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Thus, ny‘, is the multiplicity of W in the decomposition of V|y/, as well as the
multiplicity of V' in the decomposition of Ind% ,(W) So for any z € K5 (X),

(Id ® Res ) (Y, 1 (2)) Y dv@eVin]

Velrr(N)
-3 ( ) nvvv-wv(m)@[m;
Welrr(N') “\Velrr(N)

and we will be done upon showing that ¢}, = >, n}j, -ty for each W € Irr(N’).
Fix a surjection py : C[N'] — W, and a decomposition IndY, (W) = Zle Vi
(where the V; are irreducible and k = ), nY,). For each 1 < i < k, let p; :
C[N] — V; be the composite of Ind¥, (po) followed by projection to V;. Then

@zp,, : (VecS)Y ——— Vec§;

as maps of I'-spaces, and so Yy ~ Zz 1 Yy, as maps K5(X) — K5 (X).

It remains to show that ¥ is a homomorphism of rings. Since it is natural in
N, and since R(N) is detected by characters, it suffices to prove this when N is
cyclic. For any z,y € Kg(X),

U()Uy)= Y. (@) vw(y) @V e W]

V,WElrr(N)

> dulzy) © U]

UElrr(N)
And thus ¥(z)-¥(y) = ¥(zy) since

Yuope = D oy Apw) : (Vecd)™ A (Vec§)" ——— Ve,
V,Welrr(G)
VWU

and

as maps of I'-spaces, for each U € Irr(N). O

4. Characters and class functions

Throughout this section, G will be a finite group. We prove here some results
showing that certain class functions are characters; results which will be needed
in the next two sections.

For any field K of characteristic zero, a K-character of G means a class
function G — K which is the character of some (virtual) K-representation of G.
Two elements g,h € G are called K-conjugate if g is conjugate to h® for some a
prime to n = |g| = |h| such that (¢ — (%) € Gal(K(/K), where ¢ = exp(27i/n).
For example, g and h are Q-conjugate if (g) and (h) are conjugate as subgroups,
and are R-conjugate if g is conjugate to h or h~1.



232 W. Liick and B. Oliver

Proposition 4.1. Fiz a finite extension K of Q, and let A C K be its ring of
integers. Let f : G — A be any function which is constant on K -conjugacy classes.
Then |G|-f is an A-linear combination of K -characters of G.

Proof. Set n = |G|, for short. Let Vi,..., Vs be the distinct irreducible K|[G]-
representations, let x; be the character of Vi, set D; = Endg (Vi) (a division
algebra over K), and set d; = dimg (D;). Then by [11, Theorem 25, Cor. 2],

k
1 _
IG|-f = EHXi where 1= - Z F@xilg™);
i=1 e
and we must show that r; € A for all 7. This means showing, foreach i =1,...,k,

and each g € G with K-conjugacy class conjg(g), that |conjg (9)|-xi(g) € d;A.
Fix ¢ and g; and set C = (g), m = |g| = |C|, and ¢ = exp(2wi/m). Then
Gal(K(¢)/K) acts freely on the set conj g (g): the element ({ — (?) acts by sending
h to h®. So [K(¢):K]||conjk (g)]-
Let Vi|c = Wi @ --- @ W{* be the decomposition as a sum of irreducible

K[C]-modules. For each j, K; def Endgc)(W;) is the field generated by K and
the r-th roots of unity for some r|m (m = |C|), and dimg, (W;) = 1. So

dimg (W;)|[K (¢):K].

Also, d,-l dimK(W;"), since W;»l" is a D;-module; and thus di’aj-|coan(g)|. So if
we set §; = xw;,(g) € A, then

t
[conj (9)|xi(g) = leonig ()] D _ a&; € didl,
j=1

and this finishes the proof. O

For each prime p and each element g € G, there are unique elements g, of
order prime to p and g, of p-power order, such that ¢ = g,g, = gugr. As in
[11, §10.1], we refer to g, as the p’-component of g. We say that a class function
f:+ G — Cis p-constant if f(g) = f(g,) for each g € G. Equivalently, f is p-
constant if and only if f(g) = f(g’) for all g, ¢’ € G such that [g,¢'] =1 and g™ ¢’
has p-power order.

Lemma 4.2. Fiz a finite group G, a prime p, and o field K of characteristic zero.
Then a p-constant class function ¢ : G — K 1s a K-character of G if and only if
olu s a K-character of H for all subgroups H C G of order prime to p.

Proof. Recall first that G is called K-elementary if for some prime ¢, G = C,,, X @,
where C,, is cyclic of order m, qJ(m, Q is a g-group, and the conjugation action
of Q on K[C,,] leaves invariant each of its field components. By [11, §12.6, Prop.
36], a K-valued class function of G is a K-character if and only if its restriction to
any K-elementary subgroup of G is a K-character. Thus, it suffices to prove the
lemma when G is K-elementary.
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The coefficient system Q® R(—), and hence its cohomology, splits in a natural
way as a product indexed over cyclic subgroups of G of finite order. For any cyclic
group S of order n < oo, we let Z[(s] C Q((s) denote the cyclotomic ring and field
generated by the n-th roots of unity; but regarded as quotient rings of the group
rings Z[S*] C Q[S*] (S* = Hom(S, C*)). In other words, we fix an identification of
the n-th roots of unity in Q({s) with the irreducible characters of S. The kernel of
the homomorphism R(S) 2 Z[S*| —» Z[(g] is precisely the ideal of elements whose
characters vanish on all generators of S.

Lemma 5.6. Fiz a discrete group G, and let S(G) be a set of conjugacy class rep-
resentatives for the cyclic subgroups S C G of finite order. Then for any proper
G-complex X, there is an isomorphism of rings

Hy(X;:QeR(-) = [ (H'(X5/Ca(8)Q(s) ™,
S€S(G)

where N(S) acts via the conjugation action on Q(Cs) and via translation on
X3/Cq(8). If, furthermore, the isotropy subgroups on X have bounded order, then
the homomorphism of rings

(G R-) —— ] #((0"(xco(syzics)) ™)
SeS(G)

—— [I = &xS/eas)yzish)™™, o)
SeS(G)

induced by restriction to cyclic subgroups and by the projections R(S) —» Z[(s],
has kernel and cokernel of finite exponent.

Proof. By (5.2),
C&(X; R(—)) = Homo, () (C,(X), R(-)) = Homsyy () (CE (X), R(-))-

For each S € §(G), let xs € CI(G) be the idempotent class function: xs(g) =
1 if (g) is conjugate to S, and xs(g) = 0 otherwise. By Proposition 4.1, for each
finite subgroup H C G, (xs)|x is the character of an idempotent e € Q® R(H).
Set QRs(H) = ef-(Q® R(H)), and let Rg(H) C QRs(H) be the image of R(H)
under the projection. This defines a splitting Q® R(~) = [Iscs(q) @Rs(—) of the
coeflicient system. For each S and H,

QRs(S) =Q¢s) andso QRs(H) 2 mapy(s) (Morsus, () (S, H) , Q(Cs) ).
It follows that
C&(X;QRs(—)) = Homsyp,(c)(CH(X),QRs(-))
> Homgn(s) (C+ (X5 /Ca(8)), Q¢s));
and hence Hg(X;QRs(-)) & (H*(X5/Ca(8));Q(¢s) ™.

Now assume there is a bound on the orders of isotropy subgroups on X,
and let m be the least common multiple of the |G.|. By Proposition 4.1 again,
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meX € R(H) for each S € S(G) and each isotropy subgroup H. So there are

homomorphisms of functors

R(-) == ] Rs(-),
J SeS(G)

where ¢ is induced by the projections R(H) - Rg(H) and j by the homomor-

meH -

phisms Rg(H) —— R(H) (regarding Rs(H) as a quotient of R(H)); and 05 and
jot are both multiplication by m. For each S, the monomorphism

C&(X; Rs(—)) = Homgyn(s)) (C(X® /Ca(8)), Zl¢s]) — C(X®/Ca(S); ZICs])

is split by the norm map for the action of N(S)/C¢(S), and hence the kernel and
cokernel of the induced homomorphism

HE(X; Rs(-)) —— (H*(X%/Ca(S); Z(¢s))) "

have exponent dividing ¢(m) (since [N(S)/Cg(S)||| Aut(S)||¢(m)). The compos-
ite in (1) thus has kernel and cokernel of exponent m-cp(m). O

By the first part of Proposition 5.6, the equivariant Chern character can be
regarded as a homomorphism

chy : KG(X) —— [ (H*(X5/Ca(S)Q(s)) ™™,
Ses(G)

where S(G) is as above. This is by construction a product of ring homomorphisms.

We now apply the splitting of Lemma 5.6 to construct a second version of the
equivariant rational Chern character: one which takes values in Q ® HE(X; R(—))
rather than in HE(X; Q®R(—)). The following lemma handles the nonequivariant
case.

Lemma 5.7. There is a homomorphism nlch : K*(X) — H<*(X;Z), natural
on the category of CW-complezes, whose composite to H*(X; Q) is n! times the
usual Chern character truncated in degrees greater than 2n. Furthermore, nlch
is natural with respect to suspension isomorphisms K*(X) & K*t™(¥™(X,)),
and is multiplicative in the sense that (nich(z))-(nlch(y)) = n!-(nlch(zy)) for all
z,y € K(X) (in both cases after restricting to the appropriate degrees).

Proof. Define nlch : K9(X) — H®"'<2"(X;Z) to be the following polynomial in
the Chern classes:

n
nl Z<1+1}1+ -+t %) € Z[cl,...,cn] :Z[:L‘l,l'z,...,l'n]zn.

Here, as usual, ¢ is the k-th elementary symmetric polynomial in the z;. This
is extended to K~!(X) = K(2(X,)) in the obvious way. The relations all follow
from the usual relations between Chern classes in the rings H*(BU(m)). a

We are now ready to construct the integral Chern character. What this really
means is that under certain restrictions on X, some multiple of the rational Chern



