1 Flux Quantization

In higher gauge theories [Al24, §2][FSS19-HighM]
[JSSW19], flux of field lines is sourced by branes (§1.1),
and flur quantization makes fluxes/charges form a dis-
crete space, reflecting individual brane sources (§1.2). A
choice of flux quantization is a hypothesis about the non-
perturbative completion of the given theory (§1.3).

Tradition, originating in the ancient past, is to define any
physical theory by a stationary action principle embodied
by a Lagrangian density (e.g. [HT92]), from which one
systematically extracts a perturbative phase space in the
guise of a BRST-BV complex. But flux-quantization laws
used to be imposed in ad-hoc fashion to “cancel anoma-
lies” (cf. pp. 22).

In contrast, we observe [SS23-FQ] that all admissible flux-
quantization laws A are algebro-topologically determined
by the duality-symmetric form of the Bianchi identity or
GauB law (29) satisfied by the flux densities.

Hypothesizing an admissible flux quantization law A, the
non-perturbative phase space is the moduli stack of dif-
ferential A-cohomology on any Cauchy surface.

Among the admissible flux-quantization laws is typically
an “evident” one. In traditional examples like electro-
magnetic or RR-fields this evident choice is the traditional
choice, whose hypothetical nature tends to be forgotten.

The “Hypothesis H” is essentially nothing but the cor-
responding evident choice of flux quantization for the C-
field in 11d supergravity.

The reason why this was not so “evident” earlier is that
the admissible flux-quantization laws of the C-field are
non-abelian (unstable) forms of generalized cohomology
(owing to the non-linear sourcing of M2-brane flux by
Mb5-brane flux), whose theory was fully established only
in [FSS23-Char].
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