Thus, n_W^V is the multiplicity of W in the decomposition of $V|_{N'}$, as well as the multiplicity of V in the decomposition of $\operatorname{Ind}_{N'}^N(W)$. So for any $x \in K_G^*(X)$,

$$\begin{aligned} (\mathrm{Id}\otimes \mathrm{Res}_{N'}^{N})(\Psi_{G;N,H}(x)) &= \sum_{V\in\mathrm{Irr}(N)}\psi_{V}(x)\otimes [V|_{N'}] \\ &= \sum_{W\in\mathrm{Irr}(N')} \left(\sum_{V\in\mathrm{Irr}(N)}n_{W}^{V}\cdot\psi_{V}(x)\right)\otimes [W]; \end{aligned}$$

and we will be done upon showing that $\psi'_W = \sum_V n_W^V \cdot \psi_V$ for each $W \in \operatorname{Irr}(N')$. Fix a surjection $p_0 : \mathbb{C}[N'] \longrightarrow W$, and a decomposition $\operatorname{Ind}_{N'}^N(W) = \sum_{i=1}^k V_i$ (where the V_i are irreducible and $k = \sum_V n_W^V$). For each $1 \leq i \leq k$, let $p_i : \mathbb{C}[N] \longrightarrow V_i$ be the composite of $\operatorname{Ind}_{N'}^N(p_0)$ followed by projection to V_i . Then

$$\psi_{p_0} = \bigoplus_{i=1}^k \psi_{p_i} : \left(\underline{\operatorname{Vec}}_G^{\mathbb{C}}\right)^N \longrightarrow \underline{\operatorname{Vec}}_H^{\mathbb{C}}$$

as maps of Γ -spaces, and so $\psi_W \simeq \sum_{i=1}^k \psi_{V_i}$ as maps $K^*_G(X) \to K^*_H(X)$.

It remains to show that Ψ is a homomorphism of rings. Since it is natural in N, and since R(N) is detected by characters, it suffices to prove this when N is cyclic. For any $x, y \in K_G(X)$,

$$\Psi(x){\cdot}\Psi(y) = \sum_{V,W\in \mathrm{Irr}(N)} ig(\psi_V(x){\cdot}\psi_W(y)ig)\otimes [V\otimes W]$$

and

$$\Psi(xy) = \sum_{U \in \operatorname{Irr}(N)} \psi_U(xy) \otimes [U].$$

And thus $\Psi(x) \cdot \Psi(y) = \Psi(xy)$ since

$$\psi_U \circ \mu_* = \bigoplus_{\substack{V, W \in \operatorname{Irr}(G) \\ V \otimes W \cong U}} \mu_* \circ (\psi_V \wedge \psi_W) : \left(\underline{\operatorname{Vec}}_G^{\mathbb{C}}\right)^N \wedge \left(\underline{\operatorname{Vec}}_G^{\mathbb{C}}\right)^N \longrightarrow \underline{\operatorname{Vec}}_H^{\mathbb{C}},$$

as maps of Γ -spaces, for each $U \in Irr(N)$.

4. Characters and class functions

Throughout this section, G will be a *finite* group. We prove here some results showing that certain class functions are characters; results which will be needed in the next two sections.

For any field K of characteristic zero, a K-character of G means a class function $G \to K$ which is the character of some (virtual) K-representation of G. Two elements $g, h \in G$ are called K-conjugate if g is conjugate to h^a for some a prime to n = |g| = |h| such that $(\zeta \mapsto \zeta^a) \in \text{Gal}(K\zeta/K)$, where $\zeta = \exp(2\pi i/n)$. For example, g and h are Q-conjugate if $\langle g \rangle$ and $\langle h \rangle$ are conjugate as subgroups, and are R-conjugate if g is conjugate to h or h^{-1} .

Proposition 4.1. Fix a finite extension K of \mathbb{Q} , and let $A \subseteq K$ be its ring of integers. Let $f: G \to A$ be any function which is constant on K-conjugacy classes. Then $|G| \cdot f$ is an A-linear combination of K-characters of G.

Proof. Set n = |G|, for short. Let V_1, \ldots, V_k be the distinct irreducible K[G]-representations, let χ_i be the character of V_i , set $D_i = \operatorname{End}_{K[G]}(V_i)$ (a division algebra over K), and set $d_i = \dim_K(D_i)$. Then by [11, Theorem 25, Cor. 2],

$$|G| \cdot f = \sum_{i=1}^{k} r_i \chi_i$$
 where $r_i = \frac{1}{d_i} \sum_{g \in G} f(g) \chi_i(g^{-1});$

and we must show that $r_i \in A$ for all *i*. This means showing, for each i = 1, ..., k, and each $g \in G$ with K-conjugacy class $\operatorname{conj}_K(g)$, that $|\operatorname{conj}_K(g)| \cdot \chi_i(g) \in d_i A$.

Fix *i* and *g*; and set $C = \langle g \rangle$, m = |g| = |C|, and $\zeta = \exp(2\pi i/m)$. Then $\operatorname{Gal}(K(\zeta)/K)$ acts freely on the set $\operatorname{conj}_K(g)$: the element $(\zeta \mapsto \zeta^a)$ acts by sending *h* to h^a . So $[K(\zeta):K]||\operatorname{conj}_K(g)|$.

Let $V_i|_C = W_1^{a_1} \oplus \cdots \oplus W_t^{a_t}$ be the decomposition as a sum of irreducible K[C]-modules. For each j, $K_j \stackrel{\text{def}}{=} \operatorname{End}_{K[C]}(W_j)$ is the field generated by K and the r-th roots of unity for some r|m (m = |C|), and $\dim_{K_i}(W_j) = 1$. So

$$\dim_K(W_j)|[K(\zeta):K].$$

Also, $d_i |\dim_K(W_j^{a_j})$, since $W_j^{a_j}$ is a D_i -module; and thus $d_i |a_j \cdot |\operatorname{conj}_K(g)|$. So if we set $\xi_j = \chi_{W_j}(g) \in A$, then

$$|\operatorname{conj}_K(g)| \cdot \chi_i(g) = |\operatorname{conj}_K(g)| \cdot \sum_{j=1}^t a_j \xi_j \in d_i A,$$

and this finishes the proof.

For each prime p and each element $g \in G$, there are unique elements g_r of order prime to p and g_u of p-power order, such that $g = g_r g_u = g_u g_r$. As in [11, §10.1], we refer to g_r as the p'-component of g. We say that a class function $f: G \to \mathbb{C}$ is *p*-constant if $f(g) = f(g_r)$ for each $g \in G$. Equivalently, f is *p*-constant if and only if f(g) = f(g') for all $g, g' \in G$ such that [g, g'] = 1 and $g^{-1}g'$ has *p*-power order.

Lemma 4.2. Fix a finite group G, a prime p, and a field K of characteristic zero. Then a p-constant class function $\varphi : G \to K$ is a K-character of G if and only if $\varphi|_H$ is a K-character of H for all subgroups $H \subseteq G$ of order prime to p.

Proof. Recall first that G is called K-elementary if for some prime $q, G = C_m \rtimes Q$, where C_m is cyclic of order $m, q \not\mid m, Q$ is a q-group, and the conjugation action of Q on $K[C_m]$ leaves invariant each of its field components. By [11, §12.6, Prop. 36], a K-valued class function of G is a K-character if and only if its restriction to any K-elementary subgroup of G is a K-character. Thus, it suffices to prove the lemma when G is K-elementary.

The coefficient system $\mathbb{Q} \otimes R(-)$, and hence its cohomology, splits in a natural way as a product indexed over cyclic subgroups of G of finite order. For any cyclic group S of order $n < \infty$, we let $\mathbb{Z}[\zeta_S] \subseteq \mathbb{Q}(\zeta_S)$ denote the cyclotomic ring and field generated by the *n*-th roots of unity; but regarded as quotient rings of the group rings $\mathbb{Z}[S^*] \subseteq \mathbb{Q}[S^*]$ ($S^* = \operatorname{Hom}(S, \mathbb{C}^*)$). In other words, we fix an identification of the *n*-th roots of unity in $\mathbb{Q}(\zeta_S)$ with the irreducible characters of S. The kernel of the homomorphism $R(S) \cong \mathbb{Z}[S^*] \twoheadrightarrow \mathbb{Z}[\zeta_S]$ is precisely the ideal of elements whose characters vanish on all generators of S.

Lemma 5.6. Fix a discrete group G, and let S(G) be a set of conjugacy class representatives for the cyclic subgroups $S \subseteq G$ of finite order. Then for any proper G-complex X, there is an isomorphism of rings

$$H_G^*(X; \mathbb{Q} \otimes R(-)) \cong \prod_{S \in \mathcal{S}(G)} \left(H^*(X^S/C_G(S); \mathbb{Q}(\zeta_S)) \right)^{N(S)},$$

where N(S) acts via the conjugation action on $\mathbb{Q}(\zeta_S)$ and via translation on $X^S/C_G(S)$. If, furthermore, the isotropy subgroups on X have bounded order, then the homomorphism of rings

$$H^*_G(X; R(-)) \longrightarrow \prod_{S \in \mathcal{S}(G)} H\Big(\big(C^*(X^S/C_G(S); \mathbb{Z}[\zeta_S]) \big)^{N(S)} \Big)$$
$$\longrightarrow \prod_{S \in \mathcal{S}(G)} \big(H^*(X^S/C_G(S); \mathbb{Z}[\zeta_S]) \big)^{N(S)}, \quad (1)$$

induced by restriction to cyclic subgroups and by the projections $R(S) \longrightarrow \mathbb{Z}[\zeta_S]$, has kernel and cokernel of finite exponent.

Proof. By (5.2),

$$C^*_G(X; R(-)) \cong \operatorname{Hom}_{\operatorname{Or}_f(G)}(\underline{C}_*(X), R(-)) \cong \operatorname{Hom}_{\operatorname{Sub}_f(G)}(\underline{C}^{\operatorname{qt}}_*(X), R(-)).$$

For each $S \in \mathcal{S}(G)$, let $\chi_S \in Cl(G)$ be the idempotent class function: $\chi_S(g) = 1$ if $\langle g \rangle$ is conjugate to S, and $\chi_S(g) = 0$ otherwise. By Proposition 4.1, for each finite subgroup $H \subseteq G$, $(\chi_S)|_H$ is the character of an idempotent $e_S^H \in \mathbb{Q} \otimes R(H)$. Set $\mathbb{Q}R_S(H) = e_S^H \cdot (\mathbb{Q} \otimes R(H))$, and let $R_S(H) \subseteq \mathbb{Q}R_S(H)$ be the image of R(H) under the projection. This defines a splitting $\mathbb{Q} \otimes R(-) = \prod_{S \in \mathcal{S}(G)} \mathbb{Q}R_S(-)$ of the coefficient system. For each S and H,

$$\mathbb{Q}R_S(S) = \mathbb{Q}(\zeta_S)$$
 and so $\mathbb{Q}R_S(H) \cong \max_{N(S)} \left(\operatorname{Mor}_{\operatorname{Sub}_f(G)}(S, H), \mathbb{Q}(\zeta_S) \right).$

It follows that

$$C^*_G(X; \mathbb{Q}R_S(-)) \cong \operatorname{Hom}_{\operatorname{Sub}_f(G)}(\underline{C}^{\operatorname{qt}}_*(X), \mathbb{Q}R_S(-))$$

$$\cong \operatorname{Hom}_{\mathbb{Q}[N(S)]}(C_*(X^S/C_G(S)), \mathbb{Q}(\zeta_S));$$

and hence $H^*_G(X; \mathbb{Q}R_S(-)) \cong \left(H^*(X^S/C_G(S)); \mathbb{Q}(\zeta_S)\right)^{N(S)}$.

Now assume there is a bound on the orders of isotropy subgroups on X, and let m be the least common multiple of the $|G_x|$. By Proposition 4.1 again,

 $me^H_S \in R(H)$ for each $S \in \mathcal{S}(G)$ and each isotropy subgroup H. So there are homomorphisms of functors

$$R(-) \xrightarrow{i} \prod_{S \in \mathcal{S}(G)} R_S(-),$$

where *i* is induced by the projections $R(H) \rightarrow R_S(H)$ and *j* by the homomorphisms $R_S(H) \xrightarrow{me_S^H} R(H)$ (regarding $R_S(H)$ as a quotient of R(H)); and $i \circ j$ and $j \circ i$ are both multiplication by *m*. For each *S*, the monomorphism

$$C^*_G(X; R_S(-)) \cong \operatorname{Hom}_{\mathbb{Z}[N(S)]} \left(C_*(X^S/C_G(S)), \mathbb{Z}[\zeta_S] \right) \longrightarrow C^*(X^S/C_G(S); \mathbb{Z}[\zeta_S])$$

is split by the norm map for the action of $N(S)/C_G(S)$, and hence the kernel and cokernel of the induced homomorphism

$$H^*_G(X; R_S(-)) \longrightarrow \left(H^*(X^S/C_G(S); \mathbb{Z}[\zeta_S]) \right)^{N(S)}$$

have exponent dividing $\varphi(m)$ (since $|N(S)/C_G(S)|| |\operatorname{Aut}(S)|| \varphi(m)$). The composite in (1) thus has kernel and cokernel of exponent $m \cdot \varphi(m)$.

By the first part of Proposition 5.6, the equivariant Chern character can be regarded as a homomorphism

$$\operatorname{ch}_X^*: K_G^*(X) \longrightarrow \prod_{S \in \mathcal{S}(G)} \left(H^*(X^S/C_G(S); \mathbb{Q}(\zeta_S)) \right)^{N(S)},$$

where $\mathcal{S}(G)$ is as above. This is by construction a product of ring homomorphisms.

We now apply the splitting of Lemma 5.6 to construct a second version of the equivariant rational Chern character: one which takes values in $\mathbb{Q} \otimes H^*_G(X; R(-))$ rather than in $H^*_G(X; \mathbb{Q} \otimes R(-))$. The following lemma handles the nonequivariant case.

Lemma 5.7. There is a homomorphism $n!ch : K^*(X) \to H^{\leq 2n}(X;\mathbb{Z})$, natural on the category of CW-complexes, whose composite to $H^*(X;\mathbb{Q})$ is n! times the usual Chern character truncated in degrees greater than 2n. Furthermore, n!chis natural with respect to suspension isomorphisms $K^*(X) \cong \widetilde{K}^{*+m}(\Sigma^m(X_+))$, and is multiplicative in the sense that $(n!ch(x)) \cdot (n!ch(y)) = n! \cdot (n!ch(xy))$ for all $x, y \in K(X)$ (in both cases after restricting to the appropriate degrees).

Proof. Define $n!ch: K^0(X) \to H^{ev, \leq 2n}(X; \mathbb{Z})$ to be the following polynomial in the Chern classes:

$$n! \cdot \sum_{i=1}^{n} \left(1 + x_i + \frac{x_i^2}{2!} + \dots + \frac{x_i^n}{n!} \right) \in \mathbb{Z}[c_1, \dots, c_n] = \mathbb{Z}[x_1, x_2, \dots, x_n]^{\Sigma_n}.$$

Here, as usual, c_k is the k-th elementary symmetric polynomial in the x_i . This is extended to $K^{-1}(X) \cong \widetilde{K}(\Sigma(X_+))$ in the obvious way. The relations all follow from the usual relations between Chern classes in the rings $H^*(BU(m))$.

We are now ready to construct the integral Chern character. What this really means is that under certain restrictions on X, some multiple of the rational Chern