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Abstract

Super Loo-algebras unify extended super-symmetry with rational classifying spaces for higher flux densities:
The super-invariant super-fluxes which control super p-branes and their supergravity target super-spaces are,
together with their (non-linear) Bianchi identities, neatly encoded in (non-abelian) super-Lo, cocycles. These
are the rational shadows of flux-quantization laws (in ordinary cohomology, K-theory, Cohomotopy, iterated
K-theory, etc).

We first review, in streamlined form and filling some previous gaps, double-dimensional reduction/oxidation
and 10D superspace T-duality along higher-dimensional super-tori, tangent super-space wise. This is viewed as
an instance of adjunctions (dualities) between super-Loo-extensions and -cyclifications arising from supercocycles
from first principles. This then allows for deriving the proposed laws of “topological T-duality” at the rational
level from the super-Lo structure of type II superspace.

Then, by considering super-space T-duality along all 1+9 spacetime dimensions while retaining the 11th
dimension as in F-theory, we find the M-algebra appearing as the D/NS5-brane extension of the fully T-
doubled/correspondence super-spacetime. On this backdrop, we recognize the “decomposed” M-theory 3-form
on the “hidden M-algebra” as an M-theoretic lift of the Poincaré super 2-form that controls superspace T-duality
(as the integral kernel of the super Fourier-Mukai transform). This provides an M-theory lift of T-duality at
the superspace level.

Recalling that the hidden M-algebra appears also in a higher form of rational-topological T-duality where
strings are replaced by M5-branes, we end with a perspective on the M-algebra as a Kleinian local model space
for U-duality-covariant superspace supergravity.
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1 Intro & Overview

Open question of non-perturbative theory of strongly coupled/correlated quantum systems. In con-
trast to the oft-heard lament that contemporary experimental results in fundamental physics are all-too-well ex-
plained by existing theory (thus allegedly lacking desired hints of “new physics”) it is a public secret that large
swaths of phenomena exhibited by quantum systems are explained by existing theory at best in principle: Namely
common perturbation/mean-field theory has little to say [BaSh10] about the behavior of strongly coupled quantum
systems [FS10][Str13] (which includes no less than confined ordinary hadronic matter at non-excessive temperature
[Brt14, p. 6][RS20]) and hence of strongly correlated quantum systems [Ful2][FGSS20], which notably includes
fractional quantum Hall systems [St99] and other quantum materials [KM17] expected to exhibit anyonic topological
order arguably needed for scalable quantum computation (e.g. [Saul7][SS23c|[MSS24]).

M-theory as a candidate solution. Hints for a hypothetical but plausible non-perturbative theory of strongly-
coupled quantum systems have emerged since the 1990s [Wi95][Du96][Du99a], originating in discussion of quantum
gravity and “grand unified” quantum field theory. In its “holographic” guise (e.g. [Nat15]) this approach models
(possibly counter-intuitively but with remarkable success) strongly-coupled quantum systems by matching them
onto the dynamics of “branes” (higher dimensional membranes, whence “M-theory” [HW96a, p 1], introductions
include [Wel2]) whose quantum fluctuations inside an auxiliary higher dimensional spacetime turn out to be usefully
reflected in the ambient gravitational field.

Notably quantum critical superconductors have partially been understood holographically this way [HKSS07]
[GSW10a][GSW10b][GPR10][DGP13] (review in [Pil4][ZLSS15][Nal7][HLS18]); but M-theory will be needed (cf.
[AGT00, p. 60][CP18, p. 2][Ch18, p. iii][SS23c, Fig. 4]) to complete the holographic description beyond the usual
(but unrealistic) large-N limit.

For example, with more M-theoretic aspects included, anyons as in fractional quantum Hall systems can po-
tentially be understood from first principles by careful analysis ([HS01][SS23b][SS23¢][SS24d]) of N = 1 five-
dimensional such branes (“M5-branes”, review and pointers in [Du99a, §3][GSS24b]).

While the full formulation of M-theory remains an open and ambitious problem — as the community periodically
reminds itself of (e.g., [Du96, §6][Mol4, p. 43][CP18][Du20] [BLOY24]) — there is a substantial web of hints as to
its nature, mainly from

(i) extended super-symmetry,

(ii) hidden duality symmetry,
and our aim here and in the companion article [GSS24d] is towards the combination/unification of these two aspects
(which previously has found little attention):

Towards M-theory via extended super-symmetry. The characteristic local ! spacetime super-symmetry of
higher dimensional supergravity (cf. Ex. 2.3) famously admits Spin-equivariant central extensions (e.g. [vHvP82]
[KQS10], cf. Def. 2.21 & Rem. 3.37 below) by Noether charges of global symmetries of branes probing super-
spacetime [SS17], suggesting these extensions as the local symmetry of completions of supergravity by brane
dynamics. The maximal such central extension for 11d SuGra, known as the M-algebra ([DF82][T095, (13)][T098,
(1)][Se97], cf. Def. 3.39 below) is by charges of the very membrane (and fivebrane) that give M-theory its name,
plausibly going some way towards elucidating its nature (cf. [To99]).

Towards M-theory via duality symmetry. But the founding observation of the field that came to be known
as “M-theory” is that different-looking expected corners or limits of M-theory tend to be subtly equivalent to
each other via “dualities” [Schw97][FLI8][dW199][Pol17], suggesting that the full M-theory could be revealed by
making manifest a symmetry-principle of “U-duality symmetries”. The archetypical example is T-duality (cf.
[AAL95][Bul9][Wa24], we re-derive various ingredients in §3 below), whereby, remarkably spacetime dimensions
transmute into charges of 1-dimensional branes (strings), and vice versa. Including also higher-dimensional brane
charges into this picture reveals, at least super-tangent space wise, a much larger brane rotating symmetry ([BW00],
cf. Ex. 3.45) which in turn is argued to be the shadow of a humongous U-duality symmetry ([HT95][OP99] ?)

ISupergravity is locally supersymmetric in direct analogy to how ordinary Einstein gravity is locally Poincaré-symmetric (only),
namely: on each (super-)tangent space (hence in the infinitesimal neighbourhood of any point) but not globally (in other words: on each
“super-Kleinian” local model space but globally curved by “super-Cartan geometry”). In contrast to global low-energy supersymmetry
that has gotten so much attention in the last couple of decades, the phenomenolgy of local Planck-scale supersymmetry remains viable
even if it has received much less attention, but see e.g. [MN18][BQ22].

2The term “U-duality” was introduced in [HT95] for restricted actions of integral subgroups Enm)(Z) C Epn) conjecturally
enforced by charge quantization. But for the tangent-space wise Lie algebra discussion of concern here (and since the precise nature
of the charge quantization needs more attention anyway, cf. also [d{WNO1, p. 4]) we will use “U-duality” more broadly (as is not
uncommon, e.g. [HS13a], and in line with the common use of “T-duality”) as shorthand for the “hidden exceptional symmetry” of
toroidal compactifications of 11d SuGra.



governed ultimately by the exceptional Kac-Moody Lie algebra ? ¢;; [We01], thought to exhibit much of the hidden
structure of M-theory [Ni99][dWNO1][Ni24]. We will discuss general U-duality in the companion article [GSS24d],
but here we first take a step back and revisit T-duality in view of M-theory.

Revisiting super-space T-duality. While T-duality is expected to be a symmetry already at the perturbative
level, it carries within the seed of the expected more general U-duality symmetries of M-theory: The expected
SL(2,Z) S-duality symmetry of M/F-theory is the result of lifting T-duality on a single circle fiber to M-theory on
a 2-torus fiber (e.g. [Schw96][Jo97]; we see the super-tangent space incarnation of this phenomenon below in Prop.
3.31.) At the same time, T-duality is by far the best-understood of the U-dualities:

In its strong (rational-)topological formulation (reviewed and in fact derived, rationally, in §3, cf. Rem. 3.17) T-
duality is neatly reflected in a twisted Poincaré line bundle with curvature Poincaré 2-form Py (7) on a “doubled-”
(physics jargon) or “correspondence-” (math jargon) spacetime (cf. Rem. 3.22). For super-flux densities on super-
tangent spaces, this statement was the main result of [FSS18a], which below we review and extend in streamlined
form.

Superspace T-duality and M-theory. Our central observation here is that when performing super-space T-
duality on all spacetime dimensions at once, it has a natural lift to, plausibly, M-theory, where

§3.3 the doubled super-space is further extended (172) by the M-algebra (Def. 3.39) of extended 11D super-
symmetry,

§4 the Poincaré super 2-form is the reduction of a super 3-form P; (173) on the M-algebra, which may be
identified with the “decomposed” M-theory 3-form (194) that had originally motivated the M-algebra, way
back in [DF82] (cf. [AD24]).

We suggest this as further evidence that the M-algebra plays the role of the local model space for a duality-
covariant completion of superspace supergravity, as has previously been suggested, in one way or other, by
[Vau07][Bal7][FSS20a, §4.6][FSS20b][FSS21a] and as we will further justify in the companion article [GSS24d].

What follows is slightly more technical overview of the discussion in the main text:

Key role of super-flux avatars on super-tangent spaces. Remarkably, higher dimensional supergravity is an
instance of (super-)Cartan geometry (cf. [Sh97, §7][Ba77b][GSS24a, §2]) in a strong higher sense: The ubiquituous
supergravity torsion constraints (e.g. [Lo90][Lo01]) say that the dynamics of supergravity super-fields on curved
super-space X 14N ig largely controlled by the demand that the bifermionic components of higher super-flux
densities restrict on each super-tangent space (the super-Kleinian model space, see Ex. 2.3)
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to fixed super-invariant avatar forms. This is most pronounced for 11d SuGra (as was particularly highlighted
by [Ho97]): Its typical super-tangent space R'1°132 with its canonical super-coframe field ((e®)!%,, (¥*)3%,)
carries super-invariant avatars of the Hodge-duality symmetric C-field flux densities ([DF82, (3.26)][NOFS86, (2.27-
28)][CL94, (6.6,10)][CAAIPO0, (8.8)], cf. Ex. 2.8):
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Duality-symmetric avatar super-flux densities of 11d SuGra >1a1c entities

and the equations of motion of 11d SuGra on a supermanifold X 10132 are equivalent to the demand that this

situation suitably globalizes to X 10132 ([GSS24a, Thm. 3.1] following [BH80][CF80][CDF91, §I11.8.5]).
Similarly for 10d type II supergravity, the NS&RR-flux densities and their Bianchi identities have super-invariant

avatars on the respective super-tangent spaces R1.9116©16 (type IIA, cf. Ex. 3.2) and R1.9/16©16 (type IIB, cf.
Ex. 3.6), respectively, given * for type ITA by ([CAAIP00, §6.1], cf. Prop. 3.13 below) by

A a2l a o A
Hy = (¢TTnd)e C 1,9]16616 dHy = 0
1 A a a < E(R ) ’ A (3)
FQ. = W(QZ}FGI"T?Q.—Q ¢)€ 1...pg%2e-2 dFQk: = HS F20727
Duality-symmetric avatar super-flux densities of 10d type IIA SuGra Bianchi identities

3Strictly all Lie algebras considered are split real forms, so that we omit the further notational decoration: sl, is short for sly, (R)
and ey, is short for e, ).

4Our undecorated Clifford generators (I'*)X0_, are always those of Pin* (1, 10), reviewed in §A. In particular, under the reduction
Spin(1,9) — PinT(1,10) the “chirality operator” often denoted “T';” (a reminiscence of the ancient tradition of writing “y>” for the
chirality operator on Dirac spinors in 4d) is in our notation: I'g. This and further algebraic expressions of type II spinors in 10d in
terms of Majorana spinors in 11d (immediate for type IIA and a little more subtle for type IIB) are discussed in §3.1.



and for type IIB by ([Sak00, §2], c¢f. Prop. 3.15 below) by:
HY = (¢TI ETypv)e dHP =0
Fres1 = o (VT8 T8, To(Tp)*H p)et - e2et d Fheir = Hy Fooy.

Duality-symmetric avatar super-flux densities of 10d type IIB SuGra Bianchi identities
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Avatar flux densities as super-L.,-algebra cocycles. Moreover, the Bianchi identities satisfied by these
avatar super-flux densities may equivalently be understood [FSS17] as making them cocycles on super-space with
coefficients in higher (categorified symmetry) Lie algebras (cf. [FSS19][A124]), namely L..-algebras (reviewed in
§2.1 below), such as the real Whitehead bracket L.-algebras [(—) of spaces (Ex. 2.4) and of parameterized spectra
(Ex. 2.11). For 11D SuGra the Lo-coefficients are those of 4-Cohomotopy (Ex. 2.8 below):

(G4,Gr)
satisfying Bianchi in (2)

while for 10D type IT SuGra the L.-coefficients are those of 3-twisted complex K-theory (Prop. 3.13, Prop. 3.15):

(Hf?7 (FQO))
satisfying Bianchi in (3)

(Hy, (Foet1))
satisfying Bianchi in (4)
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This is a remarkable higher Cartan-geometric aspect of higher-dimensional supergravity (which is closely related
to the point of view of [DF82][CDF91][AD24]): It means that the global dynamics of global field configurations is
tightly controlled by super-L., algebraic avatar structures on the typical super-tangent space (1). This suggests
that also deeper structures of supergravity, and thereby of M-theory and its duality symmetries, are (partially,
namely, rationally [FSS19]) reflected in and hence recognizable from the local super-space Lo.-cocycle structure. °

Further investigation along these lines is the theme of the present article.

Duality formalized as adjunction. In fact, we find (in §3.2, following [FSS18a[FSS18b][BMSS19]) that T-
duality between the type II super-flux avatars (6) is exhibited (138) by a fundamental “adjunction” (the category-
theorist’s term for “duality”, gentle introduction in [Sc18]) which serves to neatly capture the mechanism of double-
dimensional reduction/oxidation of flux densities (Prop. 2.25), the backbone of all hidden U-duality symmetry.

By passage to homotopy fibers ¢ of the Loo-cocycles of thus reduced super-fluxes, higher flux-extended super-
spacetimes emerge (in Lem. 3.18 below, of the kind previously studied in [CdATP00][Az05]) equipped with equiv-
alent incarnations of the super-flux T-duality equivalence (Lem. 3.19). This brings about the doubled super-space,
whose M-theoretic lift will concern us particularly:

Doubled tangent super-spacetime and Poincaré super-form. The fiber product (59) of the above ITA- and
IIB- superspaces over the type II super-tangent space of 9d supergravity is the “correspondence super-space” or
doubled super-space (Def. 3.20, as in [HKS14][Bal5][Cel6][FSS18a, §6]):
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10D type ITA 21,9 16616 </ \/‘ R1:9/16®16 10D type I1B
super-space super-space
T RL8|16®16 —

9D type II

super-space
This doubled super-spacetime carries a further component é° to its coframe field, reflecting the string winding
charges along the T-dualized coordinate axis (here: the 9th) and thus manifestly putting them on the same footing
as spacetime dimensions. The wedge product of this with the original coframe field component in this direction, e?,
plays a significant role, as it may be identified with the local super-form version of what in topological T-duality
is known as the twisted Poincaré form (Rem. 3.22) on the correspondence space. This is a coboundary for the
difference of the NS super 3-flux densities of type IIA and IIB (Prop. 3.21):

Pyoi= e € CE(R“’ 16916, RL9| 16@16) , AP, = i H: — 75 HE . (7)
R18I16516
twisted Poincaré super 2-form for doubled 10D type IT SuGra Bianchi identity

5The issue of promoting Leo-algebra valued flux densities as in (5) to globally defined higher gauge fields is the topic of fluz
quantization [SS24c][GSS24a][GSS24b] by which more subtle topological aspects of M-theory are resolved [FSS20c][GS21][FSS21b].

6The (rational) homotopy theoretic constructions that we allude to here are explained in some detail in [FSS23], but the reader need
not further concern themselves with these foundations just for reading the present article.



In fact, the super-Poincaré form exhibits all of super-flux T-duality, in that it serves as the “integral kernel” of
a Fourier-Mukai transformation (pp. 55) taking the RR super-flux densities of ITA and IIB into each other (Cor.
3.28).

Up to this point, the discussion is a streamlined and completed account of the results announced in [FSS18a].
Next, we connect these to M-theory.

Fully doubled super-spacetime and full Poincaré form. With the further super-L., algebraic machinery of
toroidification (§2.3, following [SV23][SV24]) we may analyze the analogous super-space T-duality but for reduction
along all 10 space-time dimensions down to the (super-)point (Ex. 2.34), where we find (155) type ITA self-duality
exhibited on a fully (i.e., along all space-time axes) doubled super-spacetime:

Dpl := RLII 16216 o R1,9|16016

ROI32 T

TA
10D type ITA p1,9| 16616 — I R1.9/16®16 10D type ITA

super-space super-space
\-» RO 32 «e'/

super-point
This fully doubled superspace Dbl carries a dual coframe field €, for each of the coordinate axes, reflecting corre-
sponding string winding charges, and which thus supports an analogous Poincaré 2-form exhibiting (Prop. 3.35)
the T-duality between type IIA and its full T-dual super-space IIA (which is essentially type IIA itself again, up
to some fine-print, cf. Rem. 3.33):

Py = &, € CE(Dbl), AP, = miHf —wiHy . (8)

Twisted Poincaré super 2-form for fully doubled 10D type II SuGra Bianchi identity

Extended ITA super-symmetry algebra extends doubled super-space. Recalling at this point that the
“doubling” of spacetime dimensions happening here is equivalently the adjoining of string (winding) charges, we
observe that the doubled super-spacetime is an intermediate stage in the fully extended type IIA super-symmetry
algebra II2 (Def. 3.36), which adjoins furthermore the charges of the D-branes and the NS5-brane (Rem. 3.37).
To make this observation more manifest, we consider the super-algebra Brn (166) which extends the super-point
purely by the type ITA brane charges (string, D-branes & NS5-brane). We observe (167) that the fully extended
ITA super-symmetry algebra is the fiber product (59) over the fully T-dual ITA algebra of this pure brane charge
algebra with the fully doubled super-spacetime:
Fully extended ITA
super-algebra

ITA

Fully doubled / \ Pure brane
super-spacetime obl \» «PB% Brn charge algebra
~ — son VY
RL9116016 extensiVl ges

e o
Fully T-dual 1A P*"

super-spacetime

This relation between extended super-symmetry and T-duality doubled super-spacetime may not have been ad-
dressed before — but now we see that this brings out the M-theoretic lift of T-duality doubled super-space:

Extending double super-space to the M-algebra. We then observe that finally extending all of the above
setting also along the fibration of the 11D- over the 10D type ITA super-tangent space makes the I12(-algebra
extend to the basic M-algebra M (recalled as Def. 3.39, and makes the Dbl-algebra extend to the analog of the
F-theory super-tangent space (153) for reduction along all spacetime directions, which, therefore, we denote §).
This concretely exhibits the M-algebra as the M-theoretic analog of the T-duality correspondence super-space

M-algebra
«/ " \pM»
_ 5 . T
P
R1.10|32 \» Dbl /
exton R1.9] 16016 / \» RLO|16®16

L1gy, ISion §,
th dnnellsjy N N
on I'ype ITA I'ype 11B
super-spacetime super-spacetime
In particular, this diagram exhibits the dual coframe field €, on (hence the doubled dimensions of) Dbl as the
membrane charges e, q, that wrap the 11th dimension: é, < ey, (169).



M-theoretic Poincaré 3-forms and the hidden decomposition of the M-theory 3-form. With this
understood it becomes evident that there are super-invariant 3-forms on 9t which dimensionally reduce (Rem.
3.42) to the Poincaré 2-form (8) controlling T-duality on 10D super-space:

. 1l_,a a Brn , M _
PS = §elea1a2€2+"'7 Pbas Px P3 = P2
——
basic part of

11D fiber integration

Remarkably, super-invariants with this leading term have been discussed before (194) from a rather different
point of view, under the name of “decomposed” M-theory 3-forms ([DF82][BDIPV04][AD24], see (194) below)
satisfying in addition .

P € CE(SDT), dP; = Gy . (9)
Poincaré 3-form in M-extended 11D SuGra Bianchi identity
In the concluding section §4, we summarize the M-theoretic T-duality picture that we establish here and give an
outlook on the Poincaré super 3-form Pj as in (9) as exhibiting the rational-topological enhancement of aspects of
U-duality symmetry for super-space supergravity.

We will further discuss in [GSS24d] the hidden M-algebra with its Poincaré 3-form as an M-theoretic candidate
for U-duality covariant super-space supergravity. This article lays the groundwork by a comprehensive discussion

of the underlying super-L., algebraic T-duality mechanisms, completing and extending previous such work in
[FSS18a][FSS18b][FSS20a)[SS18].

Outline.
§2 discusses super-L., algebraic T-duality in abstract generality,
§3 realizes this on the avatar super-flux densities on super-tangent spacetimes.
The first couple of subsections in each case are concerned with type A/B-duality along a 1-dimensional fiber,
the latter couple of subsections deal with full T-duality on all 10 spacetime dimensions related to M-theory,
§4 sums up the curious picture thus obtained and gives an outlook on M-theoretic lessons.



2 Super-L, theory

In this section, we discuss in abstract generality the super-L.,-algebraic structures and phenomena which, when
applied to super-flux densities on super-spacetime, in §3 below, exhibit super-space T-duality. While the super-L
perspective makes various constructions nicely transparent, all our computations take place in the dual Chevalley-
Eilenberg dgc-algebra picture that is familiar in the supergravity literature (“FDA”s, cf. Rem. 2.1 below).

2.1 Super-L,, algebra

We recall (from [FSS15, §2][FSS18a, §2][F'SS19, (21)][HSS19, §3.2][Sc21, p 33, 48]) the notion of higher (meaning:
categorified symmetry) super-Lie algebras (of finite type) and their identification with the “FDA”s from the super-
gravity literature ([vN83][CDF91, §IIL.6], cf. [AD24]). Our ground field is the real numbers R, and all super-vector
spaces are assumed to be finite-dimensional.

Given a finite dimensional super-Lie algebra g >~ gevn ® godd, the linear dual of the super-Lie bracket map

['v'] Pgvg——9g
may be understood to map the first to the second exterior power of the underlying dual super-vector space, and as
such it extends uniquely to a Z x Zy-graded derivation d of degree=(1,evn) on the exterior super-algebra (where
the minus sign is just a convention)

Ng* b, N2g*

{ {

/\og* d /\og*
With this, the condition d o d = 0 is equivalently the super-Jacobi identity on [-,-], and the resulting differential
graded super-commutative algebra is know as the Chevalley-Filenberg algebra of g:

CE(g, [-,-]) = (A®g"d).
This construction is a fully faithful formal duality
sLieAlg CE sDGCAIg®?

(\V;/ [_a_]) — (/\. V*a d:_[_v_]*)7 (10)
super-
vector space

in that
(i) for every super-vector space V' a choice of such differential d on A®*V* uniquely comes from a super-Lie bracket
[-,-] on V this way, and
(ii) super-Lie homomorphisms ¢ : g — g’ are in bijection with super-dg-algebra homomorphisms ¢* : CE(g’) —

CE(g).

More concretely, given (T;)7_; a linear basis for g with corresponding structure constants ( i’; € R) :lj w—1» then the
Chevalley-Eilenberg algebra is equivalently the graded-commutative polynomial algebra
CE(Q, [_a_]) = (R[tl’ T ’tl]’ d)
on generators of degree (1,0;) with corresponding structure constants for its differential:
Super Lie algebra Super dgc-algebra
Generators ( T; )?:1 ( v )jzl (11)
deg = (0,0;) deg = (1,04;)
Relations (T3, T;] = fE Tw dt* = —Lfkt't

This dual perspective via the CE-algebra is most convenient for passing from super-Lie to strong homotopy super-
Lie algebras, also known as super Lie co-algebra (subsuming Lie 2-algebras, Lie 3-algebras etc., hence infinitesimal
“categorified symmetry” algebras), and also known as super-Lo, algebras, for short: These are obtained simply by
dropping the assumption that the CE-generators are in degree 1:

Namely for a Z-graded super-vector space V, (degree-wise finite-dimensional by our running assumption, hence
“of finite type”), a sequence of higher arity super-skew-commutative brackets is dually a map from the degreewise
dual VY (with VY := (V,,)*) to its graded Grassmann algebra:

d: AlVY — AtVY



and the higher super-Jacobi identity is dually simply the statement that this map, extended uniquely as a super-
graded derivation to all of A®VV, is a differential
d: AVY — A VY
in that it squares to zero: dod = 0. (This is the evident super-algebraic enhancement of the characterization of
finite-type Loo-algebras in [SSS09, §6.1].)
This way, super-Lo, algebras (of finite type) are equivalently nothing but super dgc-algebras whose underlying

super-graded algebra is of the form A®*VY for some Z-graded super-vector space, with super L..-homomorphisms
identified as homomorphisms of these super dgc-algebras going in the opposite direction (“pullback”):

sLieAlg,_ oE sDGCAIg®?

(\V;/’Hv["']7['a'v']a"') — (/\. Vvvd:*[']**['a']**['a'v']**”')' (12)

graded super-

vector space
More concretely, by a choice of linear basis (7T} );cr for its underlying graded super vector space V', the CE-algebra
of a super-L,-algebra may be written as:
CE() = Ral(t )ier/(@t = P'()),,. (13)
deg=(n;,0;)
where
deg(t') = deg(T;) + (1,evn)
Rq [(ti)ie 1] is the free differential (Z x Zs)-graded symmetric algebra on these generators and their differentials
(207), whose product is subject only to the sign rule (205).

p? (f ) are graded-symmetric polynomials in the generators,

d is extended from generators to polynomials as a super-graded derivation of degree (1,evn),
e the consistency condition is (only) that dod = 0.
Accordingly, a homomorphism of super L..-algebras f : g — § with dual linear basis (ei)ie_ rand (t9);ey is
dually given by an algebra homomorphism f* : CE(h) — CE(g) pulling back the generators ¢ to polynomials
f*(t7) € A*(g") in the generators e’ such that the differential is respected:

g ————b

CE(g) «X— CE(p) , such that Ay df*(#7) = f*(ar’). (14)
fr ) = v

Remark 2.1 (CE-algebras are differential quotients of free differential graded-commutative algebras.).
As such, we may recognize the CE-algebras (13) as the “free differential algebras” of the supergravity literature
[vN83][CDF91, §II1.6]. The quotient notation in (13), following [FSS23, §4], is justified by thinking of
e Ry [(ei)ie I] as the (actual) free differential super-graded-commutative algebra, hence with each de’ being a new
generator subject to no relation (except super-graded commutativity),
o (de' = Pi((ej)jel))iel as a differential ideal,
e the quotient hence enforcing these equations on the previously free differential.

Remark 2.2 (L,.-jargon).

(i) Another name for L.-algebras is strong homotopy Lie algebra (which was more popular in the past), also
abbreviated sh-Lie algebra, as in the original articles [LS93][LM95]. Our formulation (12) of L..-algebras via their
CE-algebras (which brings out the equivalence of super L.-algebras with the “FDA”s in the supergravity literature,
Rem. 2.1) is contained in these original articles, made explicit in [SSS09, Def. 13]. Similarly, our homomorphisms
of Lo.-algebras (14) were also called strong homotopy maps or sh-maps, for short.

(ii) Or rather, our (14) subsumes the slightly larger generality known as “curved” morphisms between non-curved(!)
L -algebras (as in [MZ12, below (2)]): Namely, CE-algebras (13) carry a canonical augmentation ¢ — the homo-
morphism which projects out the scalar summand R ~ A°VY < A®*VV (dual to a canonical base-point, see Ex.

2.5): .
((+) g
R «—— CE(g) Ra A*21VV

and the “non-curved” morphisms f : g — g’ are those preserving these base-points, hence dually preserving these



augmentations: [(+)

Hence “non-curved homomorphisms between non-curved L.,”-algebras really means: base-point preserving homo-
morphisms. But we generically allow “curved homomorphisms”, not required to respect the base-point.

(iii) Note that this is an issue if and only if A’V has elements in degree 0 (hence iff V has elements in degree -1).
In the interpretation of homomorphisms R»*IN — g as super-flux densities (in §3.2 and §3.3) this is the case of
“axion fields”.

Examples of super-L., algebra. The base example in supergravity is the following Ex. 2.3:

Example 2.3 (Supersymmetry algebras). For d € N and N € Repy(Spin(1,d)) a real spin-representation
equipped with a Spin(1, d)-equivariant linear map

(OT-) : N® N—— R, (15)

sym

the corresponding super-translation super-Lie algebra R1¢IN is given by

dy* =0
CE(RV4IN :R[ a N (o ‘L}/( _ ) 16
) =m0 O] /(0 Py o
deg = (1,0dd) deg=(L,evn)

Specific examples of this kind are the topic of §3.1 below.

Dually, this means that the super-Lie algebra itself is
RUIS2 ~ R((Qu)i2, , (P)ilg ) (17)

N, e’ D

deg = (0,0dd) deg=(0,evn)
with the only non-trivial super-Lie brackets on basis elements being the usual 7
[Qa, Qs] = —2T45P,. (18)

The assumed Spin(1, d)-equivariance implies that the ordinary Lorentz Lie algebra soq 4 acts automrophically
on RMIN_ The corresponding semidirect product super-Lie algebra is the super-Poincaré Lie algebra, the full
“supersymmetry algebra” in these dimensions:

dy® =0
CE(RLd|N X 501,d) =~ Rd[ (i/’i)év:h (\ef_,)g:m (W =—w)d b:()]/ de® = (w r< ¢) + wy el
—_—
deg = (1,0dd) deg = (1,evn) deg = (1,evn) dwab = wacwa

Important examples among higher Lie-algebras come from
(T) topological spaces,
(II) spectra of spaces,

and generally, unifying these two cases:
(III) bundles of spectra over topological spaces.

(I) Whitehead L..,-algebras of spaces.

Example 2.4 (Real Whitehead L..-algebras of topological spaces cf. [FSS23, Prop. 5.11]). Given a
topological space X — which is (a) connected, (b) nilpotent, e.g., in that its fundamental group is abelian, and
(c) whose R-cohomology H®(X;R) is degreewise finite-dimensional — there is an L.-algebra, [X, characterized
by the following two properties:
(1) The underlying graded vector space is the R-rationalization of the homotopy groups me(X) of the based loop
space Q2X:
X ~ (Wo(QX) @y Rv ['a']a ['7’)']7 o ) ) CE([X) = ( n® (WQ(QX) X, R)vv d) ’
———

deg = (e,evn)

7 Our prefactor convention in (18) — ultimately enforced via the translation (11) by our convention for the super-torsion tensor in
(233), cf. [GSS24a] and [GSS24a] — coincides with that in [DF99, (1.16)][Fr99, p. 52].



(which means, cf. below (13), that the generators of CE(IX) are in the degrees of the homotopy groups of
X).
(ii) The cochain cohomology of its CE-algebra reproduces the ordinary cohomology of X:
H*(CE(IX),d) ~ H*(X;R).
In rational homotopy theory the dg-algebra CE(LX) is known (reviewed in [FSS23, §5]) as the minimal Sullivan
model of the topological space X, retaining exactly the information of its rational homotopy type.

A trivial but useful example is the following:

Example 2.5 (The point). The real Whitehead Lo.-algebra (Ex. 2.4) of the point space * is the 0-object in
super-L,-algebras
0 ~ (%)
given by
CE(0) ~ (A®0,d=0) = (R,d=0).
Of course, this is also the real Whitehead L.-algebra of every contractible topological space.

Example 2.6 (Line Lie n-algebra.). For n € N and X an integral Eilenberg-MacLane space
X ~ B"U(l) ~ K(Z,n+1)

hmtp hmtp

(classifying ordinary integral cohomology in degree m + 1 and equivalently classifying complex line bundles, for
n = 1, line bundle gerbes, for n = 2, and generally principal circle n-bundles, see [FSS23, Ex. 2.1]) its real
Whitehead Lo.-algebra (Ex. 2.4)

"R = (B U(1)) (19)
is given by
CE(IB"U(1)) ~ Rd[w]/(dwnﬂ =0). (20)

deg =(n+1,evn)
This means that super-Ls, homomorphisms (14) into these higher Lie algebras are equivalently (n 4 1)-cocycles:
Qny1 € CE(Q) )
& deg(apt1) = (n+1, evn), (21)
dan+1 = 0.

g — 1(BmU(1))

Apt1 Wn+1

As an aside: For n € N the classifying space B"U(1) ~ K(Z,n + 1) carries the structure of a higher (categorical
symmetry-)group, equivalent to the based loop co-group of the next space in the sequence:

BU(1) =~ QB"MU(1).

as 0o-groups
(The underlying homotopy equivalences make the (B”U(l))n cn @ spectrum of spaces, cf. Ex. 2.9.)
For this reason, the operation B(—) is also called de-looping. After passage to Whitehead Lo.-algebras
bol(-) = loB(-)
this is given, via (20), by shifting the degree of the single generator,

Example 2.7 (Real Whitehead L.-algebra of the 4-sphere, cf. [FSS23, Ex. 5.3]). The Whitehead Loo-
algebra (Ex. 2.4) of the 4-sphere, [S4, is given by

d = 0
E(ISY) ~ R 94] ( 94 > 22
CE(157) d[Q? / dgr = 59104 (22)

Namely, the generators in degree 4 and 7 reflect the fact that S* has such generators for non-torsion homotopy groups
in these degrees, while the differential in (22) cuts down the resulting cohomology ring from R[g4] ~ H*(K(Z,4);R)
to the correct R[g4]/(g3) ~ H*(S*; R). The prefactor of 1/2 in (22) is not fixed up to isomorphism of L.-algebras,
but is the natural choice for capturing the Bianchi identity of the C-field in the next Ex. 2.8.

Note the homomorphism (14) to the line Lie 4-algebra (Ex. 2.6)

(s 94 S
$ I ~ [ , $ (23)
bBR Wy BSU(l)

which rationally reflects the “lst Postnikov stage” of the 4-sphere (cf. [GS21]).
On the other hand, rationally the Eilenberg-MacLane space B3U(1) ~ K(Z,4) is indistinguishable from the
classifying space for SU(2)-principal bundles, IB3U(1) ~ [BSU(2), so that up to choices of flux quantization laws
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([SS24c]) the above map may also be thought of as the map classifying the quaternionic Hopf fibration
S? S4
I (24)
BSU(2).

The Lie 7-algebra [S* of Ex. 2.7 (a 6-fold “categorified symmetry” algebra) is noteworthy because it provides
the correct coefficients for the duality-symmetric C-field super-flux densities in 11d supergravity (for more on this
see [GSS24a]):

Example 2.8 (4-Sphere valued super-flux of 11d SuGra [FSS15, p 5][FSS17, Cor. 2.3][GSS24a, Ex. 2.30]
following [Sal3, §2.5]). On the 11d super-Minkowski algebra R119132 (Ex. 2.3) the super-invariants (2)

A 1(77 ai ,a _
e
R Y P 16: = 16,6,
are identified with a homomorphism (14) of super-Lq.-algebras from super-Minkowski space to [S* (Ex. 2.7):
R1.10|32 (G4, G7) (G4
Gy i g4 (25)
Gr i g7 -

(IT) Whitehead L-algebras of spectra of spaces.

Example 2.9 (Real Whitehead L.-algebras of spectra [BMSS19, Lem. 2.25][FSS23, Ex. 5.7]). The real
Whitehead L..-algebra of a spectrum E of topological spaces has underlying it the R-rationalization of the stable
homotopy groups of QF, equipped with trivial brackets / trivial differential:

= (WI(QE:)@)TR fe=0), CE(E) ~ (A* (m(QE) ©, )", d=0).

While the differential is trivial, the crucial difference here to the Whitehead L..-algebras of topological spaces (Ex.
2.4) is that there may be elements in non-positive degree.

Example 2.10 (Real Whitehead L.-algebra of complex topological K-theory). The spectrum KU of
complex topological K-theory has stable homotopy groups in every even degree, hence its suspension YKU in every
odd degree

Z for even k Z for odd k " _ JZ forevenk+n
m(KU) =~ { * otherwise ’ ™ (BKU) = { * otherwise ’ m(TKU) =~ { *  otherwise
and hence its real Whitehead L..-algebra (Ex. 2.9) is given by
CE([(KU)) ~ Rd [(ig/];)kez] /(d f2. = 0) , CE([(ZKU)) ~ Rd [( f2k+1 )kEZ] /(d f2.+1 = 0) (26)
deg = (2k,evn) deg = (2k+1,evn)

Analogously to Ex. 2.6, this means that super-Ls, homomorphisms (14) into these higher Lie algebras are equiva-
lently sequences of cocycles in degrees (2k)xez:

(Fak)kez (For)rez C CE(g),
(KU) & deg(For) = (2k, evn),
(For)kez < (for)rez dFy, =0,

or similarly, sequences of cocycles in degrees (2k + 1)kecz when valued instead in [(XKU). Notice such sequences
may be also thought of as even “periodic cocycles” of degree 0 mod 2 and 1 mod 2, respectively.

(ITI) Whitehead L..-algebras of bundles of spectra.

Example 2.11 (Real Whitehead L.,-algebra of bundles of spectra [BMSS19, §2.1]). Given X, [X as in Ex.
2.4 and E, IE as in Ex. 2.9, the Whitehead L.-algebras of E-fiber oo-bundles E /QX over X are characterized
as having underlying graded vector space that of [(E) @ [(X) with L..-brackets such that the corresponding split
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exact sequence of graded vector spaces makes a (necessarily homotopy fiber-)sequence of Lo.-homomorphisms:

(E hofib(p) (E/QX) p (X
(re(2E)2,R, [-,”-]E,[-,-,-}E,---) — ((w.(QE)@w.(QX))llva]R, ) = (m(@X)@,R, [-]l-]x,[-,,-]x,..-)
(/\' (re(QE))", dg = 0) — (/\' (7e(QF) @ 7 (2X)) ", d) (A' (QX)Y, dx>
CEE[E) CE([(E”//QX)) CE(P(X))

(The only choice is in the shaded brackets/differential in the middle).

Example 2.12 (Real Whitehead L..-algebra of twisted K-theory spectrum cf. [FSS17, §4][FSS23, Ex.
5.7, 6.6] ). The real Whitehead Lo.-algebras (Ex. 2.4) of the classifying spectra KU and X'KU for complex
topological K-theory canonically homotopy-quotiented by PU(#H) ~ BU(1) have a generator in degree 3 together
with generators in every even (every odd) degree, with differential of the form known from 3-twisted de Rham

cohomology e (o)
o N dhy =0
CE([(Z KU//BU(l))) ~ Rd[ hs | (&)kez}/@f%ﬂ ~ hy f2k>
deg = (2k,evn)
deg = (3,evn) (27)
1 N ~= dhy =0
CE([(E KU//BU(l))) ~ Rd[ hs (@c;i)kez}/<df2k+3 ~ hy f2k+1)'

deg = (2k+1,evn)
Since the general h3 here is closed, these L. -algebras are canonically fibered over the line Lie 2-algebra (Ex. 2.6)
with the fiber being the Whitehead L..-algebra (26) of the plain K-theory spectrum:

[(SmKU) — [(S™KU/BU(1))  hs

L i 28)

[ B2U(1) ws .

In rational homotopy theory this is the model for the fibration classifying 3-twisted complex-topological K-theory
(cf. [FSS23, Ex. 3.4, Prop. 6.11, Prop. 10.1]).

A key application of this Ex. 2.12 is as the classifying object for 3-twisted cohomology in the familiar sense
of [RW86, (23) & appndx]; in fact this is just the first example of a much more general concept of twisted real
cohomology [FSS23, pp 120] as we briefly recall now:

Twisted rational cohomology. We have seen in Ex. 2.6 and Ex. 2.10 that the L-algebras "R and ¥"KU
classify, respectively, ordinary (n + 1)-cocycles and cocycles in 2-periodic degrees. Accordingly, the rational
twisted K-theory spectra from Ex. 2.12 classify “3-twisted periodic cocycles” in the sense of [RW86, (23) &
appndx|[BCMMS02, §9.3]:

Definition 2.13 (3-Twisted periodic Chevalley-Eilenberg complex). Let g be a super-Lo, algebra and
H; € CE(g) a closed element in degree (3,evn), to be called the “twisting 3-cocycle”. The 3-twisted Chevalley—
FEilenberg complex of g with respect to Hj is the Zg X Zg-graded (periodic mod 2 and super, respectively) dgca

CE**#3(g) := (CE(g), dp, :=dcg — H3 ),
where on the right-hand side we abusively write CE(g) for the graded commutative super-algebra underlying the
original Chevalley-Eilenberg (12) dgca of g.

It follows immediately (e.g. [FSS23, Ex. 6.6]) that [(X°KU/BU(1)) (Ex. 2.12) serves as a classifying object for
H;-twisted (even) cocycles of degree 0 mod 2 on g. Indeed, maps of super-L, algebras from g into [(ZOKU//BU(l))7
which respect the corresponding fiberings over bR =2 [B2U (1), correspond precisely to sequences (Fay, ) ez satisfying
the Hs-twisted closure condition:

<H37(F2k)kel) 0 (F2k)k€Z C CE(Q)»
g > [(XKU /BU(1)) o deg(Fay) = (2K, evn), (29)
Hy 3 2R & dFy = Hs- Fap_s.
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Viewing equivalently such a sequence as a (0 mod 2, evn) cochain yields precisely an Hj-twisted cocycle
(Fop)rez € CETH3(g) s.t. da, (For)rez = 0.

Analogously, [(X'KU /BU(1)) classifies Hs-twisted cocycles of degree (1 mod 2, evn). In view of this canonical
identification, we shall refer to 3-twisted cocycles equivalently as rational twisted K-theory cocycles — they are of
the form of images of twisted K-theory classes under the twisted Chern character [FSS23, Prop. 10.1].

This situation has an evident generalization to higher degree twists: Naturally, we may consider twisting the

Chevalley-Eilenberg cochain complex of a super-Lq, algebra by any ordinary cocycle of degree (2n+1, evn), instead,
and hence also the corresponding (2n + 1)-twisted cohomology for any n € N.

Definition 2.14 ((2n+1)-Twisted periodic Chevalley-Eilenberg complex). Let g be a super-L, algebra
and Hy,41 € CE(g) a “twisting (2n 4 1)-cocycle”. The (2n + 1)-twisted Chevalley—Eilenberg complex of g with
respect to Hopaq is the Za, X Zo-graded (periodic mod 2n and super respectively) dgca

CE.+H2n+1 (g) = (CE(g)7 dH2n+1 = dCE - H2n+1 ) )

where on the right-hand side we abusively write CE(g) for the graded commutative super-algebra underlying the
original Chevalley-Eilenberg (12) dgca of g.

In a similar fashion to the 3-twisted case from Eq. (29), (2n + 1)-twisted cocycles correspond precisely to maps
into certain classifying super- L., algebras generalizing those of the rational twisted K-theory spectra from Ex. 2.12.

Example 2.15 ((2n+1)-twisted cocycle classifying L..-algebras [FSS23, Ex. 6.7, Rem. 10.1]). For any two
positive integers m,n € N with m < 2n, the classifying super-L, algebra for (2n + 1)-twisted cocycles in degree m
mod 2n is defined by

deg = (2n+1,evn)
myn 2n—1 ~ dh2”+1 =0
CE([(E K"U /B U(1))) ~ Rd[han, (f?nk+m)kez]/<df2(n+1)k+m ~ s f2nk) (30)
deg = (2nk+m,evn)

In analogy with (28), since hay,+1 is closed, these Loo-algebras are canonically fibered over the line Lie 2n-algebra
(Ex. 2.6):
[(EmK"U) — [(E’”K"U//BQ”_lU(l)) hon+1

L 1 (31

ban Won+1 -

Evidently, [(ZmK"U//BQ”_lU(l)) classifies Ho,,41-twisted cocycles on g in the sense of Def. 2.14, since maps
of super-Lo, algebras between the two, which respect the corresponding fiberings over b>"R, correspond precisely
to sequences (Fon,k)kez satisfying the Ha, 4 1-twisted closure condition

(H2n+17 (Fan)keZ) e S (Fan+m)k€Z C CE(Q) )
g \"") ”””””””” » (™K U /B U(1)) = deg(Fonk+tm) = (2kn+m, evn),  (32)
H2’n 1 n
+ b2 "R ‘\ﬁrl dFQ(n+1)k+m = H2n+1 “Fopg -

Viewing equivalently such a sequence as a (m mod 2n, evn) cochain yields precisely an Hs,1-twisted cocycle
(Fonk+m)kez € CEm+H2"+1(9) s.t. dH2n+1(F2nk+m)kEZ =0.

Twisted Nonabelian cohomology. The above examples of classifying cocycles in abelian Ha,41-twisted CE
algebras exhibit a clear pattern, namely: A Hs,1-twisted periodic cocycle is precisely a lift of the twisting cocycle
map Ho,i1 : g — b®"R along the twisting fibration of the twisted classifying space. This suggests the following
general definition of what rational twisted “non-abelian” cocycles should be.

Definition 2.16 (Rational Nonabelian Twisted Cocycles [FSS23, Def. 6.7]). Let g and ¢ be two super-Loo
algebras, where we think of ¢ as a classifying space.
(1) We call (rational nonabelian) c-cocycles on g simply the set of maps of super-L, algebras

g—c.
(ii) Given a fibration o
c—c—b
and a fixed “twisting” b-cocycle
H:g—b,
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we call (rational nonabelian) H -twisted c-cocycles the set of lifts along the fibration h:c— b

twisted cocycle

g s ¢

Remark 2.17 (Twisted rational cohomology). There is a notion of coboundaries between these twisted non-
abelian L..-cocycles (given by concordance), thus yielding a corresponding notion of twisted R-rational cohomology
[FSS23, §6], which in particular subsumes the notion of twisted abelian cohomology from Def. 2.14 [FSS23, Prop.
6.13]. Here we need not further dwell on this.

Examples of this more general notion of twisting includes the following seemingly simple but important one:

Example 2.18 (Relative cocycles). Elements ¢, € CE(g) that are “closed relative to” a fixed cocycle k1, in
that dc,, = kn11, are classified by eb” 'R given by

n—1 ~ Cn ] de, = kn+17
CE(eb" 'R) ~ Ry {km_ /(dkn+1 _0 ) ; (33)

fibered as follows, this being the image under I (Def. 2.4, cf. Ex. 2.6) of the universal B"~U(1)-principal co-bundle
(cf. [SS25]):

IR — e 1R kn+1 Bn—lU(l) EBn_lU(l)
l I ~ | ¥
bnR Wn+1 B'ﬂU(l)
in that given K,,+1 € CE(g) with d K,,+; = 0 then
eb" 'R
Cn l & dCp = Ky (34)

< Knii oo
An example where the twisting cocycle appears as a relative closure but instead via a higher polynomial twisting

condition is the following case of S*-cocycles:

Example 2.19 (IS*-cocycles as twisted b°R-cocycles). Rational 4-cohomotopy cocycles on a super-L, algebra
g may equivalently be regarded as 4-twisted (in the sense of Def. 2.16) b°R-cocycles via the fibration

PR — 1S4 gy

Lo (35)

bSR W4q
or, rationally equivalently, as twisted cohomology classified by the fibration (24)

(ST —— 1St gy

L] (36)

[BS3 Wy
in that given G4 with dG4 = 0 then
. 154 § (54
G7//// l ~ G /’/ l 54 dG; = %G4 Gy . (37)
g G LR g% B3

This exhibits G7 as being a 7-cocycle twisted by Gy, cf. (2) — in somewhat subtle variation of the familiar situation
of 3-twisted cohomology in (29) — as suggested in [Sa06, §3].

Another more subtle variant of Ex. 2.18 is:

Example 2.20 (Real Whitehead L..-algebra of quaternionic Hopf fibration [FSS20c, Prop. 3.20]). The
relative real Whitehead L..-algebra of the quaternionic Hopf fibration over the 4-sphere is [g4S7 given by

94 dgs = 0
CE([S4S7) ~ Ry g7 / dg = %9494
hs dhy = g4
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and fibered over the 4-sphere (Ex. 2.7) as

1S3 — [5457 ga g7 g3 g7
| 11 = L
S* g1 g7 S

This means that the twisted non-abelian cocycles (Def. 2.16) classified by the quaternionic Hopf fibration (a twisted
form of 3-Cohomotopy) are rationally given by 3-coboundaries of the 4-form datum (only): Given a twisting cocycle

in rational 4-Cohomotopy
(G4,G7) dGy4 = 0
dG; = %G4 Gy )’

(S e <G4, G; € CE(g)

then the corresponding twisted 3-Cohomotopy cocycles are

,,,,,,,,,, Hs o [ ST
! % (4 r lonS o (Hs € CE(g) [dHs = Gu).

2.2 Ext/Cyc adjunction

With (extended) super-spacetimes understood — via their translational super-symmetry (Ex. 2.3) — as (higher)
super-Lie algebras, fundamental constructions of super-Lie theory have (rational/infinitesimal) geometric signif-
icance. Notably the process of central extension (Def. 2.21) of super-L., algebras by 2-cocycles corresponds
in the super-geometric interpretation to the emergence of extra dimensions by 0O-brane condensation ([CAATPO0O,
§2][FSS15, Rem. 3.11][HS18], see Ex. 3.2, 3.3 below).

One may hence ask for the (higher super) Lie-theoretic incarnation of the geometrically expected process of
double ® dimensional Kaluza-Klein reduction — and conversely: oxidation — along such extensions. Remarkably,
this is given by the process of cyclification (passage to loop spaces homotopy-quotiented by loop rotation, as known
from cyclic cohomology and from the geometric motivation for the Witten genus): On the rational-homotopy
level of super-L..-algebras this is due to [FSS18a, §3][FSS18b, §2.6], recalled as Def. 2.23 and Prop. 2.25 below
(for exposition see [Scl6, §4], for more in the context of Mysterious Triality and U-duality within a bosonic
CDGA algebraic approach see [SV23][SV23], for the topological globalization see [BMSS19, §2.2][SS24a] and for its
application to double-field theory see [Al120][Al21]).

Definition 2.21 (Central extension of super-L., algebra by 2-cocycle). Given g € sLieAlg. and a 2-

cocycle
we € CE(g), deg(w2) = (1,evn), dwy =0 & g —=2— bR

then the corresponding central extensiong € sLieAlgg is that super-Lie algebra whose CE-algebra is that of g with
one more generator ¢’ adjoined whose differential is wy:

g
CE(g) = CE(g)[ ¢ ]/(d¢' = w) < [p=porien
deg=(1,evn) g L} bR .

Remark 2.22 (Basic and fiber forms on a centrally extended super-L., algebra).
(i) Given a central extension as in Def. 2.21, every element in its CE-algebra decomposes uniquely as the sum

a = apas + € pila) (38)
of a basic form (not involving the generator e, hence in the image of the pullback p*)
Qpas € p* (CE(Q))

8The term “double dimensional reduction” originates with [DHIS8T7], referring to the fact that for Kaluza-Klein reduction of target
spaces for p-branes both the target spacetime as well as the worldvolume of wrapping branes reduces in dimension — or, essentially
equivalently, that also the corresponding flux densities decrease in degree upon integration over the fiber spaces. This is, of course, the
very mechanism that underlies the emergence of fields with enhanced/exceptional symmetry in lower dimensions.

9Beware that [FSS18a, (1)] and [FSS20a, (21)] have a minus sign on the second summand in (38). This is, of course, a possible
convention in itself, but breaks the desirable property of p« being a graded derivation (39), that we want to retain here. With the plus
sign in (38) we get the corresponding minus sign in (44) below, correspondingly differing from the sign in [FSS18a, (3)].
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and the product of the generator ¢’ with the image of o under fiber integration p,, which is a super-graded derivation
of degree (—1,evn):
CE(§) —— CE(g)
e’ — 1

€ — 0

(39)

(where in the last line (e*),c; denote generators for CE(g)).
(ii) The differential of a general element is given in this decomposition in terms of (the image under p* of) the
differential dg by:

dﬁ(abas + e’p*a) = dgapas + (dg e’) peev — € dgpaa (40)
= (dgabas + wo p*a) — e dgp.cv.

Definition 2.23 (Cyclification of super L. -algebras, cf. [FSS17, Prop. 3.2][FSS18a, Def. 3.3]). Given
b e sLieAlg™™ with presentation CE(h) ~ Ra[(e')ier] /(det = Pi(é'))iel, its cyclification cyc(h) € sLieAlg. is
given by

deg = (2,evn)
() yep @ |, (den =0 |
CE(cyc(b)) = Ry lie ] de* =dye’ +wyse ], (41)
(ie/,)iez dse’ = —s(dy €?)

deg =
deg(e’) — (1,evn)
where in the last line on the right the shift is understood as uniquely extended to a super-graded derivation of
degree (—1,evn):
s : CE(cyc(h)) —— CE(cyc(h))

wa — 0,
e — se’
se’ — 0.

To check that this is well-defined:

Lemma 2.24 (Differential and shift in cyclification). In Def. 2.23 the differential d and shift s square to
zero and anti-commute with each other:

dd = 0, ss =0, sd+ds = 0. (42)

Proof. First, that s squares to zero is immediate from the definition. Moreover, since we are dealing with (graded)
derivations and their (graded) commutator, it is sufficient to check all these statements on generators.
The anticommutativity is thus seen as:

sdwy +dsws = 040 = 0,
sde’ + dse! = s(dye’ + wose’) —sdye’ = 0,
sdse' +dsse’ = —ssdye’ = 0.

For nilpotency of d we first trivially have ddws = 0, then
dde? = d(d;,ei + wa sei)
= dydpe’ + wosdye’ + wad(se’) twpwy s e
=0
= wg(sdh - sdh)ei = 0.

=0

From this, finally:
ddse’ = sdde’ = 0. O

The following statement is due to [FSS18a, Thm. 3.8], we give a streamlined proof with more details.

Proposition 2.25 (The Ext/Cyc-adjunction). Given g,h € sLieAlg. with a 2-cocycle '* ¢; € CE(g), there
is a bijection between:
(i) maps into b out of the central extension g classified by the 2-cocycle (Def. 2.21),

1Pt}

10 We usually give all algebra generators a subscript indicative of their degree. But here we write “ci” since this is the standard
symbol for the 1st Chern class of a line bundle, namely here for the Lie-theoretic line bundle g — g.
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(ii) maps out of g into the cyclification of i (Def. 2.23) that preserve the 2-cocycle:

reduction rdc,

{ i —7 h} = g : cye(h) (43)
N bR (/wz

oxidation oxdc¢,

given by _
R ; o —L— cye(n)
R (14)
al. +epat —— e —p.at m sé

C1 < w .

Proof. The assignment (44) is manifestly a bijection of maps of underlying graded super-algebras. Hence, it suffices
to show that if one of these is, moreover, a homomorphism of dg-algebras (in that it preserves the differential),
then so is its image.

To that end, first note that when the map on the left of (44) is a dg-homomorphism then this implies that

f* (dhei) = daf* (ei) by homomorphy
= dg(aj,, + ¢ p.a’) by (44) (45)
= (dga%)as + we p*ai) —é dg p*ai by (40) ,

while the map on the right being an algebra homomorphism already implies (seen e.g. by expanding in generators):

F(dpe’) = (f(dge)),

frsdge’) = —p(f*(dye’)).
If the map f on the right is moreover a dg-homomorphism then this implies that the map f on the left is so, as
follows:

(46)

frdye’) = (F*(dye)) g + € pif*(dpe’) by (38)
F*(dge’) — e’ f* (sdye?) by (46)

= f*(dcyc(b)ei — wysel) — ¢’ ]7* (s dcyc(h)ei) by (41)

= f*(dcyc(h)ei —wyset) + ¢ ]7* (dcyc(b) sei) by (42)

~
*

!

o _ o (47)
= dgf*(e") — f*(wese’) + € dgf* (Sel) by homomorphy
= dgai, +wapeal — e dgp.a’ by (44)
= dg(of s + € Pecvi) by (40)
= dg f*(¢") by (44).
Conversely, when f on the left of (44) is a dg-homomorphism, respect for the differential on the right is implied:
7
g cyc(h)
o i e
1d
dgali)as d
(f*(dge?)),,, —wap-a’ N dye’ + woy se’
(46)
—pia | set
Jd
7dg Da ot Id

w2 i W2
Jd La
0 i 0. ]
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Example 2.26 (Cyclification of the 4-Sphere [FSS17, Ex. 3.3]). The cyclification (Def. 2.23) of the real
Whitehead Lo-algebra of the 4-sphere (Ex. 2.4) is given by:

w2 dUJQ =0
94 dgs = wasgs
CE(cyc(1S*)) =~ Rq | sga / dsgs =0 . (48)
g7 dgr = 39494 +wasgr
sg7 dsgr = —gas9a

Note that this is fibered over bR — in fact over cycb®R, via (23) — and as such, remarkably, a rational approxi-
mation to the twisted K-theory spectrum (27), via a comparison map to the 6-truncation 74 of its underlying space
2°° (where only generators with degrees in {0,--- ,6} are kept, cf. [FSS18a, Prop. 4.8]):

0 i fo
wa L fa
94 I
—8g7 L Je
Sga cyc 154 (7692 KU / BU(1)) hs
f\\’9 PR /

w3

A rationale for completing cyc [S* to all of [(KU/BU(1)) is discussed in [BMSS19], namely by fiberwise stabilization
(i.e., homotopical linearization) of cyc[S* over b?R, as would befit a perturbative approximation to the dimensional
reduction of the non-linear Bianchi identity (2). This step is relevant for a deeper understanding of the lift of T-
duality into M-theory indicated in §4; but its discussion needs an article of its own.

The main example of interest here are the Ly-algebraic cyclifications of twisted K-theory spectra (Ex. 2.28)
since their structure turns out to embody the rational-topological structure of T-duality (Lem. 2.30, as made
concrete in §3), whence we may speak of L, -algebraic T-duality [FSS18a, §5]:

Example 2.27 (Cyclification of bundle gerbe classifying space). The cyclifications (Def. 2.23) of the real
Whitehead Loo-algebra of B2U(1) (Ex. 2.6), cyc [B2U(1), is given by

wo dCUQ =0
CE(cyc [BQU(I)) ~ Ry w3 / dws = wy Wo
(.ng 1= Sws3 d(:)z =0

being equivalently the higher central extension (Def. 2.59) of bR? by its canonical 4-cocycle
hOﬁb(UJg (:;2)

bT = cycB2U(1) BR2 — 22, PR (49)

and as such also known as (the Whitehead L..-algebra of) the delooping of the T-duality Lie 2-group [FSS13,
§3.2.1][FSS18a, Rem. 7.2][NW20, §3.2]:

cycIB?U(1) =~ IBT = hofib(BU(1) x BU(1) 22272, B3yy(1)).

It is evident at a glance that (49) has an automorphism symmetry given by exchanging the two degree=2
generators (we may as well include a minus sign, for compatibility further below 2.28):

bT +—— bT
—52 — Wy (50)
—Wy < &2 .

This simplistic example already carries in it the seed of T-duality: The next example, recalled from [FSS18a, Prop.

5.1], shows that this automorphism lifts to an equivalence between the cyclifications of the 3-twisted K-theory
spectra. This serves here as warmup for the higher toroidal super-L., T-duality introduced in §2.3.

Example 2.28 (Cyclification of twisted K-spectra and T-duality 2-group). The cyclifications (Def. 2.23)

of the real Whitehead L.o-algebra of the twisted K-theory spectra (Ex. 2.12) are identified by an isomorphism
(14):
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W dUJQ =0

h dhs = wyshs
CE(cyc[(EOKU//BU(l))) ~ Ry| shs / dshy =0
(for)rez d forye = h3 for + w2 sfort2
(sfor)rez dsforro = —(sh3) for + h3 sfor

—w2 —shz hz  for  sforyo

t ot 1ttt |2 (51)

shy w2 hs sfapy1 fart1

wa dwy =0
hs dhs = woshs
CE(cyc[(leU//BU(l))) ~ Rq shy / dsh; =0
(for+1)rez d fory1 = h3 for—1 + w2 sfors1
(8f2r+1)kez dsforrs = —(shs) fort1 + h3sfori1

compatible with their fibration (28) over [B2U(1) via its automorphisms (50), where the homotopy fiber of the
cyclified fibration is now the direct sum of K-theory spectra in degrees 0 and 1, respectively, with the automorphism
acting by swapping them ([FSS18a, Prop. 7.3)):

(0K NIK
&Y y &Y
(NIKU T [29KU

| | )

cyc (KU J BU(1)) +—=— cyc[(S'KU / BU(1))

! !

cyc[B2U(1) = cyc[B2U(1).

Here we record the fact that there exist two further isomorphisms with the property of swapping swapping the
2-cocycles shg <~ wy and the ‘fluxes’ fori1m ¢ Sfoktm, Up to a consistent choice of signs. This may have been
previously unnoticed.

Lemma 2.29 (All isomorphisms of cyclified twisted K-spectra). There are in total 4 isomorphisms

cyc (KU JBU(1) ) «+—— cycl( S'KUJBU(1))

with the property of swapping shsy «~ wa and fop+m “ Sfok+m, while mapping hs to hs, up to relative sign
prefactors. Explicitly, in addition to (51) one has

eyc [( KU /BU(1)) +~— cycel( S'KU JBU(1))

h3 i hs
—shg i wo
—ws i shs
—Sfak+2 i Jak+1
—fak i sfok+1,
cyc[(X°KU /BU(1) ) «—— cycl(X'KU /BU(1))
hs i h3
shsg < wa (53)
) < shs
=5 fokt2 i Jak+1
Jok i sfak+1,
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and
cyc [( Y'KU/BU(1) ) +=— cyc [( YIKU/BU(1) )

hs — hs
shs — w2
wo i shs
sfort2 — fort1
—for i Sfoktt -

Evidently, the original isomorphism (51) and the first above are the two possible extensions of the automorphism
(50) of bT , while the latter two isomorphisms are the two possible extensions of the “opposite” automorphism of

bT

Proof. This follows by direct inspection. Explicitly, starting (for instance) from the first isomorphism (51) one may
ask which possible extra set of signs one can insert in the image of the generators, such that it still commutes with
the differentials. The relation dhs = wyshg restricts the map of graded commutative algebras to be of the form

cyc[(X°KU /BU(1) ) «—— cycl(%'KU /BU(1))

hs i h3
—(—1)%sh; — Wo
—(—1)%wy — shs
(=1)*sfor+2 i Jak+1
(=1)*" fak i sfok+1,

for some ¢, xg,z; € N. Demanding that it further commutes with the corresponding differentials on for11 (and
Sfak+3) yields the condition (Lot =

)

whose set of solutions gives the 3 extra isomorphisms above. O

With cyclification and with this automorphism in hand, we already obtain the following general construc-
tion, which turns out to be the L..-algebraic template of super-space T-duality in §3 below, see (138) there, for
illustration:

Lemma 2.30 (Twisted K—theory cocycles under reduction—isomorphism-reoxidation).
(i) The composite operation of
(a) reducing (43) twisted KUq cocycles on a centrally extended super Loo-algebra ga

G4 — [(XKU /BU1))
H3 — hs
(For)rez < (for)kez

along its fibration .

ﬁA pA g A bR ’
(b) applying the isomorphism (51) on the target cyclification of twisted KUy, hence viewing them instead as valued
in the cyclification of twisted KUy, while noticing that this swaps the “Chern class” ci' from that classifying
the §a-extension to that classifying a different extension

ﬁB—>g7

i.e., via ) 3
Cp = pA*(HA) : g— bRa

(c) re-oxidizing (43) the result, but now along the new fibration

-~ pPA B
9B g bR )
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results into the twisted KUy cocycles given precisely by

5o (SKUBU)
H3 s + €5 - 1) — hs (54)
(—pasForio — € Forbas ) oy (for+1)kez

(ii) Applying instead one of the isomorphisms from Lem. 2.29 in step (b) yields similar, but essentially different
maps between twisted K-theory cocycles of different extensions over g. For instance, using the isomorphism (53)
results into the twisted KU, cocycles given by

9B [(Z'KU/BU(1))

H?{bas_elB’ : c114 — h3
(+PAForta — € - Fokbas ) oy (f2k+1)kez
where now the extension .
9B — 9,
is instead via the opposite 2-cocycle
3
0113/ = —pa,(Hj).

Proof. This is a matter of carefully tracking through the (bijective) operations on the corresponding sets of L -
algebra morphisms. Explicitly, under the reduction (43) from Prop. 2.25 the first step yields the map of super
L.-algebras

g —— cycl(X°KU/BU(1))

Hi s hs
Foppas Jor
—pA*Hi < Sh3
—paFor s fok
cft — Wy .

In the second step, postcomposition of the above morphism with the first isomorphism in (51)
cyc[(EKU /BU(1) ) — = cyc( Z'KU /BU(1))

yields
g —— cyc[(S'KU/BU(1))
H3 o i hs
—paLfopte Jak+1
—cft — shs
Fop bas — s for+1
ch = pa, HY ws .
Lastly, in the third step oxidizing (43) via the new 2-cocycle
cp = pa(Hi) : g— IR,
immediately yields precisely the morphism of super L..-algebras out of the corresponding central extension
9B (Z'KU/BU(1))
HY s + €5 - i hs
(—pasForrz — € Forbas ) oy (for+1)rez -
The case of using instead the isomorphism (53) follows analogously. O
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Using the first iso from Lem. 2.29, results instead in

)2 [((Z'KU/BU(1))
Hj')')ll)‘(lﬁ + (W/B’ . (Ti’\ < ]7'3
(+pacForia+ e Fakvas )y (for+1)kez -

That is, same extension and twist as that of (54), but opposite fluxes (E.g. IIA/IIB fluxes and ITA /-IIB fluxes on
same IIB spacetime).
Similarly, using the last iso from Lem. 2.29 results instead in

9B (KU /BU(1))

3 J oo RA .
[l/\ bas—€B’ €1 /1-3
B N .
(=paForio + € - Fakbas ) ey (fak+1)kez
where now the extension N
g — 9,
is instead via the opposite 2-cocycle . )
cp = —pa,(Hy).

That is, same extension and twist as that of (ii) from Lem. 2.30, but opposite fluxes.

Remark 2.31 (Towards T-duality.). Since the isomorphism (51) swaps the Chern class wy with the dimensional
reduction Wy = shg of the 3-form, when applied over super-space this results in “swapping the spacetime extension”.
At the same time, the same operation swaps the “winding and non-winding modes” of the corresponding “fluxes”,
sending (Fogbas + €4 - PAFor) t0 (—pa,Fok+o — €5 - Fakbas), up to an overall (conventional) sign. These effects
may be seen as abstract incarnations of the analogous phenomena in superspace T-duality, shown below in §3.2.

But first, we now generalize dimensional reduction from 1-dimensional fibers to n-dimensional fibers.

2.3 Torus extensions

We discuss a higher dimensional analog of the Ext/Cyc-adjunction of §2.2 corresponding to double-dimensional
reduction/oxidation along products of rational circles. This toroidification construction may conceptually be un-
derstood via rational homotopy theory, see [SV24, p. 10]. Here, we give an analogous discussion without explicitly
passing through algebraic topology.

Toroidal central extensions. In evident generalization of Def. 2.21 we may consider super-L., extension by a
whole sequence of 2-cocyles:

Definition 2.32 (Central n-torus extension [FSS20a, §3.1]). For g € sLieAlg__ equipped with n € N 2-cocycles

1 n k
Cl, =" ,C € CE(g), v dC1 =0
—— k
deg = (2,evn)

1---n
we say that the n-toroidal central extension classified thereby is g € sLieAlg, given by

B(§) = CE@)[&--E]/(@é = &),

deg = (1,evn)

The terminology n-torus extension in Def. 2.32 refers to the following phenomenon:

Example 2.33 (The real Whitehead L.-algebra of the n-torus). Consider on 0 € sLieAlg (Ex. 2.5) n
copies of (necessarily) the vanishing 2-cocycle

¢ =0 € CE(0), ke{l,---,n}.
The corresponding n-toroidal extension (Def. 2.32) is the real Whitehead Loo-algebra (Ex. 2.4) of the actual
n-torus ’

o

0~ R" ~ ((T") = I(R/Z)"), (55)
given by . k n
CE(IT") ~ Ra[(e)p_,]/(de = 0),_,



Incidentally this shows also that the delooping
b(R™) ~ b([(]R”)) ~ [(BR")

given by .
CE(BR") = Ra[( &

—~—
deg = (2,evn)

)Z:l]/(dé}? = 0)’](:71

is the classifying L.,-algebra for n-toroidal extensions, in that an n-tuple of 2-cocycles is equivalently an L.-
homomorphism (14) into it, this being the image under passage to real Whitehead L..-algebras of the classification
of n-torus principal bundles P by the classifying space BT", via pullback of the universal n-torus bundle ET™:

L-on

g P—— ET"
nofib(‘ci) ~ [ l (vb l

g —=— bR if g~ 1(X) 2

] : X —— BT"

él — (’:L)Q

The following example of toroidal super-extensions is noteworthy (maybe first highlighted in [CdATP00, §2.1],
see also [HS18]):

Example 2.34 (Super-Minkowski spacetime as toroidal extension of a super-point). Every super-
Minkowski spacetime super-Lie algebra RV#IN (16) is a (1 + d)-toroidal central super-Lo, extension (Def. 2.32) of
a superpoint:

RL.4IN ROIN (¥rv) pR1+d (56)
where the super-point super-Lie algebra ROV is given simply by
(o7 « N
CE(R®IY) ~ Ra[(w™)_,]/(dv™ =0)_,. (57)

Remark 2.35 (Decomposing n-torus extensions into circle-extensions).
(i) A 1-torus extension in the sense of Def. 2.32 is evidently the same as a central extension according to Def. 2.21,
namely a “circle extension” (cf. Ex. 2.33)

g=9.
Any n-torus extension may equivalently be obtained as a sequence of kj-torus extensions, for any partitioning
k‘j eN, Zj kj =n,eg.

i g g
hoﬁb(é1) hOﬁb(él)
1---2 :51
Y c 1...2 3
| ' 58
hofib( 'c1) ey -
hofib( '¢3 5
(c1) g — bR
hofib(¢1)
9#[;}1@3 gLH)R2 g —&— R,

(ii) Here the order of the extensions does not matter, up to isomorphism, in that the following diagram commutes:

hoﬁ]/ Wcl))
bR p*(é1) p*(c1) bR
m p hoﬁb(
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This is ultimately due to the fact that all cocycles are (by assumption) defined down on g, hence each independent
of the extension classified by the others, which we may express as the statement that the fiber integration (39)
vanishes of the next cocycle over the extension fiber brought about by the previous cocycle:

12,k 2 1.k

ppcr = 0, pupier = 0. (60)
This relation becomes crucial below in specializing iterated cyclification along n-torus fibrations to toroidifictiona-
tion. I
(iii) Stated more abstractly, the commutmg square in (59) is “Cartesian”, exhibiting g as the fiber product (in
fact as the homotopy fiber product) of g g with g g over their common base g.

(iv) Note that the property of commuting squares to exhibit fiber products is closed under “pasting” these squares
together: In a commuting diagram of the form

1a \95 @)
\

\/ \

if the bottom diamond exhibits a fiber product, then the total diamond does, too, iff the top diamond does. (This
is a general abstract fact known as the “pasting law”, but here in our context of n-toroidal central extensions of
super- L, algebras it is also readily checked by inspecting generators.)

(v) This property clearly iterates over consecutive pastings of fiber product diamonds. As such it controls the final
picture in (190) below.

2-Toroidification. We need the following simple observation:

Lemma 2.36 (Quotient of L. -algebra by abelian anti-ideal). Given an Ly -algebra g whose CE-algebra has
a closed generator w, then discarding that generator yields the CE-algebra of a sub-L..-algebra:

) w dw =0
Ra[ (¢)icr]/(def = P «71&1{1. }/ i o ,

[( )61]/( (O)( )) (e)iel de :ka(k)(e)ww

k factors
Proof. The claim is that the operator d on the left still satisfies d o d = 0 if that on the right does. But on the
right, the condition is ey v (dPi (&

e =0 = k;eN< (k)(e) —O),

hence immediately implies the claim for k = 0. O

Example 2.37 (Double cyclification). For h € sLieAlg__ with presentation as in Def. 2.23, applying cyclification
(Def. 2.23) twice yields the L..-algebra cyc?h given by

wg, de = 0
oluz, dwg = (f)z éong
Swa, dsw, = 0
CE (cycz(h)) ~ Ry | (e)ier, / det? = dpe’ + Wa S€¥ + (g s6° . (62)
(5¢))icr dsel = —sdyel — (Swo)(se!) — wo sse!
(se'icr, dse! = —sdye’ + Wy Ss€’
I (Ss€')ies i dsse! = 8 dpe’

Definition 2.38 (2-Toroidification). Since the generator sws in the CE-algebra (62) of a double cyclification is
closed, discarding this generator yields (by Lem. 2.36) a sub-L..-algebra, to be called the the toroidification of the
given h € sLieAlg

tor®(h) —— cyc®(h),
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and given by

We may regard this as fibered over bR? via:

w2, dws
wa, dws
1)i€ls d ‘
CE(torQh) ~ Ry (26 ) e 26,
(se")ier dse!
(se')ier, d se!
| (ééei)zg d sse
tor?(h)
J/ 10.)22 = (&)2,5)2)
bR2 .

: 1 1 . 2 2
= dpe’ +wgse’ + wsase
b
2 . 1 21
= —sdpe’ — wysse’
1 . 2 21 .
= —sdpe’ + wy sse’

21 ;
= ssdye’

= 0
= 0

2

(64)

Example 2.39 (Double cyclification of the 4-sphere [SV23, Ex. 2.6]). The double cyclification (Ex. 2.37) of
(the real Whitehead Loo-algebra of) the 4-sphere (Ex. 2.7) is given by

2
w2
1
w2
21
SWo

g4
2
594
1

CE(cyc®(15%) ~ Rq | sgy /

21
SSg4
gr

2
Sgr

1
Sg7
21
Ssgr

and its toroidification (Ex. 2.38) is given by

2
w2
1
w2

g4
2
594

1
CE(tor?*(1S*)) ~ R4 ;194
=

In generalization of Rem. 2.22 we have:

ddy =
dwy =
d éwz =
dga
d §g4 =
d é94
21
dssgy =
dgr =
d 597 =
dsgr =
21
dssgry =

das
dw,
dgs
d§g4

/ dsgs
d é&l}g4

dgr
d §g7
d ég?

d é&l}g7

= 0
= 0
1 1 2 2
= w2894 + W2 894
= —W2 SSgq
21
= W2 SSg4
= 0
1 1 1 2 2
= 59494 + w2897 + w2 sg7
2 1
= —g48g4 — W2 8877
1 1
= —g4 5394 +w2 Ssgr

= (§94)(ég4) + ga éég4

0
2 2
W2 Swa
0
1 1 2 2
W2 Sgq + W2 594
21 1 1 21
—(SWQ)(SQ4) — W2 8894
2 21
W2 8Sg4
0
1 1 1 2 2
59494 + W2 8g7 + W2 8g7
2 2 1 1 21
—g4 892 — (Sw2)(8g7) — w2 8897
2 2

1 1
—g4594 + w2 S8g7

(594)@94) + 945804

1 21

2

1 2

2 2

Remark 2.40 (Basic and fiber forms on a 2-toroidially extended super-L., algebra). Given a 2-toroidal

central extension as in Def. 2.32; every element in its CE-algebra decomposes uniquely as a sum of the form

Proposition 2.41 (Universal property of 2-toroidification). Consider a central extension (Ex. 2.21)

1 2 21
O = Qpas + €01 + eas + eceagq

with all the coefficients in the image of the total pullback operation

2 1
Qbas, A1, 02,021 € p* p" CE(g) .

B p=hofib(¢1)

1

o1 bR

25

(65)



1
carrying a cyc(h)-valued cocycle f : g — cyc(h) whose Chern class
él = f*wg
has trivial fiber integration along ]17 Then the reduction f(43) of f along]la has factors uniquely through the

toroidification (63), which has an inverse ozidation when regarded as sliced over bR? via (64):

1---2 1---2

1---2 f a /g\

g———bh P l

zl /L

j oy L f o g

: g R ;‘i

| R = ’ i

:  J——— e » tor”(h) — cyc?(h)

bRZ 1

given by

) _
) ~ f
2 f g ——— cyc(h) o 4w

1---
g———b !

Co 1 wo €1 y w2
i Lo i sy oy ol el (66)

Qs teay+ € % 4 Lo i bas 1

a exa — e ; ;

b, 1 _ At i

2 i + 21 i as al — Se

ey T €€ i Lo i i 2 i

—ab —eay; ——  se', —af 1 se

. 21 .

—ab, —  sse

In view of (59), this says equivalently that
e while double-cyclification cyc? classifies reductions along arbitrary 2-dimensional central extensions,
e toroidification tor? classifies among these the reductions along 2-torus extensions.

Proof. This follows from the universal property of cyclification (43) by observing that the datum needed for re-
oxidation which is forgotten by factoring through tor? < cyc?, namely ;119*&1, is exactly the datum which vanishes
by the assumption that the 2-dimensional extension is a 2-torus extension, via (60). O
Definition 2.42 (Higher dimensional toroidification). We say that
(i) 1-toroidification is the same as cyclification cyc from Def. 2.23:

tor' (h) = cyc(h) .
(ii) 2-toroidification is the same as the toroidification tor? from Ex. 2.38:

tor2(B) < cyc(b) .
(iii) (n + 1)-toroidification for n > 2 is the sub-L-algebra of the cyclification of, recursively, the n-toroidification

obtained by discarding (via Lem. 2.36) all generators's Wy for k € {1,--- ,n}:

tor"*1(h) := tortor"(h) ——— cyctor(h) . (67)
The following statement is due to [SV24, Thm. 2.6], there argued via rational homotopy theory. We give a
direct proof.

Proposition 2.43 (Explicit n-Toroidification). For n € N the n-toroidification (Def. 2.42) of h € sLieAlg_,
with presentation as in Def. 2.23, is given by

k
d(.UQ =0
k i i2i1 4 ; ; ¢
CE(tor"(h)) ~ Ral|( w2 )Z:l? (8---85€’ )icr o<ien }/ de' = dpe' + Y7, g Sei . (68)
~ leo N> > >ip >0 > 1 k k kK Kok
deg = dos = —sod, sos = —sos

deg(e’) — (k,evn)
(2,evn)

Here on the right of (68) we mean that the differential d is extended to the shifted generators by the rule that

it graded-commutes with all the shift operators é, which in turn are regarded as uniquely extended to graded
derivations of degree deg = —1, anti-commuting among each other — in evident generalization of (42).
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Proof. This follows readily by induction on k: For k = 0 the statement is trivial, for & = 1 the statement is that
of Lem. 2.24. Hence for the induction step, assume that the statement is true for some n > 1. Then we find the
CE-differential on tor (tor"(h)) to be given on generators as claimed:

ik i1 g n+l  n+l i i g

diortorn S+ -8€" = diom S - - glei + wo S S---se by (67) & (63)
= (—1)k % .- g(dhei + Z::1 (L'Q 561) + ”(r}lg 77,51 g . 1S|€7 by indctn assmpt & (68)
= (—1)F 8- -8(dge’ + ) Do sel)
= diopntt .. gel according to (68)

and trivially: w1
diortorn wa = 0 by (63)
n+1

= digpn+t wo by (68) . O

Example 2.44 (3-Toroidification). The 3-toroidification tor3(h) (Def. 2.42) of a super-Lq.-algebra with gener-
ators as in Def. 2.23 is given by:

3
r 3 T d(.ug = 0
wa )
2 dw =
wo 12 0
&)2 dwg = 0
i i i 1o 2 2 33,
(e')icr de' = dye’ +wase’ +wase’ +wase
1 1 1 : 2 21 3 31
(s€')ier) dse’ = —sdpe’ + wysse’ + wasse’
3 2 - 2 2 . 1 21 3 32 .
CE(tor®(h)) =~ Ra | (se')ier / dse! = —sdye’ — wysse’ + wysse’
3 4 3 3 : 131 2 32
(s€')icr dse’ = —sdpe’ —waosSse’ — wysse’
21 ; E
Sapl) . 21 21 : 3 321
(sse')ier dsse’ = ssdpe’ + wa ssse’
31
). 31 31 : 2 321
(sse")ier) dsse! = ssdpe’ — wo ssse’
32
sse’). 32 32 : 1 321
(321 ier dsset = ssdpe’ + wssse’
Lssseier]  \ qggder — i dge

Remark 2.45 (Universal property of n-toroidification [SV24, Thm. 2.13]). In evident generalization of Prop.
2.41, the n-toroidification operation (Def. 2.42) provides the Lo.-coefficients for (double-dimensionally) reducing

Loo-cocycles along n-toroidal extensions (Def. 2.32):

1 g

g € sLieAlg__, él, 81 S CE(g), dél =0 i
g —— bR"
in that we have bijections of sets of Lo,-homomorphisms, in generalization of (43):

(5 ) —— {g i tornw)} (69

oxidation oxd ..,
c1

Moreover, along the lines of Rem. 2.35, these reductions/oxidations may be applied in any sequence of steps:

g—— b 3 i ]

% ¢ ¢ ¢

g 8. tor(h) g g

¢ + RS ! !

~ “nny =~ o ~ o~ =

g g o tor?(h) i

! 4 LR |

i 8 8 G tor(h)
¢ ¢ ¢ L R3S

g g g g
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Toroidification of twisted K-theory spectra. We turn to the main example of interest here, the toroidifications
of twisted K-theory spectra carrying archetypes of, as we will see in §3.3, toroidal T-duality of flux densities.

Or rather, the T-duality must be carried by a sub-algebra of the toroidification, as brought out by the following
variant of Ex. 2.27.

Example 2.46 (Geometric 2-Toroidification of bundle gerbe classifying space). It is readily checked that
the 2-cyclification cyc?b®R of the line Lie 3-algebra (19) no longer enjoys an automorphism of the kind (50) that the

1-cyclification did, namely by swapping éhg ens Wy for both i = 1,2, as would befit a toroidal T-duality classifying
algebra. In fact, nor does its toroidified subalgebra (Def. 2.38),

tor?(’R) —— cyc?(b°R),

given by

[ &o, | dis = 0
wo, dws = 0
1 1 2 2
CE(tor2b2R) ~ R, 2h3 / d2h3 = w2 Sh? Jr;uz shs ’ (70)
shg dshy = —wo Sshg
sh dshs =  4wosshs
| $shs | dsshy = 0

via which one immediately identifies the obstruction for such a swapping automorphism to exist to be the double
shift of the generator hg .

sshy € CE(tor2 b2 R) .
However, since this generator is closed, this implies at once that there exists (via Lem. 2.36) the L..-subalgebra
obtained by discarding this term

tor? (h2R) —— tor2(b2R) —— cyc2(b2R),

given by -, A ,
wa, dwy = 0
W, dws, = 0
CE(tor? ’R) ~ Ry | hy / dhs = wodhs+onshs |, (71)
Shy dshy = 0
| shs | dshy = 0
being equivalently the higher central extension (Def. 2.59) of bR? x bR? by its canonical 4-cocycle
BT tort R ) e g abatdab bR, (72)
does have an automorphism symmetry given by swapping the two degree=2 generators as:
bT2 = bT?

1 1
shy <+—  wsy

1

wog éhg (73)
2 2
shy <+—  wsy
2 2
Wy < shs

Remark 2.47 (Geometric T-duality). (i) When it comes to toroidal T-duality in §3.3, the vanishing of second
contractions $$hs of the 3-flux Hy — that is reflected by the restricted toroidifications (71) and (75), and the vanish-
ing of higher contractions that is further reflected below in (85) — is known in the literature as that corresponding
to “geometric-" or “F2-” T-duality backgrounds (e.g. [KS22, p. 6]).

(ii) In our context of super-space T-duality, this is the case realized by the fixed form of the avatar super-flux
densities H3' (133) and H¥ (136), which turn out to have vanishing higher order contraction with bosonic vector
fields. Aspects of T-duality beyond this “geometric” case have been discussed (as “non-geometric-backgrounds”
such as “T-folds” or yet more exotic structures) but their possible relation to actual supergravity may not have
found attention.

Now the K-theoretic enhancement of Ex. 2.46 and thus the 2-dimensional analog of Ex 2.28 is:
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Example 2.48 (2-Toroidification of twisted K-theory). The toroidification (Def. 2.38) of the Whitehead
Lo-algebras of twisted K-theory spectra (Ex. 2.12) is given by

CE(tor2 (Z"KU )/ BU(l)))

wa dwy, =0
Wa dwy =0
hg dhs =0
shs dshy =+ sshs
- R, zélhg / d zélhg = —wy S8hs ' (74)

sshs dsshy =0

Jaetm d forrm = h3 fo(k—1)+m

20t d8foksm = —shs Jo(k—1)+m + h3 éf2(k71)+m + W2 5okt

$foetm d&forrm = —5hs fagho1)y1m + 13 Fagk—1)4m — W2 $5F2km

i 55f204m | A 88fokm = 55h3 fagk—1)4m — 513 $Fak—1)1m + 8hs §fagk—1)4m + 73 5Fak—1)1m

Since here the generator ééhg is closed, discarding it (cf. Rem. 2.47) yields (by Lem. 2.36) the geometric 2-
toroidification sub-L.-algebra

tor? [(S™KU JBU(1)) —— tor [(S™KU / BU(1)) (75)
given by
CE <t0r2/ (KU //BU(l)))

[ Wy dwy =0
Wo dwy =0
hs3 dhs = wsshs + woShs
shs dshs =0 (76)
~Re| s | /| adny =0
foetm d fokrm = +h3 faho1)yrm + W2 82k tm + @2 §forpm
Sfoetm d¥foktm = —5hs fah—1)tm + 13 Sfagk_1)4m + 02 55fortm
$f20sm d&fortm = —5hs fah—1)tm + 13 Fatk—1)4m — W2 5forrm
i $8f20tm l d 8ok +m = —5ha §fa(k—1)+m + Sh3 éfz(/g—l)er + h3 é‘éf2(k—1)+m

Lemma 2.49 (T-Automorphism of geometric 2-toroidified twisted K-theory). The CE-algebra (76) of
the geometric 2-toroidified twisted K-theory spectrum has an automorphism given by

tor? ((SKU / BU(1)) —L— tor? [(S™KU / BU(1))

hg <— hg
1 1
wWa < shs
2 2
W < shs
sh — .
3 w2
2 2 (77)
Shg < w9
21
_SSfQ(kJrl)er A foktm
2 1
_Sf2k+m < Sf2k+m
1 2
+Sf2k+m < Sf2k+m
21
+fok—1)+m < SSfok+m -

Proof. Tt is clear that the assignment uniquely extends to an automorphism of the underlying graded superalgebra.
What remains to be seen is that this respects the differential (76). By unwinding the definitions, we check this
explicitly on all generators:



—éhg — &2 —§h3 i 5)2 —052 < éhg —azfg < §h3
I
0+—0 0+—0 0+—0 0+—0

hs i hs
Ja
wo shs + @ shs
AN

11 2. 2 11 2 2
+shs we + Shy wo «— wo shs + wa shs

21
—S8fo (k1) +m U foktm

!

—55(h3 foksm)
AN

21 1 2 2 1 1 1 2 2
—h3 ssfoktm — sha sfaktm + Sha sfoktm < h3 fag—1)4m + W2 f2ktm + W2 f2ktm

2 1
—5f2k+m ! Sfokt+m

!

+5(hs Fa(k—1)tm + Wo Sfokrm)
AN
1 2 2 2

+wo 88Fak+m — P Fagh—1)tm — 5ha fak—1)4m < —Sh3 fah—1)tm + h3 Sfa(k_1)4m + @2 58f2ktm

1 2
+Sf2k+m 1 Sf2k+m

!

—s(hs Jok—1)+m + W2 §fok+m)
N
1 2

o 88k + P SFagh—1)tm — $ha fagk—1)4m < —Sh3 fa(h—1)1m + 3 Sa(k_1)4m — W2 552k-m

21
Jo(k—1)+m 1 88f2k+m

!

+hs fa(k—2)+m + ws éfQ(kfl)er + 0 §f2(k71)+m
AN

g éfz(k—1)+m + W2 §fagk—1)4m + M3 fa(k—2)4m —8hs Sfa(k—1)4m + Sha éfz(k—l)er + h3 ééfZ(k—l)—i—m .
O

Remark 2.50 (Automorphism of geometric 2-toroidified K-theory fibrations). In analogy with Ex. 2.28,
the automorphism (77) from Lem. 2.49 is compatible with the automorphism (73) from Ex. 2.46, and as such
constitutes an automorphism of geometric 2-toroidifed K-theory fibrations, with fibers given by 2 even copies and
2 odd copies respectively. The automorphism acts by swapping appropriately the even fluxes among themselves,
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and the odd fluxes among themselves, respectively. The diagram from Ex. 2.28 is modified appropriately to

IXOKU

(XOKU
I
T 29KU
X

X'KU
X
IX'KU

1
by >E{U \/> <
T KU

XIKU

| |

tor? (VKU J BU(1)) +—=—— tor? [(S°KU/BU(1))

| |
bT? - bT2.
Here the first cross over map corresponds to the exchange (up to signs) of generators with even number of shifts
for < s182fort2,
while the second one corresponds to the exchange (up to signs) of generators with an odd number of shifts

safor, — sifor.

The above observations generalize appropriately to the case of a toroidification along 3 rational circles.

Example 2.51 (Geometric 3-Toroidification of bundle gerbe classifying space). In completely analogous
manner to Ex. 2.46, it can be seen that neither the 3-cyclification cyc®(b?>R) nor the 3-toroidification algebra

tor3(b?R) := tor tor?(b’R) —— cyctor?(b°R) . (78)

enjoys an automorphism with the property that of swapping shs e (1)2 for all i = 1,2, 3, as would befit a 3-toroidal
T-duality classifying algebra. The latter 3-toroidification is given by the CE-algebra

- A dw, = 0
w2, 2
1 d(jl2 = 0
w b
? dwy = 0
h3 1 1 2 2 3 3
3 dhs = wgyshg + wa shs + wo shs
shs 3 131 3 32
2h d Shg = —Ww9 SShg — W SShg
S ) ; s 3
CE(tor®»R) ~ Ry | ©° / ddhs =  —dplhs+ o0 |, (79)
shs 1 2 21 3 31
21 dshs = +wsq sshs + wa sshy
sshs 21 3 321
31 dsshs = +wo SSshs
SSh3 31 2 321
39 dsshy = —wo SSshs
SSh3 32 1 321
391 dsshy = +wo ssshs
ssshg 321
- - dssshy = 0

via which the obstructions for such a swapping automorphism to exist are seen to be the triply shifted 0-cocycle
and the doubly shifted (twisted) cocycle 1-generators

Ssshy, sshs, sshs, Sshs.
This implies that the geometric 3-toroidification L..-subalgebra (cf. Rem. 2.47) obtained by : 1) firstly
discarding the 3-shifted 0-cocycle éééhg and 2) secondly discarding the (resulting untwisted) 2-shifted 1-cocycles

{ééhg}i,j:17273 (Lem. 2.36),
torgl(bQR) — torg(bQR) — cyctorz(bQR)’
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given by ~ -

W, dws = 0
o, ddy, = 0
wa, dwy = 0
CE(tor® ?R) ~ Ry | hy / dhs = @oshs + gdhs +Gashs | (80)
Shs dshy = 0
Shs dshs = 0
| shs dshy = 0

being equivalently the higher central extension (Def. 2.59) of bR? x bR? x bR? by its canonical 4-cocycle

DT e tor® 2R PP Ea b Gatba ) o o o dedatdabatdaiy pop (81)
does have an automorphism symmetry given by swapping the two degree=2 generators as:
bT3 = b7

1 1
—Sh3 wo

-
1 1
—wg <— shg
2 2
—Shg — W2 (82)
2 2
—wy < Shs
3 3
—shg +—  wo
3 3
—Wwgy Sh3

This geometric 3-toroidification construction extends to the twisted K-theory spectra along the lines of Ex.
2.48, and so does the swapping automorphism (82) to an isomorphism of the geometric 3-toroidified K-theory

spectra fibrations
tor® (VKU J BU(1)) +—=—— tor® [(S'KU/BU(1))

! !
b7 = bTe.

in analogy to Rem. 2.50, which now acts by swapping appropriately the 4 even X°KU and the 4 odd X'KU fibers.
The extended automorphism can be seen to act by (up to signs)

3 12

sfor. > sSfopq1

1 23

sfor > sSfopt

2 31

sfor < ssfopq1
123

fok—1) < ssSfopqt,

hence swapping the even and odd copies.
Rather than writing out the analogous explicit formulas and proofs for this 3-toroidified case, we do this more
generally and concisely for the (geometric) n-toroidified twisted K-theory spectra.

n-Toroidification of twisted K-theory spectra. With the case of 2- and 3-toroidification thus understood, we
next give more abstract but general formulas for the situation of n-toroidification.

Example 2.52 (Geometric n-Toroidification of bundle gerbe classifying space). The geometric n-toroidification
(cf. Rem. 2.47) of the line Lie 3-algebra

LT = tor™ (b2R) —— tor™(b2R) —— cyctor™ 1 (b2R),

is the Loo-algebra obtained by (successively) discarding all shifted generators s;, -« -s; hs for k € {2,--- ,n} and

i1, ,ir € {1,--- ,n} (those shifted more than once), hence given by
dwy =0
CE(WT™) =~ | dhs = X, Washs |- (83)
dshs = 0
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Crucially, the geometric n-toroidification of b°R enjoys the swapping automorphism
bT™ «———— bT"
(=1)"shg +— wo (84)
(—1)"wy <— shg,

which extends appropriately to a swapping isomorphism of the (geometric) n-toroidification of twisted K-theory
spectra.

Example 2.53 (Geometric n-Toroidification of twisted K-theory). The geometric n-toroidification (cf.
Rem. 2.47) of (the Whitehead L.-algebra of) the twisted K-theory spectra is:

dws =0
n’ m dh3 = Zr T2éh3
CE(tor (s KU//BU(I))) ~ LG o (85)
ds-8fopem = (=1)" 8- 8(hs fae—1)4m + Doy W2 Sfoktm)

For analyzing this, it will be convenient to make explicit the following:

Definition 2.54 (Fiberwise Hodge duality in n-toroidification). Consider the Hodge duality-like operation
on iterated shift operators - --$s in the CE-algebra of the n-toroidified twisted K-theory from Ex. 2.53, given by:
(* é-..’és“)a = ﬁEi,”44.iy,+1iy,4..1'2i1§"I'”SlOé, (En...Ql = 1) . (86)

Lemma 2.55 (Properties of Hodge operator on winding modes). The operation (86) satisfies the usual

properties of a Hodge star operator:
DY s = id (87)

(—
(—1)"""' % §% = derivation that removes § (88)

Proof. Since

Uy 4 _ 1 in Ir1
(**S"‘S)Oé = mﬁin...iT+lir...il(*S"'S)CE
N 1 1 _jpefrineipss b
= Tt Gy €7 HTLS s

rn—r 7771 b “
(—1)r(n=r) 67 s s
iy i
— (_1)7’(”_1) S"'S‘@
and .
k ir iy _ 1 ki lrg1
(*S*S"'S)a = W6i71.44i7,+1i7,.ui2i1(* SS"'S)OZ

_ 1 1 [ TR B Y SV SN Lt S
T Gt i i €7 1R i Sy
iyt

= (_1)T(n77‘)+r71 r 6,1*7‘7_'7‘.7‘,11“41 S gO{

_ iy q-eeiq ine i
(—1)m=tp gt T s S
TP

_qir—1dr_20p_3 i . .
(=)™ s s s - sa if k=i,

iy Op—2 iy i . .
(=118 §s s ifk=1i,_1

(1)1 (1)1 § 'S s k= i

0 otherwise .

Using the Hodge duality notation of Rem. 2.54, we may generalize Lem. 2.49 as follows:

Proposition 2.56 (T-Automorphism of n-torified twisted K-theory). For any n € N, there is an iso-
morphism between the geometric n-toroidified twisted spectra (85) of degree m and degree m + (nmod?2) given
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by

tor™ [(™KU /BU(1)) i tor™ [(EmH(rmed2) KU J BU(1))
(_1)n éh3 < (:)2 (89)
(—1)”(.:)2 < éhg
(=1)(ntrlr(r+1)/2) 4 g, .. gf - $- -8,

where in the last line of (89) and in the following we suppress the indices on the generators just for notational
brevity. Notably, this is an automorphism for even n = 2k, k € N.

Proof. The map is manifestly invertible on generators, so we need to check that the differential is respected. On
the generators corresponding to the b7™ Ly,-subalgebra this is immediate (cf. 83):

hg { h3
(—1)" éhg — (:)2 (—1)”(:)2 — éhg I
[ [ B Y
AN
0+—0 0 +— h

Zr §h3 L:)z — ZT (:)2 éhg

To see it on the remaining generators, abbreviate

o(r)

(71)r(r+1)/2
and note that

olr+1) = —(=1)"-0o(r)
or—1) = (-1)"-o(r).
With this we compute as follows:
(—1)" o (r) x 8- 5f 18 8f
a
(71)”+"7IU(T) . (_1)7’ (*g . §)(h3f + ZT/ &,;2 'S:f) d
| (ss)
(—1)" 7 o (r) hy % §---8f
+H(=1) T e (r) 3 ghg x5 * *’sgf (=1)" 8- -~§(h3f +> . W éf)

(1) o(r) 3, s x §---§f
N7 (88)
(— 1) o(r) hy xS 8f hs§---3f
— (1) (e = 1) Y, Wy (kx5S 8f) 1 (1) Y Shy (xS % §- - &)
— (1) o(r+1)Y,, Shy x58---§f + X, S8
O
Remark 2.57 (Further isomorphisms of n-toroidified twisted K-spectra). As with the n = 1 case (Rem.

2.29), there exist two further isomorphisms apart from (89), which differ only by a consistent choice of signs for
the image of the generators. Explicitly, one has

tor” [(X™KU /BU(1)) - tor” [(RmH(nmed2) K[ / BU(1))
(_1)n+1 éhg — (1)2 (90)
(_1)n+1 (:JQ — éhg

(=1)(nHr(r+1)/2) w5, .. gf — oo of,
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and

tor™ [(S™KU / BU(1)) ~ tor™ [(LmH(nmed2) K J BU(1))
(—1)" shs i wa
(—1)™ g i shs
(=1)(ntrtr(r+)/2) S g 4f P .8

Lemma 2.58 (Twisted K—theory cocycles under toroidal reduction—isomorphism-reoxidation). Under
construction/modification (1) The composite operation of
1--on
(a) n-toroidally reducing (69) twisted KU,, cocycles on a toroidally extended super Loo-algebra g 4
1--on
G4 —— [(S"KU/BU(1))
H? i hs3
2k+m JkeEZ 2k+m )kEZ 5
(Foktmrez <— (fortm)
with geometric twists (Rem. 2.47) of the form

n
k k
Hj = Hg + ZeA Da(H3),
k=1
along its fibration

1een 1'1')‘71 1--C-71
EA = g : bR"™ )
(b) applying the isomorphism (89) on the target (geometric) torodification of twisted KU,,, hence viewing them
instead as valued in the toroidification of twisted KU, ( moa2), while noticing that this swaps the “product

1---n
Chern class” ¢ Jrom that classifying the § 4-extension to that classifying a different extension
1---n

/g\B — g,

i.e.; ’Uia 1--on R 3 n/l 3 n 3 n

cp = (—1)"pu(HA) = (—1)" (pa(HA)s - pa(HY)) = ¢— IR,
(c) re-oxidizing (43) the result, but now along the new fibration
Cl

ﬁB £a g = bR )
results in the twisted KUy cocycles given precisely by
9B [((Z'KU/BU(1))
H3 s + €5 - 1) — hs (91)
(—pasForiz — € Fogbas ) oy (for+1)kez

(ii) Applying instead the second isomorphism (53) in step (b), results in the twisted KUy cocycles given by

i) (S'KU/BU(1))
HibasielB’ : Cfl A h3
(+PAForto — € - Forbas ) oy (fak+1)kez
where now the extension R
g — 9,
is instead via the opposite 2-cocycle L 5
cp = —pa.(Hy).

Proof. This is a matter of carefully tracking through the (bijective) operations on the corresponding sets of L -
algebra morphisms. Explicitly, under the reduction (43) from Prop. 2.25 the first step yields the map of super
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L-algebras
g —— cycl(X°KU/BU(1))

Hi s hs
Foppas Jar
—pA*Hi < Sh3
—paFop sfok
et — Wy .

In the second step, postcomposition of the above morphism with the first isomorphism in (51)
cyc[(Z'KU /BU(1) ) — = cyc( Z'KU /BU(1))

yields
g ——— cyc¢ [(EIKU//BU(I))
H3 o i hs
—paLopte Jak+1
—cft — shs
Fop bas — s fak+1
ch = pa, HY wa .
Lastly, in the third step oxidizing (43) via the new 2-cocycle
cp = pa(Hi) : g— IR,
immediately yields precisely the morphism of super L..-algebras out of the corresponding central extension
9B (Z'KU/BU(1))
HY s + €5 - A hs
(= pasForiz — € Forbas ) oy (fors1)rez -
The case of using instead the isomorphism (53) follows analogously. O

2.4 Higher extensions

We have discussed central extensions classified by 2-cocycles (Def. 2.21, Def. 2.32). Traditionally, these are the
only central extensions considered in ordinary Lie theory. However, in L.-theory we may also extend by higher
cocycles:

Definition 2.59 (Higher central extensions [FSS15, Prop. 3.5]). For g € sLie equipped with an ordinary
(n + 1)-cocycle (21) ) wni1 € CE(g)
g —% bR s deg(wpt+1) = (n+ 1,evn)
dwn+1 =0

the higher central extension it classifies is its homotopy fiber g given by

deg = (n,evn)

fitting into a fiber sequence
~  p:=hofib(wn+1) g Wrt1

"R.

Examples of higher central extension. The base examples of relevance for super p-branes are the following;:

Example 2.60 (The string-extensions of IT super-space). The higher central extension (Def. 2.59) of 10D
type II superspace (Ex. 3.2, Ex. 3.5) by the NS super 3-flux densities H4' (128) and H¥ (136), respectively, are
super-space analogs of the string Lie 2-algebra (cf. [FSS14, Apnd]) and as such called stringy;, /g or similar [BH11,
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Thm. 21)[Huer12, §3.1.3][FSS15, Def. 4.2][HSS19, pp 13], cf. [CAATP00, (6.12)].

_— A
stringyy, ——220 , R1.9/16616 _ s e
B
stringyy ——2, R1,9/16916 _ 1 e
given by
(d’a)iz:l dy =0
CE(stringra/p) ~ Ra | (")), / de® = (EFZ/B b) . (93)
by dby = (@rg‘/BFIO p)e
—_—
Analogously: T

Example 2.61 (The M2-brane extension of 11D superspace). The higher central extension (Def. 2.59) of
the 11D super-spacetime (Ex. 2.3) by the super 4-flux density G4 (2) is the higher analogue of the super-string Lie
2-algebra from Ex. 2.60 and as such called the super membrane algebra m2brane or similar [BH11, Thm. 22][FSS15,
§4.4][Huer17]. Its CE-algebra is the one originally considered in [DF82, (3.15)], rediscovered in [CAATP00, (105)]:

(V)L dy =0
CE(m2brane) = Ry | ()2, | /| dem=(410) ,

a=1
1(7 b
cs3 dez =3 (¢Fab1/)) e%e
| —
so that G
G
m2brane — b RL10(32 _ ©4 8@

Example 2.62 (Parity isomorphism of 11d SuGra). The canonical reflection action of I'yy € Pin™(1,10) on
R10132 Jifts to its M2-brane extension of Ex. 2.61 by flipping the sign of the generator cs:

m2brane ——— m2brane
Py (0

+e® e* (a<10) (94)
—610 — 610
—C3 «— Cc3.

This is because G4 (2) changes sign under a super-reflection:
parGy = par (5 (FTa)ete’) by (2)
= Yapc10s (T Tap Top)ee® = 3, 1o (Tt Tan Tot))ee® by (94)
= = ab<10 $(WTrolaTov)ee® + 3,10 (YT Tan Top)e®e® by (220)
= = ab<i0 5 (0T Tolpv)ete® = 3, 10 (¥ Tan Tolok)ee® by (214)
= - Za,b<10 %(Erab w)eaeb = Ya<io (@Fam w)eaelo by (214)
= —%(@Fabw)e“eb = —Gy.

This transformation (94), of super-spacetime reflection together with sign-inversion on cs, is known [DNP86,
(2.2.29)] as a symmetry of the Lagrangian density for 11D SuGra, and it controls (e.g. [Fa99, (3.1)]) the be-
haviour of the M-theory 3-form near a Hofava-Witten MO9-brane (i.e. near the fixed locus of the super-reflection
in).

Remark 2.63 (Basic and fiber forms on a higher centrally extended super-L,, algebra). The decom-
position in terms of basic and fiber forms follows for higher central extensions in complete analogy to the case of
standard central extensions (Rem. 2.22):
(i) Given a higher central extension as in Def. 2.59, every element in its CE-algebra decomposes uniquely as the
sum

Q. = Qpas + bnp*(a> (95)

of a basic form .
Qpas € P (CE(Q))
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and the product of the generator b,, with the image of « under fiber integration p,, which is a super-graded derivation
of degree (—n,evn):
CE(§) —— CE(g)

b, +— 1 (96)
e — 0.
(ii) The differential of a general element is given in this decomposition in terms of the differential dg by:
dg(abas + b per) = dgabas + (dgbn) pea + (=1)" by, dg pacx (o7)

— (dgabas + wn+1p*o¢) + (—)" by, dgpacr.

While aspects of T-duality for such higher extensions were discussed in [FSS20a] (just) in terms of the higher
analog Fourier-Mukai transform, next here we develop the full story of the higher Ext/Cyc-adjunction and the
automorphisms of the higher cyclified twisted higher cocycles:

Higher Cyclification along rational odd spheres. Hereon we focus on central extensions wheren =2t—1 € N
is an odd positive integer, hence on central extensions along even higher cocycles wo; : g — b**~'R. Notice the
target Loo-algebra here may be thought of equivalently as:

(i) the rationalization odd iterated delooping of the circle B2*=1S! or

(ii) perhaps more suggestively the rationalization of the an odd sphere S2/~1.
In this scenario, there is a straightforward higher generalization of the cyclification functor, which in view of (ii)
may also be referred to as an odd spherification functor.

Definition 2.64 (Higher Cyclification/Odd Spherification of super L.-algebras). Given ) € sLieAlgI;1

with presentation ; ; P
CE(b) = Rd [(6 )iEI]/(de =P (e))iel ’
and ¢t € N its (2t — 1)-cyclification cycy,_1(h) € sLieAlg is given by

deg = (2t,evn)
(¢)iep@or |, Az =0 |
CE(cycq_1(h)) == Rq (s ei) 1 de' =dy €E+w’2)t see' |, (98)
t i [ 7
27 Jier dsie’ = —si(dye

deg =

g
deg(e') — (2t — 1,evn)

where in the last line on the right the shift is understood as extended to a super-graded derivation of degree
(=2t +1,evn):
St : CE(CYczt—1(h)) E— CE(CYczt—1(h))

wat — 0,
e’ — sie’,
sie’ — 0.

The fact that this is well-defined, namely
Cld:O7 StStZO, Std+dSt = 0. (99)

follows precisely as in Lem. 2.24.

Remark 2.65 (Rationalizing topological spherification). The case ¢t = 1 in Def. 2.59 recovers the standard
cyclification (Def. 2.23), which may be seen [VPB85][BMSS19][SV23][SV24] as the rationalization of a loop space
homotopy-quotiented by loop rotation, namely for h = [X

cye(h) = 1([S%, X]//S%).
We expect the proof of [BMSS19] should hold for the ¢ = 2 case with minor modifications, where the odd 3-sphere
S§3 = SU(2) still has proper group-structure, so that

cyes(h) = ([S%, X]//5°).
For t > 3, this pattern obviously breaks down since the higher odd topological spheres from S7 onwards admit no
group structure. Nevertheless, the rational higher cyclification (Def. 2.64) still makes complete sense, and so does
the corresponding higher version of the Ext/Cyc adjunction of Prop. 2.25.

Proposition 2.66 (The Higher Ext/Cyc-adjunction). Given g,h € sLieAlg, with a 2t-cocycle Woy € CE(g),
there is a bijection between:
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(i) maps into b out of the higher central extension g classified by the 2t-cocycle (Def. 2.59),
(ii) maps out of g into the higher cyclification of i (Def. 2.64) that preserve the 2t-cocycle:

7 reduction rdcg,, ]‘{ (b)
g——— h} ~ 8 = CYCat—1 (100)
{ oxidation oxdg,, { % b2t71R %21
given by )
f
g —— cyce(h)
! - P (101)
Oé{)as + b2t—1 p*ai — ei _p*ai — Stei

wWat < wWat .

Proof. The proof follows essentially verbatim as in that of Prop. 2.25, by adjusting the degrees of the even cocycle
and extra odd generator accordingly. O

Example 2.67 (Higher cyclification of higher bundle gerbe classifying space). The higher cyclifications
(Def. 2.64) of the real Whitehead Lo.-algebra of B2'U(1) (Ex. 2.6), cycy,_b*R, is given by

wat d Wotr — 0
2t ~
CE(cyCQt_lb R) ~ R4 Wiat—1 dwgi_1 = wop Woy
Wap 1= SgWat—1 dwsy =0

being equivalently the higher central extension (Def. 2.59) of b*~!R? by its canonical 4t-cocycle

hOﬁb(w2t th)

bT; := cyce,_1b*'R AR 92082 -1 (102)

and as such may be called (the Whitehead L..-algebra of) the delooping of the higher T-duality Lie group (cf.
[[FSS18a, Def. 3.14]):

cyc [BYU(1) ~ [(hoﬁb(thlU(l) x B2-1y(1) — e Umeea B4t1U(1))> .

Similarly to the ¢ = 1 case, it is evident that (102) has an automorphism symmetry given by exchanging the
two degree= 2t generators (we again include a minus sign, for compatibility below in Ex. 2.68):

bT; «—— bT;
—Gyp 1 wy (103)
—Wop 1 Wy .

This already carries in it the seed of higher T-duality, with the next example lifting this automorphism to an

equivalence between the higher (2t — 1)-cyclifications of the (4¢ — 1)-twisted cocycle classifying L..-algebras from
Ex. 2.15, generalizing the situation of Ex. 2.28.

Example 2.68 (Higher cyclification of higher twisted cocycle classifying L.,-algebras and higher
T-duality group). The (2¢t—1)-cyclifications (Def. 2.64) of the (4¢—1)-twisted, (4t—2)-periodic cocycle classifying
Lo-algebras from Ex. 2.15 are identified by an isomorphism (14). In order to ease the notation below, we abbreviate
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ng =2t —1:

CE (cycm [(SmK™ U JB2=1U(1) ))

wnt+1 dwmﬂ =0
h2nt+1 thnt—f—l = Wn,+1 Sth2nt+1
~ Ry|  sihon / dshan, 41 =0
(fokne+m)rez d fotk+1ynetm = hong1 forngrm + Wnyg1 Stf2(kt1)ne+m
(Stfokn,+m)kez dsfo(et1yne+m = —(Sthan,+1) fokn,+m + P2n,+1Stfokn, +m
Wnyt1  Sthongt1 hangt1 fokng+m stf(2k+1)ns+m
t T i RSP (104)

—Sthon,+1 —Wn,+1 Ron,+1 Stfo(kt)ng+m  f2kng+m

Wny+1 dwp,+1 =0
han,+1 dhon,+1 = wWnyt18thon,+1
Ry Sthom, 41 /| dsihonin =0
(fek—1)n,+m)rez d fersnatm = P2n+1 fr—1)ni+m T Wny+1 Stf 2k 1)ng+m
(stf(2k—1)n,+m)kez dsifertiyni+m = —(Sthan,+1) fer—1)ni+m + Pan,+15tf2k—1)n,+m

~ CE (cycnt ((Sm-m KU JB2-1U(1) ))

compatible with their fibration (31) over bT; cycntb"t‘HR via its automorphisms (103), where the homotopy
fiber of the cyclified fibration is now the direct sum of 2n;-periodic cocycle spectra in degrees m and (m — ny),
respectively, with the isomorphism acting by swapping their order:

[XmK™U [XmomKrey
X

—————
[Zm-m K™ U T IETKMU
! ! (105

cyc [(SMK™U J B2 =1U(1)) +——— cycl(Sm K™ U B2~ 1U(1))

I !

bT: = bT: .

Lemma 2.69 (All isomorphisms of higher cyclified twisted cocycle classifying L..-algebras). In analogy
to Lem. 2.29, there exist in total 4 isomorphisms

cyc,, (K™ U JB*~1U(1) ) +—— cyc,, (L™ K"U /B*~1U(1))

with the property of swapping shan, 11 «~ wan, and fakn,+m  Sfo(kt1)n,+m, while mapping han, y1 to hap, 1, up
to relative sign prefactors. Explicitly, the extra 3 isomorphisms are given by

CyCp, [(EmK"fU//B%f’lU(l)) > cycC,, [(Em’"fK”tU//BQ"t’lU(l))

hon, +1 i hon,+1
7Sth2nt+1 < Wny+1
—Wny+1 < Sthgm+1
=St f(2k+1)ns+m i fokns+m
—Jokn,+m — St fo(k+1)ne+m »



cye,, [ EMK™U JB2=1U(1)) = cye,, [( 7K U /B>~ 1U(1))

hon,+1 < hon,+1
Sthon,+1 — Why+1 (106)
Why+1 — Sthzn,,+1
=St [(2k+1)n, +m i fokn,+m
Jokn,+m i St fa(k+1)ne+m »

and
CyCy, I(EmK”fU//BZ”fflU(l)) VREASY CyCy, [(Em*”'tK”fU//BZ”tflU(l))

h2nt+1 < h2nt+1
SthQnt+1 < Why+1
Wny+1 < Sth2nt+1
stf(2k41)n,+m i Jokni+m
—J2kn,+m i St fo(k+1)ne+m -

Evidently, the original isomorphism (104) and the first above are the two possible extensions of the autormorphism
(103) of bT; , while the latter two isomorphisms are the two possible extensions of the “opposite” automorphism of

bT;
bT, +——=— bT;

shat41 wat
Wat i shatt.

Proof. By direct inspection, completely analogously to that of Lem. 2.29. O

With the higher cyclification and with the above isomorphism in hand, we obtain a higher generalized template
for T-dualization along higher dimensional odd (rational) spheres, generalizing directly the standard case from
Lem. 2.30.

Lemma 2.70 (Higher twisted cocycles under reduction—isomorphism-reoxidation).
(i) The composite operation of
(a) reducing (100) twisted IX"K™U cocycles on a higher centrally extended super Lo-algebra ga

G4 ——— [(S7K™U JB*1U(1))

Hint-i_l <— hQnt+1
(Fokny+m)kez <— (fokni+m)rez

along its fibration

U.)A
G —— g ——— V"R,
(b) applying the isomorphism (104) on the target cyclification of [(EmK”fU//BQ"t’lU(l) ), hence viewing them
instead as valued in the cyclification of [( ymomeKne B2 1U(1) ), while noticing that this swaps the higher
cocycle w;i‘tﬂ from that classifying the ga-extension to that classifying a different extension

ﬁB — 9,
i.e., Via
W1 = pay(HY"T) g — "R,
(c) re-ozidizing (100) the result, but now along the new fibration
G~ g — R,
results in the twisted (X"~ K™U cocycles given precisely by
’g‘B [( Sm—ngKne U//BQntflU(l) )

H + by “Wi 1 — hon,+1 (107)
( - pA*Fanter - b%t : (F2(k71)nt+m)bas )kGZ < (f(2k71)nt+m)k€Z
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(ii) Applying instead one of the isomorphisms from Lem. 106 in step (b) yields similar, but essentially different
maps between higher twisted cocycles of different extensions over g. For instance, using the isomorphism (106)
results in the twisted IX" " K™ U cocycles given by

ﬁB [(E'm—u,f,KntU//BQTL,,—lU(l))
Hinﬁa:glfb%tf 'w;?t-&-l — hon,+1
(+PAxForne+m — U - (Fa(k—1)n,+m)bas )keZ i (fek=1)n,+m)rez

where now the extension R
aB "9,

is instead via the opposite (ny + 1)-cocycle

Wiy = —pa(HY).
Proof. The formulas have been set up such that the proof follows essentially verbatim with the proof of Lem. 2.30,
by adjusting the degrees accordingly. O

Remark 2.71 (Towards Higher T-duality.). In direct generalization of Lem. 2.30, the composite operation
of Lem. 2.70 swaps the extending cocycle w;‘}tﬂ with the ns;-dimensional reduction w5+1 = pA*Hi””'1 of the
original twisting cocycle. At the same time, it swaps “wrapped and non-wrapped modes” of the corresponding
would be “higher” fluxes, now along the corresponding higher odd ns-extensions. This should plausibly capture
rational aspects of the generalized cohomology perspective in [LSW16].

Remark 2.72 (Reductions along products of higher spheres). At this point, it is straightforward to develop
an analogous story along the lines of §2.3 using the notion of a “higher toroidification”. That is, there is an
immediate generalization of reducing and oxidifying along products of rational odd spheres (cf. Rem. 2.45) and a
corresponding automorphism of higher toroidified twisted cocycle classifying spaces (cf. Prop. 2.56). We leave this
potentially interesting extension for future works.
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3 Superspace T-Duality

We discuss how the abstract Lo.-algebraic T-duality of §2.2 (Lem. ?7?) is realized (§3.2) on the super-invariant
super-flux densities intrinsically carried by the 10D type ITA /B super-spacetimes fibered over 9D super-spacetime
(§3.1).

Then in §3.3 we consider the analogous discussion of n-toroidal Ly-algebraic T-duality (from §2.3) realizing it
as the full 149D reduction of type ITA super-space to the (super-)point, and we observe that the resulting Poincaré
super 2-form on 10D-doubled super-space lifts to a 3-form on the “M-algebra”.

3.1 Super-space-times

We discuss the translational supersymmetry algebras (Ex. 2.3) for D = 10 and of “type II”, in terms of the
algebraic data provided by the D = 11 supersymmetry algebra. This is immediate for type ITA, but for type IIB
it requires a little bit of finesse. With that in hand, though, the superspace T-duality in §3.2 flows very naturally.

Dimensional reduction of 11d super Minkowski spacetime. Consider the projection operators

P = i1+r
L f( + 10)} € End,(32) (108)
P = 5 (1 — Fl())
satisfying the following immediate but consequential relations:
PP = P’ F§9P = ﬁrgg,
PP =0, I'yP = PIy = +P, ’ Py = ¢P.
PP = 0, 1—‘1(]? = ?Fm = —?,

Canonically identifying actions of spin subgroups on 32
Spin(1,8) —— Spin(1,9) —— Spin(1, 10)

by restriction of the Clifford algebra to products of its first 1 + d generators T'g, I'1,---T'y, the projectors (108)
carve out two Spin(1,9)-representations from the Spin(1,10)-rep 32:

16 := P(32) € Rep,(Spin(1,9)) (110)
16 := P(32) € Rep,(Spin(1,9)),
and hence we have a branching of representations of this form:
Spin(1, 10) «—— Spin(1,9)
32— 16916 (111)

0 — Py + P .

- =~
Under this branching and decomposition (1) = ¥ + 2 = P(t1) + P(¥2)), the spinor pairing ((—)(—)) on 32
translates into pairings on 16 = P(32) and on 16 = P(32), by evaluating on pairs of spinors belonging in each of

the projected subspaces respectively. In terms of the two projected representations the vector-valued spinor pairing
((—)T(=)) decomposes as follows:

Lemma 3.1 (Decomposed vectorial spinor pairing).

(MFa ¢) = (El Fa le) + (@2 Fa ¢2) ) for a 7£ 103
(Vo) = (Vy 1) — (V1 02).

Proof. The first line in (112) follows since the mixed terms vanish due to the decomposition (111) and using the
relations (109):

(112)

(V1Tad2) = (Py1D,Poo) (V2Tadr) = (PaTaPer)
= (Y1 PLaPe) (Y1 PTa Ps) for 0 £ 1.
= (¢1Ta PPoy) = (11, PPoy)
= 0 = 0
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Similarly but complementarily, for the second line these relations give:
(VIwe) = (V1Tod2) + (YaTn 1) + (Y1 T é1) + (o T d2)
= (P¢1 I Pos) + (?%Flo P¢1) + (Pyy Ty Pgy) + (?7/121110 Poy)
= (Y1 PTy Pos) + (v2 Py P1) + (b1 PTyg Pgr) + (w2 Pl Pos)
= —(d1 PPo2) + (V2 PP¢1) + (U1 PPo1) + (v2 PPg)

= —(V102) + (Y2 ¢n).
O
This gives:
Example 3.2 (The M/ITIA super-space extension). We have a Spin(1, 9)-equivariant isomorphism
o 16
(1/)1 )a 1’ d¢1 = 0
) d = 0
CE(R1,10\32) ~ Ry (1/}2)0( 1 / wj . . , (113)
(ea)a . de® = (V1Tav1) + (V2Tap2) fora# 10
e de® = (Do) — (i v)
(Tl‘m z')
which exhibits R110132 a5 a central extension (Def. 2.21) of R1:9116®16;
RL10[32 ___ hofib . p1,9|16616 e = (Y T10%) IR
D-11 extension of D = 10 type TTA classified by first Chern class (]_]_4)
super-Minkowski super-Minkowski
spacetime spacetime

Reducing one dimension further, the two Spin(1,9)-reps (110) in turn become isomorphic when restricted to
Spin(1, 8)-representations, the isomorphism given by acting with Tg:

Spin(1,8) SPF_({*)

16 = play TG - T
Fabl Fabl a,b<8. (115)
P(32) = P(32)

This gives:

Example 3.3 (The ITA /9D super-space extension). We have a Spin

—~

1, 8)-equivariant isomorphism

w4 O
Dol | s - 0
OB = Ry |0 /| der = (510 + (3100 fora 9
(e )g—o’ de? = (1 T%4¢1) + (P2 T%4hs)
€

(51°0)

which exhibits R19116916 45 4 central extension (Def. 2.21) of RV8116816 by 4 9 cocycle to be denoted ¢t (cf.
footnote 10):

J— A __ o7
RLOI16016 _ hofib ., pi18|16016 ¢y = (Pl v) bR
D = 10 type TIA extension of D =9 type IT classified by first Chern class (116)
super-Minkowski super-Minkowski
spacetime spacetime

The type IIB super-spacetime. We need a presentation of the type IIB super-spacetime analogous to the IIA
case above, namely expressed in terms of the 11d spinors in 32 and their spinor pairing ((—)(—)) : 32® 32 = R.

However, since along $01,9 < 507 19 this representation branches as 32 +— 16 @ 16 (111) we have to re-express the
given 16 as a 16.
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Observe that this may be achieved by “compensating with a group automorphism”: The same diagram (115)
which shows how P(32) and P(32) are isomorphic as Spin(1, 8)-representations also shows which transformation
on the Lie algebra generators occurs when comparing them as Spin(1,9)-representations, namely the Lorentz-
generators with an index=9 pick up a minus sign:

Spin(1,8) Spin(1,8)
(S ("
16 = P(32) X P(32) = 16
Fabl J{Fa‘? Fabl lflﬂag a, b <3 (117)
P(32) 2 P(32).

This means that the 16 of Spin(1,9) is the pullback of 16 along the group homomorphism which on Lie algebras
is given by this sign change (115):

16
f .
5019 = 5019 glis
Jab<9 — Jab — lI—‘ab|i
2 e (a,b < 9) (118)
Jag L —Ja9 — _§Fa9|ﬁ(32)

Jab }

1B

§Fab P(32) "

Here in the last line we have summarized this situation by introducing the following notation — recalling that our
undecorated “T',” are always those of the 11d Clifford algebra (208):

ré .=r, for a <9

g = Iyl

5 s (119)
ry, = gy fora<b<9

ng = fFfF{? fora<b<9,

which works since F10|?(32) = —id, by (109). But by the same relation also I'p| p(32) = -+id, so that the I'B operators

reduce to the original Clifford generators I' (208) when restricted on 16 = P(32) and hence encoding also a copy
of the original representation

16
5019 glig

Jab — 318 | pa2) = 3Tabl p(32)

In total we produced the type IIB spinor representation 16 @ 16 of Spin(1,9) as a pullback of the type ITA
spinor representation 16 & 16, in terms of the 11d Clifford algebra expression (119) as:

16 ¢ 16
( ~ 16416
8019 5019 ol (a<b<9) (120)
Jap %Ffb

It is this transformation which turns out to make manifest superspace T-duality below.

Remark 3.4 (Subtleties with type IIB Clifford elements.).

(i) Beware that the operators I'Z in (119) do not generate a Clifford algebra (and not a Pin(1,9)-group), but they
do generate the correct Spin(1,9)-group and -representation.

(ii) As we will see in a moment, this defect is in a sense compensated by another defect, namely that T'¥ is not
skew-self-adjoint as the other Clifford generators (220):

=3 —I‘fb for a,b < 9
1—‘ab =

121
+T5 ifb =09, (121)

where the second line comes about as
B = T,Tolp = Tplol, = (—1)*Typlel, = (=17, Tl = I'5) fora <9.

With this notation, we may set:
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Definition 3.5 (Type IIB super-Minkowski super-Lie algebra.). The 10d type IIB super-Minkowski Lie
algebra is given by
(d}?)gj:l? d1/11 = 0
CE(R1,9|16®16) = Rq |(yg)L / dyo = 0 (122)
( de* = (w Ig z/J) ,

where the pairing is that of spinors in the 32 of 11d (!) under the identification (111) and where, to compensate

this, I'} is from (119).

Since it is evident that the differential in (122) is at least Spin(1, 8)-equivariant, we have the following analog
of Ex. 3.3:

Example 3.6 (The IIB/9D super-space extension). We have a Spin(1, 8)-equivariant isomorphism

o] (0
LI I
CE(R1,9|16@16) ~ Ry i 8a=1a det — (%1 T 4y) + (%Qrawg) fora <9
(6 )1;207 d69 = (¢1 Fg 71211) - (¢2 Fg 1/}2)
€ (71'51’), Y) = (¢ T9Ty0 v)

which exhibits R} 116916 a5 5 central extension (Def. 2.21) of R1®116916 classified by a 2-cocycle to be denoted
cP (cf. footnote 10):

B 9 9
RL9[16516 hofib R18|16@16 o =@ 9) =T y) bR
’ —_————» ? .
D = 10 type IIB extension of D =9 type II classified by first Chern class (123)
super-Minkowski super-Minkowski
spacetime spacetime

What is less evident is that (122) is also Spin(1,9)-equivariant under the action (120), since the {FaB}Z:O C
CI(1,10) by themselves do not generate a Clifford sub-algebra, by Rem. 3.4. However, the failure of I'}; to be
skew-self-adjoint (121) compensates this defect, as follows:

Lemma 3.7 (Lorentz-equivariance of the type IIB spacetime). The differential in (122) is indeed equivariant
(15) under the Spin(1,9)-action (120).

Checking this is straightforward, but we spell out the proof because this statement was omitted in [FSS18al:
Proof. For a Lie action of 01,19 on ¢ by
Joby = —4Tgh

we need to check that the term (@ Is w) transforms in the vector representation, namely that
JP(WI5e) = (JPeTgy) + (PL5 %) = 0" (PT5w) — (VI ¢) -
In the case where a,b, ¢ < 9 this is, by (119), just the ordinary case which, just to recall, works out as usual:
JUWTGe) = ([T T99) = (b("T* —n*T")p),  fora,b,c<9,
where in the first step we use — via the first line in (121) — that %Fab = f%Fab, which in the second step gives rise
to the commutator [-,-] (in the 11d Clifford algebra).

Next, the case where a,b < 9 but ¢ = 9 does involve the modified 1"39 = I'T'", but gives the correct answer
trivially since the same kind of commutator appears and evidently vanishes:

JP(WI%y) = (YA, TT0)y) = 0, for a,b < 9.
The interesting effect is in the next case, where one of the first two indices take the value 9. Here the modified
adjointness relation in the second line of (121) makes instead an anti-commutator {-,-} appear, which however

becomes a commutator after pulling out the factor of ' that comes with [}, and that again gives the correct
result:

JOWTgy) = (L {zTI°I}y) = (TP 9) = —n*(YI5¢)  fora,c<9.
Finally, a similar computation passing through an anti-commutator also confirms the last remaining case:
J?(WTBv) = — (V{30 I ) = (¢YI5v) for a < 9. O
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Observing that the Clifford elements

= T
o1 F9 (whose product we denote o3 := o109 = I'gI'p) (124)
g9 = 10

anti-commute with all the (T2)?_, (119) we also have:

Proposition 3.8 (R-Symmetry of type IIB [FSS18a, Rem. 2.11]). The elements (124) generate a Pin(2)-action
on 16 ® 16, which commutes with the Spin(1,9)-action (120), making a direct product action of Spin(1,9) X Pin(2).

(This effectively 12-dimensional spin-action is seen to be related to the “F-theory”-perspective on type IIB, in
Def. 3.30 and Prop. 3.31.)

Putting these pieces together, we have more generally that:

Proposition 3.9 (Lorentz-invariants on type IIB super-spacetime). Setting

B _ (—1)sen(@) Ff(al) e Ff(ap) | JoeSym(n)st. agq) < < ao(n) (125)
G 0 | otherwise
the following expressions are invariants for the Spin(1,9)-action (120) type IIB super-spacetime (122):
71"3 el ...e%
(w ay--ap 11Z]) c CE(RI,Q ‘ 16@16) (126)

(@Ffl...ap i ’(/J)eal coefp
for o; from (124).

(Of course, many of these expressions vanish by (225).)

Proof. The statement for the second line follows immediately from that for the first line by Prop. 124. We proceed
to prove the statement for the first line.

For p = 0 the statement holds trivially, since the given expression vanishes, by (225).

From p = 1 on we shall prove the stronger statement that (5 Layag w) e ... e% is invariant for ¢ possibly any
other element transforming as J*¢ = —%F“Bbqﬁz

The case p = 1 follows verbatim as in Lem. 3.7, with the first factor of “i)“ there generalized to “¢”.
For the remaining cases we may, by (125), assume without restriction of generality that a; < --- < ap41, hence
in particular that a, < 9 whenever n < p, and we need to show that the following is invariant:

(affr.ag ’L[J)eal T J— (a]f‘(lflmap]_"fp_#l ¢)6a1 ... @O EOpt1 by assmptn
= (T8, oTE  y)emr - emw et by (221).

Now observe that the expression o = B T
. ai--ap
transforms as a spinor under any J%: For a,b < 9 this is the standard situation, and then for J it follows since
(125) makes any I'p-factor “stay on the right”. But with this we are reduced to seeing that (a Loy w) etrtl is
invariant, which is the case p = 1 already proven. O

3.2 Super-flux T-duality

We give a streamlined review of the core part of the formulation (and in fact a derivation) from [FSS18a] of T-duality
along a single isometry between type IIA and type IIB super-flux densities on super-Minkowski spacetime.!!
The key observations driving this are that:
(i) The type ITA super-flux densities on super-Minkowki spacetime satisfying their Bianchi identities are equiv-
alently (Prop. 3.13) super-Lo, cocycles with coefficients in the real Whitehead L..-algebra of the twisted
K-theory spectrum KU (Ex. 2.12).

HNote that the focus on Minkowski super-spacetime is only superficially a specialization: The torsion constraints that govern
supergravity theories say that — in the manner of Cartan geometry — the actual super-flux densities on on-shell super-spacetimes
are tangent space-wise constrained to have fermionic components given by these Minkowskian super-invariants — and in fact in 11d
SuGra that condition is equivalent to the supergravity equations of motion [GSS24a, Thm. 3.1]. In this, the super-invariants on
super-Minkowski spacetimes are the archetypes that govern full on-shell supergravity theories.
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(ii) Double dimensional reduction of super-flux densities on super-Minkowski spacetime is equivalently given by
cyclifying (as in cyclic cohomology) their coefficient L.-algebra (Prop. 2.25).

(iii) The cyclifications of twisted KU is equivalent to that of twisted XKU by swapping the Chern class with the
wrapping mode of the 3-form (Ex. 2.28).

(iv) The type ITA flux densities are equivalent to the IIB flux densities after reduction via cyclification to 9d,
whereby the type ITA spacetime is swapped for the type IIB spacetime (Prop. 3.15).

M/IIA duality. Recall from Ex. 2.8 that the C-field super-flux densities on 11D super-Minkowski spacetime are
encoded by a super-L, homomorphism of the form:

R1.10[32 (Ga, G7) (4
5(VTaa, ¥)eme® =t Gy — 9a (127)
é (Erar“as w)eal cee® = Gr — gr

Example 3.10 (ITA-Reduction of C-field super-flux [FSS17, pp 11], cf. [SS24c, Ex. 2.13]). Under reduction
via the Ext/Cyc-adjunction (Prop. 2.25) with respect to the M/ITA extension (Ex. 3.2)

rdCC;w (G4 ,G7)

(\>bR</“’2

YTy o)

Rri10132 _(G4G7) o iqu o R0 16016 cyc(1S*)

the flux densities from 11D (127) become:
rdccfu (G4,G7) =
(Fy, Fa, Fo, H3' H7')

R1.9116©16 cyc(15?)
RrL0(s2 (G067  oa (¢Twy) =: Fo — wo
100 a1 a2 .

%(Eralag ,l/))ealeag i g ~— Q(wrilaz ¢)e e =: Fy — g4 (128)
1/ (VT T p)e* = Hf — Sq4
a(wl“al...% 1/))6“1~~~6a5 i g7 L - . . B

31 (VT ayas )€ e = Hy — g7
—%(JFal...a4F10w)eal-~-e“4 =: —Fj — Sg7
satisfying:
e dF;, =0
_ dF, = H{F,
dGy = 0 — dF. — HAFR, (129)
4G, = 16,6 o 3
7T gtdd dHé4 =0

dHA = LEF, - Ry Fy.

However, on the type ITA super-spacetime there appear further/higher super-invariants satisfying analogous
differential equations — this observation is essentially due to [CAAIP00, §6.1], except that we also consider Fjp 2.

Definition 3.11 (Higher type ITA super-flux densities.). Consider the following super-invariants, beyond
those appearing via reduction from 11d in Ex. 3.10 '3

g = +é(ara1a6 ¢)€a1 %0
Fio = +é (EFal...asFlo 1/)) el ... %8 S CE(RLQ | 16@16). (130)
Fio = +351 (¥ Ta ey )€ -+ 0

12 A 12-form term like F2 in (130) — nominally the WZW term for “D10-branes” — is rarely considered in the literature (an exception
is [CS09, p 30]) since it is evidently invisible on ordinary (bosonic) spacetimes. But on super-space it is non-vanishing and must be
considered [BMSS19, Rem. 4.3] to complete the flux densities Fae to an IKU-valued cocycle. On the other hand, the yet higher degree
fluxes of this form Fap 1o = % (E Faq-agy 1/1) el ... e%k do vanish on R1:9116®16 414 hence need not be further considered.

131In the string theory lore the higher flux densities related to the higher super-invariants (130) and corresponding to (1.) the D6-
brane, (2.) the D8-brane and (3.) the “D10-brane”, are meant to have 11d ancestors given, more or less informally, by (1.) the 11d
Kaluza-Klein monopole, (2.) a Scherk-Schwarz compactification to massive type ITA theory, respectively, while the M-theory lift of (3.)
the “D10-brane” seems not to have been discussed (cf. footnote 12).

More in the spirit of the rigorous derivations here, we have shown in [BMSS19] that the relevant higher generators appear when the
4-sphere coefficient (Ex. 2.8) for the fluxes in 11d are subjected to fiberwise “stabilization” over the 3-sphere (in the sense of stable
homotopy theory).
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Lemma 3.12 (Bianchi identities for higher ITA super-fluxes). The higher super-fluz densities (130) satisfy

with Hi' from (128).

dFy = Hi{F;
dFyy = HiFg
dFe = Hj Fy
0 = H{Fp;

(131)

Proof. The proof for the first equation in (131) is also given in [CAATP00, §B], which we follow. First to note that
the closure of H3' from (129)

0 = dHf
d((@ Lol ) 6a>

(¥Talnv) (v T 0)

a<10

means in components that

where in the second line we used (223) that (T'gI)ap and (T'g

0 = (T PlO)(a;aF?ya)

= 4 ((F Flo)(aﬂrg)’}’ T (Farlo)fy(argé))’

With this in hand we compute as follows:

d Fy

d Fio

A& (P Tayea ¥)e - e
—é(wral...%bw(ww) ar ... gas
— 31 (VT 4y 0 Do) (Y TP )€ - - e
+ 3 (Y Tayas T DT ¥0) (TP ) e - - - e
+51 (Tay- a5F10)(a‘ |(TbF]O) (Fb)vé) DB Ipd eo1 . .. eas
7%(]‘_‘0«1'“(1’01_‘10)(04 |(FbF10)’YB (Fb) 5) YOS a1 ... g5
+57(Ta asrbrm)(a5 (Fbrm)w ¢a¢ﬁ¢w¢5 a1 ... pos
451 (¥ Ta;as DT ¥) (Y TP ) €1 - - e
+ 31 (Va0 D0 ) (P T Tig 1) €2 - - - %5
+ Fe H3!
The remaining two cases (and in fact all cases) work analogously:
A& (YT 0T ) - e
— 5 (Y0 ar bl ) (YT ) e - €27
— & (Y Taya; Dol ) (YT 1p) e - - - o7
=71 (Tas. “7)(a|r\ (bem)ﬁﬁ (Fb)w) YOPPYTYE e .. 07
+77 (Tas - )(alh\ (bem) (l“b)” YOPPYTYE e .. 07
+31 (Par-ar D) (o5 (CT0) ) ¢a¢5w7¢6 ar ... par
+ (P Tayar T ) (BT ) €92 - - 007
+ 3 (VT 0y ag ) (VT T ¥0) €71 - - - €77
+Fy H3!
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a <10

by (130)

by (16)

by (215) & (225)
by (214)

matrix multip.
by (132)

matrix multip.

by (215) & (225)

by (128) .

by (130)

matrix multip.

by (132)

matrix multip.

(132)

)~s both already are symmetric in their spinor indices.



and:

AF = A5 (FTapmy e e o
= 5 (Vlarmanp ¥) (PLoep)e e by (16)
= & (PTapae Ty ) (BT ) - 0 1 (025
= 4+ (YT 0yl T ) (VTP ) e - % -
= +51(Tara0T0) (o1 (ToT0) " (T7) 5y W07 e o™ matrix multip.
= _&(Fal'“agrlo)(ah{l (Fbl"lo)w (Tb) %) oepPepred 1 .- e by (132)
=+ (Tara o) (05 (1) ) WWWWS e - e matrix multip.
= +51(¥Ta,aoleT0 ) (Y TTy ) €1 - - €29
= +5(VT a0 l09) (P Tag T ) € - - - % by (215) & (225)
= +F Hé“ by (125). .

It is worth summarizing this state of affairs in super-L., algebraic language:

Proposition 3.13 (The type IIA super-cocycles [F'SS18a, Prop. 4.8]). On the type IIA super-Minkowski
spacetime RY2116916 e haye the following super-invariants

Hg = (¢T.pe)e

F.o = 0, keN

Iy = (¢YIpv)

Fy = 3(¢Taa,1)e™ e B JHA — 0

Fs L (PTwlayay )™ - 3 € CE(RMIIEHE) g {dF3 _ gap (133)
Fs = £(¥Tla.aet)e™ Ze+2 = 3 T2e)

Fio = (YTl asw)eal'-'eas

Fis = %(E - auﬂ/’) ... PO
Fiypop, = 0, keN

hence equivalently constituting a super-Lo, homomorphism (14) to the real Whitehead Lo -algebra of twisted KUy
(27):

_ (H:A,(FQA-,)kEZ)
RL9 16516 3 [(X°KU /BU(1)). (134)

% [BQU(l) </h3

3

Example 3.14 (Reduction of ITA super-cocycles to 9d). The reduction of of the type IIA cocycles (Prop.
3.13) via the Ext/Cyc-adjunction (Prop. 2.25) along the ITA /9D extension (Ex. 3.3)
rdea (H3',(Far)ken)
Rriolteets Lmiee) ysopy jpuy(p)) e RUPI10916 e cyc [(Z°KU /BU(1))
=G IR

gives the following system of super-invariants in 9D, where on the right we show their equivalent incarnation as
having coefficients either in the cyclification of twisted KUy or of twisted KUy, via the first isomorphism in (51):
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rdcci“ (H?,(sz)kez)

R1,8116©16 e cyc[(2°KU /BU(1)) ——— cyc[(S'KU/BU(1))
et = (¥ g 1) I wa — —shs
(VT 1) e” +— hs +— hs
- = - (EFQF]_O ¢) i shs i —wa
0 i f<o i sf<1
0 ¢ sf<o — f<1
(v ) — fo — sf3
0 — sfo — fi
5 (VT a, ¥)ere — fa — sfs
(¢ Talg1p)e® i sfa i f3 (135)
4 (YT, q Lo )€ -+ e +—— fe <+ sfr
31 (VT gy azas Tolwo 1) €71 €272 +— sfe +— fs
51 (0T 0 V)™ o — s S sfo
2 (¥ Ta.as Do tp) e - - - % i sfs i fz
é (@Falmagrlo ¢)ea1 g8 < fio — sf11
2 (¥ Tq;.a; Dol 1/1)66“ N sf10 S fo
671 (VT gy ag )€ -+ 10 i fi2 i sf13
gl(aralmagrb P)et - et <+ sf12 — fi1
0 i f>14 i $f>15
0 i sf>14 i f>13

T-dualization. Using the super-Lo, machinery, we now obtain with mechanical ease the T-dual version of Prop.
3.13 (the latter was claimed also in [Sak00, §2]):

Proposition 3.15 (The type IIB super-cocycles [FSS18a, Prop. 4.10]). On the type IIB super-Minkowski
spacetime R12116816 (Def. 3 5) we have the following super-invariants

HSB = (@Ff FlO 1/))6“
F§1 = 0
Fy = (¢TlTge)e”
_ 1 ai ,a2 ,a B _
s 3'(¢F“I“2“3F9Fm enenet g opgioiseisy y, f4HE =0 (136)
Fr = 5(YTg g To)es - e dFoer1 = Hy Freon,
Fy = %(1/)1"“1 a7F9F10¢)€ 1...07
Fi = 5(¢T8 .  Lov)et e
Fizgyop, = 0, keN
where the Fal «a, are from (125), hence equivalently constituting a super-Lo, homomorphism (14) to the real
Whitehead Lo -algebra of twisted KU (27):
R1L9|16@16 (Hg (Fat1)rez) [(ElKU//BU(l)) .
—— (137)
Hy [(BQU(I)) h3

Proof. This is the T-dual statement of Prop. 3.13 in that the super-invariants in (136) are the result of an application
of the composite operation from Lem. 7?7, namely:

(i) reducing (43) the ITA super-invariants (134) along the type IIA fibration (116) to 9d,
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(i) equivalently re-regarding their coeflicients in the cyclification of twisted KU; instead of twisted KUy, via (51),
noticing that this swaps the Chern class from that classifying the type IIA extension to that classifying the

IIB extension (123),

(iii) re-oxidizing (43) the result, but now along the IIB fibration (123):

R1,9116016

xd BT(rdc A(H?,(F%)kez))

oxd, of [(S'KU/BU(1))
R19[16016 //

:(Hf,(szH)kez)

/ (HgA,(sz)kez)

[(Z"KU /BU(1))

T (xde A(HE, (sz)k€1)>
1
RL.8|16016 /

rd
0:{4 (HsA, (sz)/vez)

cyc[(S'KU /BU(1))

cyc (KU /BU(1)

(138)

By the Ext/Cyc-adjunction (Prop. 2.25) the result of this process is guaranteed to be a super- Lo, homomorphism

of the form shown in the top right of the above diagram, which implies the claimed Bianchi identities (137).

Hence, all that remains to be shown is that the super-invariants produced by this process are indeed those

shown in (136).

This is a straightforward matter of plugging the ITA super-invariants (134) into the “winding

/ non-winding swapping” formula (54), or equivalently plugging the reduced 9d super-invariants (135) into the

oxidation formula (44

Iy

3

Fs5

Fr

f1 sf1

= NS
0 —e? 0

0,

f3 sf3
—_—— —
S (¥TTgrp)er —e? (¥ 1)
a<9 N——

(v wr()( )

(VT7Tge)e?,

Is

sfs

Z % (Era1a2a2r9rlo ¢)€a16a26a3 — e

31 (VT8 s Dolnth) e e2e,
Iz
Z 51! (1/)Fa1 aoFQ 7/1)

.o 69

%(w ral a5r9 w)em N

Z % (@ Fa1a2 1/’) et et?

a< 97 N———

(¥ Tq1a, Dol Tol'0 )
~——"

rs

sf7

(T/JFal a4F10 w) "'ea4

u<9

(¥Tq,ay Doy Tg 1)
——

ry

fo sfo
Z % (@Fal...a7F9F10 1/1)6(11 te ea 6l ¢Fa1 *ae 1/’) 1as
a; <9 ;i <9 N—
( T,,‘ -ag rurm Iol'p ¥ )

2 (YTE , Tolpp)e --- e,

T I

sf11

é (@Fal...agfg 1/})6‘11 BT -

52

e? Z 7 ( al...asI‘lo) el ... a8

a; <9 N —

~(% T4y ag ToTp Ty )
. ——
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Remark 3.16 (Lorentz invariance of IIB super-fluxes). While the proof of Prop. 3.15 does not make manifest
that the resulting super-translation invariants (136) are also Spin(1, 9)-invariant, this is immediate by Prop. 3.9.

Remark 3.17 (T-Dual NS-Flux and topological T-duality [F'SS18a, Rem. 5.4]).
(i) The action of the T-duality operation from Prop. 3.15 on the NS-flux densities H. §4 /B i particularly interesting:
Note that both these fluxes come out as the sum of (1.) the basic Hz-flux in 9d (pulled back to 10d along the

corresponding fibration) with (2.) the fiber form e times the Chern class classifying the other extension:
hs shs

—_—— ) N ) B _ , 97—
f];’? + 6?4 (@/Jl—‘grlo w) } superspace T-duality HyY = Hs + e (ql)]_"g w)

Hf B 9 A
= Hs + ¢ of rde o = Hten o
;Odl“tlo < = Z N (EF I 7/}) . 10 “\‘\)(‘)‘x%
14 ext \ :ijoojlg 5 a< 96 ot 0’%%( cy&e“b
e = (¥Tv)
—cf = —(¥Ifv),

(139)
where by the closure of H3' (or that of H¥) from (128) the basic Hs-flux satisfies

dHy = —¢i'- P (140)

(ii) In particular, this says that the fiber integration of H§4 from the type ITA spacetime down to 9d is the Chern
class classifying the type IIB extension, and vice versa:

pA Hf =P and pPHP = et (141)
(iii) The analogous phenomenon in ordinary T-duality (i.e., not on super-flux densities over super-spacetime as
considered here) was originally proposed in [BEMO04, (1.8)] and gave rise to the mathematical notion of “topological
T-duality”.
(iv) While the formalism of topological T-duality has worked wonders, its actual relation to string/M-theory rests
on educated guesses (though much progress was recently made when [Wa24] related it to the Buscher rules). Here
it is interesting that we find (139) this relation being hard-coded in the DNA of supergravity.
(v) Also note that the form of the 3-flux in (139) is analogous, up to degrees, to the form of the 11D 7-flux in
its closed Page-charge form, Gr = G — %H3 G4 . This analogy is made precise by the notion of higher T-duality
discussed in §3.4.

Next we obtain a maybe more vivid perspective on this super-space T-duality by turning attention from the
dimensionally reduced L.,-cocycles to the higher spacetime extensions that these classify, which reveals the ap-
pearance of doubled superspace:

Doubled super-spacetime and the Poincaré form. The following Prop. 3.18 speaks of the homotopy fiber of
non-abelian L..-algebra cocycles. This concept — standard in (rational) homotopy theory — is explained in some
detail in [F'SS23], but the reader not to be bothered by such notions may take the following (143) as a definition.
In any case, either abstractly or by inspection, one sees that the following serves to express an equivalent point of
view on the above T-duality isomorphism.

Lemma 3.18 (Extended doubled super-space as homotopy fiber of reduced 3-flux [FSS18a, Prop. 7.5]).
The homotopy fibers of the A/B-reduced (43) H§4/B—ﬂux cocycle (139), to be denoted

187141 - red a/5 (Hﬁ‘A/B
RA,/;(l+1)|32 ___hofib , p18[16016 1 cyclB2U(1) (142)
are given by r 7
()32, di =0
_ (¢Dimo | | de*=(¥T"9)
CE(RK?E(HIHQ) ~Ry| e, / ded = cf (143)
el dep = o
by dby = H/"P

and as such are equivalently further extensions of the type A/B string-extended super-spacetime (Ex. 2.060) by a
further (“doubled”) copy of the fiber coframe €°.
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Lemma 3.19 (T-duality of string-extended doubled super-spacetimes [FSS18a, Prop. 6.2]). The equiv-
alence that is induced by the T-duality isomorphism (155) between the doubled & extended homotopy-fiber spaces
(142) sends all generators to the generators of the same name, except for ba (the avatar of the string’s “B-field”),
which is instead shifted by the “Poincaré form” (cf. Rem. 3.22 below) P := e%e%:

Py

—~ =
by +eh e * ba
18+/1+\1)\32 18+/(ﬁ|32
dos W
(144)

R1L8|16816

red 4(H3 y w(Hf,FQ.«Fl)

cycl (KU J BU(1)) +—=— cycl(S'KU / BU(1))

— .

cyclB2U(1) = cyclB2U(1).

This makes us to turn attention to the “doubled” or “correspondence space” of the IIA /B superspacetimes:

Definition 3.20 (R!-Doubled super-space [FSS18a, Def. 6.1]). Write R'$=(+1132 for the super-Lie algebra
given by extending the 9d super type II spacetime by both the Chern class classifying the ITA extension as well as
that classifying the IIB extension:

(¥)2Lo dip= 0
CE(RM+HHD132) ~ Ry | (en)8_, / det = (PT79) . (145)
e €p defy,p= (¥T%pY)

This may be understood as the fiber product (59) of the ITA- with the IIB extension, making a Cartesian square
of super-Lie algebras, as follows:
RL,8+(1+1) |32
TA B
R19|16&T6 «— (pb) T R1L9|16©16
T RL8| 16016 —

We say that

Py = e} e’y € CE(RMSHIH1I2) (146)

is the twisted Poincaré super 2-form (or just Poincaré form, for short) on the doubled super spacetime.
With this we may concisely re-state Rem. 3.17 as follows:

Proposition 3.21 (Poincaré form is coboundary for difference of T-dual NS super-fluxes [FSS18a, Prop.
6.2]). The pullbacks of the NS super-flur densities to the doubled super-spacetime (145) differ by the differential of
the twisted Poincaré 2-form (146)

dP, = n4yHf — rmpHP . (147)
Proof. Via Prop. 3.15 and Rem. 3.17 this follows straightforwardly:
maH -~ H = (St (PTaw) + ¢4 (ToTow) ) — (Set(9Tav) + ¢ (9T )
= % (VDo v) — e} (¥vTov)
= d(e}e?) = dPs. O

Remark 3.22 (Poincaré 2-form and Buscher rules in T-duality literature [FSS18a, Rem. 6.3]).

(i) That the analog of the relation (147) should hold for ordinary T-duality (i.e., disregarding super-flux densities
on super-spacetimes as considered here) was originally proposed by [BEM04, (1.12)]. As previously in Rem. 3.17,
here it is interesting to find these phenomena hard-coded in the DNA of supergravity.
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(ii) In fact, understanding the super-Lie algebraic content of Prop. 3.21 through the lens of (super-)rational
homotopy theory (essentially via Ex. 2.4), it reproduces the image under rationalization of topological T-duality
in the form proposed in [BRS06, Def. 2.8] in the sense of Def. 3.24 and Thm. 3.27 (in their purely even form).
(iii) A transparent understanding of how the (twisted) Poincaré 2-form and its Bianchi identity (147) controls the
Buscher rules of T-duality was more recently obtained in [Wa24, Lem. 3.3.1(c)].

Remark 3.23 (Classifier for the Poincaré 2-form). The L.-algebra which classifies the Bianchi identity (147)
of the Poincaré 2-form is the homotopy fiber of the universal map that forms the difference of a pair of degree=3

classes: hofib
poin, ——— [BQU(l) X [BQU(l) —_— [BQU(l) (148)

TLW3 — THWS — w3

(where 77,/ are the two projections out of the direct product). This is given by

wi! dwi =0
CE(poin,) ~ Ry | wP / dwB =0 (149)
P2 dps = wi —wf

and in that the Bianchi identity (147) on P characterizes dashed maps, making the following diagram commute:

— —_— P .
R19[166T6  R19/16eT6 __________P R > poin,
RI,B |16G16

o j

R191166T6 , grol160T6 ML) oy o (p2U(1).

T-duality as a Fourier-Mukai transform. The above doubled super-space picture (146) coupled with the obser-
vations from (141) and (147) lead to an alternative but equivalent formulation of the T-duality phenomenon within
(super-)rational homotopy theory in terms of correspondences and an induced Fourier-Mukai integral-transform
([Ho99, (1.1)][BEMO04, (1.9)][GS14, §4.1]), here on 3-twisted Chevalley—Eilenberg cochain complexes (Def. 2.13).

Definition 3.24 (T-duality Correspondence). Pairs (ga, Ha) and (gp, Hp) of centrally extended super Lo-
algebras (Def. 2.21) over g via even 2-cocycles ca,cp € CE(g), supplied with 3-cocycle twists, respectively, are said
to be in T-duality correspondence if:

(i) The respective fiber integration of the twists h4,p yields the opposite extension cocycles cp/4 (cf. Eq. (141)

of Rem. 3.17)
(pa/B)«Ha/p = cp/a € CE(g) .

(ii) On the doubly extended space ga x4 g5 (cf. Def. 3.20)
T /g\A Xg /g\B T
’gA «A/ (pb) \BQ aB
A g 5
defined dually via N N
CE(§a xg08) = CE(g)[ea,es]/(deasp=casp),

the Poincaré form (cf. (146)) N N
P = ep-ey € CE(ga X40B)

is a coboundary of the difference between the pullbacks of the two twisting cocycles (cf. Prop. 3.21)
dP = nyHs —npHp.

The observation for the decomposed structure of the twisting NS-fluxes from Rem. 3.17 yields in fact an
equivalent characterization of such a T-duality correspondence.

Lemma 3.25 (T-duality conditions on the base). Two pairs (§a, Ha) and (gp, Hg) are in T-duality corre-
spondence (Def. 3.51) if and only if the twists are of the form

Hpap = Hy+ea/p-cpja
for a common basic 3-cochain Hy € CE(g) whose differential trivializes the product of the corresponding extending

2-cocycles
dHy = —ca-cp.
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Proof. The first condition from Def. 3.51 yields immediately that

Hy/p = H;/B +ea/BcB/a

4 HP € CE(g). The second condition then expands as

for potentially different basic Hy
ea-cg—ep-ca=dP =n4Hs —m5Hp
:HgA—i—eA~cB—Hf—eB-cA

which holds if and only if N 5
Hi=H;.
Strictly speaking, this is an equation on CE(ga x4 gp) of (doubly) basic forms via 7% o p% and 7} o p%, but
these two injective morphisms actually coincide as maps CE(g) < CE(ga X4 g5), by construction, as can be seen
immediately by their action on generators. Hence the equation holds equivalently on CE(g).

Finally since the twists H 4, are by assumption closed on the respective extensions oA /B it follows in particular
that

0=dH4 Zng—FCA-CB

as an equation on g4, which also holds as an equation on g since both Hy and cj4 - c¢p are implicitly pullbacks of
basic forms via the dgca morphism p% : CE(g) < CE(ga), which is injective. The closure of hp yields the same
condition.

The reverse implication follows by the same computations. O

Corollary 3.26 (T-duality correspondence classifying space). It follows that the T-duality Lo-algebra bT =
cycb?R from Ex. 2.27 classifies the set of T-duality correspondences over any super-Lo, algebra g, in that morphisms
of super L -algebras
g— b7
cqp < W
cg < —52
Hg <— hg,

are in canonical bijection with the set of T-duality correspondences over g in terms of Lem. 3.25 (hence equivalently
in terms of Def. 3.24).

For any such T-duality correspondence, the following natural “pull-push” homomorphism of 3-twisted cochain

complexes

P

Trm = 7p.,oe  omy=7p,0(l4+es-ep)omy (151)

is an isomorphism of degree (—1mod 2, evn). In particular, it descends to an isomorphism on cohomology.
Theorem 3.27 (T-duality /Fourier-Mukai isomorphism). Let (g4, Ha) and (g, Hg) be in T-duality cor-

respondence. Then the pull-push homomorphism (151) is in fact an isomorphism of 3-twisted cochain complexes
(Def. 2.13) and acts explicitly as
Tem @ CE*PHA(Gy) —Z— CEC D5 (Gp) (152)
Q= Qpas + €4 *PALO — pA*Oé+€B * Olbas
thereby swapping the “winding” and “non-winding” modes.
In particular, it descends to a “Fourier-Mukai” isomorphism of twisted cocycles and furthermore twisted coho-
mologies
—~ ~ “1)4+Hp , ~
Tes ¢ Hep"(3a) —— HGy V7% (3).
Proof. The explicit form of the mapping follows immediately as
TB.((1+ea-eB)  (Abas + €4 pa,a)) = T, (Abas + €4 - €B - Abas + €4 - pa,a+0)
= PAQ+ER * Obas
where we absorbed the explicit mention of the injective morphism 7%, and used the fact that the fiber integration
along mp : ga Xg 8 — g is the derivation that takes the value 1 on the e4 generator, and 0 on the rest.
The fact that Try is a linear isomorphism of cochains follows by the existence of the explicit inverse
TF_l\}[ = ﬂA*oePOWg =ma,0(l+ep-eq)ony
acting by “swapping back” the winding and non-winding modes,
Ty ¢ CE*T2(gp) ——— CEC1H4)(gy)

Q= Qpas + €B PR, > +PB, A+ €R - Opas,
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precisely by the same calculation under the exchange of indices A <> B.
Lastly, to see that the linear isomorphism 7wy interwines with the twisted differentials, up to a sign (due to
the odd degree of Try and that of the differentials), we compute
(dg, — Hp) o Trm(e) = (dg, — Hg — ep - ca) (pa,a + €5 * Obas)
= (dpa,a+cp - apas — Hy - pa,a)
+ep - (—dabas + Hy - Qbas — €A - Pa,Q)
where we used the explicit swapping action of Ty and the explicit form of the twist A from Lem. 3.52.
Computing similarly,
Tem o (dg, — Ha)(o) = Trn (dapas + ca - pa,o — Hy - pas + €4 - (—dpa,a+ Hy - pa,o — B - Obas) )
= —(dpa,a+cB - Qpas — Hy - pa, )
—ep - (—dapas + Hg - bas — €4 - DA Q) ,

and hence

(dﬁB_HB)OTFM = _TFMO(dﬁA_HA)~ D
Corollary 3.28 (Pull-push via automorphism of cyclified twisted K-theory spectra). Under the identi-
fication of twisted K-theory cocycles with 3-twisted cocycles from Eq. (29), the action of the T-duality isomorphism
(152) by Fourier-Mukai transform coincides with that of the composite operation of (1.) reduction, (2.) automor-

phism of cyclified twisted K-theory spectra (3.) reoxidation from Lem. 2.30, up to a (conventional) sign

{gA ? [(E:KU//BU(D)} Lem. 2.30 {93 ? [(Z;KU//BU(U)}

Ha™ p2R He 2 p2R
CEO+HHA (gA) —Trm CE-1*tHs (QB)

Remark 3.29 (Strict isomorphism vs quasi-isomorphism). The original article [FSS18a] focuses on the
induced isomorphism on twisted L,.-cohomology. Nevertheless, we stress that the map actually defines a strict
isomorphism even at the level of twisted cochain complexes, and hence crucially at the level of cocycles (and
further on cohomology). From a physical perspective, this means that the isomorphism is realized at the level of
flux densities (prior to flux-quantization) and not only at the level of the corresponding gauge equivalency classes.

This concludes our analysis of T-duality of type II super-flux densities on super-tangent spaces. With this in
hand, we now turn in §3.3 attention to possible M-theory lifts of the situation.

3.3 Lift to the M-algebra

We show that the super Lie algebra of the F-theory super-spacetime (Def. 3.30), but for T-duality reduction on a
(1,9 32)-dimensional super-torus all the way down to the point, is further extended by the “M-algebra”, with the
“double” copy of the (full 10-dimensional) super-spacetime now constituted entirely by membrane wrapping modes,
and with the Poincaré super 2-form (146) lifted to an M-theoretic Poincaré super 3-form. In the companion article
[GSS24d] we use this to explain the M-algebra as the super-space version of the exceptional-geometric tangent
space for 11d supergravity reduced all the way to the point.

F-Theory super-spacetime. Given that the derivation began in (127) on 11D super-spacetime, going through
its reduction to 10D ITA super-spacetime (3.2), to arrive at its “doubled” version (145), it is natural to ask for the
doubling of the T-dualized fiber to take place already in 11D, hence for extending 9D super-spacetime by all three
extra dimensions:

(i) the IIA fiber,
(ii) the IIB fiber,
(iii) the M fiber.

At the level of super-Lie algebraic local model spaces, this request is immediate to satisfy:
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Definition 3.30 (F-theory super-spacetime [FSS18a, Def. 8.1, Prop. 8.3]). Write RL9+(141D132 for the super-
Lie algebra given by

dy® =0
(P*)o%, de* = (¢Fa )
CE(RM*HIHD12) o Ry | (en)9., | /| del = (@T°¢) = (Fore) (153)
e e%, ey de? = (pI0¢) = (Vo2 v)

del, = (YITY¢) = (Yosv)
(using the notation (124) on the right) which is equivalently the homotopy-fiber product (59) of the 11D super-
spacetime with the doubled super-spacetime (145):

RLO+(1+1) |32
F super-
/ spacetime \
R1,10|32

11D super-
spacetime

RL8+(1+1)]32

(154)

doubled TB
super- spacetim
R1.9116816 R1.9116916
ITA super- IIB super-
spacetime \ / spacetime
R1,8\16®16
9D super-
spacetime

By inspection, one sees that (cf. also [Sak00]):

Proposition 3.31 (Superspace S-duality on F-theory super-spacetime [FSS18a, Prop. 8.6]). The group
Pin(2) of Prop. 3.8 acts by super-Lie automorphisms on the F-theory super-spacetime (153) under which (the
pullback of ) flux densities HP and F3 (from Prop. 3.15: the F1- and the D1-string couplings) span the 2-dimensional
vector representation

R1.9+(1+1) 32 P (N%UQ R1.O+(1+41)] 32
LTy - v
cos(t) e + sin(t) e — e?
cos(t) e® — sin(t) ¥ i el
cos(t) F3 + sin(t) Hi i F;
cos(t) Hi' — sin(t) F3 i H3

Noting that SO(2) C SL(2,R) is the maximal compact subgroup of the S-duality group of IIB supergravity,
hence the respective local U-duality group, this justifies the “F-theory” terminology (as concerned with the lift of
T-duality on a single fiber in 10d to M-theory on a torus fiber, cf. [Jo97]); leaving open, however, the question if
this local model space (145) supports a global super-field theory the way that its projection to R*0132 (2) supports
11d SuGra. In this vein, we now ask for yet further extension to bring out more of the structure expected in
M-theory.

First, we turn to T-duality not just along a 1-dimensional fiber, but along all spacetime directions.

10-Toroidal T-duality on super-fluxes. By combining the discussion of super-space T-duality in §3.2 with
that of higher-dimensional torus reductions in §2.3 it is now immediate to T-dualize super-fluxes on super n-tori
for higher n. In particular, since the type IIA super-spacetime is a (1 + 9]32)-dimensional torus extension of the
super-point R°132 (Ex. 2.34) we may consider, in immediate higher dimensional analogy to (138), the composite
operation of:

(i) toroidally reducing the type ITA super-fluxes to the super-point, via Prop. 2.41,
(ii) transforming the result along the T'°-automorphism of Prop. 2.56,

(iii) toroidally re-oxidizing the result, but now with respect to the 10 resulting T-dual Chern classes ;D*Hé“
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oxd (e ) " (rdc(ﬁrnp)(HEA’ (F”)key')) [(KU//BU(l))
R1.9116016 _. <H§7(ﬁ2k)kez>
19| 166T6 / (H3, (Far)rez) [(KU//BU(l))
p 10 (155)
P 710 (rdc(%r-w(Hé‘ﬂ(sz)kez)) tor [(KU//BU(l))
ROI32 T
rdc, i
(Grey, (Hgﬂ, (ng)kez)
torto I(KU//BU(l))

Here the duality operation 70 (89) is seen to act on the NS- and DO fluxes as (89)

rde g re gy (H3's (F2e))

RO 32 tor!® (KU / BU(1)) —L—— tor'® (KU / BU(1))
+31 == (@Fa w) < &)2 —ghg (156)
0 — hs +— hs
—é1 = — (YT Ty ) < shs < —wy

This means that the re-oxidized dual structure is given by:

Definition 3.32 (The fully T-dual super-spacetime). The fully T-dual super-spacetime in (155) is R1.9/16016
given by

- W2, | /(e =0
91 ~
CE(R?116876) ~ R, o) /(de“ (P 1/))) (157)

carrying the fully dual super-flux density
_ 9
Hi = ) ety = e*(PTa)). (158)
a=0

Remark 3.33 (Nature of the fully T-dual ITA super-spacetime.).

(i) The fully T-dual super-Lie algebra R1:%!16916 (157) ig not actually isomorphic to the ordinary ITA super-
spacetime R 16916 49 real super-Lie algebras. It behaves like the IIA super-spacetime but with the signature
convention of the metric, or equivalently of its Clifford anti-commutator, swapped:

(ii) While the ITA super-spacetime is controlled by the original Clifford generators

(FG)ZZO ) [Ty + Tl = 2ngp,
its fully T-dualized version is controlled by the 10D variant of (119):
(fa = FarlO)(gzz() ) fa fb + fb fa = *2nab .

In variation of Def. 3.20, we now have:

Definition 3.34 (The fully doubled super-spacetime). The fully doubled super-spacetime is the homotopy-
fiber product (59) of the type ITA spacetime (Ex. 3.2) with its full T-dual (Def. 3.32) over the super-point (57):

R191166T6 e oot — R1L.9| 16016 (159)
Tpa T ROI32 4
given by
(V)3 dy =0
CE(DbY) = Ry | ()90 | /| de=(d17w) |- (160)
(e")a=o dé* = (T Ty )
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A simple but important consequence for us is now the following variant of Prop. 3.21:

Proposition 3.35 (Full Poincaré super 2-form). On the fully doubled super-spacetime (160) the 2-form

Py% = g,e" € CE(DbI) (161)

is a coboundary of the difference between the NS 3-fluxr Hi' (133) in IIA and its full T-dual Héz (158)
AP = (YTalTpy)e” —éo (YT 9)

_ (162)
= H§4 — ﬂ} H§4 .

The fully extended ITA super-algebra. Now we observe that the fully doubled super-spacetime (3.34) is further
extended by what is known as the fully extended ITA super-spacetime (in the sense of [vHvP82]):

Definition 3.36 (The fully extended type ITA algebra). The translational type ITA fully extended super-
symmetry algebra I12( is (e.g. [CAAIP00, (2.16)] *) given by '°

(¥)ats dy =0
(€)a=1 de* = +(¢T9)
ev)9_ déer = 4(yI°r
CE(IIA) ~ Ry (a1 / @ o) (163)
(€a1a2 _ e[alaQ})gl_O d o102 (w aiaz d))
(ea1-~~a4 — e[ 1° a4])a1_0 dea1~~~a4 — +(E1—xa1...a41—w10 ’l/))
(eal..»as _ e[ 1 a5])a1_0 detras = +($1"U«1“'a5 77[])
Remark 3.37 (Extended ITA-algebra and brane charges).
(i) The bosonic body of the fully extended type IIA algebra (163) is
(IIQ[)b . ~ ng (Rl 9) /\Q(RLQ)* D /\4(R1’9)* @/\S(Rl,Q)*
~ Rl 9 (RI,Q)* @Az(Rg) D /\S(RQ) EB/\4(R9) @/\G(RQ) (Rl,Q) (164)
1,-, x,"//. > <, < // /J, /5
®,  %®% %5, %,%, %%, %5, %%
/,/// % ///// < %"7;/}"/ ({2“'”4,‘ {{Ox@" /5,"’/, ,\’,/ :"/,

/,,/
e
R

where in the second line we Hodge-dualized all temporal components (following [Hull98, (2.12)]) by the rule
/\p(Rl’d)* ~p /\p(Rd)* o /\1+d7p(Rd) .
H,_l/ —_———
spatia dualized
I temporal
(ii) Note how the string charges in (164) play a special role as compared to the (other) brane charges: They appear
with their temporal component included and, as such, may equivalently be understood as, in fact, being the T-dual
spacetime dimensions. Thus, the fully extended ITA algebra (3.32) is a toroidal extension (Def. 2.32) of the fully
doubled super-spacetime (159) by the D-brane and NS5-brane charges:

brane charges

1A Dbl BRO07

Y o— Y (165)
e? +— e

€a < €.

This relation between extended ITA super-symmetry and T-duality correspondence super-space may not have
previously been appreciated as such. To make it fully manifest:

MIn [CAAIP00, (2.16)] also the DO-brane charge with differential (¢ Tyg ) — is included in the extended ITA-algebra (163). But
condensing DO0-brane charge of course means opening up the 11th dimension, and hence here we regard this term instead as providing
the further extension to the M-algebra, see Ex. 3.40.

15The signs in (163) are a convention that is natural in view of the further extension by the M-algebra (168), where these signs align
with the Fierz identity (228), and makes the exceptional brane rotating symmetry in Prop. 3.44 come out naturally.
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Remark 3.38 (Fully extended ITA as fiber product of doubled super-space with brane charges). To
make manifest the double role that the string charges é, play in (165) — on the one hand as a doubled copy of
spacetime and on the other as part of the general brane charges — consider the following super-Lie algebra of pure
brane charges Brn, given by

dy =0
de® = +(PITyv)
CE(Btn) ~ | deme = —(PTma2y) , (166)
deoon — 4 ( TaraiTy )
deoas — 4 ( Daras )

hence the extension of the fully dual super-spacetime (157) (which may be regarded as consisting entirely of string
charges) by the remaining D/NS-brane charges (164).

Then the fully extended ITA algebra II2( (163) is the fiber product (59) over the fully T-dual super-spacetime
(157) of this pure brane charge algebra (166) with the fully doubled super-spacetime (160):

112l
/ \» Brn

bl
R1.9]166T6 “— B R1.9|166T6 —

ITA spacetime ITA string charges ITA brane charges

(167)

The M-algebra. Similar to the fully extended ITA super-symmetry algebra, we have the full extension of the
11D supersymmetry algebra, which may be understood ([To95, (13)][T0o98, (1)]) as incorporating charges Z%1%2 of
M2-branes and Z% % of M5-branes (the terminology M-algebra follows [Se97][BDPV05][Bal7, (3.1)] °):

Definition 3.39 (Basic M-algebra). The basic M-algebra is the super-Lie algebra 90 given by '7

(V*)eLy dy =0
a\10 a _ o Tae
CE(M) ~ Ry (Yoo 10 / i —+(ff ) (168)
(ealag _ e[alag])a": de®raz — _(¢Fa1a2 1/})
(ea1~-~a5 _ e[a1~~-a5])(11?20 dedras — Jr(@rar--as, w)

Example 3.40 (Basic M-Algebra as extension of fully extended type ITA super-spacetime.). The basic
M-algebra (168) is a central extension (Def. 2.21) of the fully extended type IIA algebra (163) by (the pullback of)
the same 2-cocycle (114) that classifies the M/ITA extension:

(T)
m A bR
a—

¥ ¥ (169)

e — e
wrapped M2- 10 a ~q string charges
brane charges € € doubled spacetime

eal az ¢ eal az
610(11“'114 6a1<--a4
6a1-~~a5 €a1~~-a5 .

which means that the M-algebra is equivalently the fiber product (59) of the fully extended ITA spacetime with the
11D super-space over the 10D ITA spacetime:

m
R1.10|32 «— \» 2
\9 {{/

RL.9 |16016

16[Se97] uses the term “M-algebra” for a large further extension of (168) which includes the “hidden algebra” of [DF82][AD24];
whereas other authors like [BDPVO05] say “M-algebra” for just (168). Here we disambiguate this situation by speaking of the “basic”
M-algebra. More discussion of this point is in the companion article [GSS24d].

17The sign convention in (168) is natural in view of the Fierz identity (228), and makes the exceptional brane rotating symmetry in
Prop. 3.44 come out naturally.
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The assignment (169) reflects the isomorphism

mbos ~ RI,IO D /\2(R1,10)* @D /\S(RLIO)*

R

~ R e RI,Q D (RLQ)* e /\2(R1’9)* o) /\4(R1’9)* e /\S(RI,Q)*

p R D (RLQ ! 1669E)bos ?

where in the second line we have decomposed into components that are parallel resp. orthogonal to the 10-coordinate

axis, by the rule . N .
AP (Rl,d) ~ /\p—l(Rl,d—l) e /\p(Rl,d—l) .

Of particular importance for the picture of (190) is the boxed assignment in (169), which identifies the string

charges (alternatively: doubled spacetime directions) in the fully extended IIA algebra with the charges of M2-

branes wrapping the 10-axis. The assignments below the box in (169) are the remaining D- and NS5-brane charges.

In order to make this distinction manifest and in view of Rem. 3.38, consider:

Remark 3.41 (M-algebra as extended doubled super-space). With the 9-algebra being a spacetime-
extension (114) of the IT1%A-algebra, it must, by (167) also be an extension by brane charges of a spacetime extension
of the fully doubled superspacetime (160). To make this manifest — recalling from (154) that the analogous
spacetime extension of the partially doubled super-spacetime is the F-theory super-spacetime — we shall write §
for the super-Lie algebra given by

(V*)2L, de) =0

CE(3) = Ra | ()%, | / [dem= (@1 v) (170)
(éa)Z:O déa = (@Farl() ¢)

and thus extending the fully doubled super-spacetime in the same way that 11D super-spacetime extends 10D type
IIA:

Dbl (¥Tw0) bR
a (171)

Then the M-algebra is the fiber product (59) over the fully doubled super-spacetime of this full F-spacetime with
the fully extended IIR(-spacetime:

pB m M

p
\» \9 121 (172)
M Dbl Brn

P

§

This perspective reveals a relation of the M-algebra to T-duality, cf. Prop. 174.

Remark 3.42 (Lift of the Poincaré super 2-form to the M-algebra). On the basic M-algebra (168), consider
the element
Py = 1e%eq q0,e® € CE(M) (173)
which we shall call the Poincaré super 3-form, since it is an M-theoretic lift of the Poincaré super 2-form from
(146):
It is immediadate that the dimensional reduction the Poincaré 3-form (173) on the M-algebra (by fiber integra-
tion along e!) reproduces the full Poincaré 2-form (173) on the doubled super-space:

Pt pY Py = Py. (174)
Given that the Poincaré 2-form P, in Dbl entirely controls rational-topological T-duality in 10D, this exhibits
Ps3 on 901 as analogously reflecting the T-duality phenomenon in M-theory.

We summarize the resulting picture in §4, see (190).
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Remark 3.43 (M-algebra as fiber product of spacetime with brane charges). Another, equivalent, per-
spective is that the M-algebra is the fiber product of 11D superspace with the M-brane charges over the super-point.
To make this manifest, observe that the pure brane algebra (166), which we introduced from the point of view of

ITA branes, has the following isomorphic CE-algebra

(V)als dy =0
(e")azo de* = +(¢YITyp)
Rd (ea1a2 — e[alaz])gizo / d o102 _(EralaQ ¢) w el 0102 el aa
(6a1-~~a4 _ e[alaQ])ziZO detras — Jr(EFal---MFlO 1/))
I (ea1-~~a4 _ e[alaz])gizo detras — (@Fal'”% 7/))
/
CE(Btn) 2
T
()32, dy =0 - )
Ry | (emoe = elanaalylo_ / demioz = — (YT ) b ela gmar  gDar-as
(e¥105 = e[al---as])}l?:o dearas — +(E1’*a1-~a5 1/)) (a; <9)

ai--a
el 5

witnessing the duality between IIA-branes and M-branes. But this makes it manifest that the M-algebra is also

the fiber product (59) over the super-point of 11D super-spacetime with the brane charges:

m
1,10 32 — \»
R Brn
T o2 —

(175)

U-duality realized on the M-algebra. With the M-algebra thus emerging as an M-theoretic extension of the
fully doubled super-spacetime on which T-duality becomes manifest, we just note that it carries a canonical action
of the expected local hidden U-duality symmetry of M-theory, namely of the “maximal compact subalgebra” of eyy:

Proposition 3.44 (Manifestly GL(32;R)-equivariant incarnation of basic M-algebra [We03, §4][BW0O0,

§5]). Unifying all the even generators of the M-algebra (169) into a symmetric bispinorial form like this
= (ST + Jen T, e T )
the CE-differential acquires equivalently the compact form
dy* = 0
dewd = gy,

which makes manifest that any g € GL(32,R) acts via super-Lie algebra automorphisms of the M-algebra
g :CE(DJT) e — CE(DJI)
v g5

eaB — gg, gg/ ea’B/ '

—

Proof. First, to see that the transformation (176) is invertible, the trace-property (217) allows to recover:

ef — Te eaﬁ
af

0102 — _FZIBQQ ea,@

ai--as ai--as ,af

e = Faﬁ er.

The differential is as claimed due to the Fierz expansion formula (228):
de®® = L(Te? (BT9) - 4038, (BT4% ) + FT60 0 (BT 0) ) by (170) & (169
= Py

by (228).
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Example 3.45 (Brane rotating symmetry). On the original bosonic generators (168) — the spacetime momen-
tum e®, the M2-brane charges e® 2 and the M5-brane charges e?*""* — the GL(32;R) symmetry of (177) acts by
mixing them all among each other, e.g.
et = I‘il@e“/j by (179)

£> Figgg/gé?/e“ d by (178)

_ B '8 B pa’B B '8

= (L9895 Ty " )e” + (GTasgar g5 0, )¢ + (sr5alapgt 9aTh, o, )€™ ™ by (176),
as befits a U-duality symmetry. For this reason, the authors [BWO00] speak of a “brane rotating symmetry”.
Remark 3.46 (Relation to e;;-duality). This enhanced equivariance (178) of the M-algebra, which makes the

basic super Lie bracket a morphism of slzp-representations 32 ®gym 32 ~ 526, will have to be understood as the
effective part of the action of the “maximal compact” subalgebra of e11, according to [BKS19, p. 42].

3.4 Higher T-duality

The Loo-algebraic formulation of T-duality from §2 and §3 makes immediate a much larger generality of L.-
algebraic (hence: rational-topological) “higher T-duality” [FSS20a] in the sense of “higher structures” and “cat-
egorified symmetries”. Here, the NS-field twist Hs in ordinary T-duality (typically thought of as the curvature
3-form of a “bundle gerbe”) is allowed to have higher degrees (as befits higher bundle gerbes and yet richer higher
fiber bundles) — see [Sa09] for the appearance of degree 7 (bosonic) twists in string theory. At the rational level,
this story amounts to applying the constructions related to higher (odd) central extensions along the lines of §2.4.

This “higher T-duality” was identified in [FSS20a, Thm. 3.17], where it was encoded in terms of an isomorphism
between the (4¢ — 1)-twisted periodic Chevalley-Eilenberg cohomologies (Def. 2.14)

. o~ ~ e—2t+1)+hp -~
T+ HE™(5a) —— HE ™" ()
of certain “higher T-dual pairs” of centrally extended super L..-algebras ga, gp via 2t-cocycles w?, w? € CE(g),

for any ¢t € N, over a common base g, supplied with suitably related (4t — 1)-cocycle twists ha,p € CE(ga/p).

Here we provide an equivalent description via the automorphism of the higher cyclification of the corresponding
twisted periodic cocycle classifying L..-algebras from Ex. 2.68 and Lem. 2.70. This may be viewed as a justification
for the existence of the indicated isomorphism of twisted cohomologies. We motivate this new description by first
further elaborating the description of the higher-self duality on the m2brane from [FSS20a, §4.3].

The m2brane higher self T-duality. Recall the higher extension of R*10132 via the 4-cocycle G4 from Ex. 2.61

:= hofib G
p R1,10]32 4 bgR,

m2brane _—

and consider the “Page charge” 7-cocycle
Gr = 2G7 —c3- Gy € CE(m2brane) . (180)
Note that this is indeed closed, i.e., constitutes a homomorphism
G : m2brane — bR,
since
dGr =2dG7 — G4Gy
= G4Gy — G4Gy
=0 ,
by the fact that (G4, G7) forms a [S*-cocycle (Ex. 2.8). As such, it may be thought of as a 7-twisting cocycle
analogous to the 3-twisting ITA /TIB NS-fluxes H;‘ /B = Hj + € - cf/ 4, Apart from its higher degree, the crucial

property of the 7-cocycle é7 is that its fiber integration down to 11d super-spacetime, via p : m2brane — R:10132,
yields the original extending 4-cocycle G4 up to a sign prefactor
p:G7r = —Gy.
This suggests that the corresponding higher T-duality should be a self-duality acting on 7-twisted periodic cocycles
on m2btane, in an appropriate sense. _
More precisely, we may consider the higher central extension of R1:1°132 by the opposite 4-cocycle p,G7 = — Gy
instead, yielding an isomorphic copy of the m2brane-algebra

p— :=hofib -G
R1’10|32 4 b3R,

m2brane” —
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given by
(¢Q)i2:1 dy =0
CE(m2brane™) = Ra | ()2, | /| deo = (4100)
@

Cs deg =—

Lemma 3.47 (Reflection symmetry). The canonical isomorphism between the two versions of the 4-cocycle
extended RV10132 45 given by ‘reflecting’ the extending generators

m2brane +—— m2brane” (181)
—cC3 — C3
under which the original twisting 7-cocycle maps to the “dual” twisting cocycle
G7 = 2G7+¢5 -Gy € CE(m2brane™). (182)

Evidently, the fiber integration of the dual 7-cocycle under p_ : m2brane™ — RY10132 recovers the 4-cocycle classi-
fying the original m2brane

p_*é; = G4 .
Remark 3.48 (Higher m2brane twisting cocycles under higher T-duality).
(i) The two b°R-cocycles G7 and G5 are related in a manner analogous to that of the ITA and IIB NS-fluxes from

Rem. 3.17. That is, it follows immediately that C:’; is related to (~¥7 via the higher T-duality operation on higher
twists (Lem. 2.70), namely : the composite of (1.) reduction (100) along ws = G4 followed by (2.) automorphism
(103) of bT2 =2 cycy(b°R) and then (3.) oxidation (100) along w, = —Gy

w7 Szw7

~ ~ =~ ~ =~
G7= 2G7 — C3 G4

superspace higher T-duality

F
)%) y
r . —
ductjg,, 2G 2 Ty, .. et ... e lord
1 7 51 a

as . jon & s
) alo € jdat) _psion
eXtengj,, ox ten:
Gy = 3
2
1
2

on ed €%
—(=G4) =

G7 =2G7 +c5Gy.

1

Tua 1/})6‘116@2 reflect
142

Tayas 1/1) e ed2

(183)

R1,10/32

(ii) The cobounding condition on the base , analogous to (140), is now

d(2G7) = —Gy-(~Ga), (184)

being satisfied automatically by the [S%-cocycle condition (or equivalently, the closure of either Gr or C:'; ).

(iii) On the doubly higher extended space

m2brane Xpi1,1032 m2brane” (185)
the analogous higher Poincare form (cf. (146))

Ps = c3 -c3 (186)
is a coboundary for the difference of the (pullbacks of) the twisting cocycles
dPs = 7*Gr —n* G5,

as can be seen immediately since 7*Gy — % 67_ = —Gyc3 —c3 Gy =d(c5 - ¢3).
Proposition 3.49 SHigheI; m2brane twisted cocycles under higher T-duality). The higher T-duality opera-
tion (183) between G7 and G; extends to a bijection of the corresponding 7-twisted cocycles. In particular, it maps

any Gr-twisted cocycle of degree (m mod 6, evn) on m2brane
m2brane —— [( S"K3U /B5U(1))
67 <— hr

(Fékt+m)kez < (fok+m)rez
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to the é;—twisted cocycle of degree (m — 3 mod 6, evn) on m2brane”

m2brane” (X 3K3U /BU(1))
G- i h7
(= PeFortm — 3 - (Fo(ho1)4m)bas ) ey ¢ (for—3+m)rez

and vice-versa.

Proof. This follows as an application of Lem. 2.70. O

Corollary 3.50 (As a self-duality on m2brane). Applying a further pullback operation via the reflection isomor-
phzsm (181) on the result of Prop. 3.49, this yields an actual self-duality on m2brane as a non-trivial isomorphism of
Gr-twisted cocycles. Fxplicitly, this self-duality maps any Gr-twisted cocycle of degree (m mod 6, evn) on m2brane

m2brane ——— [(E"K3U /B°U(1))
67 < h7
(Foktm)rez <— (fok+m)rez

to the Go-twisted cocycle of degree (m — 3 mod 6, evn) on m2brane

m2brane (2™ *K3U /B°U(1) )
67 < hy
( — P« Foktm +c3- (Fﬁ(k—1)+m)bas )keZ — (fok—3+m)kez -

The analogous self-duality statement for é;—twisted cocycles on m2brane™ follows verbatim.
Show equivalent to reduction - T''°-automorphism on base + auto classifying - oxidify to mz directly.

Higher T-duality as a Fourier—Mukai transform In complete analogy to the case of standard superspace
T-duality, Rem. 3.48 and Prop. 3.49 suggest that there should be an equivalent description in terms of the doubly
extended correspondence space (cf. Def. 3.24) and a pull-push isomorphism (cf. Thm. 3.27). This is indeed the
case, and in fact directly generalizes the definitions and results of the 3-twisted case with degree 1 central extensions
not only to the 7-twisted case with degree 3 extensions, but to the cases of all odd (4t — 1)-twisted cases with odd
rational extensions of degree 2t — 1. We now spell out how this works in its full generality.

Definition 3.51 (Higher T-duality correspondence). Pairs (ga, Ha) and (gp, Hg) of higher centrally ex-
tended super L..-algebras over g via even 2t-cocycles wjy,ws € CE(g), supplied with (4t — 1)-cocycle twists,
respectively, are said to be in higher T-duality correspondence if:

(i) The respective fiber integration of the twists H4,p yields the opposite extension cocycles cp/4 (cf. Eq. (183)
of Rem. 3.48) B/A
(pa/B)Haip = wy = CE(g) .
(ii) On the doubly extended space ga x4 g5 (cf. Eq. (185))
T ﬁA Xg aB -
N
s g P
defined dually via R R A/B
CE(gA Xg QB) = CE(g)[bA,bB]/(dbA/B:LUQt ),
the higher Poincaré form (cf. Eq. (186))
P = bp-by S CE(aA XgaB)
is a coboundary of the difference between the pullbacks of the two twisting cocycles (cf. Prop. 3.21)
dP = WZHA *WEHB-
The conditions of a higher T-duality correspondence (Def. 3.51) may be equivalently — and concisely — expressed
via data over the original base super-L, algebra g [FSS20a, Prop. 3.13].

Lemma 3.52 (Higher T-duality conditions on the base). Two pairs (g4, Ha) and (g5, Hp) are in higher
T-duality correspondence (Def. 3.51) if and only if the twists are of the form

A
Hpap = Hg+bayp 'Wi/
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for a common basic (4t — 1)-cochain Hy € CE(g) whose differential trivializes the product of the corresponding
extending 2t-cocycles

dHy = — wih - wh
Proof. Follows verbatim as that of Lem. 3.25, by modifying the degrees appropriately. O

Corollary 3.53 (Higher T-duality correspondence classifying space). It follows that the T-duality Loo-
algebra bT; = cycy,_ b*'R from Ex. 2.67 classifies the set of higher T-duality correspondences over any super-Loo
algebra g, in that morphisms of super Lo,-algebras

g —— b,

UJQ < Wt

wgBt S —Wyy

Hy +— hg_1,
are in canonical bijection with the set of higher T-duality correspondences over g in terms of Lem. 3.52 (hence
equivalently in terms of Def. 3.51).

Example 3.54 (m2bvane higher T-duality correspondence via the (G4, G7)-cocycle). The cobounding
condition (184) translates to a higher T-duality correspondence via the map

R1,10\32 b7—2
G4 < Wy

*G4 <« 7(?)4

2G7 < h7 s

which evidently factors through the fixed (G4, G7)-cocycle as
R1.10/32 (G4,G7) [S4 ‘2 vTs, (187)
where the latter ‘embedding’ morphism of the rational 4-sphere into the higher T-duality algebra is given by

154 —2 4 75
ga < Wy

gs < @4
297 <« h7 .

Remark 3.55 (Canonical higher T-duality correspondences of a basic [S?'-cocycle).
(i) The factorization (187) implies immediately that a fixed [S*-cocycle on base super-L., algebra g, yields a class
of different higher T-duality correspondences via different choices of embeddings of [S* into the higher T-duality
algebra b7;. For example, it is immediate to see (Lem. 3.52) that post-composition of (G4, G) : RL10132 5 (g4
with the embedding R
1S4 —2— b75
ga S Wwq
—g4 < Wy
=297 «— hr,

yields (directly) a self-correspondence on
m2brane

but instead with the opposite twist of (180)
67 = —2G7+ 3Gy = 7577.

(ii) Evidently, this observation generalizes to higher even sphere-valued cocycles on any super-L, algebra. That
is, for any fixed [S?!-cocycle

g (Gat, Gar—1) (52t
Gy — 92t
Gar—1 i gat—1,
postcomposition with (any of) the embeddings
(S =5 bT;
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immediately yields a higher T-duality correspondence (Lem. 3.52).

For any higher T-duality correspondence, the natural pull-push homomorphism of (4t — 1)-twisted cochain
complexes

Trm == 7p,oe b

omy =mpyo(l+ba-bp)omy (188)
is an isomorphism of degree (—n; mod 2n;, evn), for
ng = 2t—1.

In particular, it descends to an isomorphism on cohomology [FSS20a, Thm. 3.17].

Theorem 3.56 (Higher T-duality /Fourier-Mukai isomorphism). Let (ga, Ha) and (g, Hgp) be in higher T-
duality correspondence. Then the pull-push morphism (188) is an isomorphism of (4t—1)-twisted cochain complexes
(Def. 2.14) and acts explicitly as
Ten @ CE*FHA(G,) —=— CEC—mI)+He (G (189)
Q= Qbas +ba -pa,a > pa,a+bp - Qpas,
thereby swapping the “winding” and “non-winding” modes.

In particular, it descends to a “Fourier-Mukai” isomorphism of higher twisted cocycles and furthermore higher
twisted cohomologies

Tew : HEE™(§a) —— Hey """ (G5).
Proof. Follows verbatim as that of Thm. 3.27, by modifying the degrees appropriately. O

Corollary 3.57 (Pull-push via automorphism of higher cyclified twisted cocycle classifying algebras).
Under the identification of (2ny;+1) = (4t —1)-twisted Chevalley-FEilenberg cocycles with maps into the corresponding
classifying super-Loo-algebras from Eq. (32), the action of the higher T-duality isomorphism (189) by Fourier-Mukai
transform coincides with that of the composite operation of (1.) reduction, (2.) automorphism of higher cyclified
twisted cocycle classifying algebras (8.) reozidation from Lem. 2.70, up to a (conventional) sign

{gA R [(EmK"fU//BZ"flU(l))} Lem. 2.0 {gB R [(Em"fK”tU//BQ”flU(l))}

% p2neR L % p2neR —
{ {

CE™THa (gA) —Trm CE™—m+Hs (QB)
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4 Conclusion & Outlook

In view of the fact that on-shell 11D supergravity is entirely determined by the structure of its avatar super-flux
densities on the typical super-tangent space [GSS24a, Thm. 3.1], which there are naturally understood as an
[S%-valued super-L,, algebra cocycle [FSS17], we have given a super-L, algebraic re-analysis of T-duality on the
analogous avatar super-flux densities of 10D type II supergravity, first for type A/B dualization along one spacetime
direction (streamlining the previous result of [FSS18a]) and then for type A/ K—duality along all spacetime directions,
via reduction/oxidation all the way to/from the super-point ROI32,

The result of this analysis is that:

(i) super-space T-duality is entirely controlled by a super Fourier-Mukai transform with integral kernel a Poincaré
super 2-form P, on fully doubled 10D superspace Dbl serving as a correspondence between type ITA super-
spacetime and its ITA dual,

(ii) extending this super-correspondence by (i) the 11th spacetime dimension and (ii) the remaining brane charges,
yields a whole network of further correspondences that bring in increasingly more M-theoretic structure into
type II T-duality,

(iii) the tip of this network is formed by the basic M-algebra 9t carrying a super-invariant 3-form Ps; whose
dimensional reduction along the 11th spacetime dimension coincides with the above Poincaré 2-form Ps:

(168)
Basic
M- algebra
pB M
e eabe (169)
Pmm aré me opM \
bas © Px
F- theory (171) % (165) tended (167)
super- type ITA algebra
spacetime \g / (163) \‘A
R1.10]32 (170) Dbl Brn (190)
11D ~__ fully b 190
super- (114) doubled charge algebra
spacetime \) super- spacetime (166
— (160) ~ = i

R1L9| 16816 (169) R1L9| 16916
type TIA \ / fully T-dual
! - type ITA

v spsalgésirme (56) (56) super-spacetime -
OXEGI;({Z) 115 \» RO122 / (strm(glg]%arges)/ /QT -
SD:I(»\ N super- _ - /c‘(‘?‘t%
Clime ~ . point A
11116116; ~ (57) B ;&e\‘d Y
s~ ~

Observing here, by the pasting law (61), that every composite diamond and hence also the whole outer diagram
exhibits a fiber product and hence a correspondence, this suggests that the M-algebra itself is to be regarded as a
correspondence space exhibiting an M-theoretic version of T-duality whereby 11D super-spacetime inter-transmutes
with all the M-brane charges:

Basw
algcb\»
(G4,G7) (YT )
%

RL.10 |32 Brn bR

11D super-spacetime M-brane charges
carrying carrying
M-brane charges spacetime extension

RO\BQ

wrw),
(YTTY),
(PITTTTY)

+
bR528

Superpoint
carrying 528
0-brane charges ( 191 )

1S4

As shown in this diagram, the full dimensional reduction (43) of the (G4, G7) super-flux densities to the super-
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point factors there through a 528-tuple of 2-cocycles, which — after swapping spacetime dimensions with brane
charges as appropriate for a T-duality — re-oxidize to the pure brane charge algebra on the other side of the

big correspondence, now dually carrying 0-brane charge in lieu of the corresponding spacetime “condensate” (cf.
[FSS15, §4.2]).

The Poincaré super 3-form as the “decomposed” hidden M-theory 3-form. This suggests, in view of the
situation in type II T-duality from Prop. 3.21,that the M-theoretic Poincaré 3-form P3 ought to be a coboundary for
the difference of the pullback to 91 of the corresponding direct product [S* x bR!!-valued cocycles — compare the
analogous direct product (52) in ordinary T-duality. But with (@F 1/)) already being cobounded by the spacetime
component of the coframe field, this gives the following curious requirements on candidate M-theoretic Poincaré
super 3-forms:

Py = JeMeq,ae™ + - € CEM)SPnI0),
dP; = Gy = (¥ Taa, V)™ ™, (192)

Phas 0Py (P3) = Pp = éac”.
Here we may observe (details in [GSS24d]) that such Ps does not exist on the basic M-algebra 90, but that it

does exist (known as the “decomposition” of the M-theory 3-form) on its “hidden” fermionic extension 9 given
[DF82][BDIPV04][AD24] by

CE(M) =~ CEOM)[(6*)3%,]/(d¢ = 2((1 + s)Tathe® + T4 % ey ,, + SEsT0 5 ¢, ) (193)

which as such exists for any s € R.
The first two conditions in (192) are known [DF82][BDIPV04][AD24] to be satisfied for s # 0 by

as

P; = Qg €qya, €1 €
+ oy e”la2 6(1,2”3 ea,;),ul
eaab b
+ a9 et il €h, 2 €hoay---ay
bi---bs ,cC
+ ag €ay--asby---bsc erine e m
; e CE(M), (194)

+ Q4 €y apanhybobscy - cn e(L](LQlL_'j(][dQ €d, ds b1bobs eC1Cs

+ ﬁl (EFIL d))ea
+ ﬂQ (EFQI(Q ¢) ea1a2
+ B3 (Y Tayas @) €700,

for real prefactors «;, 5; that are rational functions of s.

Incidentally, this means [FSS20b, Lem. 3.7] that the hidden M-algebra serves as an atlas (in the sense of stacks)
of the M2-brane-extended super-spacetime (Ex. 2.61), in that we have a homomorphism (14) of super-L..-algebras

ﬁ —» m2brane
(]

— (0 (195)
e? <+ e?
P3 <« Cc3

which is surjective in degree=0 and whose domain is, by construction, an ordinary super-Lie algebra (instead of
a higher super-Lo, algebra). Under this atlas, the rational higher T-duality on m2brane from §3.4 transfers to a
corresponding higher duality on 9t (see [FSS20a, Prop. 4.17]).

The hidden M-algebra as the local model for M-theoretic duality correspondence space. Previously,
the meaning or further preferred specification of the parameter s in (193) had remained mysterious, but now we
may observe (details again in [GSS24d]) that:

(i) there are exactly two values of s for which also the third condition in (192) is satisfied, in that ag = —3,
hence for which Pj really qualifies as an M-theoretic lift of the Poincaré 2-form exhibiting T-duality (an aspect not

previously considered), namely:
s=-1 and s=3/2.

(i) The case s = —1 is moreover special because exactly here the hidden extension (193) becomes independent

of the spacetime coframe and hence induces already a fermionic extension Btn —» Brn of the pure brane
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algebra, given via (193) by:

CE(Bwm) =~ CE(Bmn)[(¢*)%2,]/(d¢ = 20"% ey ,, + 2887 e, ). (196)
Interestingly, thereby we find a fiber product analogous to (191) but now exhibiting as correspondence space the
hidden M-algebra M on which a Poincaré 3-form, satisfying all of (192), does exist:

M
/ Hidch -
RI,IO |32 M-algebra Brn. (197)
11D super- \ / )
spacetime RO‘32 Hidden extension

of brane charges
Super-point

This plausibly exhibits the hidden M-algebra m (at s = —1) as the Kleinian local model space for a topological T-
duality- (and possibly U-duality-)covariant completion of 11D superspace supergravity. We hope to further discuss
this elsewhere.

Global duality and flux quantization. Finally, to round up all this discussion of super-flux duality on nothing
but super-tangent spaces (albeit extended ones), we highlight some profound implications for global solitonic field
structure in higher dimensional supergravity. Namely, the point is that all these the super-L., algebraic cocycle
relations discussed above may be understood as shadows (precisely: “rationalizations”) of flux quantization laws
which govern the global (solitonic) field content on curved spacetimes ([SS24¢][FSS23)):

For example, the super-L,, cocycles for the type II NS/RR flux densities, which we saw in (3.13) to have
coefficients in the real Whitehead L, algebra of the 3-twisted K-theory spectrum, entail that one admissible choice
for the global topological structure of the RR-fields is actual twisted K-theory — which is of course the statement
of a famous conjecture in string theory:

curved type ITA flux-quantized configuration higher moduli stack for

super-spacetime of type IT NS/RR fields differential twisted K-theory
super-manifold
1,9|16916 _______
X ; 5> (KU/BU(1)) .0
super-tangent space ‘ (198)
around any point rationalization
16 (6)
R1:9116616 [(KU/BU(1))

type ITA
super-algebra

‘Whitehead L., algebra

avatar super-fl lensities
avatar super-flux densities of twisted K-theory

Similarly, the fact that the avatar super-flux densities of 11D SuGra have coefficients in the Whitehead L .-
algebra of the 4-sphere means that the actual 4-sphere serves as the classifying space for one admissible choice for
the global topological structure of the C-field (aka a “model for the C-field”):

curved 11D

. N flux-quantized configuration higher moduli stack for
super-spacetime of the C-field differential 4-Cohomotopy
super-manifold

XL0182 b (SY) 4

super-tangent space ‘
around any point rationalization
1,10] 32 ®) 4
R1:10] [(54)

11D
super-algebra

‘Whitehead L., algebra

ta -flux densiti
avatar super-flux densities of 4-Cohomotopy

With this understood, our observations characterize the admissible flux quantization laws for the Poincaré
3-form on M-extended superspacetime.

To see how this works, first consider the analogous question for the Poincaré 2-form P, on doubled superspace
super-manifolds, whose classifying L..-algebra is poin, (148). Hence admissible flux quantization laws for P, have
classifying spaces Poiny whose Whitehead Lo-algebra is [Poing ~ poin,. With any such choice, the actual twisted
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super Poincaré line bundles on doubled super-spacetime super-manifolds are dashed maps of this form:

curved doubled
super-spacetime
super-manifold

Dbl -----mmmm ey > (POiIlg)

super-tangent space ‘
around any point

| -
Dbl S [(Poin,)

11D
super-algebra

flux-quantized configuration higher moduli stack for
of Poincaré 2-flux twisted Poincaré line bundles

diff

rationalization

L.-classifier for

avatar Poincaré super 2-form C >
Poincaré 2-forms

An evident choice (among others) for the Poincaré bundle flux quantization, which is also compatible with the
traditional choice in (198), is the actual homotopy fiber of spaces analogous to (148):

Poiny, —2° , B2U(1) x B2U(1) —=—"2, B2U(1)

With this choice, a dashed map to Poiny as above modulates twisted complex line bundles whose twist is the
difference of the type ITA /IIB B-field bundle gerbes pulled back to the doubled super-spacetime, hence isomorphisms
between this pair of B-field bundle gerbes. This is the situation familiar from topological T-duality (e.g [BRS06,
(2.4)][Wa24, Def. 4.1.2]).

Finally then the L. -classifier for a Poincaré 3-form as in (192) analogous to the 2-form analogue (148) is the
homotopy fiber of the canonical map from 1S4 to b3R,
(23)

hofib (54 bR (199)

poing

in that the Bianchi identity (192) characterizes dashed maps making the following diagram commute — in analogy

with (150):
l l (200)
rLi0(82 (G467 o oa
and a flux quantization law for the Poincaré 3-form is specified by classifying spaces Poins with [Poing ~ poins.
Given such as choice, a flux-quantized Poincaré 3-bundle is then modulated by a dashed map of the following kind:
Curved M-theoretic

super-spacetime
super-manifold

) » (Poing)
! |

super-tangent space

flux-quantized configuration higher moduli stack for
of Poincaré 3-flux M-theoretic Poincaré bundles

diff

around any point rationalization
am (200) .
m [(Poing)
Me-algebra avatar Poincaré super 3-form Loo-classifier for

Poincaré 3-forms

Now, one admissible such flux quantization for the Poincaré 3-form is the homotopy fiber of the unit map
S* — B3U(1). However, in view of (24) an alternative suggestive choice is the 7-sphere, Poing = S, sitting in
the homotopy fiber sequence

ST —— §* —— BSU(2)

which witnesses as S7 as a SU(2)-principal bundle over the 4-sphere.

This choice gives the flux quantization law previously discussed in [GSS24b] (there for the Hs-flux density on
the worldvolume of M5-branes), which has the curious property that it provably entails [SS24d] the kind of anyonic
quantum states that motivated our discussion back in §1.
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A Background

For ease of reference we briefly record some conventions, definitions and facts used in the main text.

Tensor conventions

Our tensor conventions are standard, but since superspace computations crucially depend on the corresponding
prefactors, here to briefly make them explicit:
e The Finstein summation convention applies throughout: Given a product of terms indexed by some i € I, with

the index of one factor in superscript and the other in subscript, then a sum over I is implied: x;y* := >, ; y".
e Our Minkowski metric is “mostly plus”

d d . d
(nab)a,bzo = (T]ab)a,b:O = (dlag(_l’ +17 +1’ T +1))a,b:0 . (201)
o Shifting position of frame indices always refers to contraction with the Minkowski metric (201):
Ve = V™, Vi = Ve,

e Skew-symmetrization of indices is denoted by square brackets ((—1)°! is sign of the permutation o):

Viayway) = 2 > (DI ang, -

o€Sym(n)
e We normalize the Levi-Civita symbol to
€012.. := +1 hence "7 = —1. (202)
e We normalize the Kronecker symbol to
Oplr = ot gyl = o gy = g (203)
so that
Val..up(Sle_'_'_'li” = Vipyp,) and €N e iy, = —pl q!6‘blll.'_'_'liq. (204)

Super-algebra

In homological super-algebra, where a homological degree n € Z (such as of flux densities) interacts with a super-
degree o € Zsy there are — beware — two different sign rules in use (cf. [DM99, p. 62]), whose relation is a little
subtle. The traditional sign rule in supergravity (e.g. [CDF91, (11.2.106-9)]) that we follow here comes from Z x Zs-
bi-grading. (The alternative sign rule which collapses this bi-degree to a single “parity” degree in Zs is popular
with authors who say the word “Q-manifold”).

Sign rule. For homological super-algebra we consider bigrading in the direct product ring Z x Zs — where the
first factor Z is the homological degree and the second Zs ~ {evn,odd} the super-degree — with sign rule
deg, = (n1,01), degy = (n2,02) € Z X Z = sgn(deg;, degy) := (—1)mmetovez, (205)
For (v;);es a set of generators with bi-degrees (deg;)ic; we write:

(i) R<(vi)i€ 1> for the graded super-vector space spanned by these elements,

(i) R[(vi)ie I} for the graded-commutative polymonial algebra generated by these elements,
hence the tensor algebra on |I| generators modulo the relation

vy -vp = (—1)En(desrdesa) o) gy (206)
hence the (graded, super) symmetric algebra on the above super-vector space:
R[(Ui)ie]:l = Sym(R<(U1)1€[>)

(iii) Ra[(v;)icr] for the (free) differential graded-commutative algebra (dgca) generated by these elements and
their differentials
(dvi)ier

treated as primitive elements with deg(de;) = deg(e;) + (1,evn) and modulo the corresponding relation
(206), with differential defined by

e; — de; , de; — 0

and extended as a (graded) ‘derivation, hence the dgca

Rd [(Ui)iel] = (Sym(R<(vi)i61, (dvi)i61>), d) (207)
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Spinors in 11d

We briefly record the following standard facts about the Majorana spinor representation 32 of Spin(1, 10) (proofs
and references may be found in [MiSc06, §2.5][GSS24a, §2.2.1]).

(We may and do take this to be the only spinor representation that we construct from “from scratch”; all other
spin representations we extract via simple algebra from this one. For instance the 16 and 16 of Spin(1,9) are
conveniently identified with the images P(32) and P(32) of 32 under the projector P := 1(14T'10) and its adjoint,
respectively cf. (110) below.)

There exists an irreducible R-linear representation 32 of Pin™ (1, 10) with Clifford generators to be denoted

r, : 32 — 32 (208)
and equipped with a Spin(1, 10)-equivariant skew-symmetric and non-degenerate bilinear form
((-)(=)) : 3232 —R (209)

satisfying all of the following properties.
In stating these we use the following notation:

e We denote, as usual, the skew-symmetrized product of k Clifford generators by
Lopoay, = % Z sgn (o) Laviry Taney Tag (210)
o€Sym(k)
e The spinor pairing (209) serves as the spinor metric whose components — being the odd partner of the Minkowski

metric (201) — we denote by (77&5):;2ﬁ:12

P nap = (Y 0). (211)
These are skew symmetric in their indices
Nop = ~Npa (212)
which together with the inverse matrix (7%?) is used to lower and raise spinor indices by contraction “from the
right” (the position of the terms is irrelevant, since the components 7,4 are commuting numbers, but the order
of the indices matters due to the skew-symmetry):

Vo = wa/na’aa P = %/776“/‘17 Vad® = =g . (213)

Now, conventions may be chosen such that all of the following holds true:
e The Clifford generators (208) square to the mostly plus Minkowski metric (201)

Loy + Ty = +214pids2. (214)
e The Clifford product is given on the basis elements (210) as
min(j,k) ] k :
e, i, = Z :I:l!<l> (l) (5[b11mbllFaj-..azﬂ]bl“mbk] ) (215)
1=0
e The Clifford volume form equals the Levi-Civita symbol (202):
Far“an = Gal...auid,gg. (216)
e The trace of all positive index Clifford basis elements vanishes:
32 =0
Te(Tay.a,) = p . (217)
0 | p>0.
e The Hodge duality relation on Clifford elements is:
ar e L eED@=2/2
roar = S et e Iy (218)
For instance:
a1-a11 — ,ai-a a1-ag 1 _aj---agbibs
I‘ 1 11 — @1 111d32’ I“ 1 6 — +§€ 1 6 F[)1~~~b57 (219)
T@1--a10 — ¢a1--aiob Iy, Toeias — ,é €a1--as bi--bg |
e The Clifford generators are skew self-adjoint with respect to the pairing (209)
T, = -, inthat \ T, = — (¢ (), 220
nthat ¥ (T9)0) = —(5(0w) (220)
so that generally
Topa, = (=1)PrP=D/2p (221)
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e The R-vector space of R-linear endomorphisms of 32 has a linear basis given by the < 5-index Clifford elements
Endg(32) = (1, Tay, Tayass Darasass Dageans Fal...a5>ai:0,17,., , (222)

e The R-vector space of symmetric bilinear forms on 32 has a linear basis given by the expectation values with
respect to (209) of the 1-, 2-; and 5-index Clifford basis elements:

Homs (32 @ 32)qm, B) = ((OIa(=): (Maras(2) (Mazas(5)) (223)

a; :0,1,--- 5
which means in components that these Clifford generators are symmetric in their lowered indices (213):
G5 = Dho, Doys = DG, T = I, (224)

while a basis for the skew-symmetric bilinear forms is given by

Homz ((32© 32 B) = (D)) s (arasas ()5 (Olayreas(2)) (225)

a;=0,1,---,

)

which means in components that these Clifford generators are skew-symmetric in their lowered indices (213):
Falaza?: — 71—‘%1042@3

R I (226)
e Any linear endomorphism ¢ € Endg(32) is uniquely a linear combination of Clifford elements as:

- 322 EO T (0 Ty vy )T (227)

e which implies in particular the Fierz expansion
(310) () = (7% 4) (31T 2) — (BT ) (B Tass 62) + (BT ) (31 Ty, ) (229)

Proposition A.1 (The general Fierz identities [DF82, (3.1-3) & Table 2][CDF91, (I11.8.69) & Table I1.8.XT]).
(i) The Spin(1, 10)-irrep decomposition of the first few symmetric tensor powers of 32 is:

(32® 32) = 11 @ 55 @ 462

sym
(32232©32) = 32 @ 320 & 1408 & 4424 (229)
(32032©32032) = 10165 @ 330 ® 462 © 65 © 429 ® 1144 © 17160 & 32604.

(ii) In more detail, the irreps appearing on the right are tensor-spinors spanned by basis elements

(B ay = Eforan)arc(0 10} ac(rzzy € Repr(Spin(1,10) -
with T'E4 45,0, = 0
(jointly to be denoted =) for the case of the irrep N) such that:
V(YT y) = 17,262 =320
V(0Tww?) = flweZ® =500 20 +25%57, (231)
W(PTaras ) = ~2Ta1aeEC? + T0000, B0 4 2T 000 S+ 2220

Background formulas for 11d Supergravity. Our notation and conventions for super-geometry and for on-shell
11d supergravity on super-space follow [GSS24a, §2.2 & §3], to which we refer for further details and exhaustive
referencing. We denote the local data of a super-Cartan connection on (a surjective submersion X of) (super-
)spacetime X, representing a super-gravitational field configuration, as'®

Graviton (Ea)a 0 c Q(liR (5{" Rl,D—l)
Gravitino (lI/O‘) a1 c Q<1iR ()?, Nodd) (232)
consrfc}:?t_ion (Qab Qba) b 0 € chiR (55, 50(17 D — 1))

80ur use of different letters for the even and odd components of a super co-frame follows e.g. [CDF91]. Other authors write “E°”
for what we denote “¥%”, e.g. [BaSo23]. While it is of course part of the magic of supergravity that E% and E*/¥® are unified into
a single super-coframe field E, we find that for reading and interpreting formulas it is helpful to use different symbols for its even and
odd components.
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and the corresponding Cartan structural equations (cf. [GSS24a, Def. 2.78]) for the supergravity field strengths as

e (T° = dE° - Q% B —(TT0w)) )
asi e (P = AW = 3OUTL) (233)
Curvature (R = dQ® —Qo,00)7 1
Finally, we denote the corresponding components in the given local super-coframe (E, ¥) by [GSS24a, (127-8)]:
T = 0
p = ipaw E*E" + H,V E” (234)
Rue: = IRmez, . popex 4 (JU,0)EY + (UK T),

where all components not explicitly appearing vanish identically by the superspace torsion constraints [GSS24a,
(121), (137)]. In addition, in the main text we consider the situation that also pg, = 0 whence also J*1%2, =0 .
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