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Lemma 3.24. Let C,, be a cyclic group of order n. The rationalized complex repre-
sentation ring of C, is isomorphic to a product of cyclotomic fields

Q® Re(Cy) = [[ Q)

d|n

where (4 denotes a primitive d-th root of 1, and d runs over the divisors of n. More-
over, the idempotent ec, of Q® Rc(C,,) corresponding to Q(¢,,) has the following
property. If C,, < G and Q = Ng(C,)/Cq(Cy), then the fixed-point space

(ec, (Q® Re(Cn)® =P Q

is a Q-vector space of dimension equal to the number of G-conjugacy classes of
elements of order n in Cy, a number which equals p(n)/|Q)|.

Proof. One first observes that as a ring,
Q® Re(Cr) = Q[Cy] = Q[z]/(z" — 1).

Factoring " — 1 into Q-irreducible polynomials yields the decomposition of the
representation ring into cyclotomic fields. By identifying the Galois group G(n) of
Q(¢,) over Q with the automorphism group (Z/nZ)* of Cy,, we can view @ as a
subgroup of G(n). Since Q((,) is a free Q[G(n)]-module of rank one, it is free as
Q[Q]-module, of rank equal the index [G(n) : Q] = ¢(n)/|Q|. It follows that the
Q-invariant part of Q({,) has dimension ¢(n)/|Q| as a vector space over Q; by the
choice of @ this equals the number of G-conjugacy classes of generators of C,,. O

Theorem 3.25. Let G be an arbitrary group. Then one has
Hio(G;Q® Re) = HyW(EGQ@ Re) = [[ H'(Col(a);Q)

[z]EFC(G)
and

HI™(G;Q® Re) = H™(EG;Q®Re) = P Hi(Colz); Q).

[z]€eFC(G)

The product (resp. sum) is taken over FC(G), the set of conjugacy classes
of elements of finite order in G. The right hand sides denote ordinary group
(co)homology of the centralizers Ce(x), with constant coefficients Q.

Proof. We follow the ideas of Liick and Oliver [93, Section 5], which have their root
in Slominska’s paper [124]. We will concentrate on the case of Q ® R¢ = R¥; the
other case is similar. Let Z(G) denote the set of conjugacy classes of finite, cyclic
subgroups of G. If S is a finite cyclic subgroup of G, we write S € [S] € Z(G).
For a finite subgroup H < G we define the idempotent es y € Q ® Rc(H) to
be the restriction of the class function eg : G — C, whose value on g € G is 1
if the subgroup (g) generated by g is conjugate to S, and zero otherwise. That
es|H is indeed a rational linear combination of characters (even of characters of
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Q-representations) follows from standard facts on representations of finite groups
(cf. [121]). There is a natural splitting
=[] &

[Slez(d)
where RY denotes the contravariant functor given on objects by G/H — eg ; (Q®
Rc(H)). We therefore obtain a splitting
Hio(GiQeRe) =[] Hiwnl(GiRY).

[Slez(G)

Now RﬂS(G /H) is 0 if [S] contains no representative gSg~! < H, and in the other
case is isomorphic to Q(¢js)", with N the normalizer of some gSg~! < H, acting
via an identification of a generator of ¢Sg~! with (s|- It follows that for any
M e MOdgin-G

mor(M, R%) & Homy,(s)(M(G/S), Q(¢s)))

where Ng(S) acts on Q((s|) via an identification of a generator of S with Cls)-
Therefore,

mor(C,(EG), ) =[] Homy,s)(C.(EG®), Q((s))) -

[S1eZ(G)

Recall that for any group K and any finite subgroup L < K, the Q[K]-module
Q[K/L] is projective, since it is isomorphic to the induced module Q[K] ®; Q
and Q is a projective Q[L]-module. Since, in the notation above, Ng(S) acts
properly on the space EG®, the complex C*(_E_GS) is in each degree * > 0 a
sum of permutation modules of the form Z[N¢(S)/H] with H finite. Therefore,
using that EG” is contractible, C, (EG® )®Q is a Q[N (S)]-projective resolution
of Q as a trivial Q[N (S)]-module. It follows that

H*(Hom . (s)(C.(EG®),Q(¢s)))) = H* (NG (S); Q(Gs)))-
The short exact sequence
Ca(S) — Na(8) - Q(S),

with Q(S) a finite group of order dividing ((|S|), yields a collapsing Serre spectral
sequence, with edge isomorphism

H* (NG (8);Q(¢s)) = H*(Ci;(8); Q(¢s1)) 2.

Using the previous lemma, and the fact that taking Q(S)-invariants commutes
with taking rational homology, we see that

H*(Ca(8);Qgs))*P = [ H'(Ca(S):Q).
e(ISN/1Q(S)]

Since every conjugacy class [S] of subgroups of order n in G corresponds to
o(n)/|Q(S)| conjugacy classes of elements of order n, the result follows. d
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Remark 3.26. The splitting Ry = D Ry, s (and similarly for R*) can also be used
to decompose H3™(X: Re ® Q) (resp. H;, (X; Re ® Q)) for an arbitrary proper
G-CW-complex X. One finds

CX)®s Ry P CulX®) ®ny(s) Rys(S)
[SleZ(G)
and with W5(S) = Ng(S)/Ca(S), as Cq(S) acts properly on X, the obvious
map
EB C(X®) ®ng(s) Rys(S @ C.(X5/Cc(8)) ®wy(s) Ry,s(S)
[Slez(G [S1€Z(G)
isa homology isomorphism, showing that
H'X;Re®@Q) = @ Hi(X%/Cc(S); Q) ®we(s) Re.s(S).
[Slez(G)
We used here that Ry 5(S) is a projective Q[W¢(.S)]-module, because W (S) is a
finite group. As we have seen, the Q-vector space
Ry 5(8)"e®) = Q ®wq(s) Rys(S)
has dimension ¢(|S])/|Q(S)|, which is the number of G-conjugacy classes of gen-

erators of S. This implies the following.

Theorem 3.27. Let X be a proper G-CW -complex. In the notation of Remark 3.26
we have

Hi(X%/Ca(8);Q) ®was) Res = @ Hi(X?/Cc(g):Q),
[9]€[S;G]

where the sum is taken over the set [S; G] of G-conjugacy classes of generators of
the cyclic group S, and there is an isomorphism

HY"(X;Re® Q= B Hi(X/Cal9);Q)
[9]€FC(G)
where the sum is taken over all conjugacy classes FC(G) of elements of finite order
inG.
The following is a simple example.

Lemma 3.28. For G = S{(2,7Z) one has

0, for x >0
Q8, forx=0.

Proof. Since S¢(2,7Z) admits a decomposition of the form Cy *c, Cg, all finite
subgroups of S¢(2,Z) are conjugate to a subgroup of one of the subfactors C;
resp. Cs. It follows that the centralizers of finite subgroups have the following
form: for {e} and Cy the centralizer is all of S¢(2,Z), whereas the centralizers of
the other finite subgroups are all finite. Since the Mayer—Vietoris sequence of the

HI"(SU(2,2);Q @ Re) = HI™(ES((2,2);Q® Re) = {



