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Quantum Supremacy:

Quantum Computation is expected to
be enormously more powerful

than Classical Digital Computation
(for special but crucial applications).

Quantum Instability:

But Quantum Computation is prone to
instability and hence to errors

when operated by traditional means.

Topological Quantum Computation:

is an ambitious but plausible strategy for
retaining supremacy while defeating instability.

Both its math & physics need further development.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremendous scientific achievement,

but they take us no closer to having a quantum computer that can solve a problem that
anybody cares about.

What is missing is the breakthrough bypassing quantum error correction by using far-
more-stable quantum-bits, in an approach called topological quantum computing.”
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analysis of quantum matter [Feynman (1981)]

especially: quantum chemistry
& molecular biology [Manin (1980), Lloyd (1996)]

but also, e.g. database search [Grover (1996)]

and notably: cryptography [Simon (1997), Shor (1997)]

“ because nature isn’t classical, dammit,

if you want to make a simulation of nature,

you’d better make it quantum mechanical”
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analysis of quantum matter [Feynman (1981)]

especially: quantum chemistry
& molecular biology [Manin (1980), Lloyd (1996)]

but also, e.g. database search [Grover (1996)]

and notably: cryptography [Simon (1997), Shor (1997)]

Quantum factoring would break existing encryption

while Quantum Encryption would be unbreakable.
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so far
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and have all been contested
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−!result some
state

any
operation
7−−−−−−−!other

state

I O • state
space

program

computation

instructions

execute

operations
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Aside: Formalization by transport in Homotopy Type Theory:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]
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on a chosen state space,
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Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! •program

69

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! • F3

3
(•+1) mod 3
−−−−−−−! F3

3program execution
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.
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all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:

97

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

146

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

155

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

179

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

But (why and where) do such processes even exist?
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Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

But (why and where) do such processes even exist?
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

ground state: E = 0
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

first excited state: E = h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

second excited state: E = 2h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

third excited state: E = 3h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

fourth excited state: E = 4h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

fifth excited state: E = 5h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

sixth excited state: E = 6h̄ω
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But (why and where) do such processes even exist?

As very many particles come together in a crystal
their excitation energies accumulate in “bands”

but energy gaps may remain.

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands metal/conductor semi-conductor insulator

un-occupied

occupied
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But (why and where) do such processes even exist?

If the ground state remains separated by an energy gap ∆E
then it is completely undisturbed by disturbances < ∆E .

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands

∆E

insulator

un-occupied

occupied
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But (why and where) do such processes even exist?

If the ground state remains separated by an energy gap ∆E
then it is completely undisturbed by disturbances < ∆E .

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands semi-conductor

∆E

insulator

un-occupied

occupied
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But (why and where) do such processes even exist?

If the ground state remains separated by an energy gap ∆E
then it is completely undisturbed by disturbances < ∆E .

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands metal/conductor semi-conductor

∆E

insulator

un-occupied

occupied
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But (why and where) do such processes even exist?

So if such a gapped ground state depends on position of point defects,
then their adiabatic movement is a topological quantum process.

(numerical simulation from arXiv:1901.10739)
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But (why and where) do such processes even exist?

So if such a gapped ground state depends on position of point defects,
then their adiabatic movement is a topological quantum process.

Brillouin torus

wI/κ

nodal point

time
braiding

T̂2

kI

kI

some ground state for
fixed defect positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

another ground state for
fixed defect positions

k1,k2, · · · at time t2
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸

I−−! O braid
representation

topologica
l

quantum

computatio
n
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸

I−−! O topological
quantum

circuit

braid
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally as well as theoretically:

search for “Majorana zero modes”
had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:

promising! – needs more investigation

most successful theory for top. phases
was thought not to apply to top. order,
until recently: Sati & Schreiber (2022)

our new theory in fact predicts
anyon braiding in momentum space

of topological semi-metals.
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Such materials are expected to exists
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experimentally as well as theoretically:

search for “Majorana zero modes”
had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:
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our new theory in fact predicts
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Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

Concretely,
we arrive at

the following
resolution.
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Claim: This insight yields a striking prospect
for naturally implementing quantum simulators

that actually reflect fine detail of braid grates
for anyonic topological quantum computation.

Programming platform: Library/Module: Hardware platform:

Cohesive Homotopy
Type Theory with

dependent linear types

TED-K-cohomology of
defect configurations in

crystallographic orbifolds

Anyonic quantum states
in topological phases
of quantum materials

Topological quantum
braid gates
and circuits

implements

(1)

topological quantum programming

emulates

(2)

runs (3)

[Sati & Schreiber, PlanQC 2022 33 (2022)]
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We are developing this program
at our newly launched

research center...
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CQTS just launched

Now in launch phase:
new hires arriving this week!
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CQTS is part of the Quantum Initiative
at NYU Abu Dhabi in the United Arab Emirates
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Collaborations and Partnerships: NYU-global, local, and international

CQTS

CAP3

HPC TII

CCS

CITIES

ACSASITE

CGSB

NYU SH

NYU

IMA

UAEU

AUS

IBS

IASMIMS

QBee

DCTDA

IIC

INI

CIMAT

ECNU

The World

QBee The Quantum Accelerator Company
Porto, Portugal DCTDA Dioscuri Centre in Topological Data Analysis

Polish Academy of Sciences, Warsaw, Poland MIMS Mediterranen Institute for the Mathematical Sciences
Tunis, Tunisia

IIC Institute for Integrated Circuits
University of Linz, Austria

INI Isaac Newton Institute for Math. Sciences
Cambridge University, UK IMA Institute for Mathematics and its Applications

University of Minnesota, USA

CIMAT Centro de Investigación en Matemáticas
Guanajuato, Mexico IBS Institute for Basic Science

Dajeon, South Korea CAC Center for Advanced Computation
Korean Institute for Advanced Study, Seoul, S. Korea

SKLPS State Key Lab. of Prec. Spectroscopy
East China Normal University, Shanghai, China

United Arab Emirates

TII Technology Innovation Institute

AUS American University Of Sharjah

UAEU United Arab Emirates University

NYU Abu Dhabi

CCS Center for CyberSecurity

HPC Center for Research Computing

SITE Center for Stability, Instability and Turbulence

CGSB Center for Genomics and Systems Biology

CAP3 Center for Astro, Particle and Planetary Physics

CITIES Center for Interacting Urban Networks

ACSA Arab Center for the Study of Art
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Partnership with NYU Shanghai, Quantum Technology Lab

Quantum computing, Quantum information, Bose-Einstein condensates, ...
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https://nyu.timbyrnes.net/


Partnership with Center for Quantum Phenomena (CQP), NYU

Condensed matter physics, quantum materials,
and quantum information technology, ...
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https://as.nyu.edu/departments/physics/research/center-for-quantum-phenomena.html


Partnership with the Technology Innovation Institute (TII) in Abu Dhabi

Through their Quantum Research Center (QRC),
TII is building the UAE’s first NISQ quantum computer.
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https://www.tii.ae
https://www.tii.ae/quantum
https://www.tii.ae/quantum/our-research/quantum-computation


Quantum Supremacy:

Quantum Computation is expected to
be enormously more powerful

than Classical Digital Computation
(for special but crucial applications).

Quantum Instability:

But Quantum Computation is prone to
instability and hence to errors

when operated by traditional means.

Topological Quantum Computation:

is an ambitious but plausible strategy for
retaining supremacy while defeating instability.

Both its math & physics need further development.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremendous scientific achievement,

but they take us no closer to having a quantum computer that can solve a problem that
anybody cares about.

What is missing is the breakthrough bypassing quantum error correction by using far-
more-stable quantum-bits, in an approach called topological quantum computing.”

now for CQTS to bring in Topology
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Quantum Supremacy:

Quantum Computation is expected to
be enormously more powerful

than Classical Digital Computation
(for special but crucial applications).

Quantum Instability:

But Quantum Computation is prone to
instability and hence to errors

when operated by traditional means.

Topological Quantum Computation:

is an ambitious but plausible strategy for
retaining supremacy while defeating instability.

Both its math & physics need further development.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremendous scientific achievement,

but they take us no closer to having a quantum computer that can solve a problem that
anybody cares about.

What is missing is the breakthrough bypassing quantum error correction by using far-
more-stable quantum-bits, in an approach called topological quantum computing.”

now for CQTS to bring in Topology

via duality of condensed matter with String Theory
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It is largely folklore that:

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

classifies

stable D-branes
in string theory

free topological phases
in condensed matter theory
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(1) Systematic construction of TED K-theory using cohesive ∞-topos theory

(for finite equivariance as befits the “very good” orbifolds appearing in CMT and ST)
[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]
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(for finite equivariance as befits the “very good” orbifolds appearing in CMT and ST)
[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]

key technicality:
constructing twisted equivariant Chern character as map of equivariant moduli stacks
(⇒ flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)
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equivariant classifying spaces are generally far from simply-connected/nilpotent
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(for finite equivariance as befits the “very good” orbifolds appearing in CMT and ST)
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constructing twisted equivariant Chern character as map of equivariant moduli stacks
(⇒ flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

this is subtle and previously under-developed, because
equivariant classifying spaces are generally far from simply-connected/nilpotent

But the Galois-theoretic effect hidden in this technicality is responsible for the
appearance of conformal blocks and braid group statistics in TED-K (more below)
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(for finite equivariance as befits the “very good” orbifolds appearing in CMT and ST)
[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]

key technicality:
constructing twisted equivariant Chern character as map of equivariant moduli stacks
(⇒ flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

this is subtle and previously under-developed, because
equivariant classifying spaces are generally far from simply-connected/nilpotent

But the Galois-theoretic effect hidden in this technicality is responsible for the
appearance of conformal blocks and braid group statistics in TED-K (more below)

Fred�PU(H )

X×∗�G
orbi-singularity

BPU(H )
universal stacky
Fredholm bundle

τ

equivariant
twist

TE K-cocycle mapping stack
adjunction
 −−!

FredG�G∗ Maps(BG, Fred�PU(H ))stbl

X BG∗ Maps(BG, BPU(H ))stbl

(pb)

inner local system
inside singularity

adjunct

TE K-cocycle

adjunct equivariant twist

non-trivial
equivariant π1
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(2) Precise proposal for interacting enhancement via “Hypothesis H” [JMP 59 (’18)]
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(2) Precise proposal for interacting enhancement via “Hypothesis H” [JMP 59 (’18)]

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself,
but on its configuration space of points, and generally: on its Cohomotopy moduli
[CMP 377 (2020)] [JMP 62 (2021)] [ATMP 26 4 (2022)] [RMP 34 5 (2022)] [arX:2103.01877]

(see below)
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The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.
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The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.

Claim: The TED K-cohomology of n-point configurations in Brillouin torus
classifies valence bundle of n-electron interacting states [arX:2206.13563]
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points
contain the su(2)-affine conformal blocks at admissible fractional levels & genus=0

(see below)
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points
contain the su(2)-affine conformal blocks at admissible fractional levels & genus=0
and the Gauss-Manin connection is (see below)
the KZ equation for braid monodromy:
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points
contain the su(2)-affine conformal blocks at admissible fractional levels & genus=0
and the Gauss-Manin connection is (see below)
the KZ equation for braid monodromy:

Brillouin torus

wI/κ

nodal point

time
braiding

T̂2

kI

kI

seen in
TED K:

Some ground state for
fixed defect positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

Another ground state for
fixed defect positions

k1,k2, · · · at time t2
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]

Remarkably, for such constructions in cohesive ∞-topos theory [EPTCS 158 (2014)]
there is developed a programming language: “cohesive HoTT” [arX:1402.7041]

321

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/Quantum+gauge+field+theory+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types


Knots for Quantum Computation
from Defect branes

Urs Schreiber on joint work with Hisham Sati

NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems

New York University, Abu Dhabi

Center for

Quantum&

Topological

Systems

talk at:

Topological Methods in Mathematical Physics @ Erice, 2 Sep 2022

slides and pointers at: https://ncatlab.org/schreiber/show/Knots+for+Quantum+Computation

Thanks!
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