2.3.4 Quantum $M_5 \perp M_5$ -branes via Gelfand-Raikov theorem.

Now consider moduli of the 3-cohomotopical H_3 flux, which in §2.1 we saw appears on the ambient space²⁰ of 5-branes. For the moduli space of codim=2 D₄ \perp NS₅ $\stackrel{\text{IIA/M}}{\longrightarrow}$ M₅ \perp M₅ defects inside 5-branes [CHKS21, Fig. 1 & 3][SS23-Dfc1, pp. 28], we are to consider the situation (119) for n = 3, d = 7, p = 4, which yields configurations of ordered points in the transverse \mathbb{C} -plane.

To understand the light-cone quantization (§2.2) of these brane moduli, observe that the homotopy type of this configuration space is the classifying space of the pure²¹ **braid group** PBr (cf. [MySS23, pp. 12]), being the group of motions of the codim = 2 defects (Def₃) around each other in the transverse M₅-worldvolume \mathbb{C} .

The Quantum states. Thus with the *Gelfand-Raikov theorem* [Di77, Thm. 13.4.5.(ii)] it follows that the light-cone quantum states are given by unitary pure braid representations, hence are **anyonic states** ("topologically ordered" quantum states) [SS23-Dfc2].

This implies that the light-cone quantum observable algebra (114) is the pure braid group algebra.

$$\begin{aligned} & \text{QObsrvbls}_{NM_5 \perp M_5} \\ & \equiv H_{\bullet} \big(\Omega_{\{1, \cdots, N\}}^{\text{Conf}}(\mathbb{C}) \big) & \simeq H_{\bullet} \big(\Omega BPBr(N) \big) \\ & \simeq H_{\bullet} \big(PBr(N) \big) & \simeq \mathbb{C} \big[PBr(N) \big] \begin{array}{c} \text{group} \\ \text{algebra} \end{aligned}$$

 $\text{QStates}_{NM5\perp M5} \simeq$

$$\left\{ \rho : \mathbb{C}\big[\operatorname{PBr}(N) \big] \to \mathbb{C} \left| \begin{array}{c} g \mapsto \rho(g) = \langle \psi | U(g) | \psi \rangle \\ \text{for } U \in \operatorname{PBr}(N) \, \mathring{\subset} \mathcal{H}, \, | \psi \rangle \in \mathcal{H} \end{array} \right\} \,.$$

²⁰Hence with the M-theory circle included, the ambient space of the 5-brane on which we consider the H_3 -flux is 8-dimensional. ²¹Our figures show im-pure braids, just for ease of illustration.