A synthetic approach to the formal theory of PDEs
(cf. arXiv:1701.06238)

Igor Khavkine

Department of Mathematics
University of Milan (Statale)

Geometry and Algebra of PDEs
University of Tromsø, Norway
09 June 2017

joint work with
U. Schreiber (CAS, Prague)
Observations about Jets

- Work in the category \mathcal{F}_M of smooth fibered manifolds $E \to M$, $\dim M < \infty$, $\dim E \leq \infty$ (local dependence on finitely many of at most countably many coordinates, LocProMfd).

- **Jet bundles** define a functor $J := J^\infty : \mathcal{F}_M \to \mathcal{F}_M$ that preserves “sufficiently regular” limits (monos, fibered products, . . .).

- The jet extension $j^\infty f : M \to JE$ of a section $f : M \to E$:

 (a) recalls the original section $f = \epsilon_E \circ j^\infty f$,

 (b) and knows its own jet extension $j^\infty j^\infty f = \Delta_E \circ j^\infty f$.

- The natural transformations $\epsilon : J \to \text{id}, \Delta : J \to JJ$ satisfy

\[
\begin{array}{ccc}
J & \overset{\text{id}}{\leftarrow} & \overset{\epsilon(J)}{\rightarrow} & \overset{\Delta}{\rightarrow} & \overset{\text{id}}{\leftarrow} & JJ \\
J & \overset{\Delta}{\rightarrow} & JJ & \overset{\Delta(J)}{\downarrow} & \overset{\Delta(J)}{\downarrow} & JJJ
\end{array}
\]

the axioms of a **comonad**.
Observations about PDEs

- A sufficiently regular PDE $\mathcal{E}^k \rightarrow J^k E$ can be put into a **canonical first order form** $\rho^1 : \mathcal{E}^{k+1} \rightarrow J^1 \mathcal{E}^k$.
 - Introduce a new variables u for each component of $j^k \phi$ of a solution. Use $u = j^k \phi$ to solve $j^1 f(j^k \phi) = 0$ for $j^1 u = \rho^1 (u)$.

- A sufficiently regular formally integrable PDE $\mathcal{E} \rightarrow JE$ can be put into a **canonical infinitely prolonged form** $\rho : \mathcal{E} \rightarrow JE$.

- The canonical form $j^\infty u = \rho(u)$ satisfies the **universal integrability condition**

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\rho} & JE \\
\rho \downarrow & & \downarrow J\rho \\
JE & \Delta_{\mathcal{E}} & JJE
\end{array}
\quad \text{and of course}
\quad \begin{array}{ccc}
\mathcal{E} & \xrightarrow{\rho} & JE \\
\downarrow \text{id} & & \downarrow \epsilon_{\mathcal{E}} \\
\mathcal{E} & \xrightarrow{\epsilon_{\mathcal{E}}} & E
\end{array}
\]

the axioms of a **coalgebra** over the comonad J.

The category of *differential operators* $\alpha[f] = \alpha \circ j^\infty f$ is equivalent to the *co-Kleisli* category of J, $\text{DiffOp}(\mathcal{F}_M) \simeq \text{Kl}(J)$. Follows from the composition formula

$$(\alpha \circ \beta)[f] = (\alpha \circ p^\infty \beta) \circ j^\infty f,$$

where $p^\infty \beta = J\beta \circ \Delta$.

Vinogradov’s category of *PDEs* is equivalent to the *Eilenberg-Moore* category of coalgebras over J, $\text{PDE}(\mathcal{F}_M) \simeq \text{EM}(J)$. Morphisms of coalgebras satisfy

$$
\begin{array}{ccc}
\mathcal{E}_1 & \xrightarrow{\alpha} & \mathcal{E}_2 \\
\rho_1 \downarrow & & \downarrow \rho_2 \\
J\mathcal{E}_1 & \xrightarrow{J\alpha} & J\mathcal{E}_2
\end{array}
$$

Remaining questions:

- How much can the regularity assumptions be relaxed?
- Can \mathcal{E} be a variety, orbifold, stratified, ... supermanifold, stack, ... , have boundaries, singularities, ... ?
Synthetic Differential Geometry (SDG)

- **SDG** is an axiomatic/categorical approach to the study of smooth spaces, operations between them and their generalizations.
- We will work specifically with the **Cahiers Topos H**, introduced by Dubuc (*Cahiers T&GD* 1979).
- **H** has fully faithful embeddings of well-known categories:

 \[
 \text{Mfd} \hookrightarrow \text{LocProMfd} \hookrightarrow \text{FrMfd} \hookrightarrow \text{DiflSp} \hookrightarrow \text{H} \hookleftarrow \text{FormalMfd}
 \]

- Objects in **H** may have algebraic or orbifold singularities, may have boundaries and corners, could be infinite dimensional, and may have infinitesimal directions.
- **Infinitesimal** spaces are particularly well-adapted to the **formal theory** of PDEs.
- **Literature:**
 - R. Lavendhome: *Basic Concepts of SDG* (Springer 1996)
 - U. Schreiber: *dcct* [arXiv:1310.7930]
Generalized Smooth Spaces

- $M \in \text{Mfd}$, dim $M = n$; $\text{Atlas}(M) \subset C^\infty(\mathbb{R}^n, M)$.
- CartSp — category of all $\mathbb{R}^k \to \mathbb{R}^m$ smooth; $\text{CartSp}_{\text{diff}}(n)$ — all diffeomorphisms onto image $\mathbb{R}^n \to \mathbb{R}^n$.
- Functor $\text{CartSp}_{\text{diff}}(n)^{\text{op}} \to \text{Set}$, $\mathbb{R}^n \mapsto \text{Atlas}(M)$, satisfies gluing:

 (illustration)

- No harm in extending $\text{Atlas}(M) \subset C^\infty(_, M) : \text{CartSp}^{\text{op}} \to \text{Set}$.
- Now $C^\infty(_, M) \in \text{Sh}(\text{CartSp}, \text{Set})$ is a sheaf with respect to the “open cover” Grothendieck topology on CartSp.
- Fully faithful $\text{Mfd} \leftrightarrow \text{SmthSp}$ (Generalized Smooth Spaces):

 (Yoneda) $\text{SmthSp} \ni M \leftrightarrow "C^\infty(_, M)" \in \text{Sh}(\text{CartSp}, \text{Set})$
Cahiers Topos

Sheaves (“$C^\infty(\mathbb{R}^k)$”) on test spaces (\mathbb{R}^k) are generalized spaces (M).

- **FormalCartSp** := $\langle \mathbb{R}^k, \mathbb{D}^k(m), \times \rangle$ — opposite to the full subcategory

$$\langle C^\infty(\mathbb{R}^k), C^\infty(\mathbb{R}^k)/(x^1, \ldots, x^k)^{m+1}, \otimes \rangle \hookrightarrow \text{CAlg}^{\mathbb{R}}$$

of commutative \mathbb{R}-algebras, closed under products.

- **Ex:** $f \in C^\infty(\mathbb{R}^n \times \mathbb{D}^k(m))$ is a formal power series

$$f(x^1, \ldots, x^n, \varepsilon^1, \ldots, \varepsilon^k) = \sum_{|I|\leq m} f_I(x^1, \ldots, x^n) \varepsilon^I.$$

- **Cahiers topos** — $H := \text{Sh}(\text{FormalCartSp}, \text{Set})$:
 - closed under all small $\text{limg}(_)$, $\text{lim}(_)$ and internal $\text{Hom}(__, __)$;
 - fully faithful embedding of many categories of “smooth spaces”;
 - access to infinitesimals without leaving the category, e.g., formal disks $\mathbb{D}^k(\infty) := \text{limg}_m \mathbb{D}^k(m)$.

Igor Khavkine (Milan) 09/06/2017 6 / 10
Infinitesimals, Formal Disks, Jets

- Take \(M \in \text{Mfd} \hookrightarrow \mathbb{H} \), \(\dim M = n \) (independent variables); take \((E \to M) \in \mathbb{H}_M\) (dependent variables, no extra regularity!).

- Every \(x \in M \) has **formal disk neighborhood** \(T^\infty_x \simeq \mathbb{D}^n(\infty) \to M \).

- Formal neighborhoods functor \(T^\infty : \mathbb{H}_M \to \mathbb{H}_M \), \(T^\infty E := T^\infty M \times_M E \).

- In “coordinates” \(f \in \text{Hom}_{\mathbb{H}_M}(T^\infty E, F) \) is of the form

\[
f(x, u, \varepsilon) = \sum_{|I| < \infty} f_I(x, u) \varepsilon^I \quad \text{(formal series)}.
\]

- **Jets** — right adjoint of \(T^\infty \dashv J^\infty : \mathbb{H}_M \to \mathbb{H}_M \) (exists in topos!):

\[
\text{Hom}_{\mathbb{H}_M}(T^\infty E, F) \simeq \text{Hom}_{\mathbb{H}_M}(E, J^\infty F) \quad \text{naturally } \forall E, F \in \mathbb{H}_M;
\]

\[
f(x, u, \varepsilon) \dashv f(x, u, -) \simeq \tilde{f}(x, u) = (f_I(x, u))_{|I| < \infty}.
\]

- **Right adjoints** automatically preserve all limits (monos, fibered products, . . .). No need for Marvan’s “sufficient regularity”.

- \(J : \mathbb{H}_M \to \mathbb{H}_M \) is a **comonad** for abstract reasons, due to the differential cohesion (Schreiber 2013) of \(\mathbb{H}_M \).
Synthetic Geometry of PDEs

- Generalized PDE \(\mathcal{E} \leftrightarrow J^\infty F \) in \(H/M \); \textit{mono} is the only regularity condition needed.

- A \(Y \)-\textit{family} of formal sections \(\sigma : T^\infty Y \to JF \) is \textit{holonomic} if
 \[
 \sigma(x, u, \varepsilon)\sim = \sigma(x, u, \varepsilon + \sim)(0).
 \]

- A \(Y \)-\textit{family} \(s \) such that \(T^\infty Y \to \mathcal{E} \leftrightarrow JF \) is \textit{holonomic} is a \(Y \)-\textit{family} of \textit{formal solutions}.

- If \(\mathcal{E}_1 \to \mathcal{E}_2 \) preserves all families of formal solutions, it is a \textit{morphism} of generalized PDEs ("prolonged differential operator").

- There always exists a \textit{universal family of formal solutions} \(T^\infty \mathcal{E}^\infty \to \mathcal{E} \) such that \(\mathcal{E}^\infty \to T^\infty \mathcal{E}^\infty \to \mathcal{E} \) is a \textit{mono}:

\[
\begin{array}{ccc}
\mathcal{E}^\infty & \longrightarrow & JF \\
\downarrow \rho & & \downarrow \Delta_F \\
\mathcal{E} & \leftarrow \mathcal{E}^\infty & \longrightarrow \mathcal{E} & \longrightarrow & JF \\
\end{array}
\]

\(\mathcal{E}^\infty \to \mathcal{E} \to JF \) is exactly the \textit{(infinite) prolongation} of \(\mathcal{E} \leftrightarrow JF \).
Main Results

- When $\mathcal{E}^\infty \simeq \mathcal{E}$, the PDE is **formally integrable**, has intrinsic presentation $\rho: \mathcal{E} \simeq \mathcal{E}^\infty \hookrightarrow J\mathcal{E}$.

- Category $\text{PDE}(H/M)$: **objects** — formally integrable PDEs, **morphisms** — preserve all families of formal solutions. Logically independent from Vinogradov’s definition.

- **Thm**: $\text{DiffOp}(H/M) \simeq \text{Kl}(J)$ and $\text{PDE}(H/M) \simeq EM(J)$; for each formally integrable PDE, $\rho: \mathcal{E} \hookrightarrow J\mathcal{E}$ is a J-coalgebra; a morphism preserving families of formal solutions is a morphism of coalgebras.
 - Because of different definitions/hypotheses, the proof is *logically independent* from (but inspired by) Marvan’s.
 - The fully faithful embedding $\mathcal{F}_M \hookrightarrow H/M$ and Marvan’s original equivalence *imply* $\text{PDE}(\mathcal{F}_M) \simeq \text{PDE}_{\text{Vinogradov}}(\mathcal{F}_M)$.

- **Thm**: $\text{PDE}(H/M)$ is also a **topos** (hence has all small limits). More concretely, **all finite limits** in $\text{PDE}(H/M)$ can be **computed in** H/M.

- **Thm**: $\text{Sol}(\mathcal{E}) \simeq \text{Hom}_{\text{PDE}(H/M)}(M, \mathcal{E})$.
Discussion

- Jets and PDEs **internal** to Cahiers Topos H:
 - Maximally relaxed (within smooth geometry) *regularity conditions* on spaces of dependent variables and PDEs.
 - *Infinitesimals*, *formal sections* give intrinsic and intuitive notion of a PDE category. No need to appeal to Cartan distribution as proxy for formal solutions. When comparable, coincides with Vinogradov’s.
 - All constructions inherently *independent* of (even the *existence* of) choices of local coordinates.

- \(J \)-comonad and \(J \)-coalgebra structure of PDEs suggests *natural generalization* to more general contexts of Synthetic Differential Geometry (super-, derived-, stack-, . . . manifolds).

- **Future**: study symmetries; non-integrable infinitesimal symmetries, could be *truly infinitesimal* in SDG.

- **Future**: study PDEs on derived higher super-stacks . . .

- **Future**: How to compare with Beilinson-Drinfeld’s \(\mathcal{D} \)-schemes?
Thank you for your attention!