1.2 it is clear that we have the following (see e.g. [Marvan86]):

Definition 1.5. The jet bundle construction of def. 1.1 extends to a functor

J∞Σ : SmoothMfd↓Σ −→ SmoothMfd↓Σ .

Notice the following degenerate case.

Example 1.6. If we regard Σ
id→ Σ canonically as a bundle over itself, then it coincides with its jet bundle:

J∞Σ (Σ) ' Σ.

Simple as this is, it induces the following key construction.

Definition 1.7. Given a section φ : Σ → E, φ ∈ ΓΣ(E), its jet prolongation is its image under the jet
functor, def. 1.5, regarded as a section of the jet bundle via the equivalence of example 1.6:

j∞(φ) := Σ
' // J∞Σ (Σ)

J∞Σ (φ) // J∞Σ (E) .

Remark 1.8. In terms of remark 1.2 the jet extension of def. 1.7 is the result of restricting φ to all order-k
infinitesimal neighbourhoods of its domain.

It turns out that the construction of jet bundles has some excellent abstract properties that are useful
in the classical theory and indispensable in the prequantum theory which we turn to in [?]. Before stating
them, we briefly recall the pertinent definitions.

Proposition 1.9 ([Marvan86]). The jet bundle endofunctor J∞Σ of def. 1.5, together with the canonical
projection map J∞Σ E → Σ as well as with the natural transformation J∞Σ (E) −→ J∞Σ (Jet(E)) induced from
the jet prolongation operation j∞, def. 1.7, is a co-monad.
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Proposition 1.10. For E1, E2 ∈ SmoothMfd/Σ two bundles over Σ, then a differential operator D : ΓΣ(E1) −→
ΓΣ(E2) is equivalently a map between their spaces of sections of the form φ 7→ D̃ ◦ j∞(φ), where j∞ is the
jet prolongation of def. 1.7, and where D̃ is a morphism of bundles over Σ of the form

D̃ : J∞Σ (E1) −→ E2 .

The composite D2 ◦D1 of two differential operators is given by

D̃2 ◦D1 : J∞Σ (E1)
p∞(D̃1) // J∞Σ (E2)

D̃2 // E3 .

In other words, the category DiffOpΣ of smooth bundles over Σ with morphisms the differential operators
between their sections is equivalently the Kleisli category, def. 4.17, of the jet comonad of prop. 1.9.

Remark 1.11. Prop. 1.10 says in particular that the jet extension of a bundle E itself is the universal
differential operator j∞ : ΓΣ(E)→ ΓΣ(J∞Σ (E)). with j̃∞ = id.

Definition 1.12. In the situation of prop. 1.10, the composition

p∞(D̃) : J∞(E1) // J∞(J∞(E1))
J∞(D̃) // J∞(E2)

is called the prolongation of the map D̃.

Below in prop. 1.17 we give the co-monadic interpretation of p∞, using the following generalization of
prop. 1.10.

Theorem 1.13 ([Marvan86]). The category of co-algebras EM(J∞Σ ) (def. 4.13) over the jet comonad over
Σ (prop. 1.9) is equivalently the category PDEΣ of (non-singular) partial differential equations with free
variables ranging in Σ, and with solution-preserving differential operators between these [Vi80]:

EM(J∞Σ ) ' PDEΣ .

Remark 1.14. The identification of objects E ∈ PDEΣ in theorem 1.13 with (non-singular) partial differ-
ential equations works as follows. First of all, one finds that every E ∈ PDEΣ is the equalizer of a pair of
morphisms 1 Dl, Dr : E −→ F in DiffOpΣ ↪→ PDEΣ, hence, by prop. 1.10, of two differential operators
acting on sections of a field bundle E over Σ. By the universal property of equalizers, this means that the

morphisms Σ
φsol−→ E in PDEΣ are in bijection with those morphisms Σ

φsol−→ E such that the two composites

Σ
φsol−→ E

Dl,r−→ F agree.

E � _

equ(Dl,Dr)

�� ��
Σ

φ //

φsol

??

E
Dl //

Dr

// F

∈ PDEΣ .

Now by example 1.16 the morphisms φ here are equivalently sections φ ∈ ΓΣ(E), and by prop. 1.10 these
equalize the morphisms Dl, Dr precisely if the action of these as differential operators acting on sections
agrees

Dl(φ) = Dr(φ) .

1It is here where the non-singularity condition comes in: If the equalizer of D̃l, D̃r : J∞E → F is not a smooth submanifold,
then de facto it does not exist in PDEΣ as defined here. This is a minor point. To deal with this one passes to an improved
category of smooth manifolds where all fiber products exists. This is preferably achieved by a category of “derived” manifolds,
whose formal duals are not just plain function algebras, but simplicial function algebras. In the physics literature these are
known as BV-complexes. It is fairly straightforward to lift the entire discussion here from smooth manifolds to derived smooth
manifolds, and once one does so the non-singular-clauses above may be omitted.
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This is the explicit traditional incarnation of the differential equation embodied by the object E ∈ PDEΣ.
Yet another way to say this is that the monomorphism E ↪→ E in PDEΣ maps under U : PDEΣ →

SmoothMfd↓Σ to a submanifold inclusion
U(E) ↪→ J∞E

of the jet bundle of E, and that the solutions φsol to the differential equation are those sections φ ∈ ΓΣ(E)
whose jet prolongation, def. 1.7 factors through this inclusion

U(E)� _

��   
Σ

j∞(φsol)

>>

j∞(φ) // J∞Σ E
D̃l //

D̃r

// F

∈ SmoothMfd↓Σ .

It is common to notationally suppress the underlying-bundle functor U and just write E ↪→ J∞Σ E if the
context is clear. One then also says that E ⊂ J∞Σ E is the dynamical shell of the PDE.

Remark 1.15. In summary, prop. 1.10 and theorem 1.13 say, via prop. 4.16, that jet geometry constitutes
the following comonadic situation:

SmoothMfd↓Σ
oo U

F

⊥ //

F )) ))

PDEΣ ' EM(J∞Σ )

DiffOpΣ ' Kl(J∞Σ )
( � i

55

The category of PDEs over Σ (equivalently the Eilenberg-Moore category of J∞Σ -coalgebras) has a forgetful
functor to the category of pro-finite dimensional smooth bundles over Σ. This functor has a right adjoint,
sending any bundle E to the “co-free” differential equation it defines, namely the trivial differential equation
on smooth sections of E, for which every section is a solution. Even though these are trivial as differential
equations, the morphism between bundles when regarded as cofree differential equations are interesting,
they are precisely the differential operators. Hence the cofree functor from bundles to PDEs factors through
the full inclusion of the category DiffOpΣ of bundles with differential operators between them, which is
equivalently the Kleisli category, def. 4.17, of J∞Σ . Finally

J∞Σ ' U ◦ F .

Due to the nature of the factorization through the Kleisli category, it makes sense and is convenient to
leave F notationally implicit.

Example 1.16. We have
DiffOpΣ(Σ, E) ' PDEΣ(Σ, E) ' ΓΣ(E) .

Proposition 1.17. Given a morphism D in DiffOpΣ represented as a co-Kleisli morphism (remark 4.18)
D̃ : J∞Σ E1 → E2, then its underlying bundle map is the prolongation p∞(D̃) according to def. 1.12:

U(D) ' p∞(D̃) .

Proof. The morphism D is identified with a morphism in PDEΣ of the form D : F(E1) → F(E2). The
morphism D̃ is the adjunct of this under (U a F), and conversely, hence, by the formula prop. 4.9 for
adjuncts ,

D : F(E1)
ηF(E1)−→ F(U(F(E1)))

F(D̃)−→ F(E2) .

6



Therefore

U(D) : U(F(E1))
U(ηF(E1))−→ U(F(U(F(E1))))

U(F(D̃))−→ U(F(E2)) .

Via J∞Σ ' U ◦ F (prop. 4.16) and the formula for the coproduct via the adjunction counit (prop. 4.14) the
right hand is indeed the formula for p∞ from def. 1.12.

1.2 Horizontal de Rham complex

A key fact of variational calculus is that the de Rham complex of a jet bundle naturally splits into a bicomplex
of horizontal and vertical differentials, with the latter encoding the Euler-Lagrange variation of fields. In
terms of the characterization of differential operators due to prop. 1.10, the horizontal subcomplex has the
following neat formulation.

Definition 1.18 (e.g. [KrVe98, def. 3.27]). A horizontal n-form α on a jet bundle J∞Σ (E) is a differential
operator2 of the form

α : E → ∧nT ∗Σ . (1)

With the de Rham differential d : Ωn(Σ)→ Ωn+1(Σ) on Σ regarded as a differential operator

d : ∧n T ∗X → ∧n+1T ∗X , (2)

then the horizontal differential of a horizontal n-form α is the composite of differential operators

dHα : F
α−→ ∧nT ∗Σ d−→ ∧n+1T ∗X . (3)

The resulting cochain complex (Ω•H(E), dH) is the horizontal de Rham complex of the jet bundle of E.

Remark 1.19. By prop. 1.10 a horizontal n-form as in def. 1.18 is equivalently a bundle morphism of the
form α̃ : J∞Σ (E)→ ∧nT ∗Σ. Composed with the canonical bundle morphism ∧nT ∗Σ→ ∧nT ∗J∞Σ (E) induced
from the bundle projection J∞Σ (E)→ Σ, this becomes an actual n-form α̃ ∈ Ωn(J∞Σ (E)) on the jet bundle,
whence the name. On the other hand, composed with a jet prolongation j∞(φ) : Σ→ J∞Σ (E), def. 1.7, then

j∞(φ)∗α̃ : Σ
' // J∞Σ (Σ)

J∞Σ (φ) // J∞Σ (E)
α̃ // ∧nT ∗Σ

is a horizontal n-form on Σ, hence, by example 1.6, just a plain n-form on Σ. We use this interpretation to
identify horizontal forms with a subset Ω•H(E) ⊂ Ω•(J∞(E)). Moreover, we can actually extend the action of
dH to arbitrary forms in Ω•(J∞(E)) as follows. As a graded commutative algebra, Ω•(J∞(E)) is generated
by Ω0(J∞(E)) and dΩ0(J∞(E)). The action of dH on Ω0(J∞(E)), since any 0-form is automatically a
horizontal form. Further, let dHdf = −ddHf , for any f ∈ Ω0(J∞(E)). Having defined dH on the generators,
we extend it to all of Ω•(J∞(E)) as a graded differential. Note that this definition implies the identity
dHd+ ddH .

The formulation of jet prolongation in def. 1.7 and of the horizontal complex in def.1.18 in terms of the
jet comonad structure of prop. 1.9 makes the following key property of the horizontal differential follow from
general abstract reasoning that holds in general models of jet geometry as in remark 1.2.

Proposition 1.20. Pullback of horizontal forms along jet prolongations intertwines the horizontal differen-
tial with the de Rham differential on Σ: for φ ∈ ΓΣ(E) and α ∈ ΩH(E), we have a natural identification

dΣ(j∞(φ)∗α̃) = j∞(φ)∗(dH α̃) .

2Lets be consistent about the notation for differential operators (maps between spaces of sections) and bundle maps. I would
write the maps below as either maps between spaces of sections, or as bundle maps of the form J∞(−) → (−), but not as
unadorned bundle maps, as written now. –IK
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Proof. Unwinding the definitions, the right hand is the form given by the composite

Σ
'→ J∞Σ (Σ)

J∞Σ (φ)−→ J∞Σ (E)→ J∞Σ (J∞Σ (E))
J∞Σ (α̃)−→ J∞Σ (∧nT ∗Σ)

d̃Σ−→ ∧n+1T ∗Σ .

Since the J∞Σ -coproduct is a natural transformation, we may pass J∞Σ (φ) through the coproduct from the
left to the right to obtain the equivalent morphism

Σ
'→ J∞Σ (Σ)

'→ J∞Σ (J∞Σ (Σ))
J∞Σ (J∞Σ (φ))−→ J∞(J∞Σ (E))

J∞Σ (α̃)−→ J∞Σ (∧nT ∗Σ)
d̃Σ−→ ∧n+1T ∗Σ .

By functoriality of J∞Σ we may compose this as

Σ
'→ J∞Σ (Σ)

'→ J∞Σ (J∞Σ (Σ))
J∞Σ (α̃◦J∞Σ (φ))−→ J∞Σ (∧nT ∗Σ)

d̃Σ−→ ∧n+1T ∗Σ .

This is the co-Kleisli morphism (remark 4.18) expressing the left hand side of the equation to be established.

1.3 Variational bicomplex

Definition 1.21. Write Ω•V (E) ↪→ Ω•(J∞Σ (E)) for the joint kernel of the pullback maps along jet prolonga-
tions, def. 1.7

j∞(φ)∗ : Ω•(J∞Σ (E)) −→ Ω•(Σ) (4)

along all section φ ∈ ΓΣ(E). These are called the vertical differential forms (sometimes also contact forms)
on the jet bundle. The vertical forms constitute a differential ideal of (Ω•(J∞(E)), d), known as the contact
or Cartan ideal. The vertical differential

dV : Ω•(J∞(E))→ Ω•V (E)

is
dV := d− dH .

Proposition 1.22. The complex of differential forms on the jet bundle is a direct sum of the horizontal
forms from def. 1.18, remark 1.19 with the vertical forms of def. 1.21

Ω•(J∞Σ E) ' Ω•H(E)⊕ Ω•V (E) . (5)

In fact, the quotient of the de Rham complex (Ω•(J∞(E)), d) by the differential ideal ΩV (E) gives precisely
the horizontal de Rham complex (Ω•H(E), dH).

Considering the above decomposition on 1-forms, Ω1(J∞(E)) = Ω1
H(E)⊕Ω1

V (E), we assign to elements of
Ω1
H(E) horizontal degree 1 and vertical degree 0, while to elements of Ω1

V (E) horizontal degree 0 and vertical
degree 1. Also, we assign both horizontal and vertical degree 0 to elements of Ω0(J∞(E)). Obviously, the
sum of the horizontal and vertical degrees is the total form degree. Since all forms are generated as a graded
algebra by forms of total degrees 0 and 1, we have just defined a bigrading on the forms on J∞(E), which
we denote as Ω•(J∞(E)) =

⊕
h,v Ωh,v(E), where h stands for the horizontal and v for vertical degrees.

Proposition 1.23. The horizontal-vertical bigrading and the operators dH , dV turns the de Rham complex
on J∞(E) into a bicomplex, called the variational bicomplex (Ω•,•(E), dH , dV ), where dH is of horizontal
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degree 1 and vertical degree 0, while dV is of horizontal degree 0 and vertical degree 1.

Ω0
H(E)

dH //

dV

��

Ω1
H(E)

dH //

dV

��

Ω2
H(E)

dH //

dV

��

· · · dH //

···

Ωp
dV //

dH

��

Ωp+1
H (E)

dV

��
0 // Ω0,1(E)

dH //

dV
��

Ω1,1(E)
dH //

dV
��

Ω2,1(E)
dH //

dV
��

· · · dH //

···

Ωp,1(E)

dV
��

dH // Ωp+1,1(E)

dV
��

0 // Ω0,2(E)
dH //

dV
��

Ω1,2(E)
dH //

dV
��

Ω2,2(E)
dH //

dV
��

· · · dH //

···

Ωp,2

dV��

dH // Ωp+1,2(E)

dV
��

...
...

...
...

...

Here the horizontal rows (Ω•,v≥1(E), dH) are exact, except at Ωp+1,v(E), and also the vertical columns
(Ωh,•(E), dV ) are exact, except at Ωh,0(E).

Proposition 1.24. The total complex of the variational bicomplex is isomorphic to the de Rham complex
(Ω•(J∞(E)), d).

Remark 1.25. By the above proposition, the variational bicomplex must fail to be exact in some places
whenever its total complex (Ω•(J∞(E)), d) has non-trivial cohomology, which is isomorphic to H•(E), since
J∞(E) is contractible to E. In the bicomplex, these de Rham classes are concentrated in the v = 0 horizontal
row and, in a way to be described below, in the h = p+ 1 vertical column. In fact, all of these cohomology
classes are controlled precisely by Hn

dR(E). This is captured by the Euler-Lagrange complex, to which we
turn below in def. 1.35.

The bigraded forms in the variational bicomplex may naturally be identified with certain differential
operators. This is particularly important for the (p + 1, 1)-forms where the following operation will serve
to identify the variational derivative of a Lagrangian with the differential operator that embodies the corre-
sponding Euler-Lagrange equations of motion.

Definition 1.26. For n, k ∈ N write

(̃−) : Ωn,k(E) −→ DiffOpΣ(∧kE(V E),∧nT ∗Σ) (6)

for the map from (n, k)-bigraded differential forms as in prop. 1.23, to differential operators, which sends
β ∈ Ωn,k(E) to the differential operator β̃ whose value on any (φ;u1 ∧ · · · ∧ uk) ∈ Γ(∧kE(V E)) is

β̃[φ;u1 ∧ · · · ∧ uk] := (j∞φ)∗(ιp∞u1∧···∧p∞ukβ) , (7)

where the vector fields ui have been prolonged to the evolutionary vector fields p∞ui, as discussed in Re-
mark ??.

Notice that the bundle V E → E → Σ, or a tensor power of it, is a vector bundle over E, but may not
be linear over Σ if E itself is not a vector bundle. Write DiffOpE-lin

Σ (∧kE(V E),∧nT ∗Σ) for those differential
operators which are linear over E.

Proposition 1.27. The construction in def. 1.26 constitutes a linear isomorphism onto those differential
operators that are linear over E:

(̃−) : Ωn,k(E)
'−→ DiffOpE-lin

Σ (∧kE(V E),∧nT ∗Σ) (8)
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Definition 1.28. For k ≥ 1, there is a map (formal adjoint)

(−)∗ : DiffOpE-lin
Σ (∧kE(V E),∧p+1T ∗Σ) −→ DiffOpE-lin

Σ (R× ∧k−1
E (V E),∧p+1T ∗Σ⊗E V ∗E) (9)

which is uniquely characterized [ViKr99, Sec.5.2.3] by the condition that for every differential operator
D ∈ DiffOpE-lin

Σ (∧kE(V E),∧p+1T ∗Σ) there is an

ωD ∈ DiffOpE-lin
Σ (R× ∧kE(V E),∧pT ∗Σ) (10)

such that for every f ∈ C∞(Σ) and every (φ;u1 ∧ · · · ∧ uk) ∈ Γ(∧kE(V E)) we have

fD[φ;u1 ∧ · · · ∧ uk]−D∗[φ; f, u1 ∧ · · · ∧ uk−1] · uk = dΣωD[φ; f, u1 ∧ · · ·uk−1, uk] . (11)

1.4 Euler-Lagrange complex

Recall from prop. 1.23 that any 1-form on J∞(E) can be uniquely decomposed into its horizontal and
vertical parts.

Definition 1.29. The subspace of order-0 vertical 1-forms

Ω1
V,0(E) ⊂ Ω1

V (E)

is the image of the projection of the forms (π0
∞)∗[Ω1(E)] onto their vertical parts, where we take the pullback

along the natural projection π0
∞ : J∞(E)→ E.

Definition 1.30. For k ≥ 1, the subspace of (k-vertical) source forms is

Ωp+1,k
S (E) := Ωp+1,k−1(E) ∧ Ω1

V,0(E) .

Remark 1.31. The 1-vertical source forms of def.1.30 are also known as dynamical form or Euler-Lagrange
forms, while 2-vertical source forms are known as Helmholtz forms [PRWM15].

Source forms are a subspace of Ωp+1,•(E) forms, but can also be obtained by means of an idempotent
projection I : Ωp+1,•(E)→ Ωp+1,•(E), called the interior Euler operator.

Definition 1.32. The interior Euler map [And89, Sec.2.B] is the map

I : Ωp+1,k(E)→ Ωp+1,k(E) (12)

defined on any β as the equivalent differential operator (via prop. 1.27)

Ĩ(β)[φ;u1 ∧ · · · ∧ uk] :=
1

k

k∑
a=1

(−)k−aβ̃∗[φ; 1, u1 ∧ · · · ûa · · · ∧ uk] · ua. (13)

(where on the right we have the formal adjoint of def. 1.28 applied to the differential operator of def. 1.26).
The higher Euler operator is the composite

δV := I ◦ dV : Ωp+1,k(E)→ Ωp+1,k+1(E) . (14)

Remark 1.33. For k = 0 then δV is better known as the Euler-Lagrange derivative and for k = 1 and
restricted to source forms, def. 1.30, then δV is better known as the Helmholtz operator.

Proposition 1.34. The higher Euler operator is a projection, I ◦ I = I. Its image is the space of source
forms, def. 1.30, and its kernel is the space of horizontally exact forms

im(I) ∼= Ωp+1,k
S (E), (15)

ker(I) ∼= im(dH). (16)
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In particular prop. 1.34 means that the Euler operators continue the complex of horizontal forms, def.
1.18, by source forms, def. 1.30:

Definition 1.35. The Euler-Lagrange complex of E is the chain complex

Ω•ELΣ
(E) := 0→ Ω0

H(E)
dH−→ Ω1

H(E)
dH−→ · · · dH−→ Ωp+1

H (E)
δV−→ Ωp+1,1

S
δV−→ Ωp+1,2

S
δV−→ · · · (17)

built from the horizontal derivatives dH of def. 1.18 and the Euler operators δV of def. 1.32.

Proposition 1.36. For k ≥ 1 we have an exact sequence

0→ Ω0,k dH−→ Ω1,k dH−→ · · · dH−→ Ωn,k
I−→ Ωn,kS → 0 (18)

formed by the horizontal differentials dH of def. 1.18 and the interior Euler operator I of def. 1.32. Hence
the variational bicomplex in prop. 1.23 is augmented as follows, with exact rows as shown below. The dashed
morphisms indicate how the Euler-Lagrange complex (def. 1.35) sits in this bicomplex.

Ω0
H(E)

dH //

dV

��

Ω1
H(E)

dH //

dV

��

Ω2
H(E)

dH //

dV

��

· · · dH //

···

ΩpH(E)

dV

��

dH // Ωp+1
H (E)

dV

��

δV

&&
0 // Ω0,1(E)

dH //

dV

��

Ω1,1(E)
dH //

dV

��

Ω2,1(E)
dH //

dV

��

· · · dH //

···

Ωp,1(E)

dV

��

dH // Ωp+1,1(E)

dV

��

I //

δV

&&

Ωp+1,1
S (E) //
_?

oo

δV
��

0

0 // Ω0,2(E)
dH //

dV
��

Ω1,2(E)
dH //

dV
��

Ω2,2(E)
dH //

dV
��

· · · dH //

···

Ωp,2(E)

dV��

dH // Ωp+1,2(E)

dV
��

I // Ωp+1,1
S (E)_?

oo //

δV��

0

...
...

...
...

...
...

(For k = 0 we instead have theorem 1.39 below.)

Proposition 1.37. The definition of the variational bicomplex, prop. 1.23, and of the Euler-Lagrange
complex, prop. 1.35 of a jet bundle is contravariantly functorial in differential operators mapping via their
prolongation, def. 1.12, between jet bundles.

For E,F, F ′ ∈ SmoothMfd↓Σ and D : E → F , D′ : F → F ′ differential operators, then:

(i) [And89, Prop.1.6] The prolongation p∞D̃ : J∞E → J∞F of def. 1.12 preserves both the horizontal
and vertical forms (Definitions 1.18 and 1.21, Proposition 1.22)

(p∞D̃)∗Ω•H(F ) ⊆ Ω•H(E) and (p∞D̃)∗Ω•V (F ) ⊆ Ω•V (E). (19)

(ii) [And89, Thm.3.15] The pullback along the prolongation p∞D̃ : J∞E → J∞F (def. 1.12) is a cochain
map for the variational bicomplex (Prop. 1.23), respecting both degrees and both differentials,

(p∞D̃)∗ : (Ωh,v(F ), dH , dV ) −→ (Ωh,v(E), dH , dV ). (20)

(iii) Considering the differential operators D and D′, the composition of the pullbacks along prolongations
is equal to the pullback along the composition of the prolongations, which is also equal to the pullback
along the prolongation of the composition of the differential operators,

(p∞D̃)∗ ◦ (p∞D̃′)∗ = (p∞D̃′ ◦ p∞D̃)∗ = (p∞D̃′ ◦D)∗. (21)

11



(iv) The interior Euler projected pullback along the prolongation p∞D̃ maps source forms into source forms
(def. 1.30),

I ◦ (p∞D̃)∗Ωp+1,k
S (F ) ⊆ Ωp+1,k

S (E). (22)

(v) [And89, Thm.3.21] The map between the Euler-Lagrange complexes

Ω•ELΣ
(F ) −→ Ω•ELΣ

(E) (23)

defined by the pullback (p∞D̃)∗ on the horizontal forms Ω•,0(−) and by the interior Euler projected
pullback I ◦ (p∞D̃)∗ on source forms Ωp+1,•

S (−) is a cochain map, respecting all the gradings and
differentials.

(vi) The composition of the interior Euler projected pullbacks along the prolongations of the differential
operators D and D′ is equal to the interior Euler projected pullback along the composition of the
differential operators,

I ◦ (p∞D̃)∗ ◦ I ◦ (p∞D̃′)∗ = I ◦ (p∞D̃′ ◦D). (24)

Sketch of proof. Statement (i) is a fundamental property of horizontal and vertical forms. For horizon-
tal forms, it follows straight from the definitions. For vertical forms, the simplest proof follows from an
elementary calculation in local coordinates, which can be found in the cited reference.

Essentially, all other statements follow from (i) and basic properties of pullbacks of forms and of dif-
ferential operators. For (ii), it suffices to combine with (i) the known property that pullbacks commute
with the de Rham differential. For (iii), it suffices to recall the composition property of pullbacks and of
prolongations of differential operators (Proposition 1.10). For (iv), it suffices to combine (ii) with the fact
that source forms are defined as the image of I. For (v), the horizontal part of EL• is already taken care of
by (ii). Also, since source forms can be thought of as canonical representatives of equivalence classes modulo
dH , which by (ii) are preserved by the pullback, the rest of EL• is also covered. The same argument based
on equivalence classes also covers (vi).

Applying the desired statements to 1-parameter families of differential operators, we can obtain obvious
corresponding infinitesimal versions, applicable to vector fields that preserve vertical forms. However, since
some of these vector fields do not come from linearizing such 1-parameter families of differential operators,
they could also be proven directly by in infinitesimal form, as for example in [And89, Prop.3.17] and [And89,
Thm.3.21].

Remark 1.38. The statements in prop. 1.37 have obvious infinitesimal versions that apply to any vector
field from XH(E) + Xev(X) (Definition ?? and the remarks following it).

Theorem 1.39 (e.g. [And89, Thm.5.9]). For E a bundle over Σ, there is a chain map, given degreewise by
projection on horizontal forms and on vertical source forms, respectively from the Euler-Lagrange complex
of E, def. 1.35, to the de Rham complex of J∞Σ E:

Ω•dR(E)
'qi−→ Ω•dR(J∞Σ E)

'qi−→ Ω•ELΣ
(E) .

This is a quasi-isomorphism, i.e. it induces isomorphism on all cohomology groups:

H•(ΩdR(E)) ' H•(ΩELΣ
(E)) (25)

Moreover, this chain map is a natural transformation with respect to the functoriality in prop. 1.37.
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1.5 Equations of motion and Lagrangians

Definition 1.40. For ω ∈ Ωp+1,1
S (E) a source form, def. 1.30, then the partial differential equation on

sections φ ∈ ΓΣ(E) it induces is
∀

v∈Γ(V E)
j∞(φ)∗ιvω = 0 ,

saying that for all vertical tangent vectors v, the pullback of the contracted form ιvω along the jet prolon-
gation, def. 1.7, of φ vanishes.

Proposition 1.41. As an object of PDEΣ, via theorem 1.13 and remark 1.14. the differential equation in
def. 1.40 is the equalizer of

1. the differential operator
ω̃ : E −→ ∧p+1T ∗Σ×Σ V

∗E

that corresponds to ω under the isomorphism of prop. 1.27;

2. the “0-morphism”
0̃ : E −→ ∧p+1T ∗Σ×Σ V

∗E

which sends any point (σ, e, j) ∈ J∞E to the pair consisting of 0 ∈ ∧p+1T ∗σΣ and 0 ∈ V ∗e E ↪→ (V ∗E)σ.

Proof. By direct comparison of def. 1.26 with def. 1.40.

Remark 1.42. Prop. 1.41 suggests that the differential equation induced by the source form ω should be
thought of the kernel or fiber of ω̃. However, a kernel or fiber of D would be the pullback of a point inclusion
into its codomain, and preferably of the zero point in an object with abelian group structure. But this is not
the case here. However, when below in section 2 we broaden the perspective from PDEΣ to the sheaf topos
over it, then source forms ω are given equivalently by maps into an abelian “moduli space” Ωp+1,1

S , and then
indeed the differential equation in question turns out to be precisely the kernel of these representing maps.
This is the content of prop. 2.36 below.

Definition 1.43. Given a (p+ 1)-dimensional smooth manifold Σ and a field bundle E → Σ, then

1. a globally defined local Lagrangian is a horizontal (p+ 1)-form

L ∈ Ωp+1
H (E)

according to def. 1.18;

2. the Euler-Lagrange form of L is its image under the Euler operator, def. 1.32,

EL := δV L ∈ Ωp+1,1
S (E) ,

3. the Euler-Lagrage equation E of L is the differential equation induced by EL via prop. 1.41.

(The prequantum-analog of this definition we give in def. 2.34 below.)

Remark 1.44. Unwinding the definitions, the concise concepts in def. 1.43 reproduce more common ex-
pression found in the literature as follows.

1. The vertical derivative, def. 1.21, of the Lagrangian form L, splits uniquely into the sum of a source
form EL, def. 1.30, and a horizontally exact form

dV L = EL− dHθ .

The source form is indeed δV L = EL, by prop. 1.34. This decomposition is known as the first variation
formula in the geometric literature on the calculus of variations.
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In components, EL is obtained from dV L by a formal integration by parts, def. 1.28, that removes all
the vertical differentials of jet coordinates involving derivatives. The boundary term picked up in this
operation is dHθ. This is the classical recipe for obtaining Euler-Lagrange equations.

Notice that EL is unaffected by a change to the Lagrangian of the form L 7→ L+dHK, for any horizontal
p-form K (though θ is affected).

2. The submanifold inclusion
E ↪→ J∞Σ E

that characterizes the Euler-Lagrange equation in def. 1.43 via remark 1.14 (notationally suppressing
the underlying bundle functor U) is also called the dynamical shell or just shell for short.

There exist situations when, even though the equations of motion are given by a globally defined source
form EL ∈ Ωp+1,1

S (E), def. 1.29, and for any contractible open U ⊂ J∞F there exists a local Lagrangian LU ,
according to def. 1.43, such that δV LU = EL|U , there may not exist any globally defined local Lagrangian
L ∈ Ωn,0(E) such that the same formula holds on all of J∞E. Examples include the charged point particle
in an external non-exact electromagnetic field, also the usual 2-dimensional and higher-dimensional WZW
models [[gawedzki?]], and higher dimensional Chern-Simons models [[XXX]]. Such equations are locally but
not globally variational.

To decide whether a source form EL is locally variational, we use the local exactness of the Euler-Lagrange
complex (Thm. 1.39):

Definition 1.45. A 1-vertical source form EL ∈ Ωp+1,1
S (E), def. 1.29, is called locally variational if the

identity δV EL = 0 (which is known as the Helmholtz condition). The source form EL is called globally
variational if there exists a local Lagrangian L ∈ Ωp+1,0(E) such that EL = δV L.

Example 1.46. Let Σ = Rd and let E be the trivial real line bundle over Σ. Let η be the Minkowski
metric on Rd. We write dvolΣ for the corresponding volume form. Write {{xµ}, φ, {φ,µ}, {φ,µν}, · · · } for the
canonical coordinates on J∞E.

In these coordinates, the Lagrangian density for the free scalar field on Σ reads

L = 1
2

(
ηµνφ,µφ,νdvolΣ +m2φ2

)
.

Its vertical differential is
dV L = ηµνφ,µdV φ,ν ∧ dvolΣ +m2φdV φ .

In order to find EL and θ, we need to exhibit this as the sum of the form (−) ∧ dV φ− dHθ.
The key to find θ is to realize dV φ,ν ∧ dvolΣ as a horizontal derivative. Since dHφ = φ,µdx

µ this is
accomplished by

dV φ,ν ∧ dvolΣ = dV dHφ ∧ ι∂νdvolΣ

Hence we set
θ := ηµνφ,µdV φ ∧ ι∂νdvolΣ .

This way we have
dHθ = −ηµν (φ,µνdV φ+ ηµνφ,µdV φ,ν) ∧ dvolΣ ,

which is to be read as the local version of integration by parts.
In conclusion this yields the decomposition

dV L = −
(
ηµνφ,µν +m2φ

)
dV φ ∧ dvolΣ︸ ︷︷ ︸

EL

− dHθ .

Hence for Φ : Σ→ R the φ-component of a section, its equation of motion is the Klein-Gordon equation(
ηµν∂µ∂ν +m2

)
Φ = 0 .
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1.6 Transgression

We review now the integration of the local Lagrangian form data over submanifolds of Σ of codimension k.
This gives

• k = 0 – The action functional, section 1.6.1;

• k = 1 – The covariant phase space, section 1.6.2.

Remark 1.47. In the classical theory this looks somewhat unsystematic, as in one case one is integrating the
Lagrangian form, in the other case one is fiber integrating the form θ appearing in its variational derivative.
That this actually does follow a unified pattern is revealed by the prequantum theory which we turn to below
in section 2.

1.6.1 Action functional

Definition 1.48. Given a smooth bundle E over Σ, write ΓΣ(E) for its space of smooth sections regarded
as a diffeological space.

Then jet prolongation of sections (def. 1.7) followed by evaluation of sections gives a smooth function

evj∞ : Σ× ΓΣ(E)
(id,j∞)−→ Σ× ΓΣ(J∞Σ E)

ev−→ J∞Σ E .

Notice that the space Σ× ΓΣ(E), being a Cartesian product, has a canonical bicomplex structure on its de
Rham complex, coming simply from the de Rham differential along Σ and along ΓΣ(E), separately.

Proposition 1.49 ([Zu87]). Pullback of differential forms along evj∞

(evj∞) : Ω•(J∞Σ E) −→ Ω•(Σ× ΓΣ(E))

constitutes an inclusion of bicomplexes

(evj∞) : Ω•,•(E) ' Ω•,•loc(Σ× ΓΣ(E)) ↪→ Ω•,•(Σ× ΓΣ(E))

from the variational bicomplex, prop. 1.23, into the canonical bicomplex on the Cartesian product,
The image of the inclusion is the called the bicomplex of local differential forms on Σ× ΓΣ(E)

This implies that there is a well defined action functional associated with a horizontal (p+ 1)-form:

Definition 1.50. For compact Σ the action functional is the smooth function

S(−)(−) : Ωp+1
H (E)× ΓΣ(E)

(evj∞)∗

↪→ Ωp+1,0(Σ× ΓΣ(E))× ΓΣ(E)
ev−→ Ωp+1(Σ)

∫
Σ−→ R .

1.6.2 Covariant phase space

Given a local Lagrangian L ∈ Ωp+1
H (E), a choice of θ ∈ Ωp,1(E) from remark 1.44 is called a choice of

presymplectic potential current. Its vertical derivative

ω := dV θ

is called the presymplectic current.
Given the a choice of compact p-dimensional submanifold Σp ↪→ Σ, the diffeological space ΓΣp(E)

equipped with the differential form 2-form∫
Σp

j∞(−)∗(ω) ∈ Ω2(ΓΣp(E))

is the presymplectic off-shell covariant phase space. Its restriction to the shell is the on-shell presymplectic
covariant phase space. A good source is [Zu87].

The quotient of this by the kernel of ω is the reduced symplectic covariant phase space.
Generally

∫
Σp
j∞(−)∗θ won’t pass to this quotient as a globally defined form, but only as a connection

on a principal bundle. This is what we get to in section 2.4.
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1.7 Symmetries and conserved currents

Definition 1.51 ([Marvan86, 3.2]). Given E ∈ PDEΣ, corresponding under theorem 1.13 to a J∞Σ coalgebra
given by a morphism in SmoothMfd/Σ of the form e : E −→ J∞Σ E , its vertical tangent bundle PDE is the
object V E ∈ PDEσ V E ∈ PDEΣ for coalgebra given by the image of e under the vertical tangent bundle
functor:

V e : V E −→ V J∞Σ E ' J∞Σ V E .

An infinitesimal symmetry v on E is a section

V E

��
E

v

@@

in PDEΣ of the canonical projection morphism.

Definition 1.52. Given a globally defined local Lagrangian L ∈ Ωp+1
H (E), def. 1.43, then an infinitesimal

variational symmetry is an infinitesimal symmetry v of E, def. 1.51, hence just a vertical vector field on the
bundle E with its jet extension j∞v, such that there is ∆v ∈ ΩpH(E) with

LvL = dH∆v .

Definition 1.53. Given a globally defined local Lagrangian L ∈ Ωp+1
H (E), def. 1.43, then an on-shell

consered current for its dynamics is a horizontal p-form

J ∈ ΩPH(E)

such that it is horizontally closed when restricted to the shell E
ker(EL(L))

↪→ E:

(dHJ)|E = 0 .

Proposition 1.54 (Noether’s first variational theorem). Given a variational symmetry as in def. 1.52, then

Jv := ιvθ −∆v ∈ ΩpH(E)

with θ from remark 1.44, is an on-shell conserved current, def. 1.53, called a Noether current for v.

Proof. By Cartan’s formula for Lie derivatives on J∞Σ E

LvL = ιvdL+ dιvL︸︷︷︸
=0

,

where the second summand vanishes due to v being vertical and L being horizontal. By remark 1.44 the
first term is

LvL = ιvEL + dHιvθ ,

where we used that the vertical contraction ιv anti-commutes with the horizontal differential dH . In summary
this gives

dH(ιvθ −∆v) = ιvEL .

The claim follows since El|E = 0 by the very definition of E .
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2 Prequantum local Lagrangian Field Theory

We now go beyond the existing literature and set up prequantum local Lagrangian field theory in terms of
higher Euler-Lagrange gerbes over a site of differential operators.

2.1 PDE Homotopy theory

We discuss how the category PDEΣ (theorem 1.13) of partial differential equations on sections of smooth
bundles sits inside a homotopy theory (an ∞-category) PDEΣ(H) that contains complexes of sheaves over
PDEΣ, as well as PDEs on sections of stacky bundles. This is used below in 2.3 to construct Euler-Lagrange
p-gerbes, which constitute globally defined prequantum local Lagrangian field theories. Moreover, considering
such EL p-gerbes on genuinely stacky bundles means to consider such prequantum local Lagrangian theories
with gauge symmetries and higher gauge symmetries-of-symmetries.

(The following definitions and statements are with more detail in [dcct].)

Definition 2.1. Write SmoothCartSp for the category of smooth manifolds of the form Rn, for n ∈ N,
regarded as a site with the standard coverage by open covers. Similarly, write FormalSmoothCartSp for the
site of formal Cartesian spaces. This is the full subcategory

FormalSmoothCartSp ↪→ CAlgop
R

of that of commutative R-algebras on those of the form C∞(Rn)⊗C∞(D), where C∞(Rn) is the algebra of
smooth functions on Rn for any n ∈ N, and where C∞(D) ' R ⊕ V with V nilpotent. We regard this as a

site by taking the coverings to be of the form {Ui×D (φi,id)−→ X×D}, for {Ui
φi−→ X} an ordinary open cover.

We consider now the sheaf toposes and ∞-toposes over these sites (4.2).

Definition 2.2. Write
SmoothSet := Sh(SmoothCartSp)

for the sheaf topos over the site of smooth manifolds from def. 2.1. Write

Smooth∞Grpd := Sh∞(SmoothCartSp)

for the homotopy theory of simplicial sheaves over this site. Similarly, write

FormalSmoothSet := Sh(FormalSmoothCartSp)

and
FormalSmooth∞Grpd := Sh∞(FormalSmoothCartSp)

Proposition 2.3. There is a system of fully faithful inclusions of categories and ∞-categories of spaces as
follows

Set �
� //� _

��

∞Grpd� _

��
SmoothMfd� _

ι

��

� � // SmoothMfd �
� // SmoothSet� _

ι!

��

� � // Smooth∞Grpd� _

ι!

��

=: H<

ι!

��
FormalSmoothMfd �

� // FormalSmoothSet �
� // FormalSmooth∞Grpd =: H

Moreover, the canonical embedding of the category of smooth Cartesian spaces into that of formal smooth
Cartesian spaces is coreflective, i.e. it has a right adjoint (given by forgetting the infinitesimal thickening)

SmoothCartSp
� � ι //oo FormalSmoothCartSp .
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This adjoint pair induces an adjoint quadruple of functors and compatibly of ∞-functors

SmoothSet� _

��

OO

τ0

� � ι! //
oo ι∗� �

ι∗ //
oo

ι!

FormalSmoothSet� _

��

OO

τ0

Smooth∞Grpd

� � ι! //
oo ι∗� �

ι∗ //
oo

ι!

FormalSmooth∞Grpd

.

Definition 2.4. We write
(< a =) := (ι! ◦ ι∗ a ι∗ ◦ ι∗) : H −→ H

for the induced adjoint pair of an ∞-comonad < and ∞-monad = acting on H.

Example 2.5. For X × D ∈ H represented by a formal smooth manifold, then <(X × D) ' X, hence < is
the operation of reduction of infinitesimal thickening. Accordingly, by adjointness, a space of the form =X
is characterized by the property that probing it by any formal smooth manifold is equivalent to probing it
just by the underlying reduced manifold

U × D −→ =X
U −→ X

.

Hence =X may be thought of as obtained from X by “identifying all infinitesimal close points”. From this
perspective the adjunction unit

ηΣ : Σ −→ =Σ

has the interpretation of sending all infinitesimal neighbours of a global point x : ∗ → X to that global point.

Proposition 2.6. For all Σ ∈ H, the =-unit is an epimorphism

ηΣ : Σ // // =Σ .

Proof. We need to check that ηΣ becomes a surjection of sets of connected components of stalk∞-groupoids.
But in fact for any simplicial presheaf representing Σ, ηΣ is already an epimorphism in simplicial degree 0
over all objects in the site FormalSmoothMfd, by example 2.5. This implies the claim.

Corollary 2.7. For all Σ ∈ H, pullback along the =-unit

(ηΣ)∗ : H/=Σ −→ H/Σ

is a conservative functor, def. 4.19.

Proof. By using prop. 2.6 in prop. 4.21.

Definition 2.8. For any Σ ∈ H, write

(T∞Σ a J∞Σ ) := ((ηΣ)∗ ◦ (ηΣ)! a (ηΣ)∗(ηΣ)∗) : H/=Σ −→ H/=Σ

for the adjoint pair of a monad and comonad that is induced, via example 4.15, from the base change adjoint
triple, def. 4.11 along the unit ηΣ of the monad =, def. 2.4.

Proposition 2.9. For Σ ∈ SmoothMfd ↪→ H, the comonad J∞Σ of def. 2.8 restricts to pro-finite dimensional
smooth bundles along the canonical inclusion

SmoothMfd↓Σ ↪→ H/Σ

and coincides there with the jet comonad 1.9 of prop. 1.9.
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Proof. It is straightforward to analyze the action of the left adjoint T∞Σ : (ηΣ)∗ ◦ (ηΣ)!. One finds that this
sends any open U ↪→ Σ to the infinitesimal disk bundle T∞U . By adjunction it follows that the sections
U → J∞E over Σ are equivalently maps T∞U → E over Σ. These pick over each point σ ∈ U ↪→ Σ a
section of E over the infinitesimal neighbourhood Dσ, hence a jet at that point.

By theorem 1.13 this means that the coalgebras of J∞Σ whose underlying objects are in SmoothMfd↓Σ ↪→
H/Σ form the category of partial differential equations with free variables in Σ. In the present context it
makes sense and is convenient to slightly generalize this traditional category by allowing the solution bundles
to these differential equations to be not just smooth manifolds, but formal smooth manifolds.

Proposition 2.10. For every Σ ∈ FormalSmoothSet, there is an equivalence of categories between the
category of coalgebras, def. 4.13 of the jet comonad J∞Σ on formal smooth sets, and the slice category of
formal smooth sets over Σ:

EM(J∞Σ |FormalSmoothSet) ' FormalSmoothSet/=Σ .

Proof. Via prop. 2.6 this follows from comonadic descent, prop. 4.23.

From this we get the following refinement of the classical situation summarized in remark 1.15.

Corollary 2.11. For Σ ∈ SmoothMfd ↪→ FormalSmoothSet, there are canonical inclusions of categories

DiffOpΣ ↪→ PDEΣ ↪→ FormalSmoothSet/=Σ .

Here:

1. PDEΣ is equivalently the preimage under (ηΣ)∗ of the category of pro-finite dimensional smooth bundles
over Σ:

FormalSmoothMfd↓Σ� _

��

oo U

F
// PDEΣ ' ((ηΣ)∗)−1(FormalSmoothMfd↓Σ)� _

��
FormalSmoothSet/Σ

oo (ηΣ)∗

(ηΣ)∗

// FormalSmoothSet/=Σ

2. the total inclusion of the category DiffOpΣ of bundles and differential operators over Σ is equivalently
the full subcategory of FormalSmoothSet/=Σ on the objects in the direct image of the base change along
the counit of the jet comonad

FormalSmoothMfd↓Σ ↪→ FormalSmoothSet/Σ
(ηΣ)∗−→ FormalSmoothSet/=Σ .

Proof. By theorem 1.13, proposition 2.10 and prop. 1.10.

The analog of proposition 2.10 still holds for the full ∞-category

Proposition 2.12. For any Σ ∈ SmoothMfd ↪→ H there is an equivalence of ∞-categories between that of
∞-coalgebras over the jet ∞-comonad over Σ, and the slice over =Σ:

EM(J∞Σ ) ' H/=Σ .

Proof. Via prop. 2.6 this follows from ∞-comonadic descent, prop. 4.23.

Remark 2.13. In view of theorem 1.13 we may think for any Σ ∈ SmoothMfd ↪→ H of an∞-coalgebra over
J∞Σ : HΣ → H/Σ as a higher stacky partial differential equation with variables in Σ. Hence we also write

PDEΣ(H) := EM(J∞Σ ) .
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We connect now the traditional theory of PDEs to that of homotopy PDEs by establishing how the latter
is presented by homotopy colimits of the former.

Lemma 2.14. Let K ∈ FormalSmoothMfd and f : K −→ =Σ a morphism in FormalSmoothSet. Then the
pullback (ηΣ)∗K is still in FormalSmoothMfd ↪→ FormalSmoothSet.

Proof. We may check this on a local chart U of K. For this the pullback is U × Dp+1, where Dp+1 is the
formal disk in Σ.

Definition 2.15. Hence by corollary 2.11 there is a canonical subcategory inclusion

FormalSmoothMfd/=Σ ↪→ PDEΣ .

We consider PDEΣ as equipped with the pre-topology that makes this the inclusion of a dense subsite, hence
we consider a presheaf on PDEΣ to be a sheaf if its restriction along this site inclusion is.

Proposition 2.16. For any Σ ∈ H, a small site of definition for the ∞-topos PDEΣ(H) is given by the
comma-category FormalSmoothCartSp/=Σ equipped with the coverage that regards a collection of morphisms
over =Σ as covering if they are covering in FormalSmoothCartSp after forgetting the maps to =Σ. Similarly
a large site of definition is given by the slice category FormalSmoothSet/=Σ

PDEΣ(H) ' Sh∞(FormalSmoothCartSp/=Σ) ' Sh∞(FormalSmoothSet/=Σ) .

Proof. See the proof in the nLab entry on slice ∞-toposes.

We now have the following homotopy theoretic version of the classical situation in remark 1.15.

Proposition 2.17. We have

HOO

'

Σ∗ // H/ΣOO
'

oo U

F
// PDEΣ(H)

OO

'

Sh∞(FormalSmoothMfd)
(Σ!)

∗'(Σ∗)! // Sh∞(FormalSmoothMfd/Σ)
oo U!

U∗'F!
// Sh∞(PDEΣ)

2.2 Differential cohomology on PDEs

We discuss a canonical lift of ordinary differential cohomology from H to PDEΣ(H). We show that the
classical Euler-Lagrange complex, def. 1.35, is what provides a well-adapted Hodge filtration on constant
real coefficients in this case.

But first recall the standard Poincaré lemma in its stacky incarnation (where DK denotes the Dold-Kan
correspondence, prop. 4.4).

Definition 2.18. Write
[Bp+2R ' Bp+2[R := DK(R[p+ 2]) ∈ H

and
Ω•≤p+2

dR,cl := DK(Ω0 d→ Ω1 d→ · · · → Ωp+2
cl ) ∈ H .

Proposition 2.19 (Poincaré lemma). The canonical inclusion of chain complexes induces an equivalence

Bp+2[R '−→ Ω•≤p+2
dR,cl

in H.

20



Proof. A map of sheaves of chain complexes is such an equivalence if when evaluated on any object in the site,
there is a covering of that object such that when pulled back to any member of the covering, the morphism
becomes a quasi-isomorphism of chain complexes. Here we may cover any manifold by a good open cover
whose elements are diffeomorphic to a Cartesian space Rn, and the traditional statement of the Poincaré
lemma then gives that all closed elements in Ω•≥1

dR (Rn) are exact, hence that the cohomology of Ω•(Rn) is
concentrated in degree 0 on Ω0

dR(Rn)cl ' R, hence that the canonical inclusion of this cohomology group is
a quasi-isomorphism.

The Poincaré lemma, prop. 2.19, induces a filtration on [Bp+2R. In the complex-analytic case this is
called the Hodge filtration, and so we will just call it that here, too.

Definition 2.20. The Hodge filtration induces a morphism

Ωp+2
cl −→ [Bp+2R

in H.

This induces ordinary differential cohomology:

Proposition 2.21. There is a homotopy exact hexagon in Stab(H) of the form

Ω•≤p+1 ddR //

((

Ωp+2
cl

$$
[BpR

&&

88

Bp+1(R/~Z)conn

''

curv

77

[Bp+2R

[Bp+1(R/~Z)
β

//

66

Bp+2Z

::

where the top right morphism is that of def. 2.20.

Proof. The general structure is amplified in [BNV13]; a detailed derivation for this case of ordinary differential
cohomology is in the nLab entry on the Deligne complex.

Next we consider cohomology in PDEΣ(H) with coefficients in objects of H that are canonically lifted
as follows:

Definition 2.22. Write

(−)Σ : H
Σ∗−→ H/Σ

F−→ PDEΣ(H) .

Example 2.23. The object (Ωk)Σ ∈ PDEΣ(H) modulates differential forms on the underlying bundles of
PDEs.

E −→ (Ωk)Σ =
F (Σ∗(Ωk))

Σ!(U(E)) −→ Ωk

Specifically for cofree PDEs this gives the differential forms on the jet bundle:

(Ωk)Σ(E) ' Ωk(J∞(E)) .
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Remark 2.24. From example 2.23 it follows that sending the heaxgon in prop. 2.21 along (−)Σ to
(Bp+1(R/~Z))Σ exhibits ordinary differential cohomology on the underlying bundles of PDEs , in partic-
ular on the jet bundles of cofree PDEs.

However, below in sections 2.3 and 2.5 we are interested in differential cocycles on jet bundles only via
all their pullbacks along sections. By def. 1.21 and prop. 1.22 is is precisely only the horizontal component
of differential forms which matters under these pullbacks.

This means that the standard Hodge filtration, under prolongation to PDEs, produces differential cocycles
with redundant information.

We now observe that after prolonging to PDEs, there is a different Hodge filtration which accurately
picks the non-redundant horizontal components.

Definition 2.25. By proposition 1.37, the functorial construction of Euler-Lagrange complexes, def. 1.35
constitutes a presheaf of chain complexes on DiffOpΣ

E 7→ DK[Ω0
H(J∞E)

dH−→ Ω1
H(J∞E)

dH−→ · · · dH−→ Ωp+1
H (J∞E)

δV−→ Ωp+1,1
S (J∞E)cl] .

When regarded in degrees 0 to p+ 2 we denote this by

Ω•≤p+2
ELΣ,cl ∈ PSh(DiffOpΣ,Ch•)

DK−→ PSh∞(DiffOpΣ)
i!−→ Sh∞(PDEΣ) .

Proposition 2.26 (variational Poincaré lemma). There is an equivalence

(Bp+2[R)Σ ' Ω•≤p+2
ELΣ,cl

in PDEΣ(H<) between the constant R-coefficients in degree (p + 2) prolonged to homotopy PDEs via def.
2.22), and the Euler-Lagrange complex according to def. 2.25. .

Proof. By prop.2.19 we may equivalently show that

(Ω•≤p+2
dR,cl )Σ ' Ω•≤p+2

ELΣ,cl .

Then by prop. 2.17 it is sufficient to show that

U∗((Σ!)
∗(Ω•≤p+2

dR,cl )) ' Ω•≤p+2
ELΣ,cl

in Sh∞(PDEΣ). There is an implicit ∞-sheafification in these expressions, by definition, but since the
precomposition maps (Σ!)

∗ ' (Σ∗)! and U∗ ' F! come from left Quillen functors given by corollary 4.6, they
commute with the left Bousfield localization that presents this ∞-sheafification. Therefore it is sufficient
that we prove this equivalence already at the level of ∞-presheaves.

Now by adjunction, the presheaf on the left evaluates on a representable F(E) as follows:

Hom(F(E),U∗((Σ!)
∗(Ω•≤p+2

dR,cl ))) ' Hom(U(F(E)), (Σ!)
∗(Ω•≤p+2

dR,cl ))

' Hom(Σ!(U(F(E))),Ω•≤p+2
dR,cl )

' Hom(J∞Σ E,Ω•≤p+2
dR,cl )

' Ω•≤p+2
dR,cl (J∞Σ E)

With this we may reduce to classical statements about the variational bicomplex: Prop. 1.17 says that the
functoriality of the above assignment is the same as that in prop. 1.37, hence the claim is now given by
theorem 1.39.

Definition 2.27. The resolution in prop. 2.26 induces a morphism

Ωp+1,1
S,cl −→ ([Bp+2R)Σ .
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We consider the homotopy pullback of that morphism along the morphism ([Bp+2Z)Σ → ([Bp+2R)Σ

from coefficients for integral cohomology to coefficients for real cohomology.

Definition 2.28. For p+ 1 ∈ N write

Bp+1
H (R/Z)conn ∈ Sh∞(DiffOpΣ)

i!−→ Sh∞(PDEΣ) ' PDEΣ(H)

for the ∞-stack which is the image under the Dold-Kan correspondence DK, prop. 4.4, of the left Kan
extension, def. 4.9, along the inclusion i : DiffOpΣ ↪→ PDEΣ (remark 1.15) of the Euler-Lagrane complex of
def. 2.25, directly truncated after the horizontal p+ 1-form and with a copy of Z injected into the horizontal
0-forms:

Bp+1
H (R/Z)conn ' DK[Z 2π~

↪→ Ω0
H

dH−→ Ω1
H

dH−→ · · · dH−→ Ωp+1
H ] .

Theorem 2.29. In Stab(PDEΣ(H<)) there is an exact hexagon of the form

Ω•≤p+1
H

δV //

&& &&

Ωp+1,1
S,cl

""
([Bp+1R)Σ

::

%%

Bp+1
H (R/~Z)conn

curv
::

$$

([Bp+1R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

88

(Bp+2Z)Σ

<<

where the top right morphism is that of def. 2.27.

Proof. In view of the variational Poincaré lemma, prop. 2.26, we obtain this hexagon in Stab(Sh∞(DiffOpΣ))
from the Euler-Lagrange complex in direct analogy to the corresponding hexagon for the ordinary Deligne
complex, prop. 2.21. Sending it by the Yoneda extension Sh∞(DiffOpΣ) → PDEΣ(H) preserves the homo-
topy pushouts, hence, by stability, the full homotopy exactness.

We may also characterize this choice of differential refinement more abstractly, not presupposing that we
already know about the Euler-Lagrange complex:

Proposition 2.30. The morphism
Ω•≤p+1
V −→ (Ω•≤p+1)Σ

is universally characterized by the fact that for every E ∈ SmoothMfd/Σ and every section φ : Σ→ E there
is a homotopy fiber sequence of the form

Ω•≤p+1
V (E) −→ (Ω•≤p+1

Σ (E) ' Ω•≤p+1(J∞E))
φ∗−→ Ω•≤p+1(Σ) .

Proof. First observe that the map on the right is degreewise a surjection (since φ is a section, the pullback of
a form on Σ to the jet bundle along the canonical projection is a preimage of the form under φ∗). Therefore
the homotopy fiber is presented by the 1-categorical fiber. To see that this is precisely the vertical forms use
prop. 1.49.

Remark 2.31. By the universal property of homotopy fibers, the exactness of the right square in the
hexagon in prop. 2.29 means in particular that the curving of the Euler-Lagrange p-gerbe is precisely the
obstruction to it being flat, in that the dashed morphism in the following diagram

([Bp+1(R/~Z))Σ

��
E

L //

Lflat

99

Bp+1
H (R/~Z)conn

curv // Ωp+1
S
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exists, and then uniquely so up to a contractible space of choices of equivalences, precisely if the horizontal
composite is zero.

Proposition 2.32. There are equivalences

PDEΣ(H)(Σ,Bp+1
H (R/~Z)conn)

'−→ PDEΣ(H)(Σ, ([Bp+1(R/~Z))Σ)
'−→ H(Σ, [Bp+1(R/~Z)) .

Proof. The first equivalence is obtained via remark 2.31 from the fact that every morphism Σ → Ωp+1,1
S is

zero. The second equivalence is the combined hom-equivalence of the adjunctions (U a F ) and (Σ! a Σ∗) in
view of def. 2.22.

We have a canonical comparison map between ordinary differential cohomology, prop. 2.21, prolonged
to PDEs, and the Euler-Lagrange differential cohomology of prop. 2.29:

Definition 2.33. By example 2.23, projection of differential forms on jet bundles to the horizontal and
their source form part, which is natural over DiffOpΣ by prop. 1.37, constitutes projection operations that
intertwine the de Rham differential with the variational Euler differential:

(Ω•≤p+1)Σ

����

(ddR)Σ // (Ωp+2
cl )

����
Ω•≤p+1
H

δV // Ωp+1,1
S

.

Via the universal properties of the exactness of the hexagons in prop. 2.21 and prop. 2.29 this induces a
projection of differential cohomology coefficients,

(Ω•≤p+1)Σ
ddR //

** **

{{ %%

(Ωp+2
cl )Σ

)) ))

##

Ω•≤p+1
H

δV //

%%

Ωp+1,1
S

""

([Bp+1R)Σ

##

(Bp+1(R/~Z)conn)Σ

curv

99

%%

H
** **

([Bp+2R)Σ

([Bp+1R)Σ

99

%%

Bp+1
H (R/~Z)conn

curv

;;

$$

([Bp+1R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

;;

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

<<

which we denote
H : (Bp+1(R/~Z)conn)Σ −→ Bp+1(R/~Z)conn .

2.3 Prequantum Lagrangians and Equations of motion

The following is the prequantum analog of def. 1.43.

Definition 2.34. Given E ∈ H/Σ then
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1. a pre-quantum local Lagrangian on E is a morphism in Sh∞(DiffOpΣ) of the form

L : E −→ Bp+1
H (R/Z)conn ,

2. the Euler-Lagrange form of such L is the curvature

EL := δV L : E
L−→ Bp+1

H (R/Z)conn
δV−→ Ωp+1,1

S .

3. the Euler-Lagrange equations of L is the homotopy fiber of EL

E := fib(EL) .

Remark 2.35 (terminology). We also say that the pair (E,L) is (or defines) a prequantum field theory.
Given a source form EL : E −→ Ωp+1

S we also say that a prequantum Lagrangian L : E → Bp+1
H (R/~Z)conn

is a prequantization of EL if δV L ' EL, i.e. if L is a lift of EL through the curvature map:

Bp+1
H (R/~Z)conn

curv

��
E

L

99

EL
// Ωp+1

H

Proposition 2.36. For ω ∈ Ωp+1,1
S (E) a source form, then the partial differential equation E induced

by it via def. 1.40 is equivalently the kernel in PDEΣ(H) ' Sh∞(PDEΣ) of the representing morphism
ω : E −→ Ωp+1,1

S :

E

ker(ω)

��
E

ω // Ωp+1,1
S

Proof. Since this is a statement about a limit of 0-truncated objects in PDEΣ(H) ' Sh∞(PDEΣ), we may
consider the question equivalently in the sheaf 1-topos Sh(PDEΣ). Now unwinding the definitions, one sees
that for a representable F ∈ PDEΣ to map through the kernel of ω is equivalent to it mapping through the
equalizer of the differential operator ω̃ that corresponds to it under the isomorphism in prop. 1.27 with the
0-morphism, as in prop. 1.41:

F

i

��

0=i∗ω

""
E

ω
// Ωp+1,1

S

'

F

i

��

i∗0̃=i∗ω̃

''
E

0̃ //

ω̃
// ∧p+1T ∗Σ×Σ V

∗E

But since these equalized morphisms are morphism in the site PDEΣ, and since the Yoneda embedding
PDEΣ ↪→ Sh(PDEΣ) preserves limits, we may compute the fiber equivalently in PDEΣ as this equalizer.
With this the statement is given by prop. 1.41.

2.4 Prequantum covariant phase space

We discuss the prequantum version of of the (pre-)symplectic covariant phase space from section 1.6.2.

Since the covariant phase space consists of fields in codimension-1, hence on p-dimensional submanifolds
Σp ↪→ Σ, we produce yet another Hodge filtration of ([Bp+2R)Σ, now the one which has minimal kernel
when pulled back along sections in dimension p.
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Definition 2.37. The Lepage complex is the chain complex (of presheaves on DiffOpΣ)

Ω•L :=



· · · dH //

dV

''

Ωp−1
H

dV

((

dH //

⊕

Ωp
H

dV

''

dH //

⊕

Ωp+1
H

dV

((

⊕
coim(I(dV ⊕dH ))

· · ·
dH

// Ωp−2,1
ker(dV ) dH

// Ωp−1,1
ker(dV ) dH

// Ωp,1

dH

//

dV
''

Ωp+1,1
S,ker(δV )

⊕

Ωp,2
cl,ker(dV )


,

which is the total complex of the “2-term outer rim” of the augmented variational bicomplex, prop. 1.36.

This constitutes yet another Hodge filtration for ([Bp+2R)Σ and further factors the projection in def.
2.33

(Ω•≤p+1)Σ

����

(ddR)Σ // (Ωp+2
cl )Σ

����
Ω•≤p+1
L

//

����

Ωp+1,1
S,ker(δV ) ⊕Ωp,2

ker(dV )

����
Ω•≤p+1
H

δV // Ωp+1,1
S,ker(δV )

.

Accordingly, induced from this is the corresponding differential coefficients Bp+1
L (R/~Z)conn in direct

analogy to the big diagram in def. 2.33.
Given a globally defined local Lagrangian

L : E −→ Ω•≤p+1
H

then a lift of this through the Lepage complex such that the curvatures commute

Ω•≤p+1
L

//

����

Ωp+1,1
S,ker(δV ) ⊕Ωp,2

ker(dV )

����
E

L //

L+θ
<<

Ω•≤p+1
H

δV // Ωp+1,1
S,ker(δV )

.

is a choice of θ in dL = EL + dHθ (remark 1.44). Indeed, the lifted curvature coefficients are precisely so as
to ask for a Lepage form for L of vertical degree ≤ 2.

Now by the yoga of the big diagram in def. 2.33 this gives us the right “Lepage gerbes” as lifts

Bp+1
L (R/~Z)conn

����
E

L //

Θ

99

Bp+1
H (R/~Z)conn

Pulling these Lepage gerbes back along sections on a codimension-1 Cauchy surface Σp ↪→ Σ (which
makes the contribution of L disappear and retains only the contribution of θ) is precisely a prequantization
for the canonical symplectic structure on the covariant phase space (even off-shell).
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Definition 2.38. Given a morphism f : X −→ Y in H, we say that the formal normal bundle N∞Y X ∈ H/Y

of X in Y is the formal étalification of f , hence the homotopy pullback in

N∞Y X

(pb)etf

��

// =X

=f
��

Y // =Y

Proposition 2.39. Jet bundles are preserved by pullback along inclusions of formal normal bundles, def.
2.38, i.e. for f : X → Y a morphism and E ∈ H/Y a bundle, then

(etf)∗J∞Y E ' J∞X f∗E .

Proof. The homotopy pullback in def. 2.38 induces a square of base change operations

H/N∞Y XOO

(etf)∗(etf)∗

��

oo
(η=N∞

Y
X)∗

(η=N∞
Y
X)∗

// H/=N∞Y XOO

(=etf)∗(=etf)∗

��
H/Y

oo (η=Y )∗

(η=Y )∗

// H/=Y

.

By Beck-Chevalley this implies that

(=etf)∗(η=Y )∗ ' (η=N∞Y X)∗(etf)∗ .

Using this we find
(etf)∗J∞Y E := (etf)∗(η=Y )∗(η=Y )∗E

' (η=N∞Y X)∗(=etf)∗(η=Y )∗E

' (η=N∞Y X)∗(η=N∞Y X)∗(etf)∗E

=: J∞Y (etf)∗E .

Definition 2.40. Given a Lepage p-gerbe Θ : E −→ Bp+1
L (R/~Z)conn, then given a codimension-1 subman-

ifold Σp ↪→ Σ of spacetime/worldvolume, the corresponding covariant phase space is the transgression∫
Σp

[N∞Σ Σp,Θ] : [N∞Σ Σp, E ] −→ B(R/~Z)conn .

2.5 Globally defined local action functionals

Assume here that Σ is a closed (p+ 1)-dimensional smooth manifold.

Proposition 2.41. The connected components of the hom-space from Σ into the (p + 1)-fold delooping of
the discrete circle group is isomorphic to that same discrete circle group

τ0H<(Σ, [Bp+1(R/~Z)) ' [R/~Z .
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Moreover, under this identification and the Poincaré lemma, prop. 2.19, the 0-truncation map coincides with
(p+ 1)-volume holonomy of p-gerbes on Σ:

H<(Σ, [Bp+1(R/~Z))

π0

))
'

��

[(R/~Z)

H<(Σ,Bp+1(R/~Z)conn)

∫
Σ

55

Definition 2.42. Given a prequantum local Lagrangian L : E −→ Bp+1
Σ (R/~Z)conn (def. 2.34), and given

a section φ : Σ −→ E, then the action function induced by L at φ is

exp( i~SL(−)) : ΓΣ(E)
' // PDEΣ(H)(Σ, E)

(−)∗L // PDEΣ(H)(Σ,Bp+1
H (R/~Z)conn)

' // H<(Σ, [Bp+1(R/~Z))
π0 // [(R/~Z) ,

where the first equivalence is as in example 1.16, the second equivalence is from prop. 2.32, and the last
map is from prop. 2.41.

A smooth function
ΓΣ(E) −→ R/~Z

(on the diffeological space of smooth sections, def. 1.48) is called a (globally defined) local action functional
if its restriction to points (forgetting the smooth structure) arises from a prequantum Lagrangian in this
fashion.

2.6 Sigma-models

Definition 2.43. A prequantum field theory, def. 2.34, L : E → Bp+1
H (R/~Z), is a sigma model if E is in

the image of (−)Σ : H −→ PDEΣ(H), def. 2.22, for some X ∈ H. In this case X is called the target space
of the sigma model.

Remark 2.44. By adjointness, field configurations of sigma-models are equivalently maps from Σ to X:

Σ −→ (X)Σ = F (Σ∗(X))
Σ ' U(Σ) −→ Σ∗(X)

Σ ' Σ!Σ −→ X

As such, sigma-models may be thought of as describing the dynamics of trajectories of shape Σ in X. In
practice this arises in two guises:

1. Σ models spacetime and X is a moduli space of certain scalar fields on Σ.

2. X models spacetime and Σ models the worldvolume of a p-brane propagating in X.

Definition 2.45. A WZW-type Lagrangian LWZW for a sigma-model, def. 2.43, with target space X is a
prequantum Lagrangian, def. 2.34, which is the image under

H/Bp+1(R/~Z)conn

(−)Σ−→ H/(Bp+1(R/~Z)conn)Σ

H!−→ (PDEΣ(H))/Bp+1(R/~Z)conn
,

(where the first morphism is def. 2.22, the second is postcomposition with the projection from def. 2.33), of

some principal connection X
∇−→ Bp+1(R/~Z)conn:
Σ×X

LWZW

��
Bp+1
H (R/~Z)conn

 = H! ◦ F ◦ Σ∗


X

∇
��

Bp+1(R/~Z)conn

 .
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2.7 Lie n-algebras of higher Noether currents

We discuss here how the ∞-group (higher group stack) of symmetries of a prequantum local Lagrangian
L as in def. 2.34 forms a higher extension of the group of symmetries of its Euler-Lagrange equations of
motion, and how after restricting attention to infinitesimal symmetries and after truncating away the higher
homotopy information, this reproduces the classical sharp Noether theorem from section ??.

The observation that is at the heart of the relation between the classical form of Noether’s theorem, prop.
1.54, and symmetries of Euler-Lagrange gerbes is this:

Remark 2.46. Let L := L : E −→ Ωp+1
H be a globally defined local Lagrangian, regarded as a prequantum

local Lagrangian, def. 2.34. Then the datum of a diagram in PDEΣ(H) of the form

E

L &&

φ // E

Lxx
Bp+1
H (R/~Z)conn

αrz

is equivalent to a pair (φ, α) ∈ DiffΣ(J∞Σ E)× ΩpH(E)) such that

φ∗L− L = dα .

Now given a smooth 1-parameter trajectory of such, t 7→ (φt, αt)

E

L &&

φt // E

Lxx
Bp+1
H (R/~Z)conn

αtrz

then the derivative at t = 0, being a pair
(v,∆v)

consisting of an infinitesimal off-shell symmetry v and a horizontal p-form ∆v, is a variational symmetry,
def. 1.54

LvL = dH∆v

with on shell conserved Noether current Jv := ιvθ −∆v, prop. 1.54.

Now we discuss how to promote this local analysis to a global and homotopy theoretic statement (...).
Given

L : E −→ Bp+1
H (R/Z)conn ,

the ∞-group of conserved currents is the differentially concretification of the ∞-group of auto-equivalence
of L over Bp+1(R/Z)conn,H . In the notation of [FRS13a] this is

Cur(L) := QuantMorph(L) .

Remark 2.47. A single element of this ∞-group is a diagram in Sh∞(DiffOpΣ) of the form

E

L &&

' // E

Lxx
Bp+1
H (R/~Z)conn

'rz
.

29



Proposition 2.48. Given a prequantized locally variational theory as above, then there is a homotopy fiber
sequence of the form

Bp
H(R/~Z)flat(E) −→ Cur(L) −→ Aut(E)

Proof. By the main lemma in [FRS13a].

Example 2.49. If here E is an ordinary bundle in the category of smooth manifolds over Σ (instead of a
more stacky bundle involving gauge symmetries)

E ∈ DiffOp/Σ

then
Bp
H(R/Z)flat(E) ' DK[Z ↪→ Ω0

H(E)
dH→ · · · dH→ ΩpH(E)cl]

(Notice that in degree 0 we now have the horizontally closed forms.) In particular in cohomology this is

Hp(E,U(1)) .

If we do remember the smooth structure then we obtain Hp(E,U(1)) as an abelian Lie group, with its
smooth structure induced from that of U(1). The Lie algebra of that is Hp(E,R) ' Hp

dR(E). Hence in that
case that above homotopy fiber sequence gives an exact sequence

Hp
dR(E) −→ Lie(Cur(E)) −→ Vect(E) .

For the special case of point symmetries of fields theories of WZW type, this was discussed in [SaSc15]
in terms of gerbes on target spacetime. We now turn to discussion of these WZW models.

3 Application to field theories of higher WZW type

We consider here the prequantum field theory of the Wess-Zumino-Witten (WZW) model and its higher
dimensional and parameterized analogs.

Fully generally, WZW-type models may be taken to be sigma-model field theories, def. 2.43, whose
prequantum Lagrangian has a summand that is induced via a p-gerbe on target spacetime as in def. 2.45.

For instance target space X may be a smooth manifold that is equipped with a closed differential (p+2)-
form ω ∈ Ωp+2(X), such that one summand in the Lagrangian, called the WZW term LWZW, is locally
the horizontal projection of the pullback of local form potentials for ω. Globally this means that there is a
(R/~)-p-gerbe on X with curvature ω, and that LWZW is the Euler-Lagrange p-gerbe induced by that.

Phrased in this generality, then for instance the Lorentz force coupling for an electron (hence p = 1)
propagating in a spacetime X with Faraday tensor 2-form ω is a WZW-term. Conversely, WZW terms are
generalizations of the Lorentz-force electromagnetic coupling term.

The original WZW model describes a string (hence p = 2) propagating on a compact simple Lie group
X = G, and coupled to a higher gauge field (often called the Kalb-Ramond B-field) given by the “higher
Faraday tensor” 3-form ω := µ3(Θ ∧Θ ∧Θ) which is the canonical Lie algebra 3-cocycle, µ3 left-invariantly
extended to a 3-form on G.

Due to the high symmetry of the group manifold G this model enjoys special properties, and when
speaking more specifically one may want to mean by field theories of WZW type those that share some of
these properties.

These would first of all be (p + 1)-dimensional sigma models with target space a group manifold and ω
coming from a Lie algebra (p+ 2)-cocycle. Examples for this are the Green-Schwarz type sigma models that
describe the propagation of super-p-branes on super-Minkowski spacetimes, regarded as super-translation
groups.

In between the fully general notion of WZW terms and those coming specifically from cocycles on Lie
groups G are the parameterized higher WZW models [Sc15]. For these target space is a manifold X that
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is locally (tangent-space-wise) modeled on G (a Cartan geometry) and equipped with a form ω ∈ Ωp+2(X)
that on each tangent space is equivalent to the given cocycle. Examples for this are the Green-Schwarz type
sigma-models that describe the propagation of super-p-branes on curved super-spacetimes that are solutions
to the Einstein equations of suitable supergravity theories.

Finally, one may consider all this in higher differential geometry and allow X to be a higher étale stack
which is locally modeled on a higher group stack G that is equipped with a (p+2)-cocycle on its L∞-algebra.
Examples for this are the Green-Schwarz type sigma-models for those super p-branes that have higher gauge
fields on their worldvolume, the super-D-branes and the M5-brane [FSS13b][FSS13b].

3.1 The setup

The Lie group G carries a canonical g-valued 1-form, with g is the Lie algebra of G, the Maurer-Cartan form
Θ ∈ Ω1(G, g) = Ω1(G) ⊗ g. The Maurer-Cartan form is determined by the requirement of being invariant

with respect to the left-multiplication action of G on itself, with Θ(e) : TeG
∼=→ g, where we identify the Lie

algebra g ∼= TeG with the tangent space at the identity element e ∈ G. The Maurer-Cartan form satisfies
theMaurer-Cartan equation, the differential identity dΘ = − 1

2 [Θ ∧Θ].
Let us extend the wedge product to g-valued forms according to the rule (α⊗S)∧(β⊗T ) = α∧β⊗(T⊗T ).

We also extend the commutator and Killing bilinear maps [−] : g ⊗ g → g, 〈−〉 : g ⊗ g → R to g⊗2-valued
forms using the identities [α ⊗ (S ⊗ T )] = α ⊗ [S, T ] and 〈α ⊗ (S ⊗ T )〉 = α〈S, T 〉. Specializing to forms
on J∞E, we extend the horizontal Hodge-∗ and the differentials dH , dV to g-valued forms on J∞F in the
obvious ways, ∗(α ⊗ T ) = (∗α) ⊗ T , dH(α ⊗ T ) = (dHα) ⊗ T and dV (α ⊗ T ) = (dV α) ⊗ T . [XXX: say
something about abelian factors like U(1) or R?]

Consider then a degree-(p + 2) cocycle µ : g⊗(p+2) → R on the Lie algebra g, equivalently a closed left-
invariant form µ(Θ∧(p+2)) ∈ Ωp+2

cl (G). The interest is of course in cohomologically non-trivial such cocycles,
i.e., such that µ(Θ∧(p+2)) is not globally the differential of a left-invariant (p + 1)-form. While all of the
following also holds true for cohomologically trivial cocycles, the crux is not to restrict the discussion to that
case.

Definition 3.1. Let then Σ be a smooth manifold of dimension (p+ 1) and consider the field bundle

E := G× Σ −→ Σ

so that fields are equivalently smooth G-valued functions on Σ. Write

π : J∞(G× Σ) −→ G× Σ −→ G

for the composite of the jet bundle projection followed by the projection onto the field fiber.

Definition 3.2. Write

Θ∞ := π∗Θ ∈ Ω1(J∞(G× Σ), g)

µ∞ := π∗µ(Θ∧(p+2)) ∈ Ωp+2(J∞(G× Σ))

for the pullback of the Maurer-Cartan form and of the cocycle along the projection π from definition 3.1.
These forms decompose into horizontal and vertical summands according to prop. 1.23, and for the decom-
positon of the Maurer-Cartan form we write

Θ∞ = ΘH + ΘV .

Since by assumption on the dimension of Σ all horizontal (p+ 2)-forms on J∞(G×Σ) vanish, the form µ∞

decomposes as
µ∞ = 〈ΘV ∧ µ̃H〉+ µV

where µ̃H ∈ ΩnH(G×Σ, g) is a g-valued horizontal (p+ 1)-form, uniquely defined by this decomposition, and
γV is of vertical degree ≥ 2.
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Remark 3.3. The form 〈ΘV ∧ µ̃H〉 is an order-0 vertical degree-1 (p+ 2)-form according to def. 1.29,

Remark 3.4. Since Hk(J∞E) ∼= Hk(E) ∼= Hk(Σ × G) and pull back intertwines the relevant de Rham
differentials, µ∞ represents a non-trivial cohomology class in Hp+2(J∞E) whenever µ is cohomologically
nontrivial.

Example 3.5. When Σ = R with canonical coordinate function denoted σ and G = R with canonical
coordinate function denoted u, so that J∞(G× Σ) has the canonical coordinates {σ, u, uσ, uσσ, · · · } then

Θ = du

and
Θ∞ = du = uσdσ︸ ︷︷ ︸

ΘH

+ dV u︸︷︷︸
ΘV

.

Example 3.6. When dim Σ = 2 (hence p = 1) and µ = 〈−, [−,−]〉 is the Cartan 3-cocycle, the pullback of
the corresponding Cartan 3-form µ(Θ∧(p+2)) = 〈Θ ∧ [Θ ∧Θ]〉 decomposes as

µ∞ = 〈[ΘH ∧ΘH ] ∧ΘV 〉+ 〈[ΘV ∧ΘV ] ∧ΘH〉+ 〈[ΘV ∧ΘV ] ∧ΘV 〉 . (26)

(This uses that 〈−∧ [−∧−]〉 is cyclically invariant in its three arguments.) Hence here the µ̃H from definition
3.2 is

µ̃H = [ΘH ∧ΘH ] .

In particular the Maurer-Cartan equation

dΘ + [Θ ∧Θ] = 0

decomposes into the equations
dV ΘH = −dHΘV − 2[ΘV ∧ΘH ]

and
dV ΘV = −[ΘV ∧ΘV ]

and
dHΘH = −[ΘH ∧ΘH ]

Definition 3.7. Given G and 〈−,−〉, then the Polyakov kinetic Lagrangian for the (p + 1)-dimensional
sigma-model with target G is the local Lagrangian, def. 1.43, given by

Lkin := − 1
2 〈ΘH ∧ ∗ΘH〉 ∈ Ωp+1

H (J∞(G× Σ)) .

Proposition 3.8. The Euler-Lagrange operator, def. 1.43, of the Polyakov kinetic Lagrangian, def. 3.7, is

Ekin = 〈ΘV ∧ dH∗ΘH〉 .

Proof. Since, by example 3.6, the Maurer-Cartan equation in mixed vertical/horizontal degree says that

dV ΘH = −dHΘV − 2[ΘV ∧ΘH ]

and since dV and ΘV ∧ (−) graded-commute with the horizontal Hodge operator we get

dV 〈ΘH ∧ ∗ΘH〉 = 〈dV ΘH ∧ ∗ΘH〉+ (−1)p〈ΘH ∧ ∗dV ΘH〉
= −2〈dHΘV ∧ ∗ΘH〉+−〈[ΘV ,ΘH ] ∧ ∗ΘH〉 − (−1)p〈ΘH ∧ ∗[ΘV ,ΘH ]〉︸ ︷︷ ︸

=0

= −2 (〈ΘV ∧ dH∗ΘH〉+ dH〈ΘV ∧ ∗ΘH〉) ,

.

where in the second step we use the symmetry and the ad-invariance of 〈−,−〉.
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3.2 The Lepage form

The Lepage curvature is

〈[ΘH ∧ΘH ] ∧ΘV 〉︸ ︷︷ ︸
∈Ω2,1

S

+ 〈ΘH ∧ [ΘV ∧ΘV ]〉︸ ︷︷ ︸
∈Ω1,2

Let Σ = S1 × R.
Hence the (pre-)symplectic 2-form on [S1,Σ×G]Σ = LG is

ω =

∫
S1

〈ΘH ∧ [ΘV ∧ΘV ]〉

=

∫
S1

〈ΘV ∧ [ΘV ∧ΘH ]〉

− 1
2

∫
S1

〈ΘV ∧ dV ΘH〉 − 1
2

∫
S1

〈ΘV ∧ dHΘV 〉

=

3.3 The model restricted to small field configurations

We may consider all constructions in 3.1 restricted to any contractible open subset U ↪→ G. The field bundle
U × Σ −→ Σ then parameterizes fields of the WZW model the variation of whose values is constrained not
to be too large. While we must not be content with this restriction, for discussion of the general case it is
useful to consider this case first.

Since U is assumed contractible, by the Poincaré lemma we may choose B ∈ Ωp+1(U) a differential form
such that

dB = µ(Θ∧(p+2))|U = µ(Θ∧(p+2)|U ) .

Not to overburden the notation, for the remainder of this subsection we will leave the restriction of Θ and
µ to U notationally implicit.

Analogous to def. 3.2, write
B∞ := π∗B

for the pullback of B to the jet bundle, and consider there its decomposition into horizontal and vertical
summands

B∞ = BH +BV .

Since the first summand here is a horizontal (p + 1)-form, it may serve as a local Lagrangian according to
def. 1.43. To indicate this usage, we write

Ltop := BH .

Proposition 3.9. The Euler-Lagrange operator, def. 1.43, of Ltop = BH is

Etop = 〈ΘV ∧ µ̃H〉

(where the form on the right is from def. 3.2)

Proof. Notice that dHBH = 0 for dimensional reasons and write BV = −B1
V + B≥2

V for the decomposition
of BV into vertical degrees. Unwinding the definitions, we get

dVBH = dBH

= dBH + dBV︸ ︷︷ ︸
µ∞

−dBV

= 〈µ̃H ∧ΘV 〉+ µV − dHBV − dVBV
= 〈µ̃H ∧ΘV 〉+ dH(B1

V ) + µV − dHB≥2
V − dVBV︸ ︷︷ ︸

=0
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where the first equality is due to Σ being (p+1)-dimensional. In the last line we use that dVBH is of vertical
degree 1, while the terms over the braces are all terms of vertical degree greater than 1. The vanishing of
the latter terms essentially gives us the explicit formula for µV in terms of BV .

Remark 3.10. While Ltop = BH is only defined locally on U , the form of the Euler-Lagrange form Etop

from prop. 3.9 makes sense globally.

3.4 The variational analysis

We now consider the classical higher dimensional WZW models with fields varying over all of G, defined by
their equations of motion, via remark 3.10.

Definition 3.11. Given a Lie group G equipped with ad-invariant metric 〈−,−〉 and with a (p+ 2)-cocycle
µ, then the classical WZW model defined by this data is the equations of motion defined over any smooth
(p+ 1)-manifold Σ on the jet bundle J∞(Σ×G) by the order-0 vertical (p+ 2)-form E ∈ Ωp+2

V (Σ×G) which
is the sum of the kinetic Euler-Lagrange operator of prop. 3.8 with the topological EL operator of the form
as in prop. 3.9:

E = Ekin −Etop, (27)

where Ekin = 〈ΘV ∧ dH∗ΘH〉, (28)

Etop = 〈ΘV ∧ µ̃H〉. (29)

Proposition 3.12. Both terms are at least locally variational, def. 1.45, in that there exist vertical (p+ 2)-
forms ωkin, ωtop ∈ Ωp+2

V (E) of vertical degree ≥ 2 such that d(Ekin + ωkin) = 0 and d(Etop + ωtop) = 0.

Proof. The kinetic term is actually globally variational, since by prop. 3.8 it comes from the globally defined
local Lagrangian Lkin = − 1

2 〈ΘH∧∗ΘH〉, or equivalently d(Lkin+θkin) = Ekin+ωkin, where θkin = 〈ΘV ∧∗ΘH〉
and ωkin = 〈[ΘV ∧ΘV ] ∧ ∗ΘH〉 (XXX: prefactor of 2?).

Local variationality of the topological term follows from prop. 3.9. It is exhibited by setting ωtop = µV
(from def. 3.2) and noting that Etop + ωtop = µ∞, which is closed on J∞E.

Example 3.13. For the case of the 2d WZW model from example 3.6 we get (using the horizontal Maurer-
Cartan equation from example 3.6)

E = 〈ΘV ∧ (dH ∗ΘH + [ΘH ∧ΘH ])〉
= 〈ΘV ∧ (dH ∗ΘH − dHΘH)〉

.

Hence the equation of motion is
dH ∗ΘH − dHΘH

hence in terms of the canonical coordinates {x, t} on Σ = S1 × R

∂xg
−1∂xg − ∂tg−1∂tg − ∂tg−1∂xg + ∂xg

−1∂tg = ∂x−t(g
−1∂x+tg)

Proposition 3.14. We claim that Lagrangian of the 2d WZW model is invariant under transformations by
the loop group.

Proof. For let γ be a generator for an evolutionary vector field. Then because

Lγev
ΘH = ... = dHγ − 2[ΘH ∧ γ]

we have
Lγev

(Lkin + Ltop) = 〈ΘH ∧ (?± id)dHγ〉 .
Notice that

1
2 (id± ∗)

is the projector on dx±dt. So if we specify γ on any spatial slice S1 ↪→ S1×R then it has a unique extension
over S1 × R satisfying (?± id)dHγ = 0, and by the above this is a symmetry of the Lagrangian.
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Now, we establish that the generalized WZW model satisfies the hypotheses needed for the application
of Proposition ?? and Theorem ??.

Proposition 3.15. When (M,h) is a globally hyperbolic manifold, the WZW model of def. 3.11 is a
regular non-gauge theory (Definition ??) that is topologically neutral (Definition ??) and Noether consistent
(Definition ??).

Proof. These are all well known facts, often even taken for granted. Hence we only sketch the main arguments.
The key technical observation about the equations of motion E[φ] = 0 (Equation (27)) of WZW theory is
that they constitute a non-linear wave equation [Ga02, Sec.3.1]. More precisely, it is a quasi-linear (the
highest derivatives appear linearly, with coefficients that may depend on lower order derivatives), second
order, hyperbolic equation of the wave map type (see [Mi78, ChBr87], also the more recent [Ta04] and the
references there in). The kinetic Lagrangian Lkin is precisely the wave map Lagrangian for maps from the
Lorentzian manifold (M,h) to the Riemannian manifold (G, 〈−,−〉) . The topological term Etop[φ], as is
clear from its construction, contains only first order derivatives and thus does not change the type of the
equation.

Equations of this type (quasi-linear hyperbolic) can be written in Cauchy-Kovalevskaya form (solved for
the highest time derivatives with respect to a foliation of M by Cauchy surfaces), which implies that the
PDE submanifold E ⊂ J∞E is regular and that the initial data can be specified freely, in this case up to first
order derivatives. In other words, the projection E → J1E is surjective, which by quasi-linearity also forms
an affine bundle over J1E. Thus, topologically, the PDE submanifold may be contracted to J1E and hence
also to J0E ∼= M × G, showing that it is topologically neutral. Finally, since hyperbolic equations of this
type are well known to have a locally well-posed initial value formulation (essentially given by the Cauchy-
Kovalevskaya form mentioned above), this model is a non-gauge theory and by being (locally) variational its
phase space has a Poisson structure that is Noether compatible [BSF89, HeTe94].

Remark 3.16. Theorem ?? applies to the complete Lie algebra of globally variational local symmetries
S = Symglob.var(E,E) (def. ??) of the generalized WZW model, def. 3.11. However, it may be a highly
non-trivial task to identify all local symmetries of a given model. For example, some interesting special
models possess infinitely many linearly independent local symmetries (so-called integrable systems). On the
other hand, even if we only know a certain sub-algebra S ′ ⊂ S, such as the point symmetries, def. ??, the
central extension ?? easily restricts to a central extension

0→ T → Q′ → S ′ → 0 (30)

of the known algebra by the same topological charges.

It remains to precisely characterize the space T ⊂ C∞(P) of topological charges (Definition ??) on the
phase space (i.e. the solution space) P ⊂ Γ(E) of the theory. By global hyperbolicity, we can identify
Σ ∼= R×Σp, where by hypothesis Σp is a compact p-dimensional manifold, with each Σp-level set a Cauchy
surface in (Σ, h), all belonging to the same homology class. Topological charges constitute the image of
the map

∫
Σp

: Hp(E) → T ⊂ C∞(P) which associates to each topological current τ ∈ Hp(E) ∼= Hp(E)

(by topological neutrality) the integrated charge t ∈ T , whose value for any φ ∈ P is given by integration
t(φ) =

∫
Σp

(j∞φ)∗τ over any cycle in the Cauchy surface homology class, which we also denote by Σp. As

was mentioned earlier, topological charges t ∈ T are locally constant functions on P. Thus, T has non-trivial
structure only in the case when P has more than one connected component. Also, by the invariance of the
integrated charge formula defining t(φ) under continuous deformations of φ ∈ P or even Γ(E) (topological
neutrality), each topological charge will be constant on Pσ, where σ ∈ [Σp, E] is the homotopy class of the
the restriction σ = [φ|Σp ] of a section φ : M → F to a Cauchy surface Σp. While P =

⊔
σ∈[Σp,E] Pσ, that

does not automatically imply that each of Pσ is itself connected, though that may indeed follow from other
considerations. [XXX: What is a precise characterization of T in terms of the topology of E →M?]

[XXX: go a step further, by making the extension cocycle explicit]
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4 Category theory

This section collects the basics of category theory that we need in the main text. All statements here have
direct ∞-categorical analogs, and hence we state it in this generality.

4.1 Categories

Definition 4.1. Given a category C and an object c ∈ C, then the slice category C/c has as objects the
morphisms of C into c, and as morphisms between these the commuting triangles in C of the form

a1

f1   

// a2

f2~~
c

.

Example 4.2. If ∗ ∈ C is a terminal object, then there is an equivalence of categories

C/∗ ' C .

Proposition 4.3. The hom-spaces in a slice category Cc, def. 4.1 are equivalently given by the fiber product:

C/c(f1, f2) ' C(a1, a2) ×
C(a2,c)

{f2}

of hom-spaces in C:

C/c(f1, f2)

��

// C(a1, a2)

��
∗

f̃2 // C(a2, c)

.

where f̃2 picks the element f2 in C(a2, c).

Proposition 4.4 (Dold-Kan correspondences). The functor forming normalized chain complexes from sim-
plicial abelian groups constitutes an equivalence of categories

Ch•≥0

oo N

Γ

' // sAb

We write

DK : Ch•
'−→ sAb

forget−→ KanCplx ↪→ sSet

for the functor that first applies the Dold-Kan correspondence and then forgets the abelian group structure
on the resulting Kan complexes.

4.2 Toposes

(...)
Given a site C, there are model category structures on the categories PSh(C, sSet) and PSh(C, sSet) of

simplicial (pre-)sheaves over C whose weak equivalences are the local (with respect to forming covers in
the site) weak homotopy equivalences of simplicial sets. Similarly, on the categories PSh(C,KanCplx) and
Sh(C,KanCplx) of Kan-complex valued (pre-)sheaves there are structures of categories of fibrant objects
with such weak equivalences. Under simplicial localization, all of these homotopical structures present the
(hypercomplete) ∞-topos over C, which we denote Sh∞(C)

(...)
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Proposition 4.5 ([L-Topos, cor. A.3.7.2]). If C and D are simplicial model categories and D is a left proper
model category, then for an sSet-enriched adjunction

(L a R) : C oo // D

to be a Quillen adjunction it is already sufficient that L preserves cofibrations and R preserves fibrant objects.

Corollary 4.6. Let f : C → D be a functor between sites that sends covers to covers. Then its left Kan
extension adjunction (prop. 4.10) extends to an adjunction of ∞-toposes

(f! a f∗) : Sh∞(C)
f! //
oo
f∗

Sh∞(D) .

Proof. Consider the 1-categorical adjunction on categories of simplicial presheaves

(f! a f∗) : sPSh(C)
f! //
oo
f∗

sPSh(D)

This is naturally a simplicial adjunction, and it is clearly a Quillen adjunction with respect to the global
projective model structure on both sides, since f∗ manifestly preserves fibrations and equivalences in this
case, hence it follows that f! preserves cofibrations. Now passing to the local projective model structure, since
this has the same cofibrations as the global structure f! still preserves cofibrations, and by the assumption
that f preserves covers, f∗ now still manifestly preserves fibrant objects. With the the statement follows by
prop. 4.5.

4.3 Universal constructions

Definition 4.7. A pair of adjoint functors, denoted (L a R), is a pair of functors of the form

C oo
L

R
// D

such that there is a natural isomorphism (“forming adjuncts”)

HomC(L(−),−) ' HomD(−, R(−)) .

Here L is called left adjoint to R and R is called right adjoint to L. The image ηd of idLd under this
isomorphism is called the unit of the adjunction at d ∈ D

ηd : d −→ R(L(d)) ,

while, conversely, the image εd of idRc is called the counit

εd : L(R(d)) −→ d .

(Unit and counit are themselves natural transformations η : idD −→ R ◦ L and ε : L ◦R −→ id.)

One also writes horizontal lines for indicating these bijections between sets of adjunct morphisms:

d −→ Rc
Ld −→ c

Proposition 4.8. A right adjoint function (def. 4.7) preserves all small limits. Dually, a left adjoint functor
preserves all small colimits.

Proposition 4.9. Given an adjunction (L a R) as in def. 4.7, then
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• the adjunct of a morphism of the form f : d −→ Rc is equivalently the composite

Ld
L(f) // LRc

εc // c ;

• the adjunct of a morphism of the form g : Lc −→ d is equivalently the composite

c
ηc // RLc

R(g) // Rd .

Key examples of adjoint pairs and adjoint triples are Kan extensions and dependent sums and products:

Proposition 4.10 (Kan extension). Given a functor f : C −→ D between small categories, then the induced
functor on categories of presheaves f∗ : PSh(D) −→ PSh(C) (given by precomposing a presheav with f) has
both a left and a right adjoint (def. 4.7), denoted f! and f∗ respectively, and called the operations of left and
right Kan extension along f .

(f! a f∗ a f∗) : PSh(C)
f! //oo f∗

f∗

// PSh(D) .

Moreover, the left Kan extension of a presheaf A ∈ PSh(C) is equivalently the presheaf which to any object
d ∈ D assigns the set expressed by the coend formula

(f!A)(d) '
∫ c∈C

HomD(d, f(c))×HomPSh(C)(c, A) ,

where on the right we are identifying c with the presheaf that it represents. Explicitly, this coend gives the
set of equivalence classes of pairs of morphisms

(d→ f(c), c→ A)

where two such pairs are regarded as equivalent if there is a morphism φ : c1 → c2 in C such that the following
two triangles commute

d

�� ��
f(c1)

f(φ) // f(c2)

c1

��

φ // c2

��
A

Proposition 4.11 (base change). For H a topos and f : X −→ Y any morphism, then the functor

f∗ : H/Y −→ H/X

between slice categories, def. 4.1, given by pullback along f has both a left and a right adjoint, the base
change adjoint triple along f

(f! a f∗ a f∗) : H/X

f! //oo f∗

f∗

// HY .

Here f! is the operation of postcomposition with f .
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Where adjunctions map back and forth between two categories, (co-)monads act on a single category:

Definition 4.12. For C a category, then a monad on C is an endofunctor

J : C → C

equipped with natural transformations

• ∇ : J ◦ J −→ J (product)

• η : J −→ idC (unit)

such that these satisfy the evident associativity and unitalness properties.
Dually, a comonad on C is an endofunctor J equipped with natural transformations

• ∆ : J −→ J ◦ J (coproduct)

• ε : idC −→ J (counit)

such that these satisfy the evident co-associativity and co-unitalness properties.

Definition 4.13. Given a comonad (J, ε,∆) on C, def. 4.12, then a coalgebra over the comonad is an object
E ∈ C equipped with a morphism

ρ : E −→ JE

that satisfies the evident axioms of a co-action. A homomorphism of coalgebras f(E1, ρ1) −→ (E2, ρ2) is a
morphism f : E1 −→ E2 in C which respects these coaction morphisms. The resulting category of coalgebras
is denoted EM(J).

Proposition 4.14. For (L a R) : C oo
L

R
// D an adjunction, def. 4.7, then the endofunctor

T := L ◦R : C → C

becomes a comonad on C, def. 4.12, with counit the adjunction counit L ◦ R → idC (def. 4.7), and with
coproduct induced from the unit of the adjunction by

∆T := L(ηR(−)) .

Dually R ◦ L is canonically equipped with the structure of a monad.

Example 4.15. Given an adjoint triple (L a C a R) then the monad C ◦L and the comonad C ◦R induced
via prop. 4.14 themselves form an adjoint pair:

(C ◦ L a C ◦R) : C −→ C .

Proposition 4.16. The category of coalgebras over a comonad on a category C, def. 4.13, is related to C by
a pair of adjoint functors, def. 4.7, of the form

(U a F) : C oo
U

F
//

!! !!

EM(J)

Kl(J)
, �

::
,

where the left adjoint U (“underlying”) forgets the coalgebra structure, U : (E, ρ) 7→ E, while the right
adjoint F (“co-free”) sends an object c ∈ C to to the object Jc with coaction given by the coproduct ∆J . The
comonad induced from this adjunction via prop. 4.14 coincides with J :

J ' U ◦ F .
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Definition 4.17. The full subcategory of EM(J) on the cofree coalgebras, i.e. on the objects in the image
of F, prop. 4.16, is also called the coKleisli category Kl(J).

Remark 4.18. Given objects c1, c2 ∈ C, then by adjunction we have a bijection of morphisms of the form

Fc1 −→ Fc2
UFc1 −→ c2
Jc1 −→ c2

Hence morphisms f in the coKleisli category Kl(J), def. 4.17, are equivalently morphisms in C of the form
f̃ : Jc1 −→ c2. Under this identification the composition of morphisms g ◦ f in Kl(J) is given by the
“co-Kleisli composite”

g̃ ◦ f : Jc1
∆c−→ JJc1

J(f̃)−→ Jc1
g̃−→ c2 .

Definition 4.19. A functor F : D −→ C is called conservative if it reflects equivalences, hence if for a
morphism f in D we have that if F (f) is an equivalence then already f was an equivalence.

Theorem 4.20 (Beck monadicity theorem). Sufficient conditions for an adjunction (L a R), def. 4.7, to
be equivalent to a comonadic adjunction (U a F) as in prop. 4.16 is that

1. U is conservative, def. 4.19;

2. U preserves certain limits (...).

Proof. For 1-category theory this may be found e.g. in [Bor, vol. 4 sect. 2]. For ∞-category theory this is
[L-Alg, theorem 4.7.4.5].

Hence it is useful to record some facts about conservative functors:

Proposition 4.21. For H a topos and f : X −→ Y an epimorphism in H, then the pullback functor
f∗ : H/Y −→ H/X is conservative, def. 4.19.

Proof. For 1-category theory this is for instance a special case of [Joh02, lemma 1.3.2]. For ∞-category
theory see the nLab entry on conservative ∞-functors.

Proposition 4.22. A conservative functor reflects all the limits and colimits which it preserves.

Corollary 4.23 (comonadic descent). Given an epimorphism X
f // // Y in a topos H, with induced base

change comonad
J := f∗f∗ : H/X → H/X

(via prop. 4.11, prop. 4.14), then there is an equivalence of categories

EM(J) ' HY

between the J-coalgebras in H/X , def. 4.13, and the slice H/Y . Moreover, under this identification the
comonadic adjunction (UJ a FJ) from prop. 4.16 coincides with the base change adjunction (f∗ a f∗) of
prop. 4.11:

(UJ a FJ) ' (f∗ a f∗) .

Proof. Since f is assumed to be epi, prop. 4.21 says that f∗ is conservative. Moreover, since f∗ is right
adjoint to f! by prop. 4.11, it preserves all small limit, by prop. 4.8. Therefore the conditions in the
monadicity theorem 4.20 are satisfied. This yields the statement.

See also for instance [JaTh, 2.4].
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