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Abstract

The Chern character on K-theory has a natural extension to arbitrary generalized cohomology theories
known as the Chern-Dold character. Here we further extend this to a character map on (twisted, differential)
non-abelian cohomology theories, where its target is a non-abelian de Rham cohomology of twisted L∞-algebra
valued differential forms. The construction amounts to leveraging the fundamental theorem of dg-algebraic
rational homotopy theory to a twisted non-abelian generalization of the de Rham theorem. We show that the
non-abelian character reproduces, besides the Chern-Dold character, also the Chern-Weil homomorphism as
well as its secondary Cheeger-Simons homomorphism on (differential) non-abelian cohomology in degree 1,
represented by principal bundles (with connection); and thus generalizes all these to higher (twisted, differ-
ential) non-abelian cohomology, represented by higher bundles/higher gerbes (with higher connections). As a
fundamental example, we discuss the twisted non-abelian character map on twistorial Cohomotopy theory over
8-manifolds, which can be viewed as a twisted non-abelian enhancement of topological modular forms (tmf) in
degree 4. This turns out to exhibit a list of subtle topological relations that in high energy physics are thought
to govern the charge quantization of fluxes in M-theory.
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1 Introduction

Generalized cohomology theories [Wh62][Ad75] – such as K-theory, elliptic cohomology, stable Cobordism and
stable Cohomotopy – are rich. This makes them fascinating but also intricate to deal with. In algebraic topology it
has become commonplace to apply filtrations by iterative localizations [Bou79] (review in [EKMM97, §V][Ba14])
that allow generalized cohomology to be approximated in consecutive stages; a famous example of current interest
is the chromatic filtration on complex oriented cohomology theories ([MR87] review in [Ra86][Lu10]).

The Chern-Dold character. The primary approximation stage of generalized cohomology theories is their ratio-
nalization (e.g. [Ba14, Ex. 1.7 (4)]) to ordinary cohomology (e.g. singular cohomology) with rational coefficients
or real coefficients (see Remark 3.49). This goes back to [Do65]; and since on topological K-theory (Example
4.10) it reduces to the Chern character map [Hil71, Thm. 5.8], has been called the Chern-Dold character [Bu70]:

Chern-Dold
character

chn
E :

generalized
cohomology

En(X)

dR◦chE

differential-geometric
Chern-Dold character

//

rationalization // En
R(X)

Dold’s equivalence

'
//⊕

k

ordinary
cohomology

Hn+k
(
X ;

rationalized
homotopy groups

πk(E)⊗ZR
)

' de Rham theorem
��

Hom
(

E•(∗)⊗Z R , Hn+•
dR (X)

de Rham cohomology

)
(1)

That the first map in (1) is indeed the rationalization approximation on coefficient spectra is left somewhat implicit
in [Bu70] (rationalization was fully formulated only in [BK72]); a fully explicit statement is in [LSW16, §2.1].
The equivalence on the right of (1) serves to make explicit how the result of that rationalization operation indeed
lands in ordinary cohomology, and this was Dold’s original observation [Do65, Cor. 4].

At the heart of differential cohomology. While rationalization is the coarsest of the localization approximations,
it stands out in that it connects, via the de Rham theorem, to differential geometric data – when the base space X has
the structure of a smooth manifold, and the coefficients are taken to be R instead of Q. Indeed, this “differential-
geometric Chern-Dold character” shown on the bottom of (1), underlies (often without attribution to Dold or
Buchstaber) the pullback-construction of differential generalized cohomology theories [HS05, §4.8] (see [BN14,
p. 17][GS17b, Def. 7][GS18b, Def. 17][GS19a, Def. 1], and see Def. 4.33, Example 4.34 below).

At the heart of non-perturbative field theory. It is in this differential-geometric form that the Chern-Dold char-
acter plays a pivotal role in high energy physics. Here closed differential forms encodes flux densities Fp ∈Ω

p
dR(X)

of generalized electromagnetic fields on spacetime manifolds X ; and the condition that these lift through (i.e., are
in the image of) the Chern-Dold character (1) for E-cohomology theory encodes a charge quantization condition
in E theory [Fr00][Sa10][GS19c], generalizing Dirac’s charge quantization of the ordinary electromagnetic field
in ordinary cohomology [Di31] (see [Fra97, 16.4e]):

En(X)
dR◦chn

E

differential-geometric
Chern-Dold character // Hom

(
E•(∗)⊗Z R , Hn+•

dR (X)
)

[c]
class in

E-cohomology

� //
{[

Fpi

]}
i=1,··· ,dim

(
E•(∗)⊗ZR

)
charge-quantized

flux densities

(2)

This idea of charge quantization in a generalized cohomology theory turned out to be fruitful for capturing much
of the expected nature of the RR-field in type II/I string theory, as being charge-quantized in topological K-theory:
E = KU,KO [FH00][Fr00][Ev06][GS19c][GS18b].

However, various further topological conditions [FSS19b, Table 1][FSS19c, p. 2][SS20a, Table 3][FSS20, p.
2] in non-perturbative type IIA string theory (“M-theory”) are not captured by charge-quantization (2) in K-theory,
or in any generalized cohomology theory, since they involve quadratic functions (6) in the fluxes. This motivates:

Non-abelian cohomology. Despite their established name, generalized cohomology theories in the traditional
sense of [Wh62][Ad75] are not general enough for many purposes. Already the time-honored non-abelian coho-
mology that classifies principal bundles (Example 2.3 below), being the domain of the Chern-Weil homomorphism
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[Ch50] (recalled as Def. 4.21, Prop. 4.23 below), falls outside the scope of “generalized” cohomology, as does
the higher non-abelian cohomology classifying gerbes [Gi71] (Example 2.6 below). But these are just the first
two stages within a truly general concept of higher non-abelian cohomology (Def. 2.1 below), that classifies
higher bundles/higher gerbes (Example 2.7 below) and which fully subsumes Whitehead’s traditional generalized
cohomology as its abelian sector (Example 2.13 below).

In higher non-abelian cohomology the very conceptualization of cohomology finds a beautiful culmination, as
it is reduced to the pristine concept of homotopy types of mapping spaces (11), or rather, if geometric (differential,
equivariant,...) structures are incorporated, of higher mapping stacks (Remark 2.27 below).

In particular, the concept of twisted non-abelian co-
homology is most natural from this perspective (Def.
2.29 below) and naturally subsumes the traditional
concept of twisted generalized cohomology theories
(Prop. 2.37 below).

twisted
non-abelian
cohomology

Hτ(X ; A) =


X

cocycle
c //

twist τ ""

coefficient
∞-stack

A�G

ρ

local
coefficients

{{
BG

'ow

/
homotopy

relative BG

State of the literature. It is fair to say that this transparent fundamental nature of higher non-abelian cohomology
is not easily recognized in much of the traditional literature on the topic, which is rife with unwieldy variants of
cocycle conditions presented in combinatorial n-category-theoretic language. As a consequence, the development
of non-abelian cohomology theory has seen little and slow progress, certainly as compared to the flourishing of
generalized cohomology theory. In particular, the concepts of higher and of twisted non-abelian cohomology had
remained mysterious (see [Si97, p. 1]). It is the more recently established homotopy-theoretic formulation of ∞-
category theory (e.g. via model category theory, see appendix A) in its guise as ∞-topos theory (∞-stacks, recalled
around Def. A.44 below) that provides the backdrop on which twisted higher non-abelian cohomology finds its
true and elegant nature [Si97][Si99][To02][SSS12][NSS12a][NSS12b][Sc13][FSS19b][SS20b]; see §2.

The non-abelian character map. From this homotopy-theoretic perspective, we observe in §4, §5 that the gen-
eralization of the Chern-Dold character (1) to twisted non-abelian cohomology naturally exists (Def. 4.2), and
that the non-abelian analogue of Dold’s equivalence in (1) may neatly be understood as being, up to mild re-
conceptualization, the fundamental theorem of dg-algebraic rational homotopy theory (recalled as Prop. 3.58
below): We highlight that this classical theorem is fruitfully recast as constituting a non-abelian de Rham theorem
(Theorem 3.85 below) and, more generally, a twisted non-abelian de Rham theorem (Theorem 3.102 below). With
this in hand, the notion of the (twisted) non-abelian character map appears naturally (Def. 4.2 and Def. 5.4 below):

twisted
non-abelian

character map
(Def. 5.4)

chρ :

twisted
non-abelian cohomology

(Def. 2.29)

Hτ(X ; A)
(ηR

ρ )∗

rationalization
(Def. 3.53, Prop. 3.58)

//

twisted non-abelian
real cohomology

(Def. 3.74)

HLRτ
(
X ; LRA

) '
twisted non-abelian
de Rham theorem

(Thm. 3.102)

//

twisted non-abelian
de Rham cohomology

(Def. 3.96)

HτdR
dR (X ; lA) (3)

Twisted differential non-abelian cohomology. Moreover, with the (twisted) non-abelian character in hand, the
notion of (twisted) differential non-abelian cohomology appears naturally (Def. 4.33, Def. 5.11) together with the
expected natural diagrams of twisted differential non-abelian cohomology operations:

differential
non-abelian cohomology

(Def. 4.33)

Ĥ
(
X ; A

) curvature
(231) //

differential
non-abelian character

(232)

''

characteristic
class
(230)

��

flat L∞-algebra valued
differential forms

(Def. 3.75)

ΩdR
(
X ; lA

)

��
H
(
X ; A

)
non-abelian cohomology

(Def. 2.1)

non-abelian character
(Def. 4.2)

chA // HdR
(
X ; lA

)
non-abelian

de Rham cohomology
(Def. 3.82)

twisted differential
non-abelian cohomology

(Def. 5.11)

Ĥτdiff
(
X ; A

) twisted
curvature

(274) //

twisted differential
non-abelian character

(275)

''

twisted
characteristic

class
(273)

��

twisted flat
L∞-algebra valued
differential forms

(Def. 3.90)

Ω
τdR
dR

(
X ; lA

)

��
Hτ
(
X ; A

)
twisted

non-abelian cohomology
(Def. 2.29)

twisted
non-abelian character

(Def. 5.4)

chτ
A // HτdR

dR

(
X ; lA

)
twisted non-abelian

de Rham cohomology
(Def. 3.96)

(4)
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Unifying Chern-Dold, Chern-Weil and Cheeger-Simons. In order to show that this generalization of (twisted)
character maps and (twisted) differential cohomology to higher non-abelian cohomology is sound, we proceed to
prove that the non-abelian character map (Def. 4.2) specializes to

the Chern-Dold character
on generalized cohomology

(Theorem 4.8),

the Chern-Weil homomorphism
on degree-1 non-abelian cohomology

(Theorem 4.26)

the Cheeger-Simons homomorphism
on degree-1 differential non-abelian cohomology

(Theorem 4.46)

All these classical invariants are thus seen as different low-degree aspects of the higher non-abelian character map.

Examples of twisted higher character maps. To illustrate the mechanism, we make explicit a few examples of
the twisted non-abelian character map on higher K-theories of relevance in high energy physics:

the Chern character on complex differential K-theory (Example 4.10, 4.36),
the Pontrjagin character on real K-theory (Example 4.11),
the Chern character on twisted differential K-theory (Example 5.5, 5.20),
the LSW-character on twisted iterated K-theory (Example 5.8),
the character on integral Morava K-theory (Example 4.15),
the character on topological modular forms, tmf (Example 4.12).

Once incarnated this way within the more general context of non-abelian cohomology theory, we may ask for
non-abelian enhancements (Example 2.24) of these abelian characters:

Non-abelian enhancement of the tmf-character – the cohomotopical character. Our culminating example, in
§5.3, is the character map on twistorial Cohomotopy theory [FSS19b][FSS20], over 8-manifolds X8 equipped with
tangential Sp(2)-structure τ (58). This may be understood (Remark 4.14) as an enhancement of the tmf-character
(Example 4.12) from traditional generalized cohomology to twisted differential non-abelian cohomology:

tmf-cohomology
in degree 4

(Example 4.12)

tmf4(X8) '
tmf approximates
sphere spectrum
(Example 4.13)

stable Cohomotopy
in degree 4

(Example 2.16)

S4(X8) ∼∼∼∼�
non-abelian

enhancement
(Example 2.25)

unstable/non-abelian
4-Cohomotopy
(Example 2.10)

π
4(X8) ∼∼∼∼�

twisting by
J-homomorphism

(Def. 2.29)

twisted non-abelian
4-Cohomotopy
(Example 2.39)

π
τ4(

X8) ∼∼∼∼∼∼∼∼�
lift through

twisted cohomology operation
induced by twistor fibration

(Example 2.42)

twistorial
Cohomotopy

(Example 2.42)

T τ4(
X8) ∼∼∼∼�

differential
enhancement

(Def. 5.11)

differential
twistorial

Cohomotopy
(Example 5.23)

T̂ τ4(
X8)

The non-abelian character map on twistorial Cohomotopy has the striking property (Prop. 5.22, the proof
of which is the content of the companion article [FSS20, Prop. 3.9]) that the corresponding non-abelian version
of Dirac’s charge quantization (2) implies Hořava-Witten’s Green-Schwarz mechanism in heterotic M-theory for
heterotic line bundles F2 (see [FSS20, §1]; here ω denotes any compatible Sp(2)-connection on T X8):

differential
twistorial Cohomotopy

T̂ τdiff(X)

curvature
(non-abelian character form representative) //

flat twistorial
differential forms

Ω
τdR
dR

(
X ; lCP3

)
flat

Ĉ3 7−!


H3,

G4,F2,
2G7

∣∣∣∣∣∣∣∣∣∣∣∣∣

d H3 = G4− 1
4 p1(ω)−F2∧F2,

Hořava-Witten Green-Schwarz mechanism[
G4− 1

4 p1(ω)
]
=
[
F2∧F2

]
∈ H4(X ; Z)

d G4 = 0 , d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
−24 I8(ω)

C-field tadpole cancellation & M5 Hopf WZ term level quantization



(5)

In fact, it also implies C-field tadpole cancellation [FSS19b, §3.8][SS19a], residual M5-brane anomaly cancellation
[FSS19c][SS20a] and further topological conditions expected in M-theory [FSS19b, Table 1]. This suggests the
Hypothesis H [Sa13][FSS19b][FSS19c][SS19a][SS19b][SS20a][FSS20] that the elusive cohomology theory which
controls M-theory in analogy to how K-theory controls string theory is: twisted non-abelian Cohomotopy theory.
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Quadratic functions from Whitehead brackets in non-abelian coefficient spaces. The crucial appearance of
quadratic functions in the Cohomotopical character map (5)

(a) G4 7! (G4− 1
4 p1(ω))∧ (G4 +

1
4 p1(ω))

+24I8(ω)

(integral Hopf Wess-Zumino term [FSS19c])

(b) F2 7! F2∧F2 (2nd Chern class of S
(
U(1)2

)
⊂ E8 bundle [FSS20, (7)]),

(6)

is brought about by the non-abelian nature of (twisted) Cohomotopy theory: These non-linearities originate in
non-trivial Whitehead brackets (Remark 3.64) on the non-abelian coefficient spaces S4 (Example 3.66) and on
CP3 (Example 3.94). Generally, the non-abelian character map (3) involves also higher monomial terms of any
order (cubic, quartic, ...), originating in higher order Whitehead brackets on the non-abelian coefficient space
(Remark 3.64).

Note that the desire to conceptually grasp character-like but quadratic functions appearing in M-theory had
been the original motivation for developing differential generalized cohomology, in [HS05]. Here, in differential
non-abelian cohomology, they appear intrinsically.

Non-abelian Hurewicz/Boardman homomorphism. These quadratic functions in the non-abelian character map
(3) disappear (by Example 3.67) under the forgetful cohomology operations from non-abelian cohomology to
traditional (abelian) generalized cohomology theory (Example 2.24). Specifically, there is a secondary non-abelian
cohomology operation (Def. 4.42) from non-abelian differential 4-Cohomotopy (Example 4.38) to differential K-
theory (Example 4.36), the secondary non-abelian Hurewicz/Boardman homomorphism (Example 4.43)

differential
Cohomotopy

τ̂4
(
X
)

(
FS4

)
∗

��

secondary non-abelian
Boardman homomorphism

β 4
diff //

curvatures/flux densities

differential
K-theory

K̂U
0(

X
)

(
FKU0

)
∗

��{
2G7,

G4

∣∣∣∣∣ d 2G7 =−G4∧G4

d G4 = 0

}
G4 7! F4
G7 7! 0

//
{(

F2k
)
| d F2k = 0

}
,

(7)

which on curvature forms/flux densities forgets the quadratic function (6) in the C-field’s G4-flux (shown in (7) for
trivial J-twist) and identifies what remains with the RR-field F4-flux density. This is the identification of M/IIA
fluxes envisioned in [DMW03]. The other RR-flux components also appear in the cohomotopical character after
cohomological double dimensional reduction: this is discussed in detail in [BMSS19].

Secondary non-abelian charge quantization on K-theory. Accordingly, one may regard the non-abelian Board-
man homomorphism (7) as a non-abelian but K-theory valued character, lifting the target of the plain non-abelian
character (5) from rational cohomology to K-theory. As such, it imposes secondary charge quantization conditions
on K-theory, analogous to (2) but invisible even in generalized cohomology, instead now coming from non-abelian
cohomology theory (specifically from non-abelian Cohomotopy, compare [BSS19, Fig. 1]):

differential
Cohomotopy

τ̂4
(
X
) β 4

diff

differential non-abelian
Boardman homomorphism

(Example 4.43)

//

differential
K-theory

K̂U
0(

X
) chdiff

differential
Chern character
(Example (5.20))

//

differential
rational cohomology

ĤperQ
0(

X
)

oo charge-quantization
in M-theory

oo charge-quantization
in string theory

(8)

Equivariant enhancement. This is particularly interesting after lifting further to equivariant non-abelian co-
homology theory, where charge-quantizazing/lifting of RR-fields in equivariant K-theory through the Boardman
homomorphism on the left of (8) encodes pertinent “tadpole cancellation” conditions [SS19a][BSS19].

The character theory presented here lifts to the required equivariant differential non-abelian cohomology on
orbi-orientifolds by combining it with the techniques developed in [HSS18][SS20b]. We discuss the resulting
character map in equivariant (twisted differential) non-abelian cohomology in a followup article.
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2 Non-abelian cohomology

We make explicit the concept of general non-abelian cohomology (Def. 2.1 below) and of twisted non-abelian
cohomology (Def. 2.29 below), following [Si97][Si99][To02][SSS12][NSS12a][NSS12b][FSS19b][SS20b]; and
we survey how this concept subsumes essentially every notion of cohomology known.

In the following, we make free use of the basic language of category theory and homotopy theory (for joint
introduction see [Rie14][Ri20]). For C a category and X ,A ∈ C a pair of its objects, we write

C (X , A) := HomC (X , A) ∈ Sets (9)

for the set of morphisms from X to A. These are, of course, contravariantly and covariantly functorial in their first
and second argument, respectively:

C
C (X ,−) // Sets , C op C (− ,A) // Sets . (10)

Basic as this is, contravariant hom-functors are of paramount interest in the case where C is the homotopy category
Ho(C) (Def. A.14) of a model category (Def. A.3), such as the classical homotopy category of topological spaces
or, equivalently, of simplicial sets (Example A.33).

2.1 Non-abelian cohomology theories

Definition 2.1 (Non-abelian cohomology). For X ,A ∈ Ho
(
TopologicalSpacesQu

)
(Example A.33) we say that

their hom-set (9) is the non-abelian cohomology of X with coefficients in A, or the non-abelian A-cohomology of
X , to be denoted:

non-abelian
cohomology

H(X ; A) := Ho
(
TopologicalSpacesQu

)
(X , A) =


X

map = cocycle
c

��

c′
map = cocycle

@@A
homotopy =
coboundary

��

/
homotopy

(11)

We also call the contravariant hom-functor (10)

H(−; A) : Ho
(
TopologicalSpacesQu

)
// Sets (12)

the non-abelian A-cohomology theory.

Example 2.2 (Ordinary cohomology). For n ∈ N and A a discrete abelian group, the ordinary cohomology (e.g.
singular cohomology) in degree n with coefficients in A is equivalently ([Ei40, p. 243][EML54b, p. 520-521],
review in [St72, §19][May99, §22][AGP02, §7.1, Cor. 12.1.20]) non-abelian cohomology in the sense of Def. 2.1

ordinary
cohomology

Hn(−; A) ' H
(
−; K(A,n)

)
(13)

with coefficients in an Eilenberg-MacLane space [EML53][EML54a]:

K(A,n) ∈ Ho
(
TopologicalSpacesQu

)
such that πk

(
K(A,n)

)
=

{
A | k = n
0 | k 6= n .

(14)
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Example 2.3 (Traditional non-abelian cohomology). For G a well-behaved topological group, the traditional non-
abelian cohomology H1(−;G) classifying G-principal bundles, is equivalently ([St51, §19.3][RS12, Thm 1.], re-
view in [Add07, §5]) non-abelian cohomology in the general sense of Def. 2.1

classification of
principal bundles

H1(−;G) ' H(−;BG) (15)

with coefficients in the classifying space BG ([Mi56][Se68][St68][St70], review in [Ko96, §1.3][May99, §23.1]
[AGP02, §8.3][NSS12b, §3.7.1]). The latter may be given as the homotopy colimit (in the classical model structure
of TopologicalSpacesQu, Example A.7) over the nerve of the topological group G (e.g. [NSS12a, Rem. 2.23]):

BG ' holim
−!

 · · · G×G

//
oo

(−)·(−) //
oo

//
G

//
oo e // ∗

 . (16)

Example 2.4 (Group cohomology and Characteristic classes). Conversely, the ordinary cohomology (Example
2.2) of a classifying space BG (16) is, equivalently,

(i) the group cohomology of G;
(ii) the universal characteristic classes of G-principal bundles:

group
cohomology

H
(
BG; K(A,n)

)
' Hn(BG; A) ' Hn

Grp(G; A) .

Example 2.5 (Non-abelian cohomology in degree 2). For a well-behaved topological 2-group, such as the string 2-
group String(G) (of a connected, simply connected semi-simple Lie group G) [BCSS07][He08, Thm. 4.8][NSW11],
the non-abelian cohomology H1(−; String(G)) classifying principal 2-bundles [NW11] with structure 2-group
String(G) is, equivalently [BS09],

classification of
String-bundles

H1(−;String(G)
)
' H

(
−;BString(G)

)
(17)

non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying space BString(G).

Example 2.6 (Non-abelian gerbes). For G a well-behaved topological group, a non-abelian G-gerbe [Gi71][Br09]
is, equivalently [NSS12a, §4.4], a fiber 2-bundle with typical 2-fiber of homotopy type of the classifying space BG
(16), associated to principal 2-bundles with structure 2-group Aut(BG). Hence, as in Example 2.5, G-gerbes are
classified by non-abelian cohomology with coefficients in BAut(BG) [NSS12a, Cor 4.51]:

classification of
non-abelian gerbes

GGerbes(X)/∼ ' H1(X ; Aut(BG)
)
' H

(
X ; BAut(BG)

)
.

Example 2.7 (Non-abelian cohomology in unbounded degree). For any ∞-group G (see [NSS12a, §2.2][NSS12b,
§3.5]), the non-abelian cohomology H1

(
−; G

)
classifying principal ∞-bundles [Gl82][JL06][NSS12a][NSS12b]

with structure ∞-group G is, equivalently [We10][RS12],
classification of

non-abelian ∞-gerbes

H1(−;G ) ' H(−;BG ) (18)
non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying space BG (see also
[St12]).

Example 2.7 is, in fact, universal:

Proposition 2.8 (Connected homotopy types are higher non-abelian classifying spaces [NSS12a, Thm. 2.19][NSS12b,
Thm. 3.30, Cor. 3.34]). Every connected homotopy type A ∈ Ho

(
TopologicalSpacesQu

)
(324) is the classifying

space of a topological group, namely of its loop group1 ΩA

A ' B(ΩA) ∈ Ho
(
TopologicalSpacesQu

)
. (19)

1 A priori, the loop group is an A∞-group, for which classifying spaces are defined as in [NSS12a, Rem. 2.23], but each such is weakly
equivalent to an actual topological group, see [NSS12b, Prop. 3.35].
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This allows for making precise the core nature of non-abelian cohomology:

Remark 2.9 (Non-abelian and abelian ∞-groups). For A' BG (19), the ∞-group structure on G is reflected by its
weak homotopy equivalence G'ΩBG with a based loop space.
• There is no commutativity of loops in a generic loop space, and hence this exhibits G as a non-abelian

∞-group.
• But it may happen that A itself is already equivalent to a loop space, which by (19) means that A ' B

(
BG
)
=:

B2G is a double delooping. In this case G ' Ω
(
ΩA
)
=: Ω2A is an iterated loop space [May72], specifically

double loop space; hence a braided ∞-group. By the Eckmann-Hilton argument, this implies some level of
commutativity of the group operation in G. Indeed, in the special case that such G is also 0-truncated (326),
it implies that G is an ordinary abelian group.
• Next, it may happen that A ' B3G is a 3-fold deloopig, hence that G ' Ω3A is a 3-fold loop space, hence a

sylleptic ∞-group. This is one step “more abelian” than a braided ∞-group.
• In the limiting case that G is an n-fold loop space for any n∈N, hence an infinite loop space [May77][Ad78],

it is as abelian as possible for an ∞-group. Such abelian ∞-groups are the coefficients of abelian cohomology
theories, namely of generalized cohomology theories in the sense of Whitehead (Example 2.13)
• The fewer deloopings an ∞-group G admits, the “more non-abelian” is the cohomology theory represented

by BG.

Coefficients H(X ; BG) Examples
∞-group G ' Ω B G

non-abelian
cohomology

πn(−) (Cohomotopy, Example 2.10)
braided ∞-group G ' Ω2B2G π3(−)

sylleptic ∞-group G ' Ω3B3G
... G ' ΩnBnG

abelian ∞-group G ' Ω∞B∞G abelian cohomology En(−) (generalized cohomology, Example 2.13)

The most fundamental connected homotopy types are the n-spheres (all other are obtained by gluing n-spheres to
each other):

Example 2.10 (Cohomotopy theory). The non-abelian cohomology theory (Def. 2.1) with coefficients in the
homotopy types of n-spheres is (unstable) Cohomotopy theory [Bo36][Sp49][Pe56][Ta09][KMT12]:

Cohomotopy

π
n(−) = H(−;Sn) ' H1(−; ΩSn) for n ∈ N+ .

(i) By Prop. 2.8, Cohomotopy theory classifies principal ∞-bundles (Example 2.7) with structure ∞-group of the
homotopy type of the ∞-group ΩSn.
(ii) By Remark 2.9, Cohomotopy theory is a maximally non-abelian cohomology theory, in that Sn does not admit
deloopings, for general n (it admits a single delooping for n = 3 and arbitrary deloopings for n = 0,1).

Example 2.11 (Bundle gerbes). The classifying space (16) of the circle group U(1) is an Eilenberg-MacLane
space (14)

BU(1) ' K(Z,2) ∈ Ho
(
TopologicalSpacesQu

)
.

Since U(1) is abelian, this space carries itself the structure of (the homotopy type of) a 2-group, and hence has a
higher classifying space

B2U(1) := B(BU(1)) ' K(Z,3) ∈ Ho
(
TopologicalSpacesQu

)
in the sense of Example 2.5, which is an Eilenberg-MacLane space in one degree higher. The higher princi-
pal 2-bundles with structure 2-group BU(1) are equivalently [NSS12a, Rem. 4.36] known as bundle gerbes
[Mu96][SW07]. Therefore, Example 2.7 combined with Example 2.2 gives the classification of bundle gerbes
by ordinary integral cohomology in degree 3:

classification of
bundle gerbes

H1(−; BU(1)
)
' H

(
−; B2U(1)

)
' H3(−; Z) .
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Example 2.12 (Higher bundle gerbes). In fact, Prop. 2.8 implies that, for all n ∈ N,

Bn+1U(1) := B
(
BnU(1)

)
' K(Z,n+2) ∈ Ho

(
TopologicalSpacesQu

)
(20)

in the sense of Example 2.7. The higher principal bundles with structure (n+ 1)-group BnU(1) [Ga97][FSSt10,
§3.2.3][FSS12b, §2.6] are also known as higher bundle gerbes (for n = 2 see [CMW97][St01]). On these coeffi-
cients, Example 2.7 reduces to the classification of higher bundle gerbes by ordinary integral cohomology in higher
degree: classification of

higher bundle gerbes

H1(−; BnU(1)
)
' H

(
−; Bn+1U(1)

)
' Hn+2(−; Z) .

More generally, the special case of Example 2.7 where the coefficient ∞-group happens to be abelian is “gener-
alized cohomology” in the standard sense of algebraic topology (including cohomology theories such as K-theory,
elliptic cohomology, stable Cobordism theory, stable Cohomotopy theory, etc.):

Example 2.13 (Generalized cohomology). For E a generalized cohomology theory [Wh62] (see [Ad75][Ad78]),
Brown’s representability theorem ([Ad75, §III.6][Ko96, §3.4]) says that there is a spectrum (“Ω-spectrum”, Exam-
ple A.40) of pointed homotopy types{

En ∈ Ho
(
TopologicalSpaces∗/Qu

)
, En

σ̃n

'
// ΩEn+1

}
n∈N

(21)

such that the generalized E-cohomology in degree n is equivalently non-abelian cohomology theory in the sense
of Def. 2.1 with coefficients in En: generalized

cohomology

En(−) ' H(−; En) . (22)

Example 2.14 (Topological K-theory). The classifying space (21) representing complex K-cohomology theory
KU [AH59, §2] (review in [At67]) in degree 0 is [AH61, §1.3]:

KU0 ' Z×BU , (23)

where
BU := lim

−!
n

BU(n) (24)

is the classifying space (16) for the infinite unitary group (e.g. [EU14]). Hence for the case of complex K-theory,
Example 2.13 says that: topological

K-theory

KU0(−) ' H(−; Z×BU) .

Example 2.15 (Iterated K-theory). Given a spectrum (21) with suitable ring structure, one can form its algebraic
K-theory spectrum K(R) [EKMM97, §VI][BGT10, §9.5][Lu14] and hence the corresponding generalized cohomol-
ogy theory (Example 2.13). Much like complex topological K-theory (Example 2.14) is the K-theory of topological
C-module bundles, K(R)-cohomology theory is the K-theory of suitable R-module ∞-bundles [Li13]. Specifically,
for R = ku the connective spectrum for topological K-theory, its algebraic K-theory K(ku) [Au09][AR02][AR07]
has been argued to be the K-theory of certain categorified complex vector bundles [BDR03][BDRR09]. Moreover,
K(R) is itself a suitable ring spectrum, so that the construction may be iterated to yield iterated algebraic K-theories
[Ro14] K◦2(R) := K(K(R)), K◦3(R) := K(K(K(R))), et cetera. For R = ku, this generalizes the above forms of
elliptic cohomology, K(ku), to higher degrees [LSW16]. By Example 2.13, we will regard these (connective)
iterated algebraic K-theories K◦n(ku) of the complex topological K-theory spectrum as examples of non-abelian
cohomology theories:

iterated K-theory

K◦n(ku)0(−) ' H
(
−; K◦n(ku)0

)
.

Example 2.16 (Stable Cohomotopy). The generalized cohomology theory (Example 2.13) represented by the
suspension spectra (Example A.41) of n-spheres is called stable Cohomotopy theory (e.g. [Str81][No03]) or stable
framed Cobordism theory:

Sn(−) = H
(
−; (Σ∞Sn)0

)
. (25)
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Non-abelian cohomology operations.

Definition 2.17 (Non-abelian cohomology operation). For A1,A2 ∈ Ho
(
TopologicalSpacesQu

)
(Example A.33),

we say that a natural transformation in non-abelian cohomology (Def. 2.1) from A1-cohomology theory to A2-
cohomology theory (12) is a (non-abelian) cohomology operation

φ∗ : H(−; A1) // H(−; A2) . (26)

By the Yoneda lemma, these are in bijective correspondence to morphisms of coefficients

A1
φ // A2 ∈ Ho

(
TopologicalSpacesQu

)
(27)

via the covariant functoriality of the hom-sets (10):

φ∗ = H(−; φ) := Ho
(
TopologicalSpacesQu

)
(−; φ) . (28)

Example 2.18 (Cohomology of coefficient spaces parametrizes cohomology operations). By the Yoneda lemma
(28) in Ho

(
TopologicalSpacesQu

)
(Example A.33), the set of all cohomology operations (Def. 2.17) from A1-

cohomology theory to A2-cohomology theory (26) coincides with the the non-abelian A2-cohomology (Def. 2.1)
of the coefficients A1:

non-abelian A2-cohomology of A1
acting as cohomology operations

H(A1; A2)×H(−;A1)
(−)◦(−) // H(−; A2) (29)

acting by composition composition in Ho
(
TopologicalSpacesQu

)
.

Example 2.19 (Cohomology operations in ordinary cohomology). In specialization to Example 2.2 the non-abelian
cohomology operations according to Def. 2.17 reduce to the classical cohomology operations in ordinary coho-
mology [St72][MT08] (review in [May99, §22.5]), such as Steenrod operations [St47][SE62] (review in [Ko96,
§2.5]). These operations admit refinements, involving rational/real form data, to differential cohomology opera-
tions [GS18a].

Example 2.20 (Cohomology operations in generalized cohomology). In specialization to Example 2.13, the non-
abelian cohomology operations according to Def. 2.17 reduce to the traditional cohomology operations on gen-
eralized cohomology theories, such as the Adams operations in K-theory [Ad62] (review in [AGP02, §10]) or the
Quillen operations in stable Cobordism theory (review in [Ko96, §4,5]). For differential refinements see [GS18b].

Example 2.21 (Characteristic classes of principal ∞-bundles). For G a topological group, the ordinary group
cohomology of G (Example 2.4) parametrizes, via Example 2.18, the cohomology operations from non-abelian
cohomology classifying G-principal bundles (Examples 2.3, 2.5, 2.7) to ordinary cohomology of the base space
(Example 2.2):

group
cohomology

Hn
Grp

(
BG; A

)
×

G-principal
bundles

H1(−; G)

characteristic
classes

(29)
//

ordinary
cohomology

Hn(−;A) . (30)

This is the assignment of characteristic classes to principal bundles (principal ∞-bundles). In the case when
A =R, this is equivalently the Chern-Weil homomorphism, by Chern’s fundamental theorem (see Remark 4.16 and
Theorem 4.26 below).

Example 2.22 (Rationalization cohomology operation). For fairly general non-abelian coefficients A (see Def.
3.53, Def. 4.1 for details), their rationalization2 A ηR

A
// LRA (Def. 3.53 below) induces a cohomology operation

(Def. 2.17) from non-abelian A-cohomology theory (Def. 2.1) to non-abelian real cohomology (Def. 3.70 below):

non-abelian
cohomology

H(−;A)
(ηR

A )∗

rationalization
//

non-abelian
real cohomology

H
(
−;LRA

)
. (31)

2 For definiteness, we consider rationalization over the real numbers; see Remark 3.49 below.

10



Remark 2.23 (Rationalization as character map). Up to composition with an equivalence provided by the non-
abelian de Rham theorem (Theorem 3.85 below), which serves to bring the right hand side of (31) into neat
minimal form, this rationalization cohomology operation is the character map in non-abelian cohomology (Def.
4.2 below).

Example 2.24 (Stabilization cohomology operation). For A ∈ Ho
(
TopologicalSpacesQu

)
, the non-abelian coho-

mology operation (Def. 2.17) induced (28) by the unit of the derived stabilization adjunction (Example A.41) goes
from non-abelian A-cohomology theory (Def. 2.1) to (abelian) generalized cohomology theory (Example 2.13)
represented by the 0th component space of the suspension spectrum of A:

non-abelian
A-cohomology

H
(
−; A

)
stabilization

//

generalized
Σ∞A-cohomology

H
(
−; (LΣ∞A)0

)
.

Hence a lift through this operation is an enhancement of generalized cohomology to non-abelian cohomology.

Example 2.25 (Non-abelian enhancement of stable Cohomotopy). The canonical non-abelian enhancement (in the
sense of Example 2.24) of stable Cohomotopy (Example 2.16) is actual Cohomotopy theory (Example 2.10):

Cohomotopy

πn(−)
stabilization

//

stable
Cohomotopy

Sn(−) .

Example 2.26 (Hurewicz homomorphism and Hopf degree theorem). By definition of Eilenberg-MacLane spaces
(14) there is, for n ∈ N, a canonical map

Sn e(n) // K(Z,n) ∈ Ho
(
TopologicalSpacesQu

)
,

which represents the element 1 ∈ Z ' πn
(
K(Z,n)

)
. The non-abelian cohomology operation (Def. 2.17) induced

by this, from degree n Cohomotopy (Example 2.10) to degree n ordinary cohomology (Example 2.2)

πn(−) e(n)∗ // Hn(−;Z)
is the cohomological version of the Hurewicz homomorphism. The Hopf degree theorem (e.g. [Ko93, §IX (5.8)])
is the statement that the non-abelian cohomology operation e(n)∗ becomes an isomorphism on connected, orientable
closed manifolds of dimension n. These maps, together with their differential refinements, are analyzed in more
details via Postnikov towers in [GS20].

Structured non-abelian cohomology.

Remark 2.27 (Structured non-abelian cohomology). More generally, it makes sense to consider the analog of Def.
2.1 for the homotopy category Ho(H) of a model category which is a homotopy topos [TV05][Lu09][Re10].
(i) This yields structured non-abelian cohomology [Si97][Si99][To02][SSS12][NSS12a][NSS12b][Sc13][FSS19b]
[SS20b]: structured

non-abelian cohomology

H
(
X ; A

)
:=

homotopy topos

Ho(H)
(
X , A

∞-stacks

)
,

including the stacky non-abelian cohomology originally considered in [Gi71][Br90] (“gerbes”, see [NSS12a,
§4.4]), and, more generally, differential-, étale-, and equivariant- nonabelian cohomology theories (see [SS20b, p.
6]) based on ∞-stacks.
(ii) In good cases (cohesive homotopy toposes [Sc13][SS20b, §3.1]), the homotopy topos Ho(H) comes equipped
with a shape operation down to the classical homotopy category (Example A.33):

homotopy topos

Ho(H)
Shp //

classical homotopy category

Ho
(
TopologicalSpacesQu

)
H
(
X ; A

)
structured

non-abelian cohomology

� // H
(
Shp(X ); Shp(A)

)
plain

non-abelian cohomology

(32)
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which takes, for well-behaved group ∞-stacks G, the classifying stacks BG of G-principal bundles to the traditional
classifying spaces BG ' Shp(BG) of underlying topological groups (16). This gives a forgetful functor from
structured non-abelian cohomology to plain non-abelian cohomology in the sense of Def. 2.1. A classical example
is the map from non-abelian Čech cohomology with coefficients in a well-behaved group G to homotopy classes
of maps to the classifying space of G, in which case this comparison map is a bijection (Example 2.3).

All constructions on non-abelian have their structured analogues, for instance non-abelian cohomology opera-
tions (Def. 2.17) in structured cohomology

H
(
X ; A1

) φ∗ // H
(
X ; A2

)
(33)

are induced by postcomposition with morphisms A1
φ // A2 of coefficient stacks.

Ultimately, one is interested in working with structured non-abelian cohomology on the left of (32). However,
since this is rich and intricate, it behooves us to study its projection into plain non-abelian cohomology on the right
of (32). This is what we are mainly concerned with here. But we provide in §4.3 a brief discussion of non-abelian
differential cohomology on smooth ∞-stacks,

2.2 Twisted non-abelian cohomology.

For C any category and B ∈ C any object, there is the slice category C /X , whose objects are morphisms in C to X
and whose morphisms are commuting triangles over X in C . Basic as this is, hom-sets in the homotopy category
Ho(C/B) (Def. A.14) of a slice model category C/B (Example A.10) are of paramount interest:

The slicing imposes twisting on the corresponding non-abelian cohomology (Def. 2.1), in that the slicing of
the domain space serves as a twist, the slicing of the coefficient space as a local coefficient bundle, and the slice
morphisms as twisted cocycles.

Proposition 2.28 (∞-Actions on homotopy types [DDK80][Pr10, §5][NSS12a, §4][Sh15][SS20b, §2.2]). For any
A ∈ Ho

(
TopologicalSpacesQu

)
(Example A.33) and G a topological group, homotopy-coherent actions of G on A

are equivalent to fibrations ρ with homotopy fiber A (Def. A.22) over the classifying space BG (16)

A // A�G
ρ
��

BG .

(34)

Here
A�G '

(
A×EG

)
/diagG

is the homotopy quotient (Borel construction) of the action.

Definition 2.29 (Twisted non-abelian cohomology [NSS12a, §4][FSS19b, (10)][SS20b, Rem. 2.94]).
For X ,A ∈ Ho

(
TopologicalSpacesQu

)
(Def. A.33) we say:

(i) A local coefficient bundle for twisted A-cohomology is an A-fibration ρ over a classifying space BG (16) as in
Prop. 2.28:

A // A�G
ρ
��

local coefficient
bundle

BG .

(35)

(ii) A twist for non-abelian A-cohomology theory on X with local coefficient bundle ρ over BG is a map

X τ // BG ∈ Ho
(
TopologicalSpacesQu

)
. (36)

(iii) The non-abelian τ-twisted A-cohomology of X with local coefficients ρ is the hom-set from τ (36) to ρ (34)

twisted
non-abelian
cohomology

Hτ(X ; A) := Ho
(

TopologicalSpaces/BG
Qu

)(
τ , ρ

)
=


X

cocycle
c //

twist τ
  

A�G

ρ

local
coefficients

}}
BG

'px

/
homotopy
relative BG

(37)
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in the homotopy category (Def. A.14) of the slice model category over BG (Example A.10) of the classical model
category on topological spaces (Example A.7).

Definition 2.30 (Associated coefficient bundle [NSS12a, §4.1][SS20b, Prop. 2.92]). Given a local coefficient A-
fiber bundle ρ (35) and a twist τ (36) on a domain space X , the corresponding associated A-fiber bundle over X is
the homotopy pullback (Def. A.23) of ρ along τ , sitting in a homotopy pullback square (315) of this form:

associated
A-fiber bundle E //

Rτ∗ρ

��

(hpb)
homotopy pullback

A�G

ρ

��

local
coefficient bundle

X τ

twist
// BG

(38)

We write

sections of
associated bundle

ΓX(E)/∼ := Ho
(

TopologicalSpaces/X
Qu

)(
idX , Rτ

∗
ρ
)

=

 E associated
bundle

��
X

section
σ

66

X

/
vertical

homotopy

(39)

for the set of vertical homotopy classes of section of the associated bundle, hence for the hom-set, from the identity
on X to the associated bundle projection, in the homotopy category (Def. A.14) of the slice model category over X
(Example A.10) of the classical model category on topological spaces (Example A.7).

Proposition 2.31 (Twisted non-abelian cohomology is sections of associated coefficient bundle [NSS12a, Prop.
4.17]). Given a local coefficient bundle ρ (35) and a twist τ (36), the τ-twisted non-abelian cohomology (Def.
2.29) with local coefficient in ρ is equivalent to the vertical homotopy classes of sections (39) of the associated
coefficient bundle E (Def. 2.30): twisted non-abelian

cohomology

Hτ(X ; A) '
sections of

associated bundle

ΓX(E)/∼ . (40)

Proof. Consider the following sequence of bijections:

Hτ(X ; A) = Ho
(

TopologicalSpaces/BG
Qu

)(
τ , ρ

)
' Ho

(
TopologicalSpaces/BG

Qu

)(
Lτ∗idX , ρ

)
' Ho

(
TopologicalSpaces/X

Qu

)(
idX , Rτ

∗
ρ
)

= ΓX(E)/∼ .

Here the first line is the definition (37). Then the first step is the observation that every slice object is the derived left
base change (Example A.18, Prop. A.20) along itself of the identity on its domain, by (306). With this, the second
step is the hom-isomorphism (290) of the derived base change adjunction Lτ! a Rτ∗. The last line is (39).

In twisted generalization of Example 2.2 we have:

Example 2.32 (Twisted ordinary cohomology). Let n ∈ N, let X ∈ Ho
(
TopologicalSpacesQu

)
(Ex. A.33) be

connected and consider a traditional system of local coefficients [St43, §3] (see also [MQRT77][ABG10][GS18c])

Π1(X)
t // AbelianGroups ,

namely, a functor from the fundamental groupoid of X to the category of abelian groups. Since the construction
A 7! K(A,n) of Eilenberg-MacLane spaces (14) is itself functorial and using the assumption that X is connected,
this induces (see [BFGM03, Def. 3.1]) a local coefficient bundle (35) of the form

K(A,n) // K(A,n)�π1(X) .
ρt��

Bπ1(X)

(41)
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Finally, write X τ // Bπ1(X) for the classifying map (via Example 2.3) of the universal connected cover of X
(equivalently: for the 1-truncation projection of X). Then the τ-twisted non-abelian cohomology (Def. 2.29) of X
with local coefficients in ρt (41) is equivalently the traditional t-twisted ordinary cohomology of X in degree n:

twisted
ordinary cohomology

Hn+t(X ; A) ' Hτ
(
X ; K(A,n)

)
.

This is manifest from comparing Def. 2.29 with [GJ99, p. 332][BFGM03, Lemma 4.2].

As a special case of Example 2.32 and in twisted generalization of Examples 2.11, 2.12 we have:

Example 2.33 (Orientifold gerbes). Consider the action σU(1) of Z2 on the circle group U(1) ⊂ C× given by
complex conjugation. This deloops (see [FSS15a, §4.4]) to an action σBnU(1) of Z2 on the classifying spaces
BnU(1) (16). By Prop. 2.28 there is a corresponding local coefficient bundle

BnU(1) // BnU(1)�Z2

σBnU(1)
��

Z2

(42)

Moreover, consider a smooth manifold X , with orientation bundle classified by X or // BZ2 . Then the or-twisted
cohomology (Def. 2.29) of X ...
(i) ...with local coefficients in σB2U(1) classifies what is equivalently known as Jandl gerbes [SSW07][GSW11] or
real gerbes [HMSV19] or orientifold B-fields;
(ii) ...with local coefficients in σB3U(1) classifies what is equivalently known as topological sectors of orientifold
C-fields [FSS15a, §4.4].
More generally, one can consider twisted Deligne cohomology [GS18c] as well as higher-twisted periodic integral-
and Deligne-cohomology [GS19b] (see also §4.3).

Remark 2.34 (The Whitehead principle of non-abelian cohomology). Let A ∈ Ho
(
TopologicalSpacesQu

)
be con-

nected, so that A' BG (Prop. 2.8).
(i) If A is also n-truncated (327), then its Postnikov tower (Prop. A.38) says that A is the total space of a local
coefficient bundle (2.29) of the form

K(πn(A),n)
hfib(pn) // A

pA
n��

A(n−1)' B
(
G(n−2)

)
with homotopy fiber an Eilenberg-MacLane space (14).
(ii) Accordingly, non-abelian cohomology with coefficients in A (Def. 2.1) is equivalently the disjoint union, over
the space of twists τn (36) in non-abelian cohohomology with coefficients in A(n− 1), of τ-twisted non-abelian
cohomology (Def. 2.29) with coefficients in K(πn(A),n):

non-abelian cohomology
in higher degree

H(X ; A) '
⊔

τn∈H(X ;A(n−1))
twist in

non-abelian cohomology
of lower degree

higher twisted
ordinary cohomology

Hτn
(
X ; K(πn(A),n)

)
. (43)

(iii) Iterating this unravelling yields

H(X ; A) '
⊔

τn∈
⊔

τn−1∈ H(X ;A(n−2))
Hτn−1

(
X ;K(πn−1(A),n−1)

)Hτn
(
X ; K(πn(A),n)

)
. (44)

14



and then
H(X ; A) '

⊔
τn∈

⊔
τn−1∈

⊔
τn−2∈H

(
X ;A(n−3)

)H
τn−2
(

X ;K(πn−2(A),n−2)
)Hτn−1

(
X ;K(πn−1(A),n−1)

)Hτn
(
X ; K(πn(A),n)

)
. (45)

and then
H
(
X ; A

)
'

⊔
τn∈

⊔
τn−1∈

⊔
τn−2∈

⊔
τn−3 ∈ H

(
X ;A(n−4)

)H
τn−3
(

X ;K(πn−3(A),n−3)
)H

τn−2
(

X ;K(πn−2(A),n−2)
)Hτn−1

(
X ;K(πn−1(A),n−1)

)Hτn
(
X ; K(πn(A),n)

)
. (46)

and so on.
(iv) Thus non-abelian cohomology in higher degrees (Example 2.7) decomposes as a tower of consecutively higher
twisted but otherwise ordinary cohomology theories, starting with a twist in non-abelian cohomology in degree 1.
This phenomenon has been called the Whitehead principle of non-abelian cohomology [To02, p. 8] and has been
interpreted as saying that “nonabelian cohomology occurs essentially only in degree 1” [Si96, p. 1].
(v) But the above formulas (43), (44), (45) make manifest that this phenomenon has two perspectives. On the one
hand: non-abelian cohomology in higher degrees may be computed by brute force as a sequence of consecutively
higher twisted abelian cohomologies, with lowest twist starting in degree-1 non-abelian cohomology. On the
other hand, conversely: intricate such systems of consecutively twisted abelian cohomology theories are neatly
understood as unified by non-abelian cohomology.
(vi) Similarly, even though Postnikov towers do exist (Prop. A.38) in the classical homotopy category (Example
A.33), the latter is far from being equivalent to the stable homotopy category (336) “up to twists in degree 1”.

In twisted generalization of Example 2.14, we have:

Example 2.35 (Twisted topological K-theory). The classifying space KU0 ' Z×BU (23) for complex topological
K-theory (Example 2.14) is the fiber of a local coefficient bundle (35) over K(Z,3)' B3U(1) (20):

KU0 // KU0�BU(1)
��

B2U(1)
(47)

For X τ // B2U(1) a corresponding twist (36) (hence equivalently a bundle gerbe, by Example 2.11), the corre-
sponding twisted non-abelian cohomology (Def. 2.29) is twisted complex topological K-theory [Ka68][DK70]:

twisted
topological K-theory

KUτ(−) ' Hτ
(
−; Z×BU

)
. (48)

This is manifest from comparing (37) with [FrHT08, (2.6)]. Alternatively, under Prop. 2.31, this is manifest from
comparing the equivalent right hand side of (40) with [Ro89, Prop. 2.1] (using [NSS12a, Cor. 4.18]) or, more
directly, with [AS04, §3][ABG10, §2.1].

Generally, in twisted generalization of Example 2.13, we have:

Example 2.36 (Local coefficient bundle for twisted generalized cohomology). Let R be a suitable ring spec-
trum and write GLR(1) for its ∞-group (as in Example 2.7) of units [Schl04, §2.3][MaS04, §22.2][ABGHR08,
§3][ABGHR14a, §2]. Its canonical action on the component space R0 = RΩ∞R (337) is given, via Prop. 2.28, by
a local coefficient bundle (35) of the form

R0 // (R0)�GLR(1)
ρR
��

BGLR(1) .

(49)
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Proposition 2.37 (Twisted non-abelian cohomology subsumes twisted generalized cohomology). For R a suitable
ring spectrum, the twisted non-abelian cohomology (Def. 2.29) with local coefficient bundle ρR from Example 2.36
is, equivalently, twisted generalized R-cohomology in the traditional sense (e.g. [MaS04, §22.1]):

twisted
generalized cohomology

Rτ(−) ' Hτ(−; ρR) . (50)

Proof. Given any twist X τ // BGLR(1) (2.29), write P! X for the homotopy pullback (Def. A.23) along τ of the
essentially unique point inclusion:

P //

��
(hpb)

∗

��
X

τ
// BGLR(1)

,

(
P×R0

)
�diagGLR(1)' E //

Rτ∗ρR
��

(hpb)

R0�GLR(1)

ρR
��

X
τ

// BGLR(1)

(51)

This P is the GLR(1)-principal ∞-bundle which is classified by τ , [NSS12a, Thm. 3.17], to which the coefficient
bundle E (38) is GLR(1)-associated [NSS12a, Prop. 4.6], as shown on the right of (51). Consider then the following
sequence of natural bijections:

Hτ
(
X ; R0

)
' ΓX(E)

' Ho
(
GLR(1)Actions

)
(P; R0)

' Ho
(
RModules

)
(Mτ; R)

' Rτ(X) .

(52)

Here the first step is Prop. 2.31, while the second step is [NSS12a, Cor. 4.18]. The third step is [ABGHR08,
(2.15)][ABGHR14a, (3.15)], with Mτ denoting the R-Thom spectrum of τ [ABGHR08, Def. 2.6][ABGHR14a,
Def. 3.13]. The last step is [ABGHR08, §2.5] [ABGHR14a, §1.4][ABGHR14b, §2.7]. The composite of these
natural bijections is the desired (50).

In twisted generalization of Example 2.15, we have:

Example 2.38 (Twisted iterated K-theory). Let r ∈ N, r ≥ 1. By [LSW16, Prop. 1.5, Def. 1.7] and using Prop.
2.37, there is a local coefficient bundle (35) of the form(

K2r−2(ku)
)

0
//
((

K2r−2(ku)
)

0

)
�B2r−1U(1)

ρlsw2r−1��
B2rU(1) ,

(53)

where K2r−2(ku)0 is the 0th space in the spectrum (21) representing iterated K-theory (Example 2.15) and B2rU(1) '
K(Z,2r+1) is the classifying space for bundle (2r−1)-gerbes (Example 2.12), such that for X τ // B2rU(1) a clas-
sifying map for such a higher gerbe, the τ twisted non-abelian cohomology (Def. 2.29) with local coefficients in
(53) is equivalently integrally twisted iterated K-theory according to [LSW16]:

twisted
iterated K-theory(

K◦2r−1(ku)
)τ
(−) ' Hτ

(
−;K◦2r−2(ku)0

)
.

In twisted generalization of Example 2.10, we have:

Example 2.39 (J-Twisted Cohomotopy theory [FSS19b, §2.1]). For n ∈ N, consider the canonical action of the
orthogonal group O(n+ 1) on the homotopy type of the n-sphere, via the defining action on the unit sphere in
Rn+1. By Prop. 2.28 this corresponds to a local coefficient bundle (35) for twisting Cohomotopy theory (Example
2.10):

Sn // Sn�O(n)
ρJ
��

BO(n) .

(54)
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The classifying map BO(n) J // Aut(Sn) of this fibration is the unstable J-homomorphism. For X a smooth mani-
fold of dimension d ≥ k+1, and equipped with tangential O(k+1)-structure (e.g. [SS20b, Def. 4.48])

X

T X %%

τ // BO(k+1)

Bivv
BO(d)

'mu

the τ-twisted non-abelian Cohomology (Def. 2.29) with local coefficients in (54) is the J-twisted Cohomotopy
theory of [FSS19b][FSS19c][SS20a]:

J-twisted
Cohomotopy

π
τ(−) := Hτ

(
−;Sn) .

J-twisted Cohomotopy in degree four encodes, in particular, the shifted flux quantization condition of the
C-field [FSS19b, Prop. 3.13] and the vanishing of the residual M5-brane anomaly [SS20a]; while J-twisted Coho-
motopy in degree four encodes, in particular, level quantization of the Hopf-Wess-Zumino term on the M5-brane
[FSS19c].

Twisted non-abelian cohomology operations. In generalization of Def. 2.17, we set:

Definition 2.40 (Twisted non-abelian cohomology operation). Given a transformation of local coefficient bundles
(35) presented (under localization (303) to homotopy types (324)) as a strictly commuting diagram

A1�G1

ρ1
��

φt // A2�G2

ρ2
��

BG1
φb // BG2

∈ TopologicalSpacesQu , (55)

postcomposition induces 3 for each twist X τ // BG1 (36) a map

φ∗ : Hτ(X ; A1) // Hφb◦τ(X ; A2) (56)

of twisted non-abelian cohomology sets (Def. 2.29). We call these twisted non-abelian cohomology operations.

Example 2.41 (Hopf cohomology operation in J-twisted Cohomotopy [FSS19b, §2.3]). The quaternionic Hopf
fibration S7 hH // S4 is equivariant under the symplectic unitary group Sp(2) ' Spin(5), so that after passage
to classifying spaces it induces a morphism of local coefficient bundles (55) for J-twisted Cohomotopy (54) in
degrees 4 and 7:

S7�Sp(2)
hH�Sp(2)

Borel-equivariantized
quaternionic Hopf fibration //

J7

��

S4�Sp(2)

J4

��
BSp(2) +3 BSp(2)

(57)

Via (56) this induces for each Spin 8-manifold X equipped with tangential Sp(2)-structure

X

T X %%

τ // BSp(2)

Biww
BO(8)

'mu
(58)

a twisted non-abelian cohomology operation (Def. 2.40)

πτ7(X)
(hH�Sp(2))∗ // πτ4

(X) (59)

in J-twisted non-abelian Cohomotopy theory (Example 2.39).
Lifting through the twisted non-abelian cohomology transformation (59) encodes vanishing of C-field flux up

to C-field background charge [FSS19b, Prop. 3.14].
3 Some care is needed in making this precise; we postpone the details to §5, where they are provided by Lemma 5.1 with Def. 5.2.
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Example 2.42 (Twistorial Cohomotopy [FSS20, §3.2] ). The equivariantized Hopf morphism (57) of coefficient
bundles factors through Borel-equivariantizations of the complex Hopf fibration hC followed by that of the twistor
fibration tH

S7�Sp(2)
hC�Sp(2)

Borel-equivariantized
complex Hopf fibration //

JS7

��

CP3�Sp(2)
tH�Sp(2)

Borel-equivariantized
twistor fibration //

JCP3

��

S4�Sp(2)

JS4

��
BSp(2) +3 BSp(2) +3 BSp(2)

(60)

The twisted non-abelian cohomology theory (Def. 2.29) with local coefficients in the bundle appearing in this
factorization is the Twistorial Cohomotopy of [FSS20]

Twistorial
Cohomotopy

T τ(−) := Hτ
(
−;CP3) .

Via (56) the morphisms (60) induce, for each spin 8-manifold X equipped with tangential Sp(2)-structure (58),
twisted non-abelian cohomology operations (Def. 2.40)

J-twisted
7-Cohomotopy

πτ7
(X)

(hC�Sp(2))∗ //

Twistorial
Cohomotopy

T τ(X)s
(tH�Sp(2))∗ //

J-twisted
4-Cohomotopy

πτ4
(X) (61)

between J-twisted non-abelian Cohomotopy theory (Example 2.39) and Twistorial Cohomotopy.
We turn to the differential refinement of this statement in §5.3 below.
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3 Non-abelian de Rham cohomology

We formulate (twisted) non-abelian de Rham cohomology (Def. 3.82, Def. 3.96) of differential forms with values
in L∞-algebras (Example 3.25) and prove the (twisted) non-abelian de Rham theorem (Theorem 3.85, Theorem
3.102), as a consequence of the fundamental theorem of dg-algebraic rational homotopy theory, which we recall
(Prop. 3.58).

3.1 Dgc-Algebras and L∞-algebras

Here we fix notation and conventions for the following system of categories and functors:

( Def. 3.34

L∞Algebras≥ 0,nil
R,fin

)op
� _

��

(102)

CE
'

//
Def. 3.31

SullivanModels≥ 1
R� _

��
Def. 3.25(

L∞Algebras≥ 0
R,fin

)op � �
(86)

CE //
Def. 3.17

DiffGradedCommAlgebras≥ 0
R

oo

Def. 3.19

Sym
⊥ //

Def. 3.18

GrddCmmttvAlgbr
��

Def 3.14

CochainComplexes≥ 0
R

Def. 3.15

GrddVctrSpc
��

GradedCommAlgebras≥ 0
R

Def. 3.8

oo

Def. 3.10

Sym
⊥ // GradedVectorSpaces≥ 0

R

Def. 3.2

(62)

Remark 3.1 (Homotopical grading). Our grading conventions, to be detailed in the following, are strictly homo-
topy theoretic:
(i) Any graded-algebraic object discussed here, corresponds, under the equivalences of rational homotopy theory
laid out in §3.2 below, to a rational space, such that algebraic generators in degree n correspond to homotopy
groups in the same degree n. Since homotopy groups of spaces are in non-negative degree n ∈ N, all dg-algebraic
objects discussed here are concentrated in non-negative degree, hence are connective.
(ii) In particular, our L∞-algebras are in non-negative degree, naturally accommodating (as in [LM95][BFM06,
§2.9]) the rationalized Whitehead homotopy Lie algebras π•(ΩX)⊗Z R of connected spaces X , with their natural
non-negative grading induced from that of the homotopy groups of ΩX . See Prop. 3.61 and Prop. 3.63 below.

Graded vector spaces.

Definition 3.2 (Connective graded vector spaces). (i) We write

GradedVectorSpaces≥ 0
R ∈ Categories (63)

for the category whose objects are N-graded (i.e. non-negatively Z-graded) vector spaces over the real numbers;
and we write

GradedVectorSpaces≥ 0,fin
R

� � // GradedVectorSpaces≥ 0
R ∈ Categories (64)

for its full subcategory on those objects which are of finite type, namely degree-wise finite-dimensional.
(ii) For V ∈ GradedVectorSpaces≥ 0

R and k ∈ N we write

V k ∈ VectorSpacesR

for the component vector space in degree k.

Example 3.3 (The zero-object in graded vector spaces). We write

0 ∈ GradedVectorSpaces≥ 0
R (65)

for the graded vector space which is the zero vector space in each degree. This is both the initial as well as the
terminal object (hence the zero object) in GradedVectorSpaces≥ 0

R .
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Example 3.4 (Graded linear basis). For n1,n2, · · · ,nk ∈ N a finite sequence of non-negative integers, we write〈
αn1 ,αn2 , · · · ,αnk

〉
∈ GradedVectorSpaces≥ 0,fin

R

for the graded vector space (Def. 3.2) spanned by elements αni in degree ni, respectively.

Definition 3.5 (Tensor product of graded vector spaces). The category of GradedVectorSpaces≥ 0
R (Def. 3.2) be-

comes a symmetric monoidal category under the graded tensor product given by

(V ⊗W )k :=
⊕

n1+n2=k

V n1⊗W n2 .

and the symmetric braiding isomorphism given by

V ⊗W σV,W

'
//W ⊗V

V n1⊗W n2
?�

OO

σ
V,W
n1,n2

'
//W n2⊗V n1

?�

OO

(v,w)
∈

7−! (−1)n1n2 · (w,v)

∈

(66)

We denote this by (
GradedVectorSpaces≥ 0

R ,⊗,σ
)
∈ SymmetricMonoidalCategories . (67)

Definition 3.6 (Degreewise linear dual). For V ∈ GradedVectorSpaces≥ 0,fin
R (Def. 3.2) we write

V∨ ∈ GradedVectorSpaces≥ 0,fin
R

for its degree-wise linear dual:4
(V∨)k := (V k)∗ . (68)

Definition 3.7 (Degree shift). For V ∈ GradedVectorSpaces≥ 0
R (Def. 3.2) we write

bV ∈ GradedVectorSpaces≥ 0
R (69)

for the result of shifting degrees up by 1:

(bV )k :=
{

V k−1 | k ≥ 1,
0 | k = 0.

Graded-commutative algebras.

Definition 3.8 (Graded-commutative algebras). We write
GradedCommAlgebras≥ 0

R := CommMonoids
(
GradedVectorSpaces≥ 0

R ,⊗,σ
)
∈ Categories (70)

for the category whose objects are non-negatively Z-graded, graded-commutative unital algebras over the real
numbers (hence commutative unital monoids with respect to the braided tensor product of Def. 3.5); and we write

GradedCommAlgebras≥ 0,fin
R

� � // GradedCommAlgebras≥ 0
R ∈ Categories (71)

for its full sub-category in those objects which are of finite type, namely degree-wise finite dimensional.

Definition 3.9 (Underlying graded vector space). We write

GradedCommAlgebras≥ 0
R

GrddVctrSpc // GradedVectorSpaces≥ 0
R (72)

for the functor on graded algebras (Def. 3.8) that forgets the algebra structure and remembers only the underlying
graded vector space (Def. 3.2).

Example 3.10 (Free graded-commutative algebras). For V ∈ GradedVectorSpaces≥ 0
R (Def. 3.2), we write

Sym(V ) ∈ GradedCommAlgebras≥ 0
R (73)

for the graded-commutative algebra (Def. 3.8) freely generated by V , hence that whose underlying graded vector
space (72) is

GrddVctrSpc
(
Sym(V )

)
= R ⊕ V ⊕

(
V ⊗V

)
/Sym(2) ⊕

(
V ⊗V ⊗V

)
/Sym(3) ⊕ ·· · ,

where the symmetric groups Sym(n) act via the braiding (66).

4 This is in contrast to the intrinsic duality (−)∗ in the monoidal category of graded vector spaces in unbounded degree (not considered
here), which instead goes along with inversion of the degree: (V ∗)k = (V−k)∗.
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Example 3.11 (Graded Grassmann algebra). For V ∈ GradedVectorSpaces≥ 0
R (Def. 3.2), we write

∧•V := Sym
(
bV
)
∈ GradedCommAlgebras≥ 0

R

for the free graded-commutative algebra (Def. 3.10) on V shifted up in degree (Def. 3.7); and we call this the
graded Grassmann-algebra on V .

Example 3.12 (Graded polynomial algebra). For n1,n2, · · · ,nk ∈ N a finite sequence of non-negative integers, we
write

R
[
αn1 ,αn2 , · · · ,αnk

]
:= Sym

(〈
αn1 ,αn2 , · · · ,αnk

〉)
∈ GradedCommAlgebras≥ 0,fin

R

for the free graded-commutative algebras (Def. 3.10) the graded vector space spanned by the αni (Def. 3.4).

Remark 3.13 (Incarnations of Grassmann algebras). With these notation conventions from Examples 3.10, 3.11,
3.12, an ordinary Grassmann algebra on k generators is equivalently:

∧•
(
Rk) = Sym

(
bRk) = R

[
θ
(1)
1 ,θ

(2)
1 , · · · ,θ (k)

1

]
.

Cochain complexes.

Definition 3.14 (Connective cochain complexes). We write

CochainComplexes≥ 0
R ∈ Categories

for the category of cochain complexes (i.e. with differential of degree +1) of real vector spaces in non-negative
degree.

Definition 3.15 (Underlying graded vector space). We write

CochainComplexes≥ 0
R

GrddVctrSpc // GradedVectorSpaces≥ 0
R (74)

for the forgetful functor on connective cochain complexex (Def. 3.14) which forgets the differential and remembers
only the underlying connective graded vector space (Def. 3.2).

Definition 3.16 (Tensor product on cochain complexes). The tensor product and braiding of graded vector spaces
from Def. 3.5 lifts, through (74), to a tensor product and braiding on CochainComplexes≥ 0

R (Def. 3.14), making it
a symmetric monoidal category:(

CochainComplexes≥ 0
R ,⊗,σ

)
∈ SymmetricMonoidalCategories . (75)

Differential graded commutative algebras.

Definition 3.17 (Connective differential graded commutative algebras [GM96, V.3.1]). We write

DiffGradedCommAlgebras≥ 0
R := CommMonoids

(
CochainComplexes≥ 0

R ,⊗,σ
)
∈ Categories

for the category whose objects are differential-graded, graded-commutative, unital algebras over the real numbers
concentrated in non-negative degrees (hence commutative unital monoids in the symmetric monoidal category of
Def. 3.16).

Definition 3.18 (Underlying graded-commutative algebra). We write

DiffGradedCommAlgebras≥ 0
R

GrddCmmttvAlgbr // GradedCommAlgebras≥ 0
R (76)

for the functor on dgc-algebras (Def. 3.17) that forgets the differential and remembers only the underlying graded-
commutative algebra (Def. 3.8).

Definition 3.19 (Free differential graded algebras). For V • in CochainComplexes≥ 0
R (Def. 3.14) we write

Sym(V •) ∈ DiffGradedCommAlgebras≥ 0
R

for the free differential graded-commutative algebra on V •, (Def. 3.17), hence whose underlying graded-commutative
algebra algebra (76) is as in Example 3.10.
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Example 3.20 (Initial algebra). The real algebra of real numbers, regarded as concentrated in degree-0

R ∈ GradedCommAlgebras≥ 0
R
� � // DiffGradedCommAlgebras≥ 0

R

is the initial object: For any other A ∈GradedCommAlgebras≥ 0
R (Def. 70) or ∈DiffGradedCommAlgebras≥ 0

R (Def.
3.17) there is a unique morphism

R �
� iR // A

(because our algebras are unital and homomorphims need to preserve the unit element).

Example 3.21 (The terminal algebra). We write

0 ∈ GradedCommAlgebras≥ 0
R
� � // DiffGradedCommAlgebras≥ 0

R (77)

for the unique graded-commutative algebra (Def. 3.8) or dgc-algebra (Def. 3.17) whose underlying graded vector
space (Def. 3.9) is the zero-vector space5 (65). This is the terminal object6 in GradedCommAlgebras≥ 0

R : For every
A ∈ GradedCommAlgebras≥ 0

R , there is a unique morphism

A ∃! // 0 .

Example 3.22 (Product and co-product algebras). In the categories GradedCommAlgebras≥ 0
R (Def. 3.8) and

DiffGradedCommAlgebras≥ 0
R (Def. 3.17):

(i) the coproduct is given by the tensor product (Def. 3.5),
(ii) the product is given by the direct sum

on underlying graded vector spaces (Def. 3.9).
(The first follows by [Joh02, p. 478, Cor. 1.1.9], while the second holds since (72) is a right adjoint.)

Example 3.23 (Smooth de Rham complex (e.g. [BT82])). For X be a smooth manifold, its de Rham algebra of
smooth differential forms is a dgc-algebra in the sense of Def. 3.17, to be denoted here:

Ω
•
dR(X) ∈ DiffGradedCommAlgebras≥ 0

R .

Example 3.24 (Chevalley-Eilenberg algebras of Lie algebras). For (g, [−,−]) a finite-dimensional real Lie algebra,
its Chevalley-Eilenberg algebra is a dgc-algebra (Def. 3.17):

CE(g) :=
(
∧• g∗ , d|∧1g∗ = [−,−]∗

)
∈ DiffGradedCommAlgebras≥ 0

R

with underlying graded-commutative algebra (Def. 3.8) the Grassmann algebra on the linear dual space g∗ (Def.
3.11, Remark 3.13), and with differential given on ∧1g∗ by the linear dual of the Lie bracket. More explicitly, for
{va}dimR(g)

a=1 a linear basis for the underlying vector space of the Lie algebra

g ' 〈v1,v2, · · · ,vdim(g)〉 , (78)

with Lie brackets
[va,vb] = f c

abvc , for structure constants f c
ab ∈ sR (79)

we have
CE(g) ' R

[
θ
(1)
1 ,θ

(2)
1 , · · ·θ (dim(g))

1

]/(
d θ

(c)
1 = fab

c
θ
(b)
1 ∧θ

(a)
1

)
. (80)

One observes that the Jacobi identity on [−,−] is equivalent to the condition that the differential d := [−,−]∗
squares to zero, so that (80) being a dgc-algebra is actually equivalent to (g, [−,−]) being a Lie algebra.

This construction is evidently contravariantly functorial and constitutes a full subcategory inclusion

LieAlgebrasR,fin
� � CE //

(
DiffGradedCommAlgebras≥ 0

R

)op
, (81)

meaning that, in addition, homomorphisms of Lie algebras are in natural bijection to dgc-algebra morphisms
between their CE-algebras.

5 Notice that the algebra 0 (77) is indeed a unital algebra (70).
6 Beware that the corresponding statement in [GM96, p. 335] is incorrect.

22



L∞-algebras.
Definition 3.25 (Chevalley-Eilenberg algebras of L∞-algebras [LM95, Thm . 2.3][SSS09a, Def. 13][BFM06, §2]).
In direct generalization of (81), consider those A ∈ DiffGradedCommAlgebras≥ 0

R (Def. 3.17) whose underlying
graded-commutative algebra (76) is free (Example 3.10, Remark 3.13) on the degreewise dual bg∨ (Def. 3.6) of
the degree shift bg (Def. 3.7) of some connective finite-type graded vector space (Def. 3.2)

g ∈ GradedVectorSpaces≥ 0,fin
R (82)

in that
A :=

(
∧• g∨ , d

)
:=
(
Sym(bg∨) , d

)
∈ DiffGradedCommAlgebras≥ 0

R . (83)

In this case the differential d restricted to ∧1g∨ defines, under linear dualization, a sequence of n-ary graded-
symmetric multilinear maps {−, · · · ,−} on g:

d|∧1g∨(−) = {−}∗ + {−,−}∗ + {−,−,−}∗ + · · ·

∧1g∨
d // ∧1g∨ ⊕ ∧2g∨ ⊕ ∧3g∨ ⊕ · · · = ∧•g∨ = Sym

(
bg∨
)
,

(84)

and the condition d ◦ d = 0 imposes a sequence of compatibility conditions on these brackets, generalizing the
Jacobi identity in Example 3.24. The corresponding graded skew-symmetric n-ary brackets ([LS93, (3)])

[a1, · · · ,an] := (−1)n+∑i≤n/2 deg(ai){a1, · · · ,an}
subject to these conditions give g the structure of an L∞-algebra (or strong homotopy Lie algebra):(

g , [−], [−,−], [−,−,−], · · ·
)
∈ L∞Algebras≥ 0

R,fin , (85)

which makes A in (83) its Chevalley-Eilenberg algebra:
CE(g) :=

(
∧• g∨ , d = {−}∗+{−,−}∗+{−,−,−}∗+ · · ·

)
=
(
Sym(bg∨) , dCE

)
.

(86)

This construction constitutes a full subcategory inclusion

L∞Algebras≥ 0
R,fin
� � CE //

(
DiffGradedCommAlgebras≥ 0

R

)op
. (87)

of the category of connective finite-type L∞-algebras into that of connective dgc-algebras.

Example 3.26 (Differential graded Lie algebras). A differential graded Lie algebra is an L∞-algebra (85) whose
only possibly non-vanishing brackets are the unary bracket ∂ := [−] (its differential) and the binary bracket [−,−, ]
(its graded Lie bracket). In further specialization, a plain Lie algebra (Example 3.24) is an L∞-algebra/dg-Lie
algebra concentrated in degree 0:

LieAlgebrasR,fin
� � // DiffGradedLieAlgebras≥ 0

R,fin
� � // L∞Algebras≥ 0

R,fin . (88)

Example 3.27 (Line Lie n-algebra). For n ∈ N we say that the line Lie (n+ 1)-algebra is the L∞-algebra (Def.
3.25)

bnR ∈ L∞Algebras≥ 0
R,fin (89)

whose Chevalley-Eilenberg algebra (86) is the polynomial dgc-algebra (Example 3.29) on a single closed generator
in degree n+1:

CE
(
bnR

)
:= R[cn+1]

/
(d cn+1 = 0) . (90)

Example 3.28 (String Lie 2-algebra). Let g ∈ LieAlgebrasR,fin be semisimple (such as g= su(n+1),so(n+3), for
n ∈ N), hence equipped with a non-degenerate, symmetric, g-invariant bilinear form (“Killing form”)

g⊗g
〈−,−〉 // R . (91)

Then the element
µ :=

〈
−, [−,−]

〉
∈ CE(g)

in the Chevalley-Eilenberg (3.24) is closed (is a Lie algebra cocycle)
dµ = 0 .

In terms of a linear basis {va} (78) with structure constants { f c
ab} (79) and inner product kab := 〈va,vb〉 we have,

in terms of (80):
µ := fab

c′kc′c θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1 .
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Hence we get an L∞-algebra (Def. 3.25)
stringg ∈ L∞Algebras≥ 0

R,fin (92)
with the following Chevalley-Eilenberg algebra (86):

CE
(
stringg

)
:= R

[
{θ a

1 },
b2

]/
d θ

(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

d b2 = f c′
abkc′c θ

(c)
1 ∧θ

(b)
1 ∧θ

(a)
1︸ ︷︷ ︸

=µ

 . (93)

This is known as the string Lie 2-algebra.

Sullivan models and nilpotent L∞-algebras.

Example 3.29 (Polynomial dgc-algebras). For A ∈ DiffGradedCommAlgebras≥ 0
R (Def. 3.17), and

µ ∈ An+1 ⊂ A , d µ = 0 (94)
a closed element of homogeneous degree n+1, we write

A
[
αn
]/(

d αn = µ
)
∈ DiffGradedCommAlgebras≥ 0

R (95)
for the dgc-algebra obtained by adjoining a generator αn of degree n to the underlying graded-commutative algebra
(76) of A and extending the differential from A to A

[
αn
]

by taking its value on the new generator to be µ . The
polynomial dgc-algebras (95) receives a canonical algebra inclusion of A (the unique A-algebra homomorphism):

A �
� iA // A[αn]

/
(d αn = µ) . (96)

Example 3.30 (Multivariate polynomial dgc-algebras). Let A ∈ DiffGradedCommAlgebras≥ 0
R (Def. 3.17), µ(1) ∈

An1+1, dµ(1) = 0, with corresponding polynomial dgc-algebra (95) as in Example 3.29. Then, for

µ
(2) ∈ A

[
α
(1)
n1

]/(
d α

(1)
n1 = µ

(1)) , d µ
(2) = 0

another closed element of some homogeneous degree n2+1, in the new algebra (95) we may iterate the construction
of Example 3.29 to obtain the bivariate polynomial dgc-algebra over A, to be denoted:

A

 α
(2)
n2+1

α
(1)
n1+1,

/d α
(2)
n1 = µ

(2)
n2+1 ,

d α
(1)
n1 = µ

(1)
n1+1

 :=
(

A
[
µ
(1)
n1+1

]/(
d α

(1)
n1+1 = µ

(1)))[
α
(2)]/(d α

(2)
n2+1 = µ

(2)) .
Iterating further, we have multivariate polynomial dgc-algebras over A, to be denoted as follows:

A


α
(k)
nk+1 ,

...

α
(2)
n2+1

α
(1)
n1+1,


/


d α
(k)
nk ,= µ

(k)

...

d α
(2)
n1 = µ

(2) ,

d α
(1)
n1 = µ

(1)

 ∈ DiffGradedCommAlgebras≥ 0
R (97)

with

µ
r ∈ A


α
(r−1)
nr−1+1 ,

...

α
(1)
n1+1,

 , for 1≤ r ≤ k.

These multivariate polynomial algebras (97) receive the canonical inclusion (96) of A:

A �
� iA // A


α
(k)
nk+1 ,

...

α
(2)
n2+1

α
(1)
n1+1,


/


d α
(k)
nk = µ

(k),

...

d α
(2)
n1 = µ

(2) ,

d α
(1)
n1 = µ

(1)

 , (98)

these being the composites of the stage-wise inclusions (96).
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Definition 3.31 (Semifree dgc-Algebras/Sullivan models/FDAs). The multivariate polynomial dgc-algebras of
Example 3.30 are sometimes called (i) semi-free dgc-algebras over A (since their underlying graded-commutative
algebra (76) is free, as in Example 3.10), but they are traditionally known (ii) in rational homotopy theory as relative
Sullivan models (due to [Su77], review in [FHT00, II][Me13][FH17]), or, (iii) in supergravity theory (following
[vN82][D’AF82]), as FDAs7 [CDF91], (for translation see [FSS13b][FSS16a][FSS16b][HSS18][BMSS19]). Here
we write:

SullivanModels≥ 1
R
� � // SullivanModelsR

� � // DiffGradedCommAlgebras≥ 0
R (99)

for, from right to left, (a) the full subcategory of connective dgc-algebras (Def. 3.17) on those which are isomorphic
to a multivariate polynomial dgc-algebra over R, as in Example 3.30 (i.e., the ordering of the generators in (97) is
not part of the data of a Sullivan model, only the resulting dgc-algebra); and (b) for the further full subcategory on
those Sullivan model that are generated in positive degree ≥ 1.

Example 3.32 (Polynomial dgc-algebras as pushouts). For A∈DiffGradedCommAlgebras≥ 0
R (Def. 3.17) the poly-

nomial dgc-algebras over A (Def. 3.29) are pushouts in DiffGradedCommAlgebras≥ 0
R of the following form:

A
[
αn
]/(

d αn = µ
)

(po)

OO

iA

� ?

oo

αn  [ αn

µ  [ cn+1
R
[

αn ,
cn+1

]/(d αn = cn+1

d cn+1 = 0

)
OO

cn+1

7!

cn+1
� ?

A oo
µ  [ cn+1

R
[
cn+1

]/(
d cn+1 = 0

) (100)

Here on the right we have multivariate polynomial dgc-algebras (Example 3.30) over R (Example 3.20) as shown.
The horizontal morphisms encode the choice of µ ∈ A (94) and the left vertical morphism is the canonical inclusion
(96).

Example 3.33 (Chevalley-Eilenberg algebras of nilpotent Lie algebras). Beware that not every Lie algebra g has
Chevalley-Eilenberg algebra (Example 3.24) which satisfies the stratification in the Definition 3.30 of multivariate
polynomial dg-algebras.
(i) For instance, the Lie algebra su(2) has

CE
(
su(2)

)
= R

[
θ1,θ2,θ3

]/(
d θi = ∑

j,k
εi jkθ j ∧θk

)
and no ordering of {1,2,3} brings this into the iterative form required in (97).
(ii) Instead, those Lie algebras whose CE-algebra is of the form (97) are precisely the nilpotent Lie algebras.

In generalization of Example 3.33, we say:

Definition 3.34 (Nilpotent L∞-algebras). An L∞-algebra (85) is nilpotent if its CE-algebra (Def. 3.25) is a multi-
variate polynomial dgc-algebra (Example 3.30), hence is in the sub-category of SullivanModelsR (99):

L∞Algebras≥ 0,nil
R,fin
� � CE //

� _

��
(pb)

(
SulivanModels

)op
� _

��
L∞Algebras≥ 0

R,fin
� � CE //

(
DiffGradedCommAlgebras≥ 0

R

)op

(101)

In fact, from (83) it is clear that every connected Sullivan model, hence with generators in degrees ≥ 1, is the
Chevalley-Eilenberg algebra of a unique nilpotent L∞-algebra, so that the defining inclusion at the top of (101)
further restricts to an equivalence of homotopy categories:

L∞Algebras≥ 0,nil
R,fin

CE
'

//
(
SullivanModels≥ 1

R

)op
. (102)

7 Beware that “FDA” in the supergravity literature is meant to be short-hand for “free differential algebra”, which is misleading, because
what is really meant are not free dgc-algebras as in Example 3.19 (in general) but just “semi-free” dcg-algebras, only whose underlying
graded-commutative algebras (76) is required to be free (Example 3.10).
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Homotopy theory of connective dgc-Algebras. We recall the homotopy theory of connective differential graded-
commutative algebras. We make free use of the language of model categories [Qu67]; for review see [Ho99][Lu09,
A.2] and appendix A.

Definition 3.35 (Homotopical structure on connective dgc-algebras [BG76, §4.2][GM96, V.3.4]). Consider the
following sub-classes of morphisms in the category of DiffGradedCommAlgebras≥ 0

R (Def. 3.17):
(i) W – weak equivalences are the quasi-isomorphisms;
(ii) Fib – fibrations are the degreewise surjections;

We call this the projective homotopical structure on dgcAlgebras≥0
R .

Proposition 3.36 (Projective model structure connective on dgc-algebras [BG76, §4.3][GM96, V.3.4]). Equipped
with the projective homotopical structure from Def. 3.35, the category of DiffGradedCommAlgebras≥ 0

R (Def. 3.17)
becomes a model category (Def. A.3). We denote this as:(

DiffGradedCommAlgebras≥ 0
R

)
proj ∈ ModelCategories . (103)

Remark 3.37 (All dgc-algebras are projectively fibrant). Every object A ∈
(
DiffGradedCommAlgebras≥ 0

R

)
proj

(103) is fibrant: By Example 3.21 the terminal morphism is to the 0-algebra, and this is clearly surjective, hence is
a fibration, by Def. 3.35:

A ∈Fib // 0 .

Cofibrant dgc-algebras. In order to identify cofibrant dgc-algebras, it is useful to first consider the following:

Definition 3.38 (Homotopical structure on connective cochain complexes). Consider the following sub-classes of
morphisms in the category CochainComplexes≥ 0

R (Def. 3.14):
(i) W – weak equivalences are the quasi-isomorphisms;
(ii) Fib – fibrations are the degreewise surjections;
(iii) Cof – cofibrations are the injections in positive degrees.

We call this the injective homotopical structure on CochainComplexes≥ 0
R .

Proposition 3.39 (Injective model structure on connective cochain complexes [He07, p. 6]). Equipped with the
injective homotopical structure of Def. 3.38 the category of CochainComplexes≥ 0

R (Def. 3.14) becomes a model
category (Def. A.3). We denote this:(

CochainComplexes≥ 0
R

)
inj ∈ ModelCategories .

Proof. This is formally dual to the proof of the projective model structure on connective chain complexes [Qu67,
II.4][GoS06, Thm. 1.5]; see, for instance, [Dun10, Thm. 2.4.5].

Remark 3.40 (Other model categories of chain complexes). Prop. 3.39 is usually stated in the generality of
cochain complexes of abelian groups, in which case the fibrations are only those degreewise surjections that have
degreewise injective kernel, a condition that becomes trivial for abelian groups that are vector spaces.

Proposition 3.41 (Quillen adjunction between dgc-algebras and cochain complexes). The adjunction (62) between
DiffGradedCommAlgebras≥ 0

R (Def. 3.17) and CochainComplexes≥ 0
R (Def. 3.14) is a Quillen adjunction (Def. A.17)

with respect to the model category structures from Def. 3.39 and that from Def. 3.36.(
DiffGradedCommAlgebras≥ 0

R

)
proj

oo Sym

⊥Qu //

(
CochainComplexes≥ 0

R

)
inj .

Proof. It is immediate from the definitions that the forgetful right adjoint preserves the classes W and Fib.

Lemma 3.42 (Generating cofibrations). The following inclusions of multivariate polynomial dgc-algebras (Exam-
ple 3.30) are cofibrations in

(
DiffGradedCommAlgebras≥ 0

R

)
proj (Def. 3.36)

R[cn+1]
/
(d cn+1 = 0) �

� cn+1 7!cn−1

∈Cof
// R
[

αn ,
cn+1

]/( d αn = cn+1 ,

d cn+1 = 0

)
for n ∈ N. (104)
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Proof. Consider the following morphisms of cochain complexes, for n ∈ N:

...
0
" d

0
" d

〈cn+1〉
" d

0
" d

0
" d
...
" d

0



� � in //



...
0
" d

0
" d

〈cn+1〉
" d

〈αn〉
" d

0
" d
...
" d

0



with dαn = cn+1. (105)

Since these are injections, they are cofibrations in
(
CochainComplexes≥ 0

R

)
inj (Prop. 3.39), by Def. 3.38. Thus also

their images under Sym (Def. 3.19) are cofibrations in
(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.36) because

Sym is a left Quillen functor, by Prop. 3.41. But Sym(in) manifestly equals (104), and so the claim follows.

Proposition 3.43 (Relative Sullivan algebras are cofibrations). For a multivariate polynomial dgc-algebra from Ex-
ample 3.30, the canonical inclusion (106) of the base algebra is a cofibration in

(
DiffGradedCommAlgebras≥ 0

R

)
proj

(Prop. 3.36):

A �
�

iA

∈Cof // A


α
(k)
nk+1 ,

...

α
(1)
n1+1,

/


d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)

 . (106)

In particular, since R ∈ DiffGradedCommAlgebras≥ 0
R is the initial object (Example 3.20), all multivariate polyno-

mial dgc-algebras over R (the Sullivan models, Def. 3.31) are cofibrant objects in
(
DiffGradedCommAlgebras≥ 0

R

)
proj.

Proof. By Lemma 3.42, the right vertical morphisms in the pushout diagram (100) are cofibrations. Since the
class of cofibrations is preserved under pushout, so are hence the left vertical morphisms in (100), which are
the base algebra inclusions (96) of polynomial dgc-algebras. The base algebra inclusions into general multivariate
polynomial dgc-algebras are composites of these, and since the class of cofibrations is presered under composition,
the claim follows.

Lemma 3.44 (Pushout along relative Sullivan algebras preserves quasi-isomorphisms [FHT00, Prop. 6.7 (ii),
Lemma 14.2]). The operation of pushout (292) along the canonical inclusion (106) of a base dgc-algebra into
a multivariate polynomial dgc-algebra (Example 3.30) preserves quasi-isomorphisms. In fact, it sends quasi-
isomorphism between base algebras to quasi-isomrophisms of multivariate polynomial dgc-algebras:

A �
�

iA

∈Cof //

f ∈W

��

(po)

A


α
(k)
nk+1 ,

...

α
(1)
n1+1,

/


d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)


(iA)∗ f
��

A′ �
�

iA

∈Cof // A′


α
(k)
nk+1 ,

...

α
(1)
n1+1,

/


d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)



⇒ (ia)∗ f ∈ W . (107)
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Minimal Sullivan models

Definition 3.45 (Minimal Sullivan models [BG76, Def. 7.2][He07, Def. 1.10]). A connected (relative) Sullivan
model dgc-algebra A ∈ SullivanModels≥ 1

R (Def. 3.31) is called minimal if it is given by a multivariate polynomial
dgc-algebras as in (97) the degrees ni of whose generators α

(i)
ni are monotonically increasing

i < j ⇒ n j ≤ n j .

Example 3.46 (Minimal models of simply connected dgc-algebras [BG76, Prop. 7.4]). If A ∈ SullivanModels≥ 1
R

(Def. 3.31) is trivial in degree 1, then it is minimal (Def. 3.45) precisely if the unary bracket [−] (84) of the
corresponding L∞-algebra (102) vanishes:

A1 = 0 ⇒
(
A is minimal ⇔ [−] = 0

)
.

Proposition 3.47 (Existence of minimal Sullivan models [BG76, Prop. 7.7, 7.8]). If A∈DiffGradedCommAlgebras≥ 0
R

is cohomologically connected, in that H0(A) = R, then:
(i) There exists a minimal Sullivan model Amin (Def. 3.45) with weak equivalence in

(
DiffGradedCommAlgebras≥ 0

R

)
proj

(103) to A
Amin

pmin
A ∈W // A . (108)

(ii) This Amin is unique up to isomorphism of DiffGradedCommAlgebras≥ 0
R .

More generally:

Proposition 3.48 (Existence of minimal relative Sullivan models [FHT00, Thm. 14.12]). Let B
φ // A be a mor-

phism in DiffGradedCommAlgebras≥ 0
R (Def. 3.17) such that

(a) A and B are cohomologically connected, in that H0(A) = R and H0(B) = R,
(b) H1(φ) : H1(B)−! H1(A) is an injection.

Then:
(i) There exists a minimal relative Sullivan model B ↪−! AminB (Def. 3.45) equipped with a weak equivalence to φ

in
(
DiffGradedCommAlgebras≥ 0

R

)
proj (Def. 103):

AminB
∈W // A

B φ

66

W7

ii

(ii) This AminB is unique up to isomorphism in DiffGradedCommAlgebras≥ 0
R .

3.2 Rational homotopy theory

We recall fundamental facts of dg-algebraic rational homotopy theory [Su77][BG76][GM13] (review in [FHT00]
[He07][FOT08][FH17]), streamlined towards the application to non-abelian de Rham theory below in §3.3.

Remark 3.49 (Rational homotopy theory over the real numbers). Throughout, we consider rational homotopy
theory over the real numbers R (as in [GM13]), instead of over the rational numbers Q. This is the version in
which rational homotopy theory connects to differential geometry (e.g. [FOT08]), since the smooth de Rham
complex is not defined over Q but over R (see Lemma 3.88). The original account [BG76] of rational homotopy
theory is, for the most part, formulated over an arbitrary field k of characteristic zero; and [BG76, Lem. 11.7]
makes explicit that the choice of this base field does not change the form of the classical theorems. For example,
the “real-ified” homotopy groups of a space X

π•(X)⊗Z R '
(
π•(X)⊗Z Q

)
⊗Q R

form a real vector space with real dimension equal to the rational dimension of the corresponding rationalized
homotopy groups

dimQ
(
π•(X)⊗Z Q

)
= dimR

(
π•(X)⊗Z R

)
,

and hence the rational Whitehead L∞-algebras (Prop. 3.61 below) have the same collection of generators and
their CE-alberas/minimal Sullivan models (Prop. 3.47 below) have the same differential relations, irrespective of
whether they come as algebras over Q or over R. 8

8While in homotopy theory Q and R coefficients behave similarly yet seem a priori not directly comparable, differential refinements
might provide such comparison (with coefficients R/Q naturally arising; see, e.g., [GS19a][GS19c]). We leave this for a future discussion.
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For technical reasons, we focus on the following class of homotopy types (with little to no restriction in prac-
tice):

Definition 3.50 (Connected nilpotent spaces of finite rational type [BG76, 9.2]). Write

Ho
(
TopologicalSpacesQu

)finR
≥1,nil

� � // Ho
(
TopologicalSpacesQu

)
for the full subcategory of homotopy types of topological spaces X (324) on those which are:

(i) connected: π0(X)' ∗;
(ii) nilpotent: π1(X) ∈ NilpotentGroups, and πn≥2(X) are nilpotent π1(X)-modules (e.g. [Hil82]);
(iii) finite rational type: dimR

(
Hn(X ; R)

)
< ∞ , for all n ∈ N.

Remark 3.51 (Technical assumptions). The connectedness assumption in Def. 3.50 is a pure convenience; for
non-connected spaces all of the following applies just by iterating over connected components. On the other hand,
the nilpotency and R-finiteness condition in Def. 3.50 are strictly necessary for the plain dg-algebraic formulation
of rational homotopy theory (due to [BG76][Su77]) to satisfy the fundamental theorem (Theorem 3.58 below).
The generalizations required to drop these assumptions are known, but considerably more unwieldy:
(i) To drop the nilpotency assumption, all dgc-algebra models need to be equipped with the action of the funda-
mental group (see [FHT15]).
(ii) To drop the finite-type assumption one needs dgc-coalgebras in place of dgc-algebras, as in the original [Qu69].

Therefore, we expect that the construction of the (twisted) non-abelian character map, below in sections §4
and §5, works also without imposing these technical assumptions, but a discussion in that generality is beyond the
scope of the present article.

Example 3.52 (Examples of nilpotent spaces [Hil82, §3][MP12, §3.1]). Such examples (Def. 3.50) include:
(i) every simply connected space X , π1(X) = 1;

(ii) every simple space X , i.e. with abelian fundamental group acting trivially, such as tori;
(iii) hence every connected H-space;
(iv) hence every loop space X 'ΩY , and hence every ∞-group (Prop. 2.8);
(v) hence every infinite-loop space, i.e., every component space En of a spectrum E (21);

(vi) the classifying spaces BG (16) of nilpotent Lie groups G;
(vii) the mapping spaces Maps(X ,A) out of manifolds X into nilpotent spaces A.

Rational homotopy theory is concerned with understanding the following notion:

Definition 3.53 (Rationalization [BK72, p. 133][BG76, §11.21][He07, §1.4, §1.7]).
(i) A connected nilpotent homotopy type X ∈Ho

(
TopologicalSpacesQ

)
≥1,nil (Def. 3.50) is called rational if all its

homotopy groups admit the structure of real vector spaces.
(ii) A rationalization of X is a map

X
ηR

X // LR(X) ∈ Ho
(
TopologicalSpacesQu

)
≥1,nil (109)

such that:
(a) LR is rational: πn(X) ∈ VectorSpacesR! Groups for n≥ 1,
(b) the map ηR

X induces an isomorphism on rational cohomology groups:

H•(X ; R)
H•(ηR

X ;R)
'

// H•
(
LRX ; ,R

)
.

Rationalization exists essentially uniquely, and defines a reflective subcategory inclusion
connected, nilpotent, R-finite,

rational homotopy types

Ho
(
TopologicalSpacesQu

)Q
≥1,nil

oo LR

� � ⊥ //

connected, nilpotent, R-finite,
homotopy types

Ho
(
TopologicalSpacesQu

)
≥1,nil (110)

whose adjunction unit is (109).
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PL de Rham theory. At the heart of dg-algebraic rational homotopy theory is the observation that a variant of the
de Rham dg-algebra of a smooth manifold (Example 3.23) applies to general topological spaces: the PL de Rham
complex9 (Def. 3.54). This satisfies an appropriate PL de Rham theorem (Prop. 3.55) and makes dg-algebras of
PL differential forms detect rational homotopy type (Prop. 3.58). At the same time, over a smooth manifold the
PL de Rham complex is suitably equivalent to the smooth de Rham complex (Lemma 3.88).

Definition 3.54 (PL de Rham complex and PL de Rham cohomology [BG76, pp. 1-7][GM13, §9.1]). Write

Ω
•
pdR(∆

•) : ∆op //
(
DiffGradedCommAlgebras≥ 0

R

)op (111)

for the simplicial dgc-algebras of polynomial differential forms on the standard simplices.
(i) For S ∈ SimplicialSets, its PL de Rham complex is the hom-object of simplicial objects from S to Ω•(∆•), hence
is the following end in DiffGradedCommAlgebras≥ 0

R :

Ω
•
PLdR(S) :=

∫
[k]∈∆

⊕
Sk

Ω
•
pdR(∆

k) , (112)

hence an element in ω ∈ Ω•PLdR(S) is a polynomial differential form ω
(n)
σ ∈ Ω•pdR(∆

n) on each n-simplex σ ∈ Sn

for all n ∈ N, such that these are compatible under pullback along all simplex face inclusions δi and along all
degenerate simplex projections σi:

Ω
•
PLdR(S) =



...
...

S2

δ ∗0

��

OO

σ∗0 δ ∗1

��

OO

σ∗1 δ ∗2

��

ω(2)
// Ω•pdR(∆

2)

δ ∗0
��

OO

σ∗0 δ ∗1
��

OO

σ∗1 δ ∗2
��

S1
ω(1)

//

δ ∗0

��

OO

σ∗0 δ ∗1

��

Ω•pdR(∆
1)

δ ∗0
��

OO

σ∗0 δ ∗1
��

S0
ω(0)

// Ω•pdR(∆
0)


(ii) For X ∈ TopologicalSpaces, its PL de Rham complex is that of its simgular simplicial set, according to (112):

Ω
•
PLdR(X) := Ω

•
PLdR

(
Sing(X)

)
. (113)

By pullback of differential forms, this extends to a functor

SimplicialSets
Ω•PLdR //

(
DiffGradedCommAlgebras≥ 0

R

)op
. (114)

(iii) We write
H•PLdR(−) := HΩ

•
PLdR(−) (115)

for PL de Rham cohomology, the cochain cohomology of the PL de Rham complex.

Proposition 3.55 (PL de Rham theorem [BG76, Thm. 2.2][GM13, Thm. 9.1]). The evident operation of integrat-
ing differential forms over simplices induces a quasi-isomorphism

Ω•PLdR(−)
∈qIso // C•(−; R)

from the PL de Rham complex (Def. 3.54) to the cochain complex of ordinary singular cohomology with coefficients
in R. Hence on cochain cohomology this induces an isomorphism

H•PLdR(−)
' // H•(−; R)

between PL de Rham cohomology (115) and ordinary real cohomology.

9 The terminology “PL” or “P.L.” for this construction seems to have been silently introduced in [BG76], as shorthand for “piecewise
linear”, and has become widely adopted (e.g. [GM13, §9]). But beware that this refers to the piecewise-linear structure that a choice of
triangulation induces on a topological space, while the actual differential forms in the PL de Rham complex are piecewise polynomial with
respect to this piecewise linear structure.
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But in fact, before passing to cochain cohomology, the PL de Rham complex captures full rational homotopy
type:

Lemma 3.56 (Extension lemma for polynomial differential forms [GM13, Lemma 9.4]). For n ∈N, the operation
of pullback of piecewise polynomial differential forms (Def. 3.88) along the boundary inclusion of the n-simplex

∂∆n in // ∆n is an epimorphism:
Ω•PLdR(∆

n)
i∗n // // Ω•PLdR(∂∆n) .

Proposition 3.57 (PL de Rham Quillen adjunction [BG76, 8]). The PL de Rham complex functor (Def. 3.54) is
the left adjoint in a Quillen adjunction (Def. A.17)(

DiffGradedCommAlgebras≥ 0
R

)op
proj

oo
Ω•PLdR

⊥Qu

expPS
// SimplicialSetsQu (116)

between the opposite (Def. A.9) of the model category of dgc-algebras (Prop. 3.36) and the classical model
structure on simplicial sets (Prop. A.8); where the right adjoint sends a dgc-algebra A to

expPS(A) = ∆[k] 7−! DiffGradedCommAlgebras≥ 0
R

(
Ω
•
PLdR(∆

k) , A
)
∈ SimplicialSets . (117)

Proof. That the right adjoint exists and is give as in (117) follows by general nerve/realization theory [Ka58], or
else by direct inspection.

For the left adjoint to preserve cofibrations means to take injections of simplicial sets to degreewise surjections
of dgc-algebras. This follows from the extension lemma (Lemma 3.56). Moreover, the left adjoint preserves in
fact all weak equivalences, by the PL de Rham theorem (Prop. 3.55).

Proposition 3.58 (Fundamental theorem of dgc-algebraic rational homotopy theory). The derived adjunction
(Prop. A.20)

Ho
((

DiffGradedCommAlgebras≥ 0
R

)op
proj

) oo LΩ•PLdR

Rexp
⊥ // Ho

(
SimplicialSetsQu

)
(118)

of the Quillen adjunction (116) from Prop. 3.57 is such that:
(i) on connected, nilpotent, R-finite homotopy types (Def. 3.50) the derived PLdR-adjunction unit (311) is the unit
(109) of rationalization (Def. 3.53):

X
DηPLdR

X

derived unit of
PL de Rham adjunction

// Rexp ◦Ω•PLdR(X)

'

X
ηR

X

rationalization unit
// LRX

∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil . (119)

(ii) For X ,A nilpotent, connected, R-finite homotopy types (Def. 3.50), the PL de Rham space functor (114) from
Def. 3.54 induces natural bijections

Ho
(
TopologicalSpacesQu

)(
X ,LRA

) '
Ω•PLdR

// Ho
((

DiffGradedCommAlgebras≥ 0
R

)
proj

)(
Ω•PLdR(A) , Ω•PLdR(X)

)
. (120)

Proof. (i) This is [BG76, Thm 11.2].
(ii) This follows via [BG76, Thm 9.4(i)], which says that the derived adjunction (118) restricts on connected,
nilpotent, R-finite (Def. 3.50) rational homotopy types (Def. 3.53) to an equivalence of categories:

Ho
((

DiffGradedCommAlgebras≥ 0
R

)op
proj

)≥1
fin

oo
LΩ•PLdR

Rexp
' // Ho

(
SimplicialSetsQu

)R,finR
≥1,nil . (121)

In detail, consider the following sequence of natural isomorphisms:
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Ho
(
TopologicalSpacesQu

)(
X , LRA

)
' Ho

(
SimplicialSetsQu

)(
Sing(X) , LRSing(A)

)
' Ho

(
SimplicialSetsQu

)(
LRSing(X) , LRSing(A)

)
' Ho

(
SimplicialSetsQu

)(
Rexp ◦Ω

•
PLdR(X) , Rexp ◦Ω

•
PLdR(A)

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)op
proj

)(
Ω
•
PLdR ◦ Rexp ◦Ω

•
PLdR(X) , Ω

•
PLdR ◦ Rexp ◦Ω

•
PLdR(A)

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)op
proj

)(
Ω
•
PLdR(X) , Ω

•
PLdR(A)

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)(
Ω
•
PLdR(A) , Ω

•
PLdR(X)

)
.

(122)

Here the first step is (324); the second step uses that rationalization is a reflection (110); the third step uses (119);
the fourth is the equivalence (121) along LΩ•PLdR (using, with Example A.21, that every simplicial set is already
cofibrant, Example A.8); the fifth step is the statement from (121) that Rexp is the inverse equivalence. The last
step is just the definition of the opposite of a category. The composite of the bijections (122) is the desired bijection
(120).

PS de Rham theory. The point of using piecewise polynomial differential forms in the PL de Rham complex
(Def. 3.54) is that these, but not the piecewise smooth differential forms, can be defined over the field Q of rational
numbers. But since we may and do use the real numbers as the rational ground field (Remark 3.49), it is expedient
to also consider piecewise smooth de Rham complexes:

Definition 3.59 (PS de Rham complex). For n ∈ N, we write

Ω
•
dR(Rn×∆

•) : ∆op //
(
DiffGradedCommAlgebras≥ 0

R

)op

for the simplicial dgc-algebra of smooth differential forms on the product manifold of n-dimensional Cartesian
space with the standard simplices, i.e., of smooth differential forms on an ambient Cartesian space (Example 3.23),
restricted to the simplex. As in Def. 3.88, this induces for each S ∈ SimplicialSets the corresponding piecewise
smooth de Rham complexes

Ω
•
PSdR(Rn×S) :=

∫
[k]∈∆

⊕
Sn

Ω
•
dR(Rn×∆

n) (123)

and by pullback of differential forms these extend to functors

SimplicialSets
Ω•PSdR(R

n×(−))
//
(
DiffGradedCommAlgebras≥ 0

R

)op
. (124)

Proposition 3.60 (Fundamental theorem for piecewise smooth de Rham complexes). For all n ∈ N the piecewise
smooth de Rham complex functors (Def. 3.59) participate in a Quillen adjunction analogous to the PL de Rham
adjunction (Prop. 3.57)(

DiffGradedCommAlgebras≥ 0
R

)op
proj

oo
Ω•PSdR(R

n×(−))

⊥Qu

expPS,n
// SimplicialSetsQu (125)

with right adjoint given as in (117):

expPS,n(A) = ∆[k] 7−! DiffGradedCommAlgebras≥ 0
R

(
Ω
•
PLdR(Rn×∆

k) , A
)
∈ SimplicialSets (126)

whose derived functors (Prop. A.20) are naturally equivalent to those of the PL de Rham adjunction (118):

LΩ
•
PSdR(Rn× (−)) ' LΩ

•
PSdR ' LΩ

•
PLdR , (127)

RexpPS,n ' RexpPS ' RexpPL . (128)
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Proof. (i) The proofs of the PL de Rham theorem (Prop. 3.55) as well as of the extension Lemma (Lemma 3.56)
apply essentially verbatim also to piecewise-smooth differential forms ([GM13, Prop. 9.8]) and hence so does the
proof of the PL de Rham Quillen adjunction in the form given in Prop. 3.57.
(ii) We have evident natural transformations

Ω•PLdR(S)
∈W // Ω•PSdR(S)

∈W // Ω•PSdR(Rn×S)

given by inclusion of polynomial differential forms into smooth differential forms, and by pullback of differential
forms along the projections Rn×∆k // ∆k . The corresponding component morphisms are quasi-isomorphisms,
hence are weak equivalences in

(
DiffGradedCommAlgebras≥ 0

R

)
proj ([GM13, Cor. 9.9]). Under passage to homo-

topy categories (Def. A.14) and derived functors (Example A.21), these natural weak equivalences become the
natural isomorphisms (127) (by Prop. A.15). By essential uniqueness of adjoint functors, this implies the natural
isomorphisms (128).

Whitehead L∞-algebras.

Proposition 3.61 (Rational Whitehead L∞-algebras). For X ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50), there

exists a nilpotent L∞-algebra (Def. 3.34)

lX ∈ L∞Algebras≥ 0,nil
R,fin , (129)

unique up to isomorphism, whose Chevalley-Eilenberg algebra (Def. 3.25) is the minimal model (Def. 3.45) of the
PL de Rham complex of X (Def. 3.54):

CE(lX) :=
(
Ω•PLdR(X)

)
min ∈W

pmin
X // Ω•PLdR(X) . (130)

Proof. By the PL de Rham theorem (Prop. 3.55) and the assumption that X is connected, it follows that we have
HΩ0

PLdR(X) = R . Therefore Prop. 3.47 applies and says that
(
Ω•PLdR(X)

)
min ∈ SullivanModels≥ 1

R exists, and is
unique up to isomorphism. With this, the equivalence (102) says that lX exists and is unique up to isomorphism.

Notice the immediate corollary:

Proposition 3.62 (Rational Whitehead L∞-algebra encodes rational homotopy type). The rational Whitehead L∞-
algebra lX in Prop. 3.61 encodes the rationalized homotopy type (Def. 3.53) of X ∈Ho

(
TopologicalSpacesQu

)finR
≥1,nil,

in that:
LRX ' exp ◦CE

(
lX
)
∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (131)

with exp from (116).

Proof. This is the composite of the following sequence of isomorphisms in the homotopy category:

LRX ' Rexp ◦Ω
•
PLdR(X)

' Rexp ◦
(
Ω
•
PLdR(X)

)
min

' Rexp ◦CE(lX)

' exp ◦CE(lX) .

Here the first step is the fundamental theorem (Prop. 3.58), the second step is the existence of the minimal model
(Prop. 3.47) for the PL de Rham complex (using that it is cohomologically connected, by the PL de Rham theorem,
Prop. 3.55), the third step is the existence of the rational Whitehead L∞-algebra (Prop. 3.61), and the last step uses
that Sullivan models are cofibrant (Prop. 3.43), hence fibrant in

(
DiffGradedCommAlgebras≥ 0

R

)op
proj, so that on these

objects the right derived functor Rexp is given by the plain functor exp.
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Proposition 3.63 (Rational homotopy groups in the rational Whitehead L∞ algebra).
Let X ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50).

(i) If X is simply connected, π1(X) = 1 (Example 3.52), then there is an isomorphism of graded vector spaces
(Def. 3.2) between the graded vector space underlying (82) the Whitehead L∞-algebra lX (Prop. 3.61) and the
rationalized homotopy groups of the based loop space ΩX:

Whitehead
L∞-algebra

lX '

rationalized
homotopy groups

π•(ΩX)⊗ZR ∈ GradedVectorSpaces≥ 0
R .

(ii) If π1(X) is not necessarily trivial but abelian, then this statement still holds with lX replaced by its homology
with respect to the unary differential [−] (84).
(iii) If π1(X) is not abelian, then (ii) still holds in degrees ≥ 2.

Proof. Under translation through Prop. 3.61 and Def. 3.25, and using π•(ΩX)' π•+1(X), claim (i) is equivalent
to the existence of a dual isomorphism:

CE(lX)/
CE(lX)2 ' HomZ

(
π•(X), R

)
∈ GradedVectorSpaces≥ 0

R , (132)

where the left hand side denotes the graded vector space of indecomposable elements in the Chevalley-Eilenberg
algebra (the α

(i)
ni in (97)). In this form, this is the statement of [BG76, Theorem 11.3 with Def. 6.12], in the special

case when, with π1(X) = 1, the unary differential [−] in lX vanishes (Example 3.46). The generalizations follow
analogously.

Remark 3.64 (Equivalent L∞-structures on Whitehead products). The original discussion of the Whitehead algebra
structure on the homotopy groups of a space is in terms of differential-graded Lie algebras ([Hil55, Theorem B]),
as are the Quillen models of rational homotopy theory [Qu69].
(i) Notice that dg-Lie algebras (Example 3.26) and L∞-algebras with minimal CE-algebra (Def. 3.45) are two
opposite classes of L∞-algebras: The former has k-ary brackets (84) only for k ≤ 2, the latter only for k ≥ 2 (in the
simply connected case, by Example 3.46). Yet, quasi-isomorphisms connect algebras in one class to those in the
other: The transmutation of dg-Lie- into minimal L∞-algebras is described in [BBMM16, Theorem 2.1]; that from
L∞- to dg-Lie-algebras in [FRS13, §1.0.2].
(ii) The minimal L∞-algebra structure on lX that we obtained in Prop. 3.61, 3.63, has the property that its k-ary
brackets are, up to possibly a sign, equal to the order-k higher Whitehead products on X [BBMM16, Prop. 3.1].

Example 3.65 (Rationalization of Eilenberg-MacLane spaces). Since the homotopy types of Eilenberg-MacLane-
spaces K(A,n) = Bn+1A (see (14)) are fully characterized by their homotopy groups (for discrete abelian groups A,
e.g. [AGP02, §6]))

πk
(
Bn+1A

)
'
{

A | k = n+1
0 | k 6= n+1

we have, for n ∈ N:
(i) The rationalization (Def. 3.53) of the integral EM-space is the real EM-space

LR
(
Bn+1Z

)
' Bn+1R . (133)

(ii) Their Whitehead L∞-algebra (Prop. 3.61) is the line Lie n-algebra bnR (Def. 3.27), by Prop. 3.63:

lBn+1Z ' bnR . (134)
(iii) Hence, by Prop. 3.62,

Bn+1R ' exp ◦CE
(
bnR

)
∈ Ho

(
TopologicalSpacesQu

)
. (135)

Example 3.66 (Rationalization of n-spheres). The Serre finiteness theorem (see [Ra86, Thm. 1.1.8]) says that the
homotopy groups of n-spheres for n≥ 1 are of the form

πn+k
(
Sn) '


Z | k = 0
Z⊕fin | k = 2m and n = 2m−1
fin | otherwise
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where “fin” stands for some finite group. Since finite groups are pure torsion, hence have trivial rationalization,
this means that the rational homotopy groups of spheres are:

πn+k
(
Sn)⊗Z R '


R | k = 0
R | k = 2m and n = 2m−1
0 | otherwise .

Moreover, the fact that ordinary cohomology is represented by Eilenberg-MacLane spaces (Example 2.2) implies
that

Hk(Sn; R
)
∼
{

R | k = n
0 | otherwise.

With this, Prop. 3.63 together with Prop. 3.55 implies that the Whitehead L∞-algebras of spheres (Prop. 3.61) are
as follows:

CE
(
lSn) ' R

[
ωn
]/(

d ωn = 0.
)

if n is odd (136)

and

CE
(
lSn) ' R

[
ω2n−1

ωn

]/(d ω2n−1 =−ωn∧ωn

d ωn = 0

)
if n > 1 is even (137)

Example 3.67 (Rationalization of loop spaces). The minimal Sullivan model (Def. 3.45) of a loop space A ' ΩA′

has vanishing differential (e.g. [FHT00, p. 143]). Therefore, Prop. 3.63 implies that the rational Whitehead
L∞-algebra lA (Prop. 3.61) of A is the direct sum of line Lie n-algebras bnR (Example 3.27):

lA '
⊕
n∈N

bn(
πn+1(A)⊗Z R

)
∈ L∞Algebras≥ 0,nil

R,fin .

Accordingly, its Chevalley-Eilenberg algebra (Def. 3.24) is the tensor product of those of the summands:

CE
(
lA
)
'
⊗
n∈N

CE
(
bn(

πn+1(A)⊗Z R
))

∈ DiffGradedCommAlgebras≥ 0
R .

Relative rational Whitehead L∞-algebras. In generalization of Prop. 3.61 we have:

Proposition 3.68 (Relative rational Whitehead L∞-algebras). For A,B,F ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def.

3.50) and p a Serre fibration (Example A.7) from A to B with fiber F

F
fib(p) // A

p ∈ Fib��
B

there exists a nilpotent L∞-algebra (Def. 3.34)

lBA ∈ L∞Algebras≥ 0,nil
R,fin , (138)

unique up to isomorphism, whose Chevalley-Eilenberg algebra (Def. 3.25) is the relative minimal model (Def.
3.45, Prop. 3.48) of the PL de Rham complex of p (Def. 3.54), relative to CE(lB) (from Prop. 3.61):

CE(lBA) :=
(
Ω•PLdR(A)

)
minCE(lB) ∈W

pminB
A // Ω•PLdR(A)

CE(lB)
7 Wrelative minimal model CE(lp)

jj

∈W

pmin
B // Ω•PLdR(B) .

Ω•PLdR(p)
OO

(139)

Proof. By the PL de Rham theorem (Prop. 3.55) and the assumption that A and B are connected, it follows that
we have HΩ0

PLdR(A) = R and HΩ0
PLdR(B) = R . Moreover, by the assumption that p is a Serre fibration with

connected fiber, it follows that H1(Ω•PLdR(p)) is injective (e.g. [FHT00, p. 196]).
Therefore Prop. 3.48 applies and says that

(
Ω•PLdR(A)

)
minB
∈ SullivanModels≥ 1

R exists, and is unique up to
isomorphism. With this, the equivalence (102) says that lBA exists and is unique up to isomorphism.
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Lemma 3.69 (Minimal relative Sullivan models preserve homotopy fibers [FHT00, §15 (a)][FHT15, Thm. 5.1]).
Consider F,A,B ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) and let p be a Serre fibration from A to B (Example

A.7) such that the homology groups H•(F,R) of the fiber are nilpotent as π1(B)-modules (for instance in that B is
simply-connected or that the fibration is principal). Then the cofiber of the minimal relative Sullivan model for p
(139) is the minimal Sullivan model (130) for the homotopy fiber F (Def. A.22):

F
fib(p) // A

p ∈Fib
��

CE(lF) oo
cofib(CE(lp))

CE
(
lBA
)

OO
CE(lp)
� ?

B CE(lB)

(140)

See Prop. 3.73 below for the key application of Lemma 3.69.

Non-abelian real cohomology.

Definition 3.70 (Non-abelian real cohomology). Let X ,A ∈ TopologicalSpaces Then the non-abelian real co-
homology of X with coefficients in A is the non-abelian cohomology (Def. 2.1) of X with coefficients in the
rationalization LRA (Def. 3.53)

H(X ;LRA) := Ho
(
TopologicalSpacesQu

)
(X , LRA) . (141)

Remark 3.71 (Non-abelian real cohomology subsumes ordinary real cohomology). For n ∈ N, non-abelian real
cohomology (Def. 3.70) with coefficients in the rationalized classifying space (Example 3.65)

LR
(
Bn+1Z

)
' BnR

is naturally equivalent, by Example 2.2, to ordinary real cohomology in degree n:

H
(
X ; Bn+1R

)
' Hm+1(X ; R) .

More generally:

Proposition 3.72 (Non-abelian real cohomology with coefficients in loop spaces).
Let A ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) such that it admits loop space structure, hence such that there

exists A′ with
A ' ΩA′ ∈ Ho

(
TopologicalSpacesQu

)
.

Then the non-abelian real cohomology (Def. 3.70) with coefficients in LRA is naturally equivalent to ordinary real
cohomology with coefficients in the rationalized homotopy groups of A:

H
(
X ; LRA

)
'

⊕
n∈N

Hn+1(X ; πn+1(A)⊗Z R
)
. (142)

Proof. By Example 3.67 the we have

CE
(
lA
)
'
⊗
n∈N

CE
(
bn(

πn+1(A)⊗Z R
))

Noticing that the tensor product of dgc-algebras is the coproduct in the category of DiffGradedCommAlgebras≥ 0
R

(Example 3.22), and hence the Cartesian product in the opposite category, the right adjoint functor exp (116)
preserves this, so that

exp ◦CE
(
lA
)
' ∏

n∈N

(
exp ◦CE

(
bn(πn+1(A)⊗Z R)

))
∈ Ho

(
TopologicalSpacesQu

)
.

But, by Prop. 3.62 and by (135) in Example 3.65, this says that:

LRA ' ∏
n∈N

(
Bn+1(

πn+1(A)⊗Z R
))

∈ Ho
(
TopologicalSpacesQu

)
.

Using this, and that cohomology preserves products of coefficients, we get the following sequence of natural
bijections:
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H
(
X ; LRA

)
' H

(
X ; ∏

n∈N
Bn+1(

πn+1(A)⊗Z R
))

'∏
n∈N

H
(

X ; Bn+1(
πn+1(A)⊗Z R

))
= ∏

n∈N
Hn+1(X : πn+1(A)⊗Z R

)
=
⊕
n∈N

Hn+1(X : πn+1(A)⊗Z R
)
.

The composite of these is the desired (142).

Twisted non-abelian real cohomology.

Proposition 3.73 (Rationalization of local coefficients – “fiber lemma” [BK72, §II]). Let
A // A�G

ρ��
BG

be a local coefficient bundle (Def. 2.29) such that all spaces are connected, nilpotent and of R-finite tupe,
A, BG, A�G ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) and such that the action of π1(BG) on H•(A,R) is

nilpotent (for instance in that BG is simply connected). Then:
(i) Component-wise rationalization (Def. 3.53) yields a natural transformation to as rational local coefficient
bundle as shown in the middle here:

minimal Sullivan model CE(lA) oo
cofib(CE(lp))

CE
(
lBG

(
A�G

))
OO

CE(lρ)

� ?

rationalization LRA
hofib(LRρ) //

(
LRA

)
�(LRG)

LRρ

��
local coefficient bundle A

hofib(ρ) //

ηR
A

55

A�G

ρ

��

ηR
A�G

44

CE
(
lBG

)
B
(
LRG

)
BG ηR

BG

44

(143)

(ii) with minimal (relative) Sullivan model (Def. 3.45) as shown on the right.

Proof. First, since forming classifying spaces shifts homotopy groups up in degree, it follows that BG
BηR

G // B(LRG)
induces an isomorphism on rationalized homotopy groups and hence is the rationalization map (Def. 3.53) on BG.

Moreover, Lemma 3.69 says that the homotopy fiber (Def. A.22) of the rationalized fibration has Sullivan
model CA(lA), this being the cofiber of a relative Sullivan model for the rationalized fibrations, as shown on the
right of (143). Since relative Sullivan models are cofibrations in

(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.43),

hence fibrations in the opposite model structure (Example A.9), this means, with the fundamental theorem (121)
that CE(lA) is in fact a Sullivan model for the homotopy fiber (Def. A.22) of the rationalized fibration. Hence
the homotopy fiber of the rationalized fibration is the rationalization LRA of the homotopy fiber of the original
fibration, as shown in (143).

Together these say that the rationalized fibration is an LRA-fibration over B
(
LRG

)
. With this, Prop. 2.28

implies that the total space of the rationalized fibration is a homotopy quotient
(
LRA

)
�
(
LRG

)
, which is hence the

rationalization of A�G, as shown in the middle of (143).

Due to Prop. 3.73 it makes sense to say, in generalization of Def. 3.70:

Definition 3.74 (Twisted non-abelian real cohomology). Let X ∈ TopologicalSpaces and let A�G
ρ // BG be a

local coefficient bundle (Prop. 2.28, Def. 2.29) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50). Then the twisted

non-abelian real cohomology of X with local coefficients ρ is the twisted non-abelian LRA-cohomology (Def.
2.29) of X with coefficients in the rationalized local coefficient bundle LRρ from Prop. 3.73:

Hτ
(
X ; LRA

)
:= Ho

((
TopologicalSpaces/LRBG

Qu

))(
τ , LRρ

)
.
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3.3 Non-abelian de Rham theorem

We establish non-abelian de Rham theory for differential forms with values in (nilpotent) L∞-algebras, following
[SSS09a][FSSt10]. The main result is the non-abelian de Rham theorem, Theorem 3.85, and its generalization to
the twisted non-abelian de Rham theorem, Theorem 3.102.

L∞-Algebra valued differential forms.

Definition 3.75 (Flat L∞-algebra valued differential forms [SSS09a, §6.5][FSSt10, §4.1]).
(i) For X ∈ SmoothManifold and g ∈ L∞Algebras≥ 0

R,fin (Def. 3.25), a flat g-valued differential form on X is a mor-
phism of dgc-algebras (Def. 3.17)

Ω•dR(X) oo
A CE(g) ∈ DiffGradedCommAlgebras≥ 0

R (144)

to the smooth de Rham dgc-algebra of X (Example 3.23) from the Chevalley-Eilenberg dgc-algebra of g (Def.
3.25).
(ii) We write

ΩdR(X ; g)flat := DiffGradedCommAlgebras≥ 0
R

(
CE(g) , Ω

•
dR(X)

)
(145)

for the set of all flat g-valued forms on X .

Example 3.76 (Flat Lie algebra valued differential forms). Let g ∈ LieAlgebrasR,fin be a Lie algebra (88) with Lie
bracket [−,−]. Then a flat g-valued differential form in the sense of Def. 3.75 is the traditional concept: a g-valued
1-form satisfying the Maurer-Cartan equation:

Ω
•
dR(X ; g)flat '

{
A ∈Ω

1
dR(X)⊗g

∣∣ dA+[A∧A] = 0
}
. (146)

One way to see this is to appeal to the classical fact that the Chevalley-Eilenberg algebra of a finite-dimensional Lie
algebra (Example 3.24) is isomorphic to the dgc-algebra of left invariant differential forms on the corresponding Lie
group G, which is generated from the Maurer-Cartan form θ ∈Ω1

dR(G)⊗g satisfying θ|TeG = idg and dθ = [θ ∧θ ].
More explicitly, for {va} a linear basis for g (78) with structure constants { f c

ab} (79), we see from (80) that a
dgc-algebra homomorphims (144) has the following components (second line) and constraints (third line):

Ω•dR(X) oo
A

flat Lie algebra valued differential form

R
[
{θ (a)

1 }
]/(

d θ
(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

)
' CE(g) .

A(c) oo components �
_

d
��

θ
(c)
1_

d��

dA(c) constraints f c
ab A(b)∧A(a) oo � f c

ab θ
(a)
1 ∧θ

(b)
1

(147)

Example 3.77 (Ordinary closed forms are flat line L∞-algebra valued forms). For n ∈ N, consider g = bnR the
line Lie (n+1)-algebra (Example 3.27). Then the corresponding flat g-valued differential forms (Def. 3.75) are in
natural bijection to ordinary closed (n+1)-forms:

ΩdR(X ; bnR)flat ' Ω
n+1
dR (X)closed . (148)

That is, by (90), we see that the elements on the left of (148) have the following component (second line) subject
to the follows constraint (third line):

Ω•dR(X)

flat
line Lie (n+1)-algebra-valued

differential form // R[cn+1]
/
(d cn+1 = 0)' CE(bnR) .

Cn+1 oo
component

_
d ��

cn+1_
d��

dCn+1
constraint 0 oo � 0

(149)
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Example 3.78 (Flat String Lie 2-algebra valued differential forms). Flat L∞-algebras valued forms (Def. 3.75) with
values in a String Lie 2-algebra stringg (Example 92) are pairs consisting of a flat g-valued 1-form A1 (Example
3.76) and a coboundary 2-form B2 for its Chern-Simons form CS(A) := c

〈
A∧ [A∧A]

〉
:

ΩdR
(
X ; stringg

)
flat '

{
B2,
A1
∈Ω

•
dR(X)

∣∣∣∣ d B2 =
1
c CS(A) ,

d A1 =−[A1∧A1]

}
.

Namely, from (93) we see that in degree 1 the components of and constraints on such a differential form datum are
exactly as in (147), while in degree 2 they are as follows:

Ω•dR(X) oo
flat String Lie 2-algebra valued form R

[
b2,

{θ (a)
1 }

]/( d b2 = µabc θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1

dθ
(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

)
' CE

(
stringg

)
.

B2 oo
component in degree 2 �

_

d
��

b2_
d
��

dB2
constraint

µabc A(c)
1 ∧A(b)

1 ∧A(a)
1
oo �

µabc θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1

(150)

Example 3.79 (Flat sphere-valued differential forms). Flat L∞-algebras valued forms (Def. 3.75) with values in
the rational Whitehead L∞-algebra (Prop. 3.61) of a sphere (Example 3.66) of positive even dimension 2k are pairs
consisting of a closed differential 2k-form and a (4k−1)-form whose differential equals minus the wedge square
of the 2k-form:

ΩdR
(
−; lS2k) ' { G4k−1,

G2k
∈ Ω

•
dR(X)

∣∣∣∣∣d G4k−1 =−G2k∧G2k,

d G2k = 0

}
.

Namely, from (137) one sees that the components of and the constraints on an lS2k-valued form are as follows:

Ω•dR

(
X
)
oo flat lS2k-valued form R

[
ω4k−1,
ω2k

]/(d ω4k−1 =−ω2k∧ω2k,

d ω2k = 0

)
= CE

(
lS2k
)

G2k
d ��

oo component in degree 2k �
ω2k_

d��
d G2k

constraint 0 oo � 0

G4k−1_
d ��

oo component in degree 4k−1 �
ω4k−1_

��
d G4k−1

constraint−G2k∧G2k oo
� −ω4k∧ω4k

(151)

For 2k = 4 this is the structure of the equations of motion of the C-field in 11-dimensional supergravity (modulo
the Hodge self-duality constraint G7 = ?G4) [Sa13, §2.5].

Example 3.80 (PL de Rham right adjoint via L∞-algebra valued forms). For n ∈ N, the right adjoint functor in the
PS de Rham adjunction (125) sends the Chevalley-Eilenberg algebra (Def. 3.25) of any g ∈ L∞Algebras≥ 0,nil

R,fin (Def.
3.34) to a simplicial set of flat g-valued differential forms (Def. 3.75):

[exp(g)(Rn) := expPS,n
(
CE(g)

)
: [k] 7−! ΩdR

(
Rn×∆

k; g
)

flat ∈ SimplicialSets

(by direct comparison of (126) with (145)). Regarded as a simplicial presheaf over CartesianSpaces (Def. 339),
this construction is the moduli ∞-stack of flat L∞-algebra valued differential forms (see §4.3 below).
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Non-abelian de Rham cohomology.

Definition 3.81 (Coboundaries between flat L∞-algebra valued forms). Let X ∈ SmoothManifolds and (from Def.
3.25) g ∈ L∞Algebras≥ 0

R,fin. For
A(0), A(1) ∈ ΩdR(X ; g)flat

a pair of flat g-valued differential forms on X (Def. 3.75), we say that a coboundary between them is a flat g-valued
differential form on the cylinder manifold over X (its Cartesian product manifold with the real line):

Ã ∈ Ω(X×R; g)flat (152)
such that its restrictions along

X ' X×{0} �
� iX

0 // X×R oo
iX
1 ? _ X×{1} ' X

are equal to A(0) and to A(1), respectively:

(iX
0 )
∗Ã = A(0) and (iX

1 )
∗Ã = A(1) . (153)

If such a coboundary exists, we say that A(0) and A(1) are cohomologous, to be denoted

A(0) ∼ A(1) .

Definition 3.82 (Non-abelian de Rham cohomology). Let X ∈ SmoothManifolds and g ∈ L∞Algebras≥ 0
R,fin (Def.

3.25). Then the non-abelian de Rham cohomology of X with coefficients in g is the set

HdR(X ; g) :=
(
ΩdR(X ; g)flat

)
/∼ (154)

of equivalence classes with respect to the coboundary relation from Def. 3.81 on the set of flat g-valued differential
forms on X (Def. 3.75).

We recall the following basic facts (e.g. [GT00, Rem 3.1]):

Lemma 3.83 (Fiberwise Stokes theorem and Projection formula). Let X be a smooth manifold and let F be a
compact smooth manifold with corners, e.g. F = ∆k a standard k-simplex, which for k = 1 is the interval F = [0,1].

Then fiberwise integration over F of differential forms on the Cartesian product manifold X×F

Ω•dR(X×F)

∫
F // Ω

•−dim(F)
dR (X) e.g. Ω•dR(X×R)

∫
[0,1] // Ω•−1

dR (X)

satisfies, for all α ∈Ω•dR(X×F) and β ∈Ω•dR(X):
(i) The fiberwise Stokes formula:∫

F
dα = (−1)dim(F) d

∫
F

α +
∫

∂F
α e.g. d

∫
[0,1]

α = (iX1 )
∗
α − (iX0 )

∗
α −

∫
[0,1]

dα , (155)

where

X ' X×{0} �
� iX0 // X×R oo

iX1 ? _ X×{1} ' X
are the boundary inclusions.
(ii) The projection formula∫

F

(
pr∗X β

)
∧α = (−1)dim(F)deg(β )

β ∧
∫

F
α , e.g.

∫
[0,1]

(
pr∗X β

)
∧α = (−1)deg(β )

β ∧
∫
[0,1]

α , (156)

where
X×F

prX // X

is projection on the first factor.

Proposition 3.84 (Non-abelian de Rham cohomology subsumes ordinary de Rham cohomology). For any n ∈ N,
let g = bnR be the line Lie (n+ 1)-algebra (Example 3.27). Then the non-abelian de Rham cohomology with
coefficients in g (Def. 3.82) is naturally equivalent to ordinary de Rham cohomology in degree n+1:

HdR(−; bnR) ' Hn+1
dR (−) . (157)

40



Proof. From Example 3.77, we know that the canonical cocycle sets are in natural bijection

ΩdR(X ; bnR)flat ' Ω
n+1
dR (X)closed .

Therefore, it just remains to see that the coboundary relations in both cases coincide. By the explicit nature (149)
of the above natural bijection and by the Definition 3.81 of non-abelian coboundaries, we hence need to see that a
pair of closed forms

C(0)
n+1, C(1)

n+1 ∈Ω
n+1
dR (X)closed

has a de Rham coboundary, i.e.,

∃ hn ∈ Ω
n
dR(X) , such that C0

n+1 +dhn = C(1)
n+1 , (158)

precisely if the pair extends to a closed (n+1)-form on the cylinder over X , as in (152) (153):

∃ C̃n+1 ∈ Ω
n+1
dR (X×R)closed , such that

(
iX
0
)∗C̃n+1 = C(0)

n+1 and
(
iX
1
)∗C̃n+1 = C(1)

n+1 . (159)

That (158)⇔ (159) is a standard argument: Let t denote the canonical coordinate function on R. In one direction,
given hn as in (158), the choice

C̃n+1 := (1− t)pr∗X
(
C(0)

n+1

)
+ t pr∗X

(
C(1)

n+1

)
+dt ∧pr∗X

(
hn
)

clearly satisfies (159). In the other direction, given C̃n+1 as in (159), the choice

hn :=
∫
[0,1]

C̃n+1

satisfies (158), by the fiberwise Stokes theorem (Lemma 3.83).

The non-abelian de Rham theorem.

Theorem 3.85 (Non-abelian de Rham theorem). Let X ,A ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50), and let

X admit the structure of a smooth manifold. Then the non-abelian de Rham cohomology (Def. 3.82) of X with
coefficients in the real Whitehead L∞-algebra lA (Prop. 3.61) is in natural bijection with the non-abelian real
cohomology (Def. 3.70) of X with coefficients in LRA (Def. 3.53):

H
(
X ; LRA

)
' HdR(X ; lA) . (160)

Proof. Consider the following sequence of natural bijections:

H
(
X ; LRA

)
= Ho

(
TopologicalSpacesQu

)(
X , LRA

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)(
Ω
•
PLdR(A) , Ω

•
PLdR(X)

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)(
CE(lA) , Ω

•
PL(X)

)
' HdR(X ; lA) .

(161)

Here the first line is the definition Def. 3.70. Then the first step is the fundamental theorem of rational homotopy
theory (Prop. 3.58). The second step uses the following isomorphisms: CE(lA) ' Ω•PLdR(A) (Prop. 3.61) and
Ω•PLdR(X) ' Ω•dR(X) (Lemma 3.88) in the homotopy category. The last step is Lemma 3.87. The composite of
these natural bijections gives the desired bijection (160).

We now prove the three lemmas used in the proof of Theorem 3.85:

Lemma 3.86 (De Rham complex over cylinder of manifold is path space object). For X ∈ SmoothManifolds,
consider the following morphisms of dgc-algebras (Def. 3.17)

Ω•dR(X)
(prX )

∗
// Ω•dR

(
X×R

) (i∗0, i
∗
1) // Ω•dR(X)⊕Ω•dR(X) (162)

(from the de Rham complex of X (Example 3.23) to that of its cylinder manifold X ×R, to its Cartesian product
with itself, by Example 3.22), given by pullback of differential forms along these smooth functions:

X oo
prX X×R oo

(i0, i1) ? _
(
X×{0}

)
t
(
X×{1}

)
' X tX .

This is a path space object (Def. A.11) for Ω•dR(X) in
(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.36).
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Proof. (i) It is clear by construction that the composite morphism is the diagonal.
(ii) That (prX)

∗ is a weak equivalence, hence a quasi-isomorphism, follows from the de Rham theorem, using that
ordinary cohomology is homotopy invariant: H•(X×R;R)' H•(X ;R).
(iii) That (i∗0, i

∗
1) is a fibration, namely degreewise surjective, is seen from the fact that any pair of forms on the

boundaries X ×{0}, X ×{1} may be smoothly interpolated to zero along any small enough positive parameter
length, and then glued to a form on X×R.

Lemma 3.87 (Non-abelian de Rham cohomology via the dgc-homotopy category). Let X ∈ SmoothManifolds and
g ∈ L∞Algebras≥ 0,nil

R,fin (Def. 3.34). Then the non-abelian de Rham cohomology of X with coefficients in g (Def. 3.82)
is in natural bijection with the hom-set in the homotopy category of

(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.36)

from CE(g) (Def. 3.25) to Ω•dR(X) (Example 3.23):

HdR
(
X ; g

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)(
CE(g) , Ω

•
dR(X)

)
. (163)

Proof. Consider a pair of dgc-algebra homomorphisms

A(0), A(1) ∈ DiffGradedCommAlgebras≥ 0
R

(
CE(g) , Ω

•
dR(X)

)
(164)

hence of flat g-valued differential forms, according to Def. 3.75. Observe that:
(i) CE(g) is cofibrant in

(
DiffGradedCommAlgebras≥ 0

R

)
proj (103). (by Prop. 3.43, and since g is assumed to be

nilpotent (101));

(ii) Ω•dR(X) is fibrant in
(
DiffGradedCommAlgebras≥ 0

R

)
proj (103). (by Remark 3.37);

(iii) A right homotopy (Def. A.12) between the pair (164) of morphisms, with respect to the path space object
Ω•dR(X×R) from Lemma 3.86, namely a morphism Ã making the following diagram commute

Ω•dR(X)
OO

i∗0

jj
A(0)

Ω•dR(X×R)
i∗1 ��

oo Ã CE(g)

Ω•dR(X)
tt A(1)

(165)

is manifestly the same as a coboundary Ã between the corresponding flat g-valued forms according to Def.
3.81.

Therefore, Prop. A.16 says that the quotient set (154) defining the non-abelian de Rham cohomology is in natural
bijection to the hom-set in the homotopy category.

Lemma 3.88 (PL de Rham complex on smooth manifold is equivalent to smooth de Rham complex). Let X be a
smooth manifold. Then
(i) There exists a zig-zag of weak equivalences (Def. 3.35) in

(
DiffGradedCommAlgebras≥ 0

R

)
proj (103) between the

smooth de Rham complex of X (Example 3.23) and the PL de Rham complex of its underlying topological space
(Def. 3.54).
(ii) In particular, both are isomorphic in the homotopy category:

X smooth manifold ⇒ Ω
•
dR(X) ' Ω

•
PLdR(X) ∈ Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)
.

Proof. Let Ω•PSdR(−) (for “piecewise smooth”) be defined as the PL de Rham complex in Def. 3.54, but with
smooth differential forms on each simplex. Notice that this comes with the canonical natural inclusion

Ω•PLdR(−)
� � ipoly // Ω•PSdR(−) .

Let then Tr(X)∈ SimplicialSets be any smooth triangulation of X . This means that we have a homeomorphism out
of its geometric realization to X

|Tr(X)| p

homeo
// X , (166)
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which restricts on the interior of each simplex to a diffeomorphism onto its image; and that we have an inclusion

Tr(X) �
� ηTr(X)

∈W
// Sing

(
|Tr(X)|

) Sing(p)

∈ Iso
// Sing(X) , (167)

which is a weak equivalence (by Example A.35). In summary, this gives us the following zig-zag of dgc-algebra
homomorphisms:

Ω•PLdR

(
Tr(X)

)
ipoly

%%

Ω•dR(X)

p∗

||
Ω•PLdR(X) = Ω•PLdR

(
Sing(X)

)(ηS)
∗ 88

Ω•PSdR

(
Tr(X)

)
Here the two morphisms on the right are quasi-isomorphisms by [GM13, Cor. 9.9] (as in Prop. 3.60). The
morphism on the left is a quasi-isomorphism because i is a weak homotopy equivalence (331) and since Ω•PLdR
preserves weak equivalences, by Ken Brown’s Lemma (Lemma A.19), since it is a Quillen left adjoint, by Prop.
3.57, and since every simplicial set is cofibrant (Example A.8).

Flat twisted L∞-algebra valued differential forms. We generalize the above discussion to include twistings.

Definition 3.89 (Local L∞-algebraic coefficients). We say that a local L∞-algebraic coefficient bundle is a fibration

g // b̂
p��

b

(168)

in L∞Algebras≥ 0
R,fin (Def. 3.25), hence a morphism such that under passage to Chevalley-Eilenberg algebras (87) we

have a cofibration
CE(g) oo

cofib(CE(p))
CE
(
b̂
)

OO
CE(p) ∈ Cof

CE(b)
(169)

in
(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.36).

In generalization of Def. 3.75, we say:

Definition 3.90 (Flat twisted L∞-algebra valued differential forms).
(i) Let X ∈ SmoothManifolds and b̂ (168) a local L∞-algebraic coefficient bundle (Def. 3.89). For

τdR ∈ ΩdR(X ; b)flat (170)

a flat b-valued differential form on X (Def. 3.75), we say that a flat τ-twisted g-valued differential form on X is a
morphism of dgc-algebras (Def. 3.17) in the slice over CE(b)

Ω•dR(X) jj

twist

τdR

oo
flat τdR-twisted

g-valued differential form

A
CE
(
b̂
)

55
CE(p)

local
L∞-algebraic
coefficients

�'CE(b)

(171)

(ii) We write
Ω

τdR
dR (X ; g)flat :=

(
DiffGradedCommAlgebras≥ 0

R

)
/CE(b)(τdR , p)

for the set of all flat τdR-twisted g-valued differential forms on X .

Remark 3.91 (Underlying flat forms of flat twisted forms). Let X ∈ SmoothManifolds, let g // b̂
p // b be a local

L∞-algebraic coefficient bundle (Def. 3.89), and let τdR ∈ ΩdR
(
X ; b

)
. Then there is a canonical forgetful natural

transformation
ΩτdR(X ; g)flat // Ω

(
X ; b̂

)
flat (172)

from flat τdR-twisted g-valued differential forms (Def. 3.90) to flat b̂-valued differential forms (Def. 3.75), given
by remembering only the top morphism in (171).
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Example 3.92 (L∞-coefficient bundle for H3-twisted differential forms [FSS16a, §4][FSS16b, §4][BMSS19, Lem.
2.31]). Consider the local L∞-algebraic coefficient bundle (Def. 3.89) given by the following multivariate polyno-
mial dgc-algebras (Def. 3.30):

CE
(
lku1

)
= R


...

f5,
f3,
f1,

/


...

d f5 = 0

d f3 = 0

d f1 = 0

 oo ω2k+1 [ω2k+1 R


...

f5,
f3,
f1,
h3


/


...

d f5 = h3∧ f3,

d f3 = h3∧ f1,

d f1 = 0,

d h3 = 0


= CE

(
l
(
ku1�BU(1)

))

OO
h3

7!

h3

R
[
h3
](

d h3 = 0
)
= CE

(
b2R

)
Here the rational model of the classifying space ku1 for complex topological K-theory in degree 1 and for its
twisted version is as in [FSS16a, §4][FSS16b, §4][BMSS19, Lem. 2.31]. In this case:
(i) A twist (170) is equivalently an ordinary closed 3-form form (by Example 3.77):

H3 ∈ ΩdR
(
X ; b2R

)
flat ' Ω

3
dR(X)closed . (173)

(ii) The flat τdR ∼ H3-twisted lku1-valued differential forms according to Def. 3.90 are equivalently sequences of
odd-degree differential forms F2k+1 ∈Ω

2k+1
dR (X) satisfying the H3-twisted de Rham closure condition (see [RW86,

(23)][GS19c]):
Ω

τdR
(
X ; lku1

)
flat '

{
F2•+1 ∈Ω

2•+1
dR

∣∣∣ d ∑
k

F2k+1 = H3∧∑
k

F2k−1

}
(174)

(where we set F2k−1 := 0 if 2k−1 < 0, for convenience of notation).

In direct generalization of Example 3.92, we have:

Example 3.93 (L∞-coefficient bundle for higher twisted differential forms [FSS18, Def. 2.14]). For r ∈ N, r ≥ 1,
consider the local L∞-algebraic coefficient bundle (Def. 3.89) given by the following multivariate polynomial
dgc-algebras (Def. 3.30):

CE
(
⊕

k∈N
b2rkR

)
CE
((
⊕

k∈N
b2rkR

)
�B2r−1U(1)

)

R


...

f4r+1,
f2r+1,

f1,

/


...

d f4r+1 = 0

d f2r+1 = 0

d f1 = 0

 oo f2rk+1 [ f2rk+1 R


...

f4r+1,
f2r+1,

f1,
h2r+1


/


...

d f4r+1 = h2r+1∧ f2r+1,

d f2r+1 = h2r+1∧ f1,

d f1 = 0,

d h2r+1 = 0


OO

h2r+1

7!

h2r+1

R
[
h2r+1

](
d h2r+1 = 0

)
CE
(
b2rR

)

(175)

In this case:
(i) A twist (170) is equivalently an ordinary closed (2r+1)-form form (by Example 3.77):

H2r+1 ∈ ΩdR
(
X ; b2rR

)
flat ' Ω

2r+1
dR (X)closed . (176)
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(ii) The flat τdR ∼ H2r+1-twisted ⊕
k∈N

b2rkR-valued differential forms according to Def. 3.90 are equivalently se-

quences of differential forms F2r•+1 ∈Ω
2k•+1
dR (X) satisfying the H(2r+1)-twisted de Rham closure condition (186):

Ω
τdR
(
X ; ⊕

k∈N
b2rkR

)
flat '

{
F2r•+1 ∈Ω

2r•+1
dR

∣∣∣ d ∑
k

F2rk+1 = H2r+1∧∑
k

F2rk−1

}
(177)

(where we set F2rk−1 := 0 if 2rk−1 < 0, for convenience of notation).

In twisted generalization of Example 3.79, we have the following:

Example 3.94 (Flat twisted differential forms with values in Whitehead L∞-algebras of spheres and twistor space).
The L∞-algebraic local coefficient bundles (Def. 3.89) given as the relative Whitehead L∞-algebras (Prop. 3.68) of
the local coefficient bundles (60) for twisted and twistorial Cohomotopy (Example 2.42) are as shown on the right
of the following diagram [FSS19b, Lemma 3.19][FSS20, Thm. 2.14]:

CE
(
l(BSp(2))(CP3�Sp(2))

)
OO

(tH�Sp(2))∗

= CE(lBSp(2))


h3,
f2,
ω7,
ω4

/


d h3 = ω4− 1
4 p1− f2∧ f2

d f2 = 0

d ω7 =−ω4∧ω4 +(1
2 p1)

2−χ8

d ω4 = 0


OO

� ?

Ω•dR(X) oo
(G4,2G7)

VV

τdR

zz

(G4,G7,F2,H3)

CE
(
l(BSp(2))(S4�Sp(2))

)
@@

= CE(lBSp(2))
[

ω7,
ω4

]/(d ω7 =−ω4∧ω4 +(1
4 p1)

2−χ8

d ω4 = 0

)
99

�+

CE
(
lBSp(2)

)
= R

[
χ8,

1
2 p1

]/(d χ8 = 0

d 1
2 p1 = 0

)
Therefore, given a smooth 8-dimensional spin-manifold X equipped with tangential Sp(2)-structure τ (58), the
flat τdR-twisted lS4- and lCP3-valued differential forms (Def. 3.90) are of the following form [FSS19b, Prop.
3.20][FSS20, Prop. 3.9]:

Ω
τdR
dR

(
X ; lS4)= {

2G7,
G4
∈Ω

•
dR(X)

∣∣∣∣∣d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

}

Ω
τdR
dR

(
X ; lCP3)=


H3,
F2,

2G7,
G4

∈Ω
•
dR(X)

∣∣∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,

d F2 = 0,

d 2G7 =−
(
G4− 1

4

)
∧
(
G4 +

1
4

)
−χ8(∇),

d G4 = 0,


(178)

Here we are using (Example 4.27) that the de Rham image τdR of the rationalization LRτ of the twist τ is given by
evaluating characteristic forms (Def. 4.19) on any Sp(2)-connection ∇.
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Twisted non-abelian de Rham cohomology. In generalization of Def. 3.81, we set:

Definition 3.95 (Coboundaries between flat twisted L∞-algebraic forms). Let X ∈SmoothManifolds, let g // b̂
p // b

be a local L∞-algebraic coefficient bundle (Def. 3.89), and let τdR ∈ ΩdR(X ; b). Then for
A(0), A(1) ∈ Ω

τdR
dR (X ;g)

a pair of flat τdR-twisted g-valued differential forms on X (Def. 3.90) a coboundary between them is a coboundary

Ã ∈ ΩdR
(
X×R; b̂

)
(179)

in the sense of Def. 3.81 between the underlying flat b̂-valued forms (via Remark 3.91), such that the underling

b-valued form of H equals the pullback of the twist τdR along X×R
prX // X

p∗(H) = pr∗X(τdR) . (180)
If such a coboundary exists, we say that A(0) and A(1) are cohomologous, to be denoted

A(0) ∼ A(1) .

In generalization of Def. 3.85, we set:

Definition 3.96 (Twisted non-abelian de Rham cohomology). Let X ∈ SmoothManifolds, let g // b̂
p // b be a

local L∞-algebraic coefficient bundle (Def. 3.89), and let τdR ∈ ΩdR
(
X ; b

)
. Then the τdR -twisted non-abelian de

Rham cohomology of X with coefficients in g is the set

HτdR
dR (X ; g) :=

(
Ω

τdR
dR (X ; g)flat

)
/∼ (181)

of equivalence classes with respect to the coboundary relation from Def. 3.95 on the set of flat τdR-twisted g-valued
differential forms on X (Def. 3.90).

Twisted de Rham cohomology is traditionally familiar in the form of degree-3 twisted cohomology of even/odd
degree differential forms [RW86, §III, Appendix][BCMMS02, §9.3][MaS03, §3][FrHT08, §2][Te04, Prop. 3.7]
[Cav05, §I.4][Sa10][MW11][GS19b] (which is the target of the twisted Chern character in degree-3 twisted K-
theory, see Prop. 5.5):

Definition 3.97 (Degree-3 twisted abelian de Rham cohomology). For X ∈SmoothManifolds, and H3 ∈Ω3
dR(X)closed

a closed differential 3-form, the H3-twisted de Rham cohomology of X is the cochain cohomology 10

H•+H3
dR (X) :=

ker•
(
d−H3∧ (−)

)
im•
(
d−H3∧ (−)

) (182)

of the following 2-periodic cochain complex:

· · · //⊕
k

Ω
(n−1)+2k
dR (X)

(d−H3∧(−)) //⊕
k

Ω
n+2k
dR (X)

(d−H3∧(−)) //⊕
k

Ω
(n+1)+2k
dR (X) // · · · .

We show that this is a special case of twisted non-abelian de Rham cohomology according to Def. 3.96:

Proposition 3.98 (Twisted non-abelian de Rham cohomology subsumes H3-twisted abelian de Rham cohomology).
Given a twisting 3-form as in (173)

τdR oo //∈ H3∈

Ω
(
X ; b2R

)
flat

' Ω3(X)closed

the τdR-twisted non-abelian de Rham cohomology (Def. 3.96) of flat twisted lku1-valued differential forms (Exam-
ple 3.92) is naturally equivalent to H3-twisted abelian de Rham cohomology (Def. 3.97) in odd degree11

b2R-twisted lku1-valued
non-abelian de Rham cohomology

HτdR
dR (X ; lku1) '

traditional H3-twisted
de Rham cohomology

H1+H3
dR (X)

10The notation “H3” for the twist (and of “H2r+1” for the higher twists later) originates in the physics literature and has made it as a
convention in differential geometry as well. Of course, not to be confused with homology.

11The discussion for even degrees is directly analogous and we omit it for brevity.
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Proof. By (174) in Example 3.92 the cocycle sets on both sides are in natural bijection. Hence it is sufficient to see
that the coboundary relations on the cocycle sets coincide, under this identification. In one direction, consider a
coboundary in the sense of twisted non-abelian de Rham cohomology (Def. 3.95) with coefficients as in Example
3.92:

F̃2•+1 ∈ ΩdR
(
X×R; lku1

)
.

We claim that

h2• :=
∫
[0,1]

F̃2•+1 (183)

satisfies the coboundary condition (182):(
d−H3∧

)
∑
k

h2k = ∑
k

(
F(1)

2k+1−F(0)
2k+1

)
. (184)

To see this, we may compute as follows:

d ∑
k

h2k = ∑
k

(
F(1)

2k+1−F(0)
2k+1−

∫
[0,1]

dF̃2k+1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1−

∫
[0,1]

(
pr∗X H3

)
∧ F̃2k−1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1 +H3∧

∫
[0,1]

F̃2k−1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1 +H3∧h2k−2

)
,

where the first step is the fiberwise Stokes formula (155) together with the defining restrictions (153) of F̃2•+1;
the second step is the cocycle condition (174) on F̃2•+1 using the constraint (180); the third step is the projection
formula (156); and the last step uses again the definition (183).

Conversely, given h2• satisfying (184), we claim that

F̃2•+1 ;= (1− t)pr∗1
(
F(0)

2•+1

)
+ t pr∗1

(
F(1)

2•+1

)
+dt ∧pr∗X(h2•) (185)

is a coboundary of twisted non-abelian cocycles, in the sense of Def. 3.95: It is immediate that (185) has the
required restrictions (153). We check by direct computation that it satisfies the required differential equation:

d ∑
k

F̃2k+1 = ∑
k

(
−dt ∧pr∗X

(
F(0)

2k+1

)
+(1− t)pr∗X

(
H3
)
∧pr∗X

(
F(0)

2k−1

)
+dt ∧pr∗X

(
F(1)

2k+1

)
+ t pr∗X

(
H3
)
∧pr∗X

(
F(1)

2k−1

)
−dt ∧pr∗X

(
d h2k︸︷︷︸

=F(1)
2k+1−F(0)

2k+1+H3∧h2k

) )

= ∑
k

(
pr∗X(H3)∧ F̃2k−1

)
.

In generalization of Def. 3.97, there are twisted abelian Rham complexes with twist any odd-degree closed
form [Te04][Sa09][MW11][Sa10][GS19b] (these serve as the targets12 of the LSW-character on twisted iterated
K-theories [LSW16, §2.1]; see Prop. 5.8 below).

12 It has been been argued in [MMS20] that higher twisted de Rham cohomology is also useful for analyzing higher twists on ordinary
K-theory (e.g. [Te04][Go08][DP13]).

47



Definition 3.99 (Higher twisted abelian de Rham cohomology). For X ∈ SmoothManifolds, r ∈ N, r ≥ 1, and
H2r+1 ∈ Ω

2r+1
dR (X)closed a closed differential (2r + 1)-form, the H2r+1-twisted de Rham cohomology of X is the

cochain cohomology

Ω
•+H2r+1
dR (X) :=

ker•
(
d−H2r+1∧ (−)

)
im•
(
d−H2r+1∧ (−)

) (186)

of the following 2r-periodic cochain complex:

· · · //⊕
k

Ω
(n−1)+2rk
dR (X)

(d−H2r+1∧(−)) //⊕
k

Ω
n+2rk
dR (X)

(d−H2r+1∧(−)) //⊕
k

Ω
(n+1)+2rk
dR (X) // · · · .

In direct generalization of Prop. 3.98, we find:

Proposition 3.100 (Twisted non-abelian de Rham cohomology subsumes higher twisted abelian de Rham coho-
mology). For r ∈ N, r ≥ 1, consider a twisting (2r+1)-form as in (176)

τdR oo //∈ H2r+1∈
Ω
(
X ; b2rR

)
flat

' Ω2r+1
(
X
)

closed

The τdR-twisted non-abelian de Rham cohomology (Def. 3.96) of flat twisted lK2r−2(ku)1-valued differential forms
(Example 3.93) is naturally equivalent to H2r+1-twisted abelian de Rham cohomology (Def. 3.99) in degree13

1 mod 2r.
twisted

non-abelian de Rham cohomology

HτdR
dR

(
X ; ⊕

k∈N
b2rkR

)
'

higher H2r+1-twisted
de Rham cohomology

H1+H2r+1
dR (X) .

Proof. By Example 3.93, the cocycle sets on both sides are in natural bijection. Hence it remains to see that the
coboundary relations correspond to each other, under this identification. This proceeds verbatim, up to degree
shifts, as in the proof of Prop. 3.98 (which is the special case of r = 1).

Example 3.101 (Cohomology operation in (higher-) twisted de Rham cohomology). Degree-3 twisted de Rham
cohomology (Def. 3.97) supports the following twisted cohomology operations (Def. 2.40):
(i) wedge product with H3:

H•+H3
dR (X) // H•+3+H3

dR (X)

∑
k

Fk 7−! ∑
k

Fk∧H3

(ii) wedge square: ⊕
r

H2r+H3
dR (X) //⊕

r
H2r+2H3

dR (X)

∑
k

Fk 7−!

(
∑
k

Fk

)
∧
(

∑
k

Fk

)
(iii) compositions of these: ⊕

r
H2r+H3

dR (X) //⊕
r

H2r+1+2H3
dR (X)

∑
k

Fk 7−!

(
∑
k

Fk

)
∧
(

∑
k

Fk

)
∧H3

In type IIA string theory, terms of the form (iii) arise, together with terms of the form I8∪ [H3] with I8 a polynomial
in the Pontrjagin classes (cf. Example 4.27). See [GS19c] for extensive discussions.

This evidently generalizes to higher twisted de Rham cohomology (Def. 3.99) and higher twisted real coho-
mology in the sense of [GS19b], with H3 replaced by H2r+1 for r ∈ N.

13The discussion for other degrees is directly analogous, and we omit it for brevity.
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The twisted non-abelian de Rham theorem.

Theorem 3.102 (Twisted non-abelian de Rham theorem). Let X ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50),

equipped with the structure of a smooth manifold, and let

A //

local coefficient bundle

A�G
ρ
��

BG

(187)

be a local coefficient bundle (35) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) such that the action of π1(BG) =

π0(G) on the real homology groups of A is nilpotent. Consider, via Prop. 3.73, the rationalized coefficient bundle
LRρ with corresponding L∞-algebraic coefficient bundle lρ (Def. 3.89) of the relative real Whitehead L∞-algebra
(Prop. 3.68):

LRA //

rationalized
local coefficient bundle

(
LRA

)
�
(
LRG

)
LRρ
��

LRBG

lA //

L∞-algebraic coefficient bundle
of Whitehead L∞-algebras

lBG

(
A�G

)
.

lρ
��

lBG

Moreover, let
X τ // LRBG ∈ Ho

(
TopologicalSpacesQu

)
be such that H1(τ;R) is injective (for instance in that BG is simply connected).

Then the τ-twisted non-abelian real cohomology (Def. 3.74) of X with local coefficients in LRρ (Prop. 3.73) is
in natural bijection with the twisted non-abelian de Rham cohomology (Def. 3.96) of X with local coefficients in
lρ ,

τ-twisted non-abelian
real cohomology

Hτ
(
X ; LRA

)
'

τdR-twisted non-abelian
de Rham cohomology

HτdR
dR (X ; lA) , (188)

where the twists are related by the plain non-abelian de Rham theorem (Theorem 3.85):

[τ] oo //∈ [τdR]∈

H
(
X ; LRBG

)
' HdR

(
X ; lBG

)
Proof. Consider the following sequence of natural bijections

Hτ
(
X ; LRA

)
= Ho

((
TopologicalSpaces/LRBG

Qu

))(
τ , LRρ

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)Ω•PLdR(BG)/

proj

)(
Ω
•
PLdR(ρ) , Ω

•
PLdR(τ)

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)CE(b)/
proj

)(
CE(lρ) , τ

∗
dR
)

' HτdR
dR (X ; lA) .

Here the first line is the definition (Def. 3.74). Then the first step is the fundamental theorem (Prop. 3.58) in the
co-slice category. The substitutions in the second step are:

(a) Lemma 3.106 in the first argument (this is where the H1-injectivity is needed);
(b) Lemma 3.88 with Theorem 3.85 in the second argument (as in the second step of (161)).

The last step is Lemma 3.104. The composite of these equivalences is the desired (188).

We now establish the remaining four lemmas which enter the proof of Theorem 3.102.

Lemma 3.103 (Pullback to de Rham complex over cylinder of manifold is relative path space object).
Let X ∈ SmoothManifolds, let b ∈ L∞Algebras≥ 0

R,fin (Example 3.24) with Chevalley-Eilenberg algebra CE(b) ∈

DiffGradedCommAlgebras≥ 0
R (86), and let {

Ω•dR(X) oo
τ∗dR CE(b)

} ∈ (DiffGradedCommAlgebras≥ 0
R

)CE(b)/
proj be

a morphism of dgc-algebras to the de Rham complex of X (Example 3.23), regarded as an object in the coslice
model category (Example A.10) of

(
DiffGradedCommAlgebras≥ 0

R

)
proj (Prop. 3.36) under CE(b). Then a path

space object (Def. A.11) for τ∗dR is given by this diagram:
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Ω•dR(X)
pr∗X∈W //

kk

τ∗dR

Ω•dR(X×R)
(i∗0 , i

∗
1)∈Fib

//
OO

pr∗X ◦τ∗dR

Ω•dR(X) ⊕ Ω•dR(X)
33

(τ∗dR ,τ∗dR)

CE(b) ,

where the top morphisms are from (162).

Proof. It is clear that the diagram commutes, by construction. Moreover, the top morphisms are a weak equivalence
followed by a fibration in

(
DiffGradedCommAlgebras≥ 0

R

)
proj, by Lemma 3.86. Therefore, by the nature of the

coslice model structure (Example A.10) the total diagram constitutes a factorization of the diagonal on τ∗dR through
a weak equivalence followed by a fibration, as required (300). (To see that the composite really is still the diagonal
morphism in the coslice, observe that Cartesian products in any coslice category are reflected in the underlying
category.) It only remains to observe that τ∗dR is actually a fibrant object in the coslice model category. But the
terminal object in the coslice is clearly the unique morphism from CE(b) to the zero-algebra (Example 3.21), so
that in fact every object in the coslice is still fibrant

Ω•dR(X)
∈Fib //kk

τ∗dR

033

CE(b) (189)

as in Remark 3.37.

Lemma 3.104 (Twisted non-abelian de Rham cohomology via the coslice dgc-homotopy category). Consider
X ∈ SmoothManifolds, let

g // b̂
p��

b

∈ L∞Algebras≥ 0,nil
R,fin

be an L∞-algebraic local coefficient bundle (Def. 3.89) of nilpotent L∞-algebras (Def. 3.34) with Chevalley-
Eilenberg algebra CE(b̂), CE(b) ∈ DiffGradedCommAlgebras≥ 0

R (86), and let

Ω•dR(X) oo
τ∗dR CE(b) ∈

(
DiffGradedCommAlgebras≥ 0

R

)CE(b)/
proj (190)

be a morphism of dgc-algebras to the de Rham complex of X (Example 3.23), hence a flat b-valued differential
form (Def. 3.75)

τdR ∈ ΩdR(X ; b) ,

equivalently regarded as an object in the coslice model category (Example A.10) of
(
DiffGradedCommAlgebras≥ 0

R

)
proj

(Prop. 3.36) under CE(b). Then the τdR-twisted non-abelian de Rham cohomology of X with coefficients in g
(Def. 3.96) is in natural bijection with the hom-set in the homotopy category (Def. A.14) of the coslice model
category

(
DiffGradedCommAlgebras≥ 0

R

)CE(b)
proj (Example A.10) of the projective model structure on dgc-algebras

(Prop. 3.36) from CE(p) (169) to τ∗dR (190):

HτdR
dR

(
X ; g

)
' Ho

((
DiffGradedCommAlgebras≥ 0

R

)CE(b)/
proj

)(
CE(p) , τ

∗
dR
)
. (191)

Proof. Consider a pair of dgc-algebra homomorphisms in the coslice

Ω•dR

(
X
) rr A(0)

ll
A(1)gg

τ∗dR

CE(b̃)
77

CE(p)
CE(b)

∈
(
DiffGradedCommAlgebras≥ 0

R

)CE(b)/
proj

(
CE(p) , τ

∗
dR
)
, (192)

hence of flat τdR-twisted g-valued differential forms, according to Def. 3.90. Observe that:

(i) CE(p) is cofibrant in
(
DiffGradedCommAlgebras≥ 0

R

)CE(p)/
proj , since:

(a) the initial object in the coslice is CE(b) oo id CE(b) ,

(b) the unique morphism from this object to CE(p) is
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CE(b)
CE(p)∈Cof //

ii

id

CE
(
b̂
)

55

CE(p)CE(b)

(193)

(c) CE(p) is a cofibration in
(
DiffGradedCommAlgebras≥ 0

R

)
proj, by (169), so that the diagram (193) is a

cofibration in the coslice model category, by Example A.10.

(ii) pr∗X ◦ τ∗dR is fibrant in
(
DiffGradedCommAlgebras≥ 0

R

)CE(b)/
proj , by (189);

(iii) A right homotopy (Def. A.12) between the pair (192) of coslice morphisms, with respect to the path space
object from Lemma 3.103, namely a Ã that makes the following diagram commute

Ω•dR(X)
OO

i∗0

jj

A(0)

Ω•dR(X×R)
ee

pr∗X ,τ
∗
dR

i∗1
��

oo Ã CE( b̂)
;;

CE(p)

Ω•dR(X)
tt

A(1)

CE( b̂)

(194)

is manifestly the same as a coboundary Ã between the corresponding flat twisted g-valued forms according
to Def. 3.95:
(a) The top part of (194) is, just as in (165), the flat twisted ĝ-valued form on the cylinder over X that is
required by (179);
(b) the bottom part of (194) is the condition (180) on the extension of the twist to the cylinder over X .

Therefore, Prop. A.16 says that the quotient set (181) defining the twisted non-abelian de Rham cohomology is in
natural bijection to the hom-set in the coslice homotopy category.

Lemma 3.105 (Derived cobase change along quasi-isomorphism is equivalence on H1-injectives). Let

B1
φ∈W // B2 ∈

(
DiffGradedCommAlgebras≥ 0

R

)
proj

be a quasi-isomorphism of dgc-algebras (Def. 3.17), hence a weak equivalence in the projective model structure
(Prop. 3.36). Assume that either, hence both, dgc-algebras are cohomologically connected (H0(B1)=R, H0(B2)=
R). Then the derived adjunction (Prop. A.20) of the base change Quillen adjunction (Example A.18) between the
corresponding co-slice model categories (Example A.10) of the opposite model category of dgc-algebras (Example
A.9) restricts to an equivalence on the full subcategories of the homotopy categories (Def. A.14) on those co-slice
objects which are connected in H0(−) and injective on H1(−):

Ho
(((

DiffGradedCommAlgebras≥ 0
R

)B2/

proj

)op
)

H0−conn
H1−inj

oo L(φ op)!

R(φ op)∗
' // Ho

(((
DiffGradedCommAlgebras≥ 0

R

)B1/

proj

)op
)

H0−conn
H1−inj

Proof. Notice that if
(
DiffGradedCommAlgebras≥ 0

R

)
proj were a left proper model category (Def. A.5), so that(

DiffGradedCommAlgebras≥ 0
R

)op
proj were right proper, the statement would directly follow as a special case of Prop.

A.31, without any restriction to subcategories.
While

(
DiffGradedCommAlgebras≥ 0

R

)
proj is (apparently) not left proper, it comes close: Lemma 3.44 says that

quasi-isomorphisms are preserved by pushout along at least those cofibrations that are relative Sullivan algebras
(i.e. the relative cell complexes, but possibly not their retracts). Hence we adapt the logic underlying Prop. A.31 to
this case. Namely, Prop. 3.47 says that those co-slice objects that are H1-injective between H0-connected algebras
do have a cofibrant replacement by a relative Sullivan algebra:
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AminB
∈W // A

B coslice object

44

Y9
∈RelSulAlg
⊂Cof

kk (195)

Now, first to see that the derived adjunction restricts to the given subcategories: In one direction, it is clear that
L(φ op)! preserves H0 and H1, as this functor is given by precomposition with the quasi-isomorphism φ . In the
other direction: R(φ op)∗ is given by pushout along φ of a cofibrant representative of the given coslice object, and
by (195) we may take that cofibrant representative to be a relative Sullivan algebra. But then Prop. 3.44 implies
that the pushout has the same cohomology.

Finally, to see that this restriction of the derived adjunction is an equivalence of categories, hence that the
derived unit (311) and derived counit (312) are isomorphisms on these subcategories. This follows just as in the
alternative proof (322) of Prop. A.31, using for the fibrant objects ρ there the opposites of the good fibrations given
by (195), for which Prop. 3.44 guarantees the required properness condition.

Lemma 3.106 (Pasting composition with relative Sullivan model of local coefficient bundle). Let

A //

local coefficient bundle

A�G
ρ
��

BG

(196)

be a local coefficient bundle (35) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50), and let

Ω•PLdR

(
A�G

)
OO

Ω•PLdR(ρ)

oo
p

minBG
A�G

∈W
CE
(
l(A�G)

)
OO

CE(lρ)

Ω•PLdR

(
BG
)
oo

pmin
BG

∈W
CE
(
l(BG)

)
(197)

be its minimal relative Sullivan model (139), which exists by Prop. 3.68. Then the pasting precomposition with the
square (197) is a natural isomorphism of hom-functors on the homotopy categories from Lemma 3.105:

Ho
((

DiffGradedCommAlgebras≥ 0
R

)Ω•PLdR(BG)/

proj

)
H0−conn
H1−inj

(
Ω•PLdR(ρ) ,−

)
(
L
(
(pmin

BG )op
)

!

)op
'
��

Ho
((

DiffGradedCommAlgebras≥ 0
R

)CE(lBG)/

proj

)
H0−conn
H1−inj

(
Ω•PLdR(ρ) ◦ pmin

BG ,−
)

(−)◦ p
minBG
A�G '

��

Ho
((

DiffGradedCommAlgebras≥ 0
R

)CE(lBG)/

proj

)
H0−conn
H1−inj

(
CE(lρ) ,−

)

(198)

Here the first step is the derived left co-base change along φ (Example A.18), while the second is composition with
the diagram 197 regarded as a morphism in the co-slice under CE(lBG).

Proof. First notice that Ω•PLdR(ρ) is indeed an injection on H1, by the assumption that the fiber A is connected (as
in the proof of Prop. 3.68). With that, the first step is an isomorphism by Lemma 3.105, while the second step is
evidently an isomorphism, since the weak equivalence φA�G becomes an isomorphism in the homotopy category
(and still so in the coslice homotopy category, by Example A.10).
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4 The (differential) non-abelian character map

We introduce the character map in non-abelian cohomology (Def. 4.2) and then discuss how it specializes to:
§4.1 – the Chern-Dold character on generalized cohomology;
§4.2 – the Chern-Weil homomorphism on degree-1 non-abelian cohomology;
§4.3 – the Cheeger-Simons differential characters on degree-1 non-abelian cohomology.

Definition 4.1 (Rationalization in non-abelian cohomology). For A ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50)

we write

(ηR
A )∗ :

non-abelian
cohomology

H(−; A)
H(−;ηR

A )

rationalization
//

non-abelian
real cohomology

H
(
−; LRA

)
(199)

for the cohomology operation (Def. 2.17) from non-abelian A-cohomology (Def. 2.1) to non-abelian real coho-
mology (Def. 3.70), which is induced (28) by the rationalization map ηR

A (Def. 3.53).

Definition 4.2 (Non-abelian character map). Let X ,A ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) such that X

admits the structure of a smooth manifold. Then we say that the non-abelian character map in non-abelian A-
cohomology (Def. 2.1) is the cohomology operation (Def. 4.1)

non-abelian
character map chA :

non-abelian
cohomology

H(X ; A)
(ηR

A )∗

rationalization
//

non-abelian
real cohomology

H
(
X ; LRA

) '
non-abelian

de Rham theorem

//

non-abelian
de Rham cohomology

HdR(X ; lA) (200)

from non-abelian A-cohomology (Def. 2.1) to non-abelian de Rham cohomology (Def. 3.82) with coefficients in
the rational Whitehead L∞-algebra lA of A (Prop 3.61), which is the composite of

(i) the operation (199) of rationalization of coefficients (Def. 4.1),
(ii) the equivalence (160) of the non-abelian de Rham theorem (Theorem 3.85).

4.1 Chern-Dold character

We prove (Theorem 4.8) that the non-abelian character map reproduces the Chern-Dold character on generalized
cohomology theories (recalled as Def. 4.6) and in particular the Chern character on topological K-theory (Example
4.10).

Proposition 4.3 (Dold’s equivalence [Do65, Cor. 4][Hil71, Thm. 3.18][Ru98, §II.3.17]). Let E be a general-
ized cohomology theory (Example 2.13). Then its rationalization ER is equivalent to ordinary cohomology with
coefficients in the rationalized stable homotopy groups of E:

En
R(X)

doE

'
// ⊕
k∈Z

Hn+k
(
X ; πk(E)⊗R R

)
.

Remark 4.4 (Rational stable homotopy theory). In modern stable homotopy theory, Dold’s equivalence (Prop.
4.3) is a direct consequence of the fundamental theorem [SSh01, Thm. 5.1.6] that rational spectra are direct sums
of Eilenberg-MacLane spectra with coefficients in the rationalized stable homotopy groups [BMSS19, Prop. 2.17].

But we may explicitly re-derive Dold’s equivalence using the unstable rational homotopy theory from §3:

Proposition 4.5 (Dold’s equivalence via non-abelian real cohomology). Let E be a generalized cohomology theory
(Example 2.13) and let n ∈ N such that the nth coefficient space (21) is of R-finite homotopy type (Def. 3.50)

En ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil .

Then there is a natural equivalence between the non-abelian real cohomology (Def. 3.70) with coefficients in En

and ordinary cohomology with coefficients in the rationalized homotopy groups of E:

H
(
−; LREn

)
'

⊕
k∈N

Hn+k(−; πk(E)⊗Z R
)
. (201)
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Proof. Since En is an infinite-loop space, it is necessarily nilpotent (Example 3.52). We may assume without
restriction that it is also connected, for otherwise we apply the following argument to each connected component
(Remark 3.51). Hence En ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) and the discussion in §3.2 applies:

Again since En is a loop space (21), Prop. 3.72 gives H(−; LREn)' ⊕
k∈N

Hk(−; πk(En)⊗ZR) . The claim follows

from the definition of stable homotopy groups as πk−n(E) = πk(En) for k,n≥ 0.

Definition 4.6 (Chern-Dold character [Bu70][Hil71, p. 50]). Let E be a generalized cohomology theory (Example
2.13). The Chern-Dold character in E-cohomology theory is the cohomology operation to ordinary cohomology
which is the composite of rationalization in E-cohomology with Dold’s equivalence (Prop. 4.3):

Chern-Dold
character

chE : E•(−)
rationalization
in E-cohomoloy

//

(22) '
��

E•R(−) '

Dold’s equivalence

doE //

(22)'
��

⊕
k

H•+k
(
−;πk(E)⊗Z R

)

H(−;E•)
(ηR

E•)∗
(199)

// H(−;LRE•)

'
(201)

33
. (202)

Here the bottom part in (202) serves to make the nature of the top maps fully explicit, using Example 2.13, Def.
4.1 and Prop. 4.5.

Remark 4.7 (Rationalization in the Chern-Dold character). That the first map in the Dold-Chern character (202)
is the rationalization localization is stated somewhat indirectly in the original definition [Bu70] (the concept of
rationalization was fully formulated later in [BK72]). The role of rationalization in the Chern-Dold character is
made fully explicit in [LSW16, §2.1]. The same rationalization construction of the generalized Chern character,
but without attribution to [Bu70] or [Do65], is considered in [HS05, §4.8] (see also [BN14, p. 17]).

We now come to the main result in this section:

Theorem 4.8 (Non-abelian character subsumes Chern-Dold character). Let E be a generalized cohomology theory
(Example 2.13) and let n ∈ N such that the nth coefficient space (21) is of R-finite homotopy type (Def. 3.50). Let
moreover X be a smooth manifold of connected, nilpotent, R-finite homotopy type (Def. 3.50).
Then the non-abelian character (Def. 4.2) coincides with the Chern-Dold character (Def. 4.6) on E-cohomology
in degree n, in that the following diagram commutes:

H
(
X ;En

)
chEn

//
OO

(22) '

HdR
(
lEn
)

' (160) (201)
��

En(X)
chEn

//⊕
k

Hn+k
(
X ; πk(E)⊗Z R

)
.

(203)

Here the equivalence on the left is from Example 2.13, while the equivalence on the right is the inverse non-abelian
de Rham theorem (Theorem 3.85) composed with that from Prop. 4.5.

Proof. Since En is an infinite-loop space, it is necessarily nilpotent (Example 3.52). We may assume without
restriction that it is also connected, for otherwise we apply the following argument to each connected component
(Remark 3.51). Hence En ∈Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) and the discussion in §3.2 and §3.3 applies:

The non-abelian de Rham isomorphism (160) in the definition (200) of the non-abelian character cancels
against its inverse on the right of (203). Commutativity of the remaining diagram

H
(
X ; En

)
(ηR

En )∗

//
OO

(22) '

H
(
X ; LREn

)
' (201)
��

En(X)
chEn

//⊕
k

Hn+k
(
X ; πk(E)⊗Z R

)
is the very definition of the Chern-Dold character (Def. 4.6).
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Example 4.9 (de Rham homomorphism in ordinary cohomology). On ordinary integral cohomology (Example
2.2), the non-abelian character (Def. 4.2) reduces to extension of scalars from the integers to the real numbers,
followed by the de Rham isomorphism, in that the following diagram commutes:

H
(
−; Bn+1Z

)
chBn+1Z

non-abelian character
on ordinary cohomology

//
OO

(13) '

HdR
(
−; lBn+1Z

)
' (134) (157)

��
Hn+1(−;Z)

extension
of scalars

// Hn+1(−;R) '
ordinary

de Rham isomorphism

// Hn+1
dR (−)

Example 4.10 (Chern character on complex K-theory). The spectrum (21) representing complex K-theory has 0th
component space KU0 ' Z×BU (23). Here the connected components BU, the classifying space of the infinite
unitary group (24), are clearly of finite R-type (since their real cohomology is the ring of universal Chern classes,
e.g. [Ko96, Thm. 2.3.1]). Therefore, Theorem 4.8 applies and says that the non-abelian character map (Def. 4.2)
for coefficients in Z×BU reduces to the Chern-Dold character on complex K-theory. This, in turn, is equivalent
(by [Hil71, Thm. 5.8]) to the original Chern character ch on complex K-theory [Hi56, §12.1][BH58, §9.1][AH61,
§1.10] (review in [Hil71, §V]): Chern character on

complex K-theory

ch ' chZ×BU .

Example 4.11 (Pontrjagin character on real K-theory). The Pontrjagin character ph on real topological K-theory
(see [GHV73, §9.4][IK99][Ig08][GS18b, §2.1]) is defined to be the composite

KSpin•(−) // KSO•(−) //

p̃h
•

44
KO•(−) cplx //

ph•
22KU•(−) ch• //⊕

k
H4•(−;R)

of the complexification map (on representing virtual vector bundles) with the Chern character on complex K-theory
(Example 4.10).
(i) By naturality of the complexification map and since the complex Chern character is a Chern-Dold character (by
[Hil71, Thm. 5.8]), so is the Pontrjagin character, as well as its restriction p̃h to oriented real K-theory KSO and
further to ph on KO-theory and to Spin K-theory, etc.
(ii) The connected components BO of the classifying space KO0 for real topological K-theory are of finite R-type
(since the real cohomology is the ring of universal Pontrjagin classes). Therefore, Theorem 4.8 applies and says
that the non-abelian Chern character (Def. 4.2) for coefficients in Z×BSO coincides with the Pontrjagin character
p̃h in KSO-theory: Pontrjagin character

on oriented real K-theory

p̃h ' chZ×BSO .

(iii) By Remark 3.51, the construction extends to the Pontrjagin character ph on KO-theory.
(iv) The same applies to the further restriction of the Pontrjagin character to KSpin; see [LD91][Th62] for some
subtleties involved and [Sa08, §7] for interpretation and applications.

Example 4.12 (Chern-Dold character on Topological Modular Forms). The connective ring spectrum tmf of topo-
logical modular forms [Ho94, §9][Ho02, §4] (see [DFHH14]) is, essentially by design, such that under rationaliza-
tion it yields the graded ring of rational modular forms (e.g [DH11, p. 2]):

topological
modular forms

π•(tmf)
(−)⊗ZR //

rational
modular forms

mfR• ' R
[ deg = 8︷︸︸︷

c4 ,

deg = 12︷︸︸︷
c6
]
. (204)

It follows that the Chern-Dold character (Def. 4.6) on tmf takes values in real cohomology with coefficients in
modular forms

tmf•(−)
ch•tmf

Chern-Dold character
on topological modular forms // H•

(
−;mfR•

)
. (205)
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(This is often considered over the rational numbers, sometimes over the complex numbers [BE13, Fig. 1]; we may
just as well stay over the real numbers, by Remark 3.49, to retain contact to the de Rham theorem.)

By Theorem 4.8 this is an instance of the non-abelian character map:
Chern-Dold character on
topological nodular forms

ch•tmf ' chtmf• .

Example 4.13 (The Hurewicz/Boardman homomorphism on topological modular forms). The spectrum tmf (Ex-
ample 4.12) carries the structure of a suitable (E∞) ring spectrum and hence receives an essentially unique homo-
morphism of ring spectra from the sphere spectrum:

Σ∞S0 = S etmf // tmf .

This is also known as the Hurewicz homomorphism or rather the Boardman homomorphism (e.g. [Ad75, §II.7][Ko96,
§4.3]) for tmf. The Boardman homomorphism on tmf happens to be a stable weak equivalence in degrees ≤ 6, in
that it is an isomorphism on stable homotopy groups in these degrees [Ho02, Prop. 4.6][DFHH14, §13]:

πs
•≤6 = π•≤6(S)

π•≤6(etmf)

'
// π•≤6(tmf) .

Hence, in particular, when X9 is a manifold of dimension dim(X) ≤ 9, the Boardman homomorphism identifies
the stable Cohomotopy (Example 2.16) of X9 in degree 4 with tmf4(X9

)
(by Prop. A.37):

stable
4-Cohomotopy

π4
s
(
X9
)
= S4(X9)

chS4 ))

Boardman homomorphism

e4
tmf

'
//

tmf-cohomology
in degree 4

tmf4(X9) .

chtmf4vv
H4

dR(X
9)

(206)

In this situation, the character map from Example 4.12 extracts exactly the datum of a real 4-class.

Remark 4.14 (Clarifying the role of tmf in string theory). Since the famous computation of [Wi87] showed that
the partition function of the heterotic string lands in modular forms, and since the theorem of [AHS01][AHR10]
showed that, mathematically, this statement lifts through (what we call above) the tmf-Chern-Dold character (205),
there have been proposals about a possible role of tmf-cohomology theory in controlling elusive aspects of string
theory (see [KS05][Sa10][DH11][ST11][Sa14][GJF18][GPPV18][Sa19]). While good progress has been made, it
might be fair to say that the situation has remained inconclusive. But with the non-abelian generalization (Def. 4.2)
of the Chern-Dold character in hand, we may ask for a non-abelian enhancement (Example 2.24) of tmf-theory
on string background spacetimes. By Example 4.13, this is, in degree 4, equivalent to asking for a non-abelian
enhancement of stable Cohomotopy theory (Example 2.25). This exists canonically: given by actual Cohomotopy
theory (Example 2.10). We consider the non-abelian character map on twisted 4-Cohomotopy in Example 5.21
below. The concluding Prop. 5.22 shows that this does capture core aspects of non-perturbative string theory.

Example 4.15 (Chern-Dold character on integral Morava K-theory). We highlight that a particularly interest-
ing example of the Chern-Dold character, which is not widely known, is that on integral Morava K-theory,
whose codomain in real cohomology has a rich coefficient system. Morava K-theories K(n) [JW75] (reviewed
in [Wu89][Ru98, §IX.7]) form a sequence of spectra labeled by chromatic level n ∈ N and by a prime p (notation-
ally left implicit). Their coefficient ring is pure torsion, and hence vanishes upon rationalization. However, there
is an integral version K̃(n), highlighted in [KS03][Sa10][Buh11][SW15][GS17b], which has an integral p-adic
coefficient ring:

K̃(n)∗ = Zp[vn,v−1
n ] , with deg(vn) = 2(pn−1). (207)

This theory more closely resembles complex K-theory than is the case for K(n); in fact, for n = 1, it coincides with
the p-completion of complex K-theory.

Therefore, the Chern-Dold character (Def. 4.6) on integral Morava K-theory [GS17b, p. 53] is of the form

chMor : K̃(n)(−) // H∗
(
−; Qp[vn,v−1

n ]⊗Q R
)
, (208)
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where we used (207) in (202) together with the fact that the rationalization of the p-adic integers is the rational
(here: real, by Remark 3.49) p-adic numbers14 Zp⊗Z R ' Qp⊗Q R.

Now Qp is not finite-dimensional over Q, whence Qp⊗R is not finite-dimensional over R, so that the classify-
ing space for integral Morava K-theory is not of R-finite type (Def. 3.50). Therefore, our proof of the non-abelian
de Rham theorem (Theorem 3.85), being based on the fundamental theorem of dgc-algebraic rational homotopy
theory (Prop. 3.58), does not immediately apply to integral Morava K-theory coefficients; and hence the non-
abelian character on integral Morava K-theory with de Rham codomain, in the form defined in Def. 4.2, is not
established here. While this is a purely technical issue, as discussed in Remark 3.51, further discussion is beyond
the scope of the present article.

4.2 Chern-Weil homomorphism

We prove (Theorem 4.26) that the non-abelian character subsumes the Chern-Weil homomorphism (recalled as
Prop. 4.21, review in [Ch51, §III][KN63, §XII][CS74, §2][MS74, §C][FSSt10, §2.1]) in degree-1 non-abelian
cohomology.

Chern-Weil theory. For definiteness, we recall the statements of Chern-Weil theory that we need to prove Theorem
4.26 below.

Remark 4.16 (Attributions in Chern-Weil theory). (i) What came to be known as the Chern-Weil homomorphism
(recalled as Def. 4.21 below) seems to be first publicly described by H. Cartan (in May 1950), in his prominent
Séminaire [Ca50, §7], published as [Ca51]. Later that year at the ICM (in Aug.-Sep. 1950), Chern discusses
this construction in a talk [Ch50, (10)], including a brief reference to unpublished work by Weil (which remained
unpublished until appearance in Weil’s collected works [We49]) for the proof that the construction is independent
of the choice of connection (which is stated with an announcement of a proof in [Ca50, §7]).
(ii) The new result of Chern’s talk was the observation [Ch50, (15)] – later called the fundamental theorem in
[Ch51, §III.6], recalled as Prop. 4.23 below – that this differential-geometric construction coincides with the
topological construction of real characteristic classes (Example 2.21). This crucially uses the identification [Ch50,
(11)] of the real cohomology of classifying space BG with invariant polynomials, later expanded on by Bott [Bo73,
p. 239]. (Various subsequent authors, e.g. [Fr02, (1.14)], suggest to prove Chern’s equation (15) by making sense
of a connection on the universal G-bundle (which is possible though notoriously subtle, e.g. [Mo79]); but the
proof in [Ch50] simply observes that for any given domain manifold the classifying space for G-bundles may be
truncated to a finite cell complex (Prop. A.37), thus carrying a finite dimensional smooth G-bundle with ordinary
connection. This argument was later worked out in [NR61][NR63][Sc80]).
(iii) It is this fundamental theorem [Ch50, (15)][Ch51, §III.6] which allows to identify the Chern-Weil homomor-
phism as an instance of the non-abelian character, in Theorem 4.26 below.

Notation 4.17 (Principal bundles with connection). For G ∈ LieGroups X ∈ SmoothManifolds, we write

GConnections(X)/∼ // // GBundles(X)/∼ (209)

for the forgetful map from the set of isomorphism classes of G-bundles equipped with connections to those of
G-bundles without connection, over X .

The function (209) is surjective and admits sections, corresponding to a choice of the class of a principal
connection on any class of G-principal bundles.

Definition 4.18 (Invariant polynomials [We49][Ca50, §7]). For g ∈ LieAlgebrasR,fin, we write

inv•(g) := Sym
(
b2g∗

)G ∈ GradedCommAlgebras≥ 0
R

for the graded sub-algebra (70) on those elements in the symmetric algebra (73) of the linear dual of g shifted up
(Def. 3.7) into degree 2, which are invariant under the adjoint action of G on g∗.

14Note, parenthetically, that the classical Chern character ch itself can be extended to cohomology theories with values in graded Q-
algebras; see, e.g., [Ma06].
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Definition 4.19 (Characteristic forms [Ca50, §7][Ch50, (10)]). Let G be a finite-dimensional Lie group with Lie

algebra g, and let P
p // X be G-principal bundle with connection ∇ (Def. 4.17). Then for ω ∈ inv2n(g) an invariant

polynomial (Def. 4.18), its evaluation on the curvature 2-form F∇ ∈Ω2(P)⊗g of the connection yields a differential
form

ω(F∇) ∈ Ω2n
dR(X)

p∗ // Ω2n
dR(P)

which, by the second condition on an Ehresmann connection, is basic, namely in the image of the pullback opera-
tion along the bundle projection p, as shown. Regarded as a differential form on X , this is called the characteristic
form corresponding to ω .

Lemma 4.20 (Characteristic de Rham classes of characteristic forms [We49][Ch50, p. 401][Ch51, §III.4]). The
class in de Rham cohomology [

ω(F∇)
]
∈ H2n

dR(X)

of a characteristic form in Def. 4.19 is independent of the choice of connection ∇ and depends only on the
isomorphism class of the principal bundle P.

Definition 4.21 (Chern-Weil homomorphism [Ca50, §7][Ch50, (10)]). Let G be a finite-dimensional Lie group,
with classifying space denoted BG. The Chern-Weil homomorphism is the composite map

Chern-Weil
homomorphism cwG : GBundles(X)/∼ // GConnections(X)/∼ // Hom

(
inv•(g), H•dR(X)

)
principal bundle

[P] � //
with connection

[P,∇] � //
( invariant

polynomial

ω 7!

de Rham class of
characteristic form[

ω(F∇)
] )

,

(210)

where the first map is any section of (209), given by choosing any connection on a given principal bundle; and
the second map is the construction of characteristic forms according to Def. 4.19. (The Hom on the right is that
in GradedCommAlgebras≥ 0

R .) By Lemma 4.20 the second map is well-defined (and its composition with the first
turns out to be independent of the choices made, by Prop. 4.23 below).

That this construction is useful, in that it produces interesting real characteristic classes of G-principal bundles
(Example 2.21), is the following statement:

Proposition 4.22 (Abstract Chern-Weil homomorphism [Ch50, (11)][Ch51, §III.5][Bo73, p. 239]). Let G be
a finite-dimensional, compact Lie group, with Lie algebra denoted g. Then the real cohomology algebra of its
classifying space BG is isomorphic to the algebra of invariant polynomials (Def. 4.18):

inv•(g) ' H•(BG; R) ∈ GradedCommAlgebras≥ 0
R . (211)

We can also obtain the following:

Proposition 4.23 (Fundamental theorem of Chern-Weil theory [Ch50, (15)][Ch51, §III.6] (Rem. 4.16)). Let G
be a finite-dimensional compact Lie group. Then the Chern-Weil homomorphism (Def. 4.21) coincides with the
operation of pullback of universal characteristic classes along the classifying maps of G-bundles (Example 2.21),
in that the following diagram commutes:

H(X ; BG)
c 7! c∗(−)

pullback of
universal characteristic classes

along classifying map (30) //
OO

(15) '

Hom
(
H•(BG; R) , H•(X ; R)

)
' (211)
��

GBundles(X)/∼
cwG

Chern-Weil homomorphism (210)
// Hom

(
inv•(g), H•dR(X)

) (212)

Here the isomorphism on the left is from Example 2.3, while that from the right is from Prop. 4.22 and using the
de Rham theorem.
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Chern-Weil homomorphism as a special case of the non-abelian character.

Lemma 4.24 (Sullivan model of classifying space). Let G be a finite-dimensional, compact and simply-connected
Lie group, with Lie algebra denoted g. Then the minimal Suillvan model (Def. 3.45) of its classifying space BG is
the graded algebra of invariant polynomials (Def. 4.18), regarded as a dgc-algebra with vanishing differential:(

inv(g), d = 0
)
' CE(lBG) ∈ DiffGradedCommAlgebras≥ 0

R . (213)

Proof. According to [FOT08, Example 2.42], we have

CE(lBG) '
(
H•(BG; R), d = 0

)
. (214)

The composition of (214) with the isomorphism (211) from Prop. 4.22 yields the desired (213).

Lemma 4.25 (Non-abelian de Rham cohomology with coefficients in a classifying space). Let G be a finite-
dimensional, compact and simply-connected Lie group, with Lie algebra denoted g. Then the non-abelian de
Rham cohomology (Def. 3.82) with coefficients in the rational Whitehead L∞-algebra lBG (Prop. 3.61) of the
classifying space is canonically identified with the codomain of the classical Chern-Weil construction (210):

nonabelian
de Rham cohomology

HdR
(
X ; lBG

)
'

traditional codomain of
Chern-Weil construction

Hom
(
inv•(g), H•dR(X)

)
. (215)

Proof. Consider the following sequence of natural bijections:

HdR
(
X ; lBG

)
:= DiffGradedCommAlgebras≥ 0

R

(
CE
(
lBG

)
, Ω
•
dR(X)

)
/∼

' DiffGradedCommAlgebras≥ 0
R

((
inv•(g), d = 0

)
, Ω
•
dR(X)

)
/∼

' GradedCommAlgebras≥ 0
R

(
inv•(g) , Ω

•
dR(X)closed

)
/∼

' GradedCommAlgebras≥ 0
R

(
inv•(g) ,

(
Ω
•
dR(X)closed

)
/∼

)
' GradedCommAlgebras≥ 0

R

(
inv•(g) , H•dR(X)

)
=: Hom

(
inv•(g) , H•dR(X)

)
.

Here the first line is the definition (Def. 3.82). After that, the first step is Lemma 4.25. The second step unwinds
what it means to hom out of a dgc-algebra with vanishing differential (which is generator-wise as in Example 3.77),
while the third and fourth steps unwind what this means for the coboundary relations (which is generator-wise as
in Prop. 3.84). The last line just matches the result to the abbreviated notation used in (210).

Theorem 4.26 (Non-abelian character map subsumes Chern-Weil homomorphism). Let G be a finite-dimensional
compact, connected and simply-connected Lie group, with Lie algebra g. Let X ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil

(Def. 3.50) be equipped with the structure of a smooth manifold. Then the non-abelian character chBG (Def 4.2)
on non-abelian cohomology (Def. 2.1) of X with coefficients in BG coincides with the Chern-Weil homomorphism
cwG (Def. 4.21) with coefficients in G, in that the following diagram (of cohomology sets) commutes:

H(X ; BG)
chBG

non-abelian character //
OO

(15) '

HdR(X ; lBG)

' (215)
��

GBundles(X)/∼
cwG

Chern-Weil homomorphism
// Hom

(
inv•(g), H•dR(X)

) (216)

Here the isomorphism on the left is from Example 2.3, while that on the right is from Lemma 4.25.

Proof. First, notice that BG is simply connected (hence nilpotent), by the assumption that G is connected, and that
it is of finite rational type by Prop. 4.22. Hence, with Def. 3.50,

BG ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil . (217)
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Now, by Definition 4.2, the non-abelian character map on the top of (216)

chBG : H(X ; BG)
(ηR

BG) // H
(
X ; LRBG

) ' // HdR
(
X ; LRBG

)
sends a classifying map

X c // BG ∈ H(X ; BG) = Ho
(
TopologicalSpacesQu

)
(X , BG)

first to its composite with the rationalization map (Def. 3.53). By the fundamental theorem (Theorem 3.58 (i),
using (217)), this is given by the derived adjunction unit DηBG of Rexp a Ω•PLdR (118):

X c // BG
LRBG' DηBG // Rexp ◦Ω•PLdR(BG) ∈ Ho

(
TopologicalSpacesQu

)(
X , LRBG

)
= H

(
X ; ,LRBG

)
.

Moreover, by part (ii) of the fundamental theorem, the adjunct of the morphism DηBG ◦ c under (118) is

Ω•PLdR(X) oo
c∗

Ω•PLdR(BG) ∈ Ho
((

DiffGradedCommAlgebras≥ 0
R

)
proj

)
(using that Ω•PLdR(DηR) is an equivalence, by reflectivity of rationalization (110)). Hence it is the pullback op-
eration of rational cocyles on BG along the classifying map c. Sending this further along the isomorphism to the
bottom right in (216) (via Theorem 3.85 and Lemma 4.25) gives, by (161):

chBG : c 7! Ω•dR(X) oo
c∗

Ω•PLdR(BG) oo
' inv•(g) ∈ Ho

((
DiffGradedCommAlgebras≥ 0

R

)
proj

)
. (218)

In conclusion, we have found that the commutativity of (216) is equivalent to the statement that the characteristic
forms obtained by the Chern-Weil construction (210) represent the pullback (218) of the universal real character-
istic classes on BG along the classifying map c of the underlying principal bundle (Example 2.21). This is the case
by the fundamental theorem of Chern-Weil theory, Prop. 4.23.

Example 4.27 (de Rham representative of tangential Sp(2)-twist). For X a smooth 8-dimensional spin-manifold
equipped with tangential Sp(2)-structure τ (58), Theorem 4.26 says that there exists a smooth Sp(2)-principal
bundle on X equipped with an Ehresmann connection ∇ such that the rationalization (Def. 3.53) of the twist τ

corresponds, under the non-abelian de Rham theorem (Theorem 3.85) to a flat lBSp(2)-valued differential form
whose components are the characteristic forms of the Sp(2)-principal connection ∇:

H
(
X ; BSp(2)

) (ηR
BG)∗−! H

(
X ; LRBSp(2)

)
' HdR

(
X ; lBSp(2)

)
τ 7−! LRτ  ! Ω•dR(X) oo

τdR R
[

χ8,
1
2 p1

]/(d 1
2 p1 = 0

d χ8 = 0

)
= CE

(
lBSp(2)

)
1
2 p1(∇) oo � 1

2 p1

χ8(∇) oo � χ8

Here on the right we are using [CV98, Thm . 8.1], see [FSS20, Lemma 2.12] to identify generating universal
characteristic classes on BSp(2): 1

2 p1 is the first Pontrjagin class (of degree 4) and χ8 =
(

1
2 p2−

(1
2 p1
)2
)

is the
Euler 8-class, which on BSp(2) happens to be proportional to the I8-polynomial (see [FSS19b, Prop. 3.7]).

4.3 Cheeger-Simons homomorphism

We show (Theorem 4.46) that the non-abelian character map induces secondary non-abelian cohomology opera-
tions (Def. 4.42) which subsume the Cheeger-Simons homomorphism, recalled around (255) below, with values
in ordinary differential cohomology, recalled around (242) below. We follow [FSSt10] [SSS12][Sc13] where the
Cheeger-Simons homomorphism, generalized to higher principal bundles, is called the ∞-Chern-Weil homomor-
phism.

Underlying this is a differential enhancement of the non-abelian character map (Def. 4.32), and an induced
notion of differential non-abelian cohomology (Def. 4.33) on smooth ∞-stacks (recalled as Def. A.44).
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The differential non-abelian character map. We introduce (in Def. 4.32 below) the differential refinement of
the non-abelian character map; given as before by rationalization, but now followed not by a map to non-abelian de
Rham cohomology, but to its refinement by the full cocycle space of flat non-abelian differential forms (Def. 4.28
below). It is this refinement of the codomain of the character map that allows it to be fibered over the smooth space
of actual flat non-abelian differential forms (instead of just their non-abelian de Rham classes), thus producing
differential non-abelian cohomology (Def. 4.33 below).

Definition 4.28 (Moduli ∞-stack of flat L∞-algebra valued forms [Sc13, 4.4.14.2]). Let A ∈ SimplicialSets be of
connected, nilpotent, R-finite homotopy type (Def. 3.50). In view of the system of sets (Def. 3.75)

X 7−! ΩdR
(
X ; lA

)
∈ Sets

of flat non-abelian differential forms with coefficient in the Whitehead L∞-algebra lA of A (Prop. 3.61), which are
contravariantly assigned to smooth manifolds X , we consider in Ho(SmoothStacks∞) (Def. A.44):
(i) the smooth space of flat lA-valued differential forms

ΩdR
(
−; lA

)
flat :=

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn; lA

)
flat

))
, (219)

regarded as a simplicially constant simplicial presheaf (341);
(ii) the smooth ∞-stack of flat lA-valued differential forms (Example 3.80)

[exp(lA) :=
(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆

k; lA
)

flat

))
(220)

which to any Cartesian space assigns the simplicial set that in degree k is the set of flat lA-valued differential forms
on the product manifold of the Cartesian space with the standard smooth k-simplex ∆k ⊂ Rk;
(iii) the canonical inclusion

smooth space of
flat lA-valued forms

Ω(−; lA)flat
atlas //

smooth ∞-stack of
flat lA-valued forms

[exp(lA)

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn; lA

)
flat

))
� � //

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆k; lA

)
flat

))
(221)

exhibiting Ω(−; lA) (219) as the presheaf of 0-simplices in the simplicial presheaf [exp(lA) (220) (more abstractly:
this is the canonical atlas of the smooth moduli ∞-stack, see [SS20b, Prop. 2.70]).

Lemma 4.29 (Moduli ∞-stack of flat forms is equivalent to discrete rational ∞-stack).
For A ∈ Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50), the evident inclusion (by inclusion of polynomial forms into

smooth differential forms followed by pullback along pr∆k )

Disc
(
LRA

)
' Disc ◦ Rexp ◦CE

(
lA
) ∈W // [exp

(
lA
)

(
Rn 7!

(
∆[k] 7!ΩPLdR

(
∆k; lA

)
flat

))
� � //

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆k; lA

)
flat

))
(222)

of the image under Disc (345) of the dg-algebraic model (119) for the rationalization of A (Def. 3.53) given by
the fundamental theorem (Prop. 3.58), into the moduli ∞-stack of flat lA-valued differential forms (Def. 4.28) is an
equivalence in Ho(SmoothStacks∞) (Def. A.44).

Proof. By Prop. 3.60, the inclusion is for each Rn a weak equivalence (127) in SimplicialSetsQu (Example A.8),
hence is a weak equivalence already in the global projective model structure on simplicial presheaves, and hence
also in the local projective model structure. (Example A.43).
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Lemma 4.30 (Moduli ∞-stack of closed differential forms is shifted de Rham complex).
For n ∈ N, we have an equivalence in
Ho(SmoothStacks∞) (Def. A.44) from the
moduli ∞-stack [exp

(
bnR

)
of flat differen-

tial forms (Def. 4.28) with values in the line
Lie (n + 1)-algebra bnR (Example 3.27) to
the image under the Dold-Kan construction
(Def. A.53) of the smooth de Rham complex
Ω•dR(−) (Example 3.23), naturally regarded
as a presheaf on CartesianSpaces (338) with
values in connective chain complexes (Exam-
ple A.48) (i.e., with de Rham differential low-
ering the chain degree) shifted up in degree by
n and then homologically truncated in degree
0, as shown on the right.

[exp
(
bnR

) ' // DK



...
#
0
#
0
#

Ω0
dR(−)
# d

Ω1
dR(−)
# d

...
# d

Ω
n+1
dR (−)clsd



∈ Ho(SmoothStacks∞)

Proof. First observe, with Example 3.77, that the simplicial presheaf

[exp
(
bnR

)
(−) =

(
∆[k] 7! Ω

n+1
dR

(
(−)×∆

k)
clsd

)
(223)

naturally carries the structure of a presheaf of simplicial abelian groups, given by addition of differtial forms.
Therefore, by the Dold-Kan Quillen equivalence (Prop A.52), it is sufficient to prove that we have a quasi-
isomorphism of presheaves of chain complexes from the corresponding normalized chain complex (346) of (223)
to the shifted and truncated de Rham complex itself:

N
(

∆[k] 7! Ω
n+1
dR

(
(−)×∆k

)
clsd

)
'

∫
∆• //
(
· · ·! 0! 0!Ω0

dR(−)
d
!Ω1

dR(−)
d
! · · · d

!Ω
n+1
dR (−)clsd

)
. (224)

We claim that such is given by fiber integration of differential forms over the simplices ∆k:
First, to see that fiber integration does constitute a chain map, we compute for ω ∈ Ω•dR

(
(−)×∆k

)
clsd on the

left of (224): ∫
∆k

∂ω = (−1)k
∫

∂∆k
ω = d

∫
∆k

ω , (225)

where the first step is the definition of the differential in the normalized chain complex (346) and the second step
is the fiberwise Stokes formula (155).

Finally, to see that
∫

∆• is a quasi-isomorphism, notice that the chain homology groups on both sides are

Hk(−) =

{
R | k = n+1
0 | otherwise

over each Cartesian space: For the left hand side this follows via the weak equivalence (127) from the fundamental
theorem (Prop. 3.58) via Example 3.65, while for the right hand side this follows from the Poincaré lemma.

Hence it is sufficient to see that fiber integration over ∆n+1 is an isomorphism on the (n+1)st chain homology
groups. But a generator of this group on the left is clearly given by the pullback pr∗

∆n+1ω of any ω ∈ Ω
n+1
dR (∆n+1)

of unit weight and supported in the interior of the simplex. That this is sent under
∫

∆n+1 to a generator ±1 ∈ R '
Ω0

dR(−)clsd on the right follows by the projection formula (156).

Remark 4.31 (Moduli of closed forms via stable Dold-Kan correspondence). Expressed in terms of the stable
Dold-Kan construction DKst (Prop. A.55) via the derived stabilization adjunction (Example A.41), Lemma 4.30
says, equivalently, that:

[exp
(
bnR

)
' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗Z b

n+1R
))

∈ Ho(SmoothStacks∞) , (226)

where now Ω•dR(−)∈ PSh
(
CartesianSpaces , ChainComplexesZ

)
is in non-positive degrees, with Ω0

dR(−) in degree
0, and where bn+1R (Def. 3.7) is concentrated on R in degree n+1.
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Definition 4.32 (Differential non-abelian character map [FSS15b, §4]). Given A ∈Ho
(
TopologicalSpacesQu

)finR
≥1,nil

(Def. 3.50), the differential non-abelian character map in A-cohomology theory, to be denoted chA, is the mor-
phism in Ho(SmoothStacks∞) (342) from Disc(A) (345) to the moduli ∞-stack of flat lA-valued forms [exp(lA)
(220) given by the composite

coefficient space as
geometrically discrete

moduli ∞-stack

Disc(A) Disc(ηPLdR
A ) //

Disc(DηPLdR
A )

rationalization
(119)

22

differential non-abelian character map

chA

,,
Disc◦ exp◦Ω•PLdR(A) (130)

Disc◦ exp(pmin)// Disc◦Rexp◦CE(lA)
∈W
(222)

//

moduli ∞-stack of
flat lA-valued

differential forms

[exp(lA) (227)

of
(a) the image under Disc (345) of the derived adjunction unit DηPLdR

A (311) of the PS de Rham adjunction (125),
specifically with (co-)fibrant replacement pmin being the minimal Sullivan model replacement (108); (recalling that
exp is a contravariant functor),

with
(b) the weak equivalence from Lemma 4.29.

Differential non-abelian cohomology.

Definition 4.33 (Differential non-abelian cohomology [FSS15b, §4]). For A ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil

(Def. 3.50) we say that:
(i) the moduli ∞-stack of ΩA-connections is the object Adiff ∈ Ho(SmoothStacks∞) in the homotopy category
of smooth ∞-stacks (Def. A.44), which is given by the homotopy pullback (Def. A.23) of the smooth space of
flat non-abelian differential forms ΩdR(−; lA)flat (221) along the differential non-abelian character map chA (Def.
4.32):

moduli ∞-stack
of ΩA-connections

Adiff

cA
universal characteristic class
in non-abelian A-cohomology

��

FA

lA-valued
curvature forms

//

(hpb)

smooth space of
flat lA-valued forms

ΩdR(−; lA)flat

atlas

��
Disc(A)

chA

differential non-abelian
character map

// [exp(lA)
moduli ∞-stack of

flat lA-valued forms

∈ Ho(SmoothStacks∞) ; (228)

(ii) the differential non-abelian cohomology of a smooth ∞-stack X ∈ Ho(SmoothStacks∞) (342) with coefficients
in A is the structured non-abelian cohomology (Remark 2.27) with coefficients in the moduli ∞-stack Adiff of ΩA-
connections (228), hence the hom-set in the homotopy category of ∞-stacks (Def. A.44) from X to Adiff

Ĥ
(
X ; A

)
:= H

(
X ; Adiff

)
:= Ho(SmoothStacks∞)

(
X , Adiff

)
. (229)

(iii) We call the non-abelian cohomology operations induced from the maps in (228) as follows (see (4)):

(a) characteristic class: Ĥ
(
X ; A

) (cA)∗ // H
(
Shp(X ); A

)
(Def. 2.1) (230)

(b) curvature: Ĥ
(
X ; A

) (FA)∗ // ΩdR
(
X ; lA

)
flat (Def. 3.75) (231)

(c) differential character: Ĥ
(
X ; A

) (chA◦cA)∗ // HdR
(
X ; lA

)
(Def. 3.82) (232)

In differential enhancement of Example 2.13, we have:
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Differential generalized cohomology.

Example 4.34 (Differential generalized cohomology). Let E• be a generalized cohomology theory (Example 2.13)
with representing spectrum E (21) which is connective and whose component spaces En are of finite R-type, so
that their connected components are, by Example 3.52, in Ho

(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50).

(i) Then differential non-abelian cohomology, in the sense of Def. 4.33, with coefficients in the component spaces
E•, coincides with canonical differential generalized E-cohomology in the traditional sense of [HS05, §4.1][Bun12,
Def. 4.53][BG13, §2.2][BNV13, §4.4]: generalized

differential cohomology

Ên(−) ' Ĥ(−;En) . (233)

(ii) Here “canonical”, in the sense of [Bun12, Def. 4.46], refers to choosing the curvature differential form coef-
ficients to be π•(E)⊗R (instead of some chain complex quasi-isomorphic to this). By Example 3.67, this choice
corresponds in our Def. 4.33 to the minimality (Def. 3.45) of the minimal Sullivan model CE(lEn) for En (Prop.
3.61) that controls the flat L∞-algebra valued differential forms ΩdR(−; lEn)flat (Def. 3.75) in the top right of (247).

(iii) Hence for canonical/minimal curvature coefficients, we have from Example 3.67, Lemma 4.30 and Remark
226 that

[exp
(
lEn
)
' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗Z π•(En)

))
∈ Ho(SmoothStacks∞) (234)

and
ΩdR

(
−; lEn

)
flat ' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗Z π•(En)

)
≤0

)
∈ Ho(SmoothStacks∞) . (235)

(iv) With this, the equivalence 233 follows by observing that the defining homotopy pullback diagram (228) for
differential non-abelian cohomology with coefficients in A := En (337) is the image under RΩ∞ (336) of the
defining homotopy pullback diagram for canonical differential E-cohomology according to [HS05, (4.12)] [Bun12,
Def. 4.51][BNV13, (24)], and using that right adjoints preserve homotopy pullbacks:

(E0)diff

cE0
��

FE0 //

(hpb)

ΩdR(−; lE0)flat

atlas
��

Disc(E0) chE0

// [exp(lE0)

moduli ∞-stack
of ΩE0-connections

' RΩ
∞


Diff(E,can)

��

//

(hpb)

(
Ω•dR(−)⊗Z π•(E)

)
≤0

��
Disc(E)

HR∧(−)
// Ω•dR(−)⊗Z π•(E)


“differential function spectrum”

of differential generalized E-cohomology

(236)

The same applies to (En)diff, by replacing E with LΣnE (336) on the right of (236).

Remark 4.35 (The canonical atlas for the moduli stack of connections). The operation (−)≤0 in (235) is the naive
truncation functor on the category of chain complexes

ChainComplexesZ

(−)≤0 // ChainComplexes≤ 0
Z(

· · · ∂1−!V1
∂0−!V0

∂−1
−!V−1

∂−2
−!V−1! · · ·

)
7−!

(
V0

∂−1
−!V−1

∂−2
−!V−1! · · ·

)
.

In contrast to the homological truncation involved in Ω∞ (353), this naive truncation is not homotopy-invariant and
does not have a derived functor. Instead, as seen from (235) and (221), once regarded in differential non-abelian
cohomology, this operation serves to construct the canonical atlas [SS20b, Prop. 2.70] of the moduli ∞-stack of
flat lEn-valued differential forms.

Via the defining homotopy pullback (228), (236) this becomes hallmark of differential cohomology: Differ-
ential cohomology is the universal solution to lifting the values of the character map from cohomology classes to
cochain representatives, namely to curvature forms.
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In differential enhancement of Example 2.14 and Example 4.10 we have:

Example 4.36 (Differential complex K-theory). With the coefficient space A := KU0 = Z×BU (23) for topolog-
ical complex K-theory (Example 2.14), the corresponding differential non-abelian cohomology theory (Def. 4.33)
is, by Example 4.34, differential K-theory, whose diagram (4) of cohomology operations is of this form

Ĥ
(
X ; KU0

)
' K̂U

0
(X )

FKU0 //

cKU0 ��

{ {
F2k ∈ Ω2k

dR(X )
}

k∈N
∣∣ d F2k = 0

}
��

KU0(X )
ch

// ⊕
k∈N

H2k
dR

(
X
)
,

(237)

where the bottom map is the ordinary Chern character from Example 4.10, and the curvature differential forms are
identified as in Example 3.92.

Examples of differential non-abelian cohomology. In differential enhancement of Example 2.3, we have:

Proposition 4.37 (Differential cohomology of principal connections). Let G be a compact Lie group with classify-
ing space BG (16). Then there is a natural map over manifolds X, shown dashed in (238), from equivalence classes
of G-principal connections (Notation 4.17) to differential non-abelian cohomology with coefficients in BG (Def.
4.33) which covers the classification of G-principal bundles by plain non-abelian cohomology with coefficients in
BG (Example 2.3), in that the following diagram commutes:

GConnections(X)/∼ //

forget
connection

��

differential
non-abelian cohomology

Ĥ(X ;BG)

cBG

��
GBundles(X)/∼ '

// H(X ; BG)
non-abelian cohomology

(238)

Proof. By Lemma 4.25, the differential form coefficient in the given case is

ΩdR(−; lBG)flat ' HomR

(
inv•(g) , Ω

•
dR(−)clsd

)
.

Therefore, with Example 3.65, we find that(
∆[k] 7! HomR

(
inv•(g) , Ω

•
dR(∆

k)clsd
))
' ∏

k
K
(
invn(g),n

)
∈ Ho

(
SimplicialSetsQu

)
is a product of Eilenberg-MacLane spaces (14) for real coefficient groups spanned by the invariant polynomials,
and so the defining homotopy pullback (228) is here of this form:

BGdiff //

��

(hpb)

HomR
(
inv•(g) , Ω•dR(−)clsd

)
��

Disc(BG)
(ck)k∈N

// Disc
(

∏
k∈N

K
(
invn(g),n

))
,

where the bottom map classifies the real characteristic classes of BG via Example 2.2. It follows (by Example
A.26) that maps into BGdiff are equivalence classes of triples

Ĥ(X ; BG) '


(

f ,φ ,(αk)
)
∣∣∣∣∣∣∣∣∣∣∣

X
(αk) //

f
��

HomR
(
inv•(g) , Ω•dR(−)clsd

)
��

BG // Disc
(

∏
k∈N

K
(
invn(g),n

))φrz


(239)
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consisting of (a) a classifying map f for a G-principal bundle (Example 2.3), (b) a set of closed differential forms α

labeled by the invariant polynomials, and (c) a set of coboundaries φ in real cohomology between these differential
forms and the pullbacks f ∗ck.

Now, given a G-connection ∇ on a G-principal bundle f ∗EG over X , we obtain such a triple by (a) taking f to
be the classifying map of the underlying G-principal bundle, (b) taking αk := ωk(F∇) to be the characteristic forms
(Def. 4.19) of the connection, and (c) taking φ to be given by the relative Chern-Simons forms [CS74] between the
given connection and the pullback along f of the universal connection (see Remark 4.16). This construction is an
invariant of the isomorphism class of the connection (see [HS05, p. 28]) and hence defines the desired map (238):

GConnections(X)/∼ // Ĥ(X ; BG)[
f ∗EG,∇

]
7−!

[
f ,
(
csk(∇, f ∗∇univ)

)
,
(
ωk(F∇)

)] (240)

In differential enhancement of Example 2.10, we have:

Example 4.38 (Differential Cohomotopy [FSS15b]). The canonical differential enhancement of (unstable) Coho-
motopy theory (Example 2.10) in degree n is differential non-abelian cohomology (Def. 4.33) with coefficients in
Sn: differential

Cohomotopy

π̂
n(−) := Ĥ

(
−;Sn) .

(i) By Example 3.79, a cocycle Ĉ3 ∈ π̂ 4(X) in differential 4-Cohomotopy has as curvature (228) a pair consisting
of a differential 4-form G4 and a differential 7-form G7, satisfying the cohomotopical Bianchi identity shown here:

differential
4-Cohomotopy

π̂ 4(X)

cohomotopical curvature

FS4 // Ω
(
X ; lS4

)
flat

Ĉ3
cohomotopically
charge-quantized

C3-field

7−!

{
G7(Ĉ3),

G4(Ĉ3)
∈Ω•dR(X)

∣∣∣∣∣d G7(Ĉ3) =−G4(Ĉ3)∧G4(Ĉ3)

d G4(Ĉ3) = 0

}
. (241)

Such differential form data is exactly what characterizes the flux densities of the C3-field in 11-dimensional su-
pergravity (up to the self-duality constraint G7 = ?G4). By comparison with Dirac’s charge quantization (2), we
thus see that a natural candidate for charge quantization of the supergravity C3-field is (nonabelian/unstable) 4-
Cohomotopy theory π4 [Sa13, §2.5][FSS16a, §2][BMSS19, §3] (review in [FSS19a, §7]) or rather: differential
4-Cohomotopy theory π̂ 4 [FSS15b, p. 9][GS20].
(ii) The consequence of this Cohomotopical charge quantization is readily seen from the Hurewicz operation on
Cohomotopy theory (Example 2.26): The de Rham class of the 4-flux density is constrained to be integral, hence
to be in the image of the de Rham homomorphism (Example 4.9) and its cup square is forced to vanish[

G4(Ĉ3)
]
∈ H4

(
X ; Z

)
// H4

dR

(
X
)
,

[
G4(Ĉ3)

]
∪
[
G4(Ĉ3)

]
= 0 .

This leads to interpretation via Massey products [KS05], with corresponding differential refinement in [GS17a].
(iii) Passing from 11-dimensional supergravity to M-theory, the curvature data in (241) is expected to be sub-
jected to more refined topological constraints, forcing the class of G4 to be integral up to a fractional shift by the
first Pontrjagin class of the tangent bundle, and deforming its cup square to a quadratic function with non-trivial
“background charge” ([FSS19b, Table 1]). Furthermore, comparing with integral and differential cohomology
yields subtle but natural conditions on the theory [GS20]. We see, in Prop. 5.22 below, that these more subtle
M-theoretic constraints on the C3-field flux densities are imposed by charge quantization in – hence lifting through
the non-abelian character map of – the corresponding twisted non-abelian cohomology theory, namely: J-twisted
4-Cohomotopy [FSS19b][FSS20] (Example 5.21 below).
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Differential ordinary cohomology. The ordinary differential cohomology Ĥ•(X) [SiSu08] of a smooth manifold
X combines ordinary integral cohomology classes (Example 2.2) with closed differential forms that represent the
same class in real cohomology, in that it makes a diagram of the following form commute:

ordinary
differential cohomology

Ĥ•(X)

underlying
integral class ��

curvature // Ω•dR(X)clsd

via
de Rham theorem��

H•(X ; Z) rationalization // H•(X ; R)

(242)

In fact, differential cohomology is universal with this property, but not at the coarse level of cohomology sets shown
above (where the universal property is shallow) but at the fine level of of complexes of sheaves of coefficients (i.e.
of moduli ∞-stacks), as made precise in Prop. 4.40 below.

In degree 2, ordinary differential cohomology classifies ordinary U(1)-principal bundles (equivalently: com-
plex line bundles) with connection [Bry93, §II], and the curvature map in (242) assigns their traditional curvature
2-form. In degree 3 ordinary differential cohomology classifies bundle gerbes with connection [Mu96][SW07] with
their curvature 3-form. In general degree it classifies higher bundle gerbes with connection [Ga97], or equivalently
higher U(1)-principal bundles with connection [FSS12b, 2.6].

One construction of ordinary differential cohomology over smooth manifolds is given in [CS85, §1], now
known as Cheeger-Simons characters. An earlier construction over schemes, now known as Deligne cohomology
(Example 4.39), due independently to [De71, §2.2][MM74, §3.1.7][AM77, §III.1] and brought to seminal applica-
tion in [Bei85] (review in [EV88]) is readily adapted to smooth manifolds [Bry93, §I.5][Ga97]. The advantage of
Deligne cohomology over Cheeger-Simons characters is that is immediately generalizes from smooth manifolds to
smooth ∞-stacks, [FSSt10, §3.2.3][FSS12b, §2.5], such as to orbifolds [SS20a] and to moduli ∞-stacks of higher
principal connections where it yields higher Chern-Simons functionals [SSS12][FSS12a][FSS13a][FSS15a], as
well as allowing for twists in a systematic manner [GS18c][GS19b].

In differential enhancement of Example 2.12, we have:

Example 4.39 (Ordinary differential cohomology on smooth ∞-stacks [FSSt10, §3.2.3][FSS12b, §2.5]). Let n∈N.
(i) The smooth Deligne-Beilinson complex in degree n+1 is the presheaf of connective chain complexes (Example
A.48) over CartesianSpaces (338) given by the truncated and shifted smooth de Rham complex (Example 3.23)
with a copy of the integers included in degree n + 1 (as integer valued 0-forms, hence as smooth real-valued
functions constant on an integer):

DBn+1
• :=

(
· · · // 0 // 0 // Z �

� // Ω0
dR(−)

d // Ω1
dR(−)

d // · · · d // Ωn
dR(−)

)
. (243)

(ii) The de Rham differential in degree 0 gives a morphism of presheaves of complexes

DBn+1
•

(0,0,··· ,0,d) // Ωn+1
dR (−)clsd (244)

from the Deligne-Beilinson complex (243) to the presheaf of closed (n+1)-forms, regarded as a presheaf of chain
complexes regarded in degree 0.
(iii) Ordinary differential cohomology is stacky non-abelian cohomology (Remark 2.27) with coefficients in the
Deligne-Beilinson complex (243) regarded as a smooth ∞-stack (Def. A.44) under the ∞-stackified Dold-Kan
construction from Example A.53 (hence sheaf hypercohomology with coefficients in the Deligne complex):

ordinary
differential cohomology

Ĥn+1(X )
:= Ho(SmoothStacks∞)

(
X ,

Dold-Kan
correspondence

Lloc ◦ DK
(Deligne-Beilinson

complex

DBn+1
•
))

. (245)
(iv) The curvature map on ordinary differential cohomology is the cohomology operation induced by (244):

ordinary
differential cohomology

Ĥn+1
(
X
)

F
curvature // Ωn+1

dR

(
X
)

clsd

Ho(SmoothStacks∞)
(
X ,Lloc ◦DK

(
DBn+1
•
)) Ho(SmoothStacks∞)(X ,Lloc ◦DK(d)) // Ho(SmoothStacks∞)

(
X ,Lloc ◦DK

(
Ω

n+1
dR (−)clsd

))
(246)
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Proposition 4.40 (Differential non-abelian cohomology subsumes differential ordinary cohomology [FSSt10,
Prop. 3.2.26]). Let n ∈ N and consider A = BnU(1)' K(Z,n+1) (Example 2.12). Then:
(i) Differential non-abelian A-cohomology (Def. 4.33) coincides with ordinary differential cohomology (Def. 4.39):

ordinary
differential cohomology

Ĥn+1(X )
' Ĥ

(
X ; BnU(1)

)
. (247)

(ii) The abstract curvature map in differential A-cohomology (228) reproduces the ordinary curvature map (246).

Proof. First we use the Dold-Kan correspondence (Prop. A.50) to obtain a convenient presentation of the differ-
ential character:

(a) Since the Dold-Kan construction DK (Def. A.53) realizes homotopy groups from homology groups (348),
and since Eilenberg-MacLane spaces are characterized by their homotopy groups (14), we have the vertical iden-
tifications on the left of the following diagram:

Disc
(
Bn+1Z

) chBnU(1)

,,

ηR
Bn+1Z

// Disc
(
Bn+1R

)
'

// [exp(bnR)
'

∫
∆• ��

DK



Z
#
0
#
...
#
0


� � //DK



R
#
0
#
...
#
0


� � // DK



Ω0
dR(−)
# d

Ω1
dR(−)
# d

...
# d

Ω
n+1
dR (−)clsd



(248)

Under this identification, it is clear that the rationalization map ηR
Bn+1Z (Def. 3.53) is presented by the canonical

inclusion of the integers into the real numbers, as on the bottom left of (248).
Moreover, the right vertical equivalence in (248) is that from Lemma 4.30.
(b) Since the differential character (227) in the present case evidently comes from a morphism of (presheaves

of) simplicial abelian groups, with group structure given by addition of ordinary differential forms (Example 3.77),
we may, using the Dold-Kan correspondence (Prop. A.50), analyze the remainder of the diagram on normalized
chain complexes N(−) (347).

Using this, it follows by inspection of the bottom map in (227) that the bottom right square in (248) commutes,
with the bottom morphism on the right being the canonical inclusion of (presheaves of) chain complexes.

Now to use this presentation for identifying the resulting homotopy fiber product:
(i) Since the DK-construction (Def. A.53), applied objectwise over CartesianSpaces, is a right Quillen functor into
the global model structure from Example A.43, and since ∞-stackification preserves homotopy pullbacks (Lemma
A.46), it is now sufficient to show, by definition (245), that the homotopy pullback (Def. A.23) along the bottom
map in (248), formed in presheaves of chain complexes is the Deligne-Beilinson complex (243). For this, by
(315) it is sufficient to find a fibration replacement of the bottom map in (248) whose ordinary fiber product with
Ω

n+1
dR (−)clsd is the Deligne-Beilinson complex. This is the case for the following factorization:
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

Z
#i

Ω0
dR(−)
#d

Ω1
dR(−)
#d

...
#d

Ω
n−1
dR (−)
#d

Ωn
dR(−)


i1

��


0
0
...
0
d


//

(pb)



0
#
0
#
0
#
...
#
0
#

Ω
n+1
dR (−)clsd


i

��

Z
#
0
#
0
#
...
#
0
#
0



n 7!(n,n)

∈W
//



Z ⊕ Ω0
dR(−)

#i ↙−id #d

Ω0
dR(−) ⊕ Ω1

dR(−)
#d ↙+id #d

Ω1
dR(−) ⊕ Ω2

dR(−)
#d ↙−id #d

...
...

...
#d ↙ #d

Ω
n−1
dR (−) ⊕ Ωn

dR(−)
#d ↙

Ωn
dR(−)




pr2
pr2

...
pr2
d


∈ Fib

//



Ω0
dR(−)
#d

Ω1
dR(−)
#d

Ω2
dR(−)
#d

...
#d

Ωn
dR(−)
#d

Ω
n+1
dR (−)clsd



(249)

Here the total bottom morphims is the total bottom morphism from (248), factored as a weak equivalence (quasi-
isomorhism) followed by a fibration (positve degreewise surjection). The ordinary pullback of the fibration is
shown, and represents the homotopy pullback, since all chain complexes are projectively fibrant.
(ii) Finally, the top morphism in (249), thus being the abstract curvature map (228) is seen to coincide with the
curvature map (244) on the Deligne complex.

Secondary non-abelian cohomology operations. We define secondary non-abelian cohomology operations (Def.
4.42 below) which generalize the classical notion of secondary characteristic classes (Theorem 4.46, see Remark
4.47 for the terminology) to higher non-abelian cohomology. To formulate the concept in this generality, we need
a technical condition (Def. 4.41) which happens to be trivially satisfied in the classical case (Lemma 4.44 below):

Definition 4.41 (Absolute minimal model). For A1,A2 ∈ Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) we say that

an absolute minimal model for a morphism A1 c // A2 in SimplicialSets is a morphism lA1 c // lA2 between
the respective Whitehead L∞-algebras (Prop. 3.61) which makes the square on the left and hence the square on the
far right of the following diagram commute:

Ω•dRPL(A1) oo
pmin

A1

OO
CE
(
lA1
)

OO
c

Ω•dRPL(A2) oo
pmin

A2

CE
(
lA2
)
,

∈ DiffGradedCommAlgebras≥ 0
R

A1

c

��

ηPLdR
A1

//

DηPLdR
A1

,,
exp ◦Ω•PLdR(A1)

exp ◦Ω•PLdR(c)

��

exp(pmin
A1

) // exp ◦CE(lA1)

exp ◦CE(c)

��
A2 ηPLdR

A2
//

DηPLdR
A2

22exp ◦Ω•PLdR(A2) exp(pmin
A2

) // exp ◦CE(lA2) ,

∈ SimplicialSets

(250)

hence a morphism that yields a transformation between exactly those derived adjunction units DηPLdR (311) of
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the PL-de Rham adjunction (116) that are given by minimal fibrant replacement.15 In this case, the commuting
diagram (250) evidently extends to a strict transformation between the differential non-abelian characters (227) on
the Ai (Def. 4.32), in that the following diagram of simplicial presheaves (Def. 339) commutes:

Disc(A1)

Disc(c)
��

chA1 // [exp(lA1)

[exp(c)
��

Disc(A2)
chA2 // [exp(lA2)

∈ PSh
(
CartesianSpaces , SimplicialSets

)
. (251)

In differential enhacement of Def. 2.17 we have:

Definition 4.42 (Secondary non-abelian cohomology operation). Let A1
c // A2 in SimplicialSets, with induced

cohomology operation (Def. 2.17)
H(−;A1)

c∗ // H(−;A2) ,

have an absolute minimal model c (Def 4.41). Then the corresponding secondary non-abelian cohomology opera-
tion is the structured cohomology operation (Remark 2.27)

Ĥ(−; A1)
(cdiff)∗

secondary
non-abelian character

// Ĥ(−; A2) (252)

on differential non-abelian cohomology (Def. 4.33) which is induced (33) by the dashed morphism cdiff in the
following diagram, which in turn is induced from c and c (251) by the universal property of the defining homotopy
pullback operation (227):

secondary/differential
cohomology operation (A1)diff

cdiff //

cA1

��

FA1 ((

(A2)diff

cA2

��

FA2

((
ΩdR

(
−; lA1

)
flat

��

c∗ // ΩdR
(
−; lA2

)
flat

��

plain/primary
cohomology operation Disc(A1)

Disc(c) //

transformation of
differential characters chA1

((

Disc(A2)
chA2

((
[exp(lA1)

c∗ // [exp(lA2) .

(253)

The left and right squares are the homotopy pullback squares defining differential non-abelian cohomology (Def.
4.33) while the bottom square is the transformation of differential non-abelian characters (Def. 4.32) from (251).

In differential enhancement of Examples 2.26, 4.13 we have:

Example 4.43 (Secondary non-abelian Hurewicz/Boardman homomorphism to differential K-theory). Consider
the map

S4 β 4
// BU ∈ Ho

(
TopologicalSpacesQu

)
from the 4-sphere to the classifying space of the infinite unitary group (24) which classifies a generator in π4

(
BU
)
'

Z. By Example 3.66 and Examples 3.67, 3.92 the corresponding Whitehead L∞-algebras (Prop. 3.61) are as shown
here:

CE
(
lS4
)
oo CE

(
lBU

)
' ⊗

k∈N
CE
(
lK(Z,2k)

)

R
[

ω7,
ω4

]/(d ω7 =−ω4∧ω4

d ω4 = 0

)
oo

ω4 | 2k = 4
0 | else

}
 [ f2k

? _R

 ...
f4,
f2,

 /


...

d f4 = 0

d f2 = 0

 (254)

15 Notice that the existence of morphisms c making this diagram commute is not guaranteed; it is only the existence of the relative
minimal morphism lA2(c) from Prop. 3.68 which is guaranteed to make the square (139) commute.
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The morphism shown in (254) evidently restricts to the relative rational Whitehead L∞-algebra inclusion (Prop.
3.68) on the factor K(R,4) ⊂ LRBU and is zero elsewhere, hence fits into the required diagram (250) exhibiting it
as an absolute minimal model (Def. 4.41) for β 4 (by the commuting diagram in Prop. 3.48).

Therefore, Def. 4.42 induces from β 4 a secondary non-abelian cohomology operation, going from differential
4-Cohomotopy (Example 4.38) to differential K-theory (Example 4.36), which on curvature forms (231) injects
the 4-form curvature G4 in differential Cohomotopy to the 4-form component F4 in differential K-theory, as shown
in (7).

Cheeger-Simons homomorphism. Where the construction of the Chern-Weil homomorphism (Def. 4.21) invokes
connections on principal bundles without actually being sensitive to this choice (by Prop. 4.23), the Cheeger-
Simons homomorphism [CS85, §2][HS05, §3.3] (based on [CS74]) is a refinement of the Chern-Weil homomor-
phism, now taking values in differential ordinary cohomology (Example 4.39), that does detect connection data
(hence “differential” data):

GConnections(X)/∼

forget
connection

��

csG

Cheeger-Simons
homomorphism // HomZ

(
H•(BG; Z) ,

differential
cohomology

Ĥ•(X)
)

curvature map
��

GBundles(X)/∼
cwG

Chern-Weil
homomorphism

// HomR

(
inv•(g) , H•dR(X)

de Rham
cohomology

) (255)

We discuss how the general notion of secondary non-abelian cohomology operations (Def. 4.42) specializes on
ordinary principal bundles to the Cheeger-Simons homomorphism, and hence generalizes it to higher non-abelian
cohomology:

Lemma 4.44 (Characteristic classes of G-principal bundles have absolute minimal models). Let G be a connected
compact Lie group with classifying space BG (16). For n ∈ N, let [c] ∈ Hn+1(BG; Z) be a universal integral
characteristic class (Example 2.4). Then every representative classifying map BG c // Bn+1Z has an absolute
minimal model in the sense of Def. 4.41.

Proof. By Lemma 4.24, the minimal Sullivan model for BG has vanishing differential, while the minimal Sullivan
model of Bn+1Z is a tensor factor (by Example 3.65), whose inclusion is already the relative minimal Sullivan
model lBn+1Z(c) (Prop. 3.68) of c. Therefore, setting

CE(c) := CE
(
lBn+1Z(c)

)
: R[c]

/
(d c = 0) �

� // inv•(g) (256)

gives the required morphism of minimal models that makes makes the square (250) commute, by (139).

In differential enhancement of Example 2.18 we have:

Definition 4.45 (Secondary characteristic classes of differential non-abelian G-cohomology). Let G be a connected
compact Lie group with classifying space BG (16). By Lemma 4.44), the construction of secondary characteristic
classes (Def. 4.42, on differential non-abelian G-cohomology (Example 4.37) exists generally, and yields a Z-
linear map of the form

H
(
BG; B•Z

) (−)diff // Ĥ
(
BGdiff; B•Z

)
= H

(
BGdiff; B•Zdiff

)
,

where on the right we have the ordinary differential non-abelian cohomology (Prop. 4.40) of the moduli ∞-stack
BGdiff (228). Combined with the composition operation in Ho(SmoothStacks∞) (A.44) this gives a map

Ĥ
(
X ; BG

)
×H

(
BG; B•Z

) id×(−)diff // H
(
X ; BGdiff

)
×H

(
BGdiff; B•Zdiff

) ◦ // H
(
X ; B•Zdiff

)
= Ĥ

(
X ; B•Z

)
which is Z-linear in its second argument, and whose hom-adjunct is

Ĥ(X ; BG)
∇ 7!(c 7!cdiff(∇)) // HomZ

(
H(BG; B•Z) , Ĥ(X ; B•Z)

)
. (257)
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Theorem 4.46 (Secondary non-abelian cohomology operations subsume Cheeger-Simons homomorphism). Let
G be a connected compact Lie group, with classifying space denoted BG (16). Then the canonical construction
(257) of secondary characteristic classes on differential non-abelian G-cohomology (Def. 4.45) coincides with the
Cheeger-Simons homomorphim (255), in that the following diagram commutes:

GConnections(X)

(238)

��

csG

Cheeger-Simons
homomorphism // HomZ

(
H•(BG; Z) ,

differential
ordinary

cohomology

Ĥ•(X)
)

OO
' (247)

Ĥ(X ; BG)
differential non-abelian

cohomology

∇ 7!(c 7!cdiff(∇))

secondary
non-abelian cohomology operations

// HomZ

(
H(BG; B•Z) , Ĥ(X ; B•Z)

)
,

(258)

where on the left we have the map from G-connections to differential non-abelian G-cohomology from Prop. 4.37,
and on the right the identification of ordinary differential cohomology from Prop. 4.40.

Proof. Let c ∈ H
(
BG; B•Z

)
be a characteristic class, and let ( f ∗EG,∇) be a G-principal bundle equipped with a

G-connection. By Prop. 4.37, its image in differential non-abelian cohomology is given by the first map in the
following diagram

GConnections(X)/∼ // Ĥ(X ; BG)
(cdiff)∗ // Ĥ

(
X ; Bn+1Z

) ' // Ĥn+1(X)[
f ∗EG,∇

]
7−!

[
f ,
(
csk(∇, f ∗∇univ)

)(
ωk(F∇)

)]
7−!

[
f ∗c, csc(∇, f ∗∇univ), c(F∇)

] (259)

Here the triple of data are the three components (Example A.26) of a map into the defining homotopy pullback
of differential non-abelian cohomology (239). Therefore, the secondary operation induced by the transformation
(253) of these homotopy pullbacks, which in the present case is of this form:

BGdiff cdiff

secondary
characteristic class //

&&
cBG

��

Bn+1Zdiff

((
cBn+1Z

��

ΩdR(−; lBG)flat

��

// ΩdR(−; lBn+1Z)flat

��

BG c
characteristic class //

chBG ''

Bn+1Z
chBn+1Z

((
[exp(lBG)

c∗
// [exp(lBn+1Z) ,

(260)

acts (a) on the first component in the triple by postcomposition with c, hence as

f 7! f ∗c := c ◦ f

and (b) on the other two components by composition with c, which by (256) corresponds to projecting out the
Chern-Simons form and characteristic form corresponding to c, respectively. This is shown as the second map in
(259). Hence we are reduced to showing that the total map in (259) gives the Cheeger-Simons homomorphism.
This statement is the content of [HS05, §3.3].

Remark 4.47 (Secondary characteristic classes of G-connections). The traditional reason for referring to the
Cheeger-Simons homomorphism (258) as producing secondary invariants is that Cheeger-Simons classes csG(P,∇)∈
Ĥ(X) may be non-trivial even if the underlying characteristic class cwG(P) (the “primary” class) vanishes. In this
case the csG(P,∇) are also called Chern-Simons invariants.
(i) This happens, in particular, when the G-connection ∇ is flat, F(∇) = 0 (by Def. 4.19). Such secondary Chern-
Simons invariants exhibit some subtle phenomena ([Rzn95][Rzn96][IS07][Es09]).
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(ii) In fact, the proof of Theorem 258, via the triples (239) of homotopy data, shows that, in this case, csG(P,∇)
measures how (or “why”) cwG(P) vanishes, namely by which class of homotopies.
(iii) Here we may understand secondary classes more abstractly, and explicitly related to the non-abelian character
map: Where a (primary) non-abelian cohomology operation, according to Def. 2.17, is induced by a morphism of
coefficient spaces (28), a secondary non-abelian cohomology operation, according to Def. 4.42, is induced (252)
by a morphism of non-abelian character maps (251) – hence by a morphism of morphisms – on these coefficient
spaces.
(iv) Note that classical secondary cohomology operations themselves admit differential refinements. For instance,
for the case of Massey products as secondary operations for the cup product [GS17a]. While these can also fit into
our context on general grounds, we will not demonstrate that explicitly here.
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5 The twisted (differential) non-abelian character map

We introduce the character map in twisted non-abelian cohomology (Def. 5.4) and then discuss how it specializes
to:
§5.1 – the twisted Chern character on (higher) K-theory;
§5.3 – the twisted character on Cohomotopy theory.

Rationalization in twisted non-abelian cohomology. In generalization of Def. 4.1 we now define rationalization
of local coefficient bundles (35). This operation is transparent in the language of ∞-category theory, where it simply
amounts to forming the pasting composite with the homotopy-coherent naturality square of the rationalization unit
ηR:

X

τ   

τ-twisted cocycle with
local coefficients ρ

c // A�G

ρ||
BG

'qy
rationalization
7−!

X

τ
��

τ-twisted cocycle with rationalized local coefficients LRρ

c // A�G

ρ
||

ηR
A�G // LR

(
A�G

)

LRρ

��

BG

ηR
BG ##

LRBG

'px

'
t|

(261)

Slightly less directly but equivalently, this operation is the composite of (a) “base change” along ηR
BG from the

slice over BG to the slice over LRBG, (b) followed by the composition with the naturality square, now regarded as
a morphism in the slice over LRBG:

X

τ   

τ-twisted cocycle with
local coefficients ρ

c // A�G
ρ

||
BG

'qy
base change
7−!

X

τ ""

c // A�G

ρzz
BG

ηR
BG
��

LRBG

'ow composition
in slice
7−!

X

τ ""

τ-twisted cocycle with
local coefficients ρ

c // A�G

ρzz

ηR
A�G // LR(A�G)

LRρ

zz

BG

ηR
BG
��

LRBG

'ow

'

s{

It is in this second form that the operation lends itself to formulation in model category theory (Def. 5.2 below).
For that we just need to produce a rectified (strictly commuting) incarnation of the ηR-naturality square:

Lemma 5.1 (Rectified rationalization unit on coefficient bundle). Let

A //

local coefficient bundle

A�G
ρ
��

BG

(262)

be a local coefficient bundle (35) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50), and let

Ω•PLdR

(
A�G

)
OO

Ω•PLdR(ρ)

oo
p

minBG
A�G

∈W
CE
(
lBG(A�G)

)
OO

CE(lp)

Ω•PLdR

(
BG
)
oo

pmin
BG

∈W
CE
(
l(BG)

)
(263)

be its minimal relative Sullivan model (139), which exists by Prop. 3.68. Then the composite of the image of (263)
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under exp with the Ω•PLdR a exp-adjunction unit (from Prop. 3.57):

Dη
PLdR
ρ :=

A�G ηPLdR
A�G

//

ρ

��

DηPLdR
A�G ' ηR

A�G

,,
exp ◦Ω•PLdR

(
A�G

)
exp ◦Ω•PLdR(ρ)

��

exp
(

pminBG
A�G

) // exp ◦CE
(
lBG(A�G)

)
exp ◦CE(lp)

��
BG ηPLdR

BG
//

DηPLdR
BG ' ηR

BG

22
exp ◦Ω•PLdR

(
BG
)

exp
(

pmin
BG

) // exp ◦CE
(
l(BG)

) (264)

is, after passage (303) to the classical homotopy category (Example A.33), equivalent to the naturality square of
the rationalization unit on ρ (109):

Dη
PLdR
ρ ' η

R
ρ .

Proof. By Prop. 3.43 the right part of (264) is the image under exp of a fibrant replacement morphism. By
(311) this identifies the diagram as the naturality square of the derived PLdR adjunction unit, and by (119) in the
fundamental theorem (Prop. 3.58) this implies the claim.

Definition 5.2 (Rationalization in twisted non-abelian cohomology). Given a local coefficient bundle ρ and its rec-
tified rationalization unit DηPLdR

ρ as in Lemma 5.1 we say that rationalization in twisted non-abelian cohomology
with local coefficients ρ (Def. 2.29) is the twisted non-abelian cohomology operation (Def. 2.40)(

η
R
ρ

)
∗ : Hτ(X ; A)

(
DηPLdR

ρ ◦ (−)
)
◦ L
(
ηR

BG

)
! // HLRτ

(
X ; LRA

)
(265)

given by the composite of
(a) derived left base change L(ηR

BG)! (Example A.18) along the rationalization unit (109) on the classifying space
of twists,
(b) composition with the rectified rationalization unit (264) on the coefficient bundle, regarded as a morphism in
the homotopy category (303) of the slice model category (Example A.10) of SimplicialSetsQu (Example A.8) over
exp ◦CE(lBG)).

Remark 5.3 (Commutativity of rationalization over twisting). The existence of the transformation (264) from a
local coefficient bundle to its rationalization, inducing the cohomology operation (265) from any twisted cohomol-
ogy theory to its twisted rational cohomology, may be thought of as exhibiting commutativity of rationalization
over twisting. For twisted KO-theory this is discussed in [GS19d, Prop. 4].

Twisted non-abelian character map. In generalization of Def. 4.2 we set:

Definition 5.4 (Twisted non-abelian character map). Let X ∈Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50) equipped

with the structure of a smooth manifold, and
A //

local coefficient bundle

A�G
ρ
��

BG

(266)

be a local coefficient bundle (35) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50). Then the twisted non-abelian

character map in twisted non-abelian cohomology is the twisted cohomology operation

twisted
non-abelian

character map
chρ :

twisted
non-abelian
cohomology

Hτ(X ; A)
(ηR

ρ )∗

rationalization
//

twisted
non-abelian

real cohomology

HLRτ
(
X ; LRA

) '
twisted

non-abelian
de Rham theorem

//

twisted
non-abelian

de Rham cohomology

HτdR
dR (X ; lA) (267)

from twisted non-abelian A-cohomology (Def. 2.29) to twisted non-abelian de Rham cohomology (Def. 3.96) with
local coefficients in the rational relative Whitehead L∞-algebra lρ of ρ (Prop. 3.73) which is the composite of

(i) the operation (265) of rationalization of local coefficients (Def. 5.2),
(ii) the equivalence (188) of the twisted non-abelian de Rham theorem (Theorem 3.102).
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5.1 Twisted Chern character on higher K-theory

We discuss how the twisted non-abelian character map reproduces the the twisted Chern character in twisted
topological K-theory [BCMMS02, 6.3][MaS03][AS06, §7][TX06][MaS06, §6][FrHT08, §2][BGNT08][GT10,
§4][Ka12, §8.3][GS19a, §3.2][GS19c] (Prop. 5.5) and in twisted iterated K-theory [LSW16, §2.2] (Prop. 5.8).

In twisted enhancement of Example 4.10, we have:

Proposition 5.5 (Twisted Chern character in twisted topological K-theory). Consider twisted complex topological
K-theory KUτ(−) (Example 2.35), for degree-3 twists given (via Example 2.11) by

τ ∈ H
(
−; B2U(1)

)
' H3(−; ,Z) ,

and regarded, via (48), as twisted non-abelian cohomology with local coefficients in Z×BU�B2U(1) (47). Then
the twisted non-abelian character map (Def. 5.4) chτ

Z×BU is equivalent to the traditional twisted Chern character
chτ on twisted K-theory with values in H3-twisted de Rham cohomology (Def. 3.97):

twisted non-abelian
character map

chτ
Z×BU '

twisted
Chern character

chτ .

Proof. That the codomain of the twisted non-abelian character map, in this case, is indeed H3-twisted de Rham
cohomology is the content of Prop. 3.98. With this, and due to the twisted non-abelian de Rham theorem (Theorem
3.102), it is sufficient to see that the general rationalization map of local non-abelian coefficients from Def. 5.2
reproduces the rationalization map underlying the twisted Chern character. This is manifest from comparing the
rationalization operation (261), that is made formally precise by Def. 5.2, to the description of the twisted Chern
character as given in [FrHT08, (2.8)-(2.9)].

Remark 5.6 (Twisted Pontrjagin character in twisted KO-theory). Similarly, an analogous statement holds for the
twisted Pontrjagin character (as in Example 4.11) on twisted real K-theory [GS19d, Prop. 2].

Lemma 5.7 (Higher twisted de Rham coefficients inside rational twisted iterated K-theory). There is a non-trivial
twisted cohomology operation (Def. 2.40) from (a) twisted non-abelian de Rham cohomology (Def. 3.96) with
coefficients in the relative rational Whitehead L∞-algebra (Prop. 3.68) of the coefficient bundle (53) of twisted
iterated K-theory (Example 2.38) to (b) higher twisted de Rham cohomology (Def. 3.99) regarded as twisted
non-abelian de Rham cohomology via Prop. 3.100):

HτdR
dR

(
−; lK◦2r−2(ku)1

)
φ∗ // HτdR

dR

(
−;
⊕
k∈N

b2rkR
)
, (268)

given, under the twisted non-abelian de Rham theorem (Theorem 3.102) by the LSW-character from [LSW16, §2.2]
applied to rational coefficients.

Proposition 5.8 (Twisted Chern character in twisted iterated K-theory). For r ∈N, r≥ 1, consider twisted iterated
K-theory

(
K◦2r−2(ku)

)τ (Example 2.38), for degree-(2r+1) twists given (via Example 2.12) by

τ ∈ H
(
−; B2rU(1)

)
' H2r+1(−; ,Z) ,

and regarded, via Example 2.38, as twisted non-abelian cohomology with local coefficients in
(
K◦2r−2(ku)

)
0. Then

the twisted non-abelian character map (Def. 5.4) chτ

K◦2r−2 (ku)0
composed with the projection operation (268) onto

higher twisted de Rham cohomology, (Def. 3.99) from Lemma 5.7, is equivalent to the LSW character map ch2r−1
[LSW16, Def. 2.20] restricted along the connective inclusion

twisted
LSW character

chτ
2r−1 ' φ∗

projection onto
higher twisted

de Rham cohomology

◦

twisted non-abelian
character map

chτ

K◦2r−2 (ku)0
.

Proof. After unwinding the definitions, the statement reduces to the commutativity of the square diagram in
[LSW16, p. 15]: The top morphism there is the plain rationalization map (Def. 5.2), the right vertical mor-
phism is φ∗ from Lemma 5.7 before passing from real to de Rham cohomology, the left morphism is restriction to
the connective part and the bottom morphism is the LSW character.
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5.2 Twisted differential non-abelian character

We introduce twisted differential non-abelian cohomology (Def. 5.11 below) and discuss how the corresponding
twisted differential non-abelian character subsumes existing constructions on twisted differential K-theory (Exam-
ples 5.17 Example 5.20 below).

Twisted differential non-abelian cohomology. From the perspective of structured non-abelian cohomology (Re-
mark 2.27) that we have developed, it is now evident how to canonically combine

(a) twisted non-abelian cohomology (Def. 2.29) with
(b) differential non-abelian cohomology (Def. 4.33) to get

twisted differential non-abelian cohomology:

Definition 5.9 (Differential non-abelian local coefficient bundles). Let
A //

local coefficient bundle

A�G
ρ
��

BG

be a local coefficient bundle (35) in Ho
(
TopologicalSpacesQu

)finR
≥1,nil (Def. 3.50).

(i) By Lemma 3.69, Lemma 5.1, and using that exp preserves fibrations (Prop. 3.60), this induces a homotopy
fibration (Def. A.22) in Ho(SmoothStacks∞) (Def. A.44) of differential non-abelian character maps (Def. 4.32) of
this form:

Disc(A)
chA

differential non-abelian character map
with coefficients in fiber space //

hofib(Disc(ρ)) ''

[exp(lA) oo atlas

hofib((lρ)∗)
((

ΩdR(−; lA)flat
hofib((lρ)∗)

**
Disc

(
A�G

) chBG
A�G

twisted differential non-abelian character map
//

Disc(ρ)

��

[exp
(
l(A�G)

)
oo

atlas

(lρ)∗

��

ΩdR
(
−; lBG(A�G)

)
flat

(lρ)∗

��
Disc(BG)

chBG

differential non-abelian character map
with coefficients in space of twists

// [exp(lBG) oo
atlas

ΩdR(−; lBG)flat

(269)

(ii) Here the twisted differential non-abelian character map chBG
A�G is defined just as in Def. 4.32, but with coeffi-

cients the relative Whitehead L∞-algebra lBG(A�G) (Prop. 3.68), as opposed to the absolute Whitehead L∞-algebra
l(A�G) (Prop. 3.61).

Remark 5.10 (Differential local coefficient bundles). Since homotopy limits commute over each other, passage to
the homotopy fiber products (Def. A.23) formed from the horizontal stages of (269) yields a homotopy fibration
of moduli ∞-stacks of ∞-connections (228) of this form:

ΩdR
(
−; lBG(A�BG)

)
flat

atlas
**(lρ)∗

��

Adiff
moduli ∞-stack of
ΩA-connections

hofib(ρdiff) //
(
A�G

)
diffBG

ρdiff
differential non-abelian
local coefficient bundle

��

cBG
A�G

))

FBG
A�G

22

[exp
(
lBG(A�G)

)
(lρ)∗

��

Disc
(
A�G

) chBG
A�G

11

Disc(ρ)

��

ΩdR
(
−; lBG

)
flat

atlas
**

BGdiff
moduli ∞-stack of

G-connections

FBG

22

cBG

))

[exp
(
lBG

)
Disc

(
BG
) chBG

11

(270)
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Definition 5.11 (Twisted differential non-abelian cohomology). Given a differential non-abelian local coefficient
bundle ρdiff (270) according to Def. 5.9, we say that:
(i) A differential twist on a X ∈ Ho(SmoothStacks∞) (Def. A.44) is a cocycle τdiff in differential non-abelian
cohomology with coefficients in BG (Def. 4.33)[

τdiff
]
∈ Ĥ

(
X ; BG

)
. (271)

(ii) The τdiff-twisted differential non-abelian cohomology with local coefficients in ρdiff is the structured (Remark
2.27) τdiff twisted non-abelian cohomology (Def. 2.29) with coefficients in ρdiff, hence the hom-set in the ho-
motopy category (Def. A.14) of the slice model structure (Def. A.10) of the local projective model structure
SmoothStacks∞ on simplicial presheaves over CartesianSpaces (Example A.43) from τdiff (271) to ρdiff (270):

twisted differential
non-abelian cohomology

Ĥτdiff
(
X ; A

)
:= Ho

(
SmoothStacks/BGdiff

∞

)
(τdiff , ρdiff) =


X

differential cocycle
cdiff //

τdiff
differential

twist
##

(A�G)diffBG

ρdiff
differential local

coefficients

yy
BGdiff

'ow

/
homotopy

relative BGdiff

(272)

(iii) The twisted non-abelian cohomology operations induced from the maps in (270) we call (see (4)):

(a) characteristic class: Ĥτdiff
(
X ; A

) cτ
A :=
(

cBG
A�G

)
∗ // Hτ

(
Shp(X ); A

)
(Def. 2.29) (273)

(b) curvature: Ĥτdiff
(
X ; A

) F
τdR
A :=

(
FBG

A�G

)
∗ // ΩτdR

dR

(
X ; lA

)
flat (Def. 3.90) (274)

(c) differential character: Ĥτdiff
(
X ; A

) chτ
A :=
(

chBG
A�G ◦cBG

A�G

)
∗ // HτdR

dR

(
X ; lA

)
(Def. 3.96) (275)

Twisted differential non-abelian cohomology as non-abelian ∞-sheaf hypercohomology. While the formula-
tion of twisted differential non-abelian cohomology as hom-sets in a slice of SmoothStacks∞ (Def. 5.11) is natural
and useful, we indicate how this is equivalently incarnated as a non-abelian sheaf hypercohomology over X . This
serves to make the connection to existing literature (in Example 5.16 below), but is not otherwise needed for the
development here. We shall be brief, referring to [SS20b] for some technical background that is beyond the scope
of our presentation here.

Proposition 5.12 (Étale ∞-topos over ∞-stack [SS20b, Prop. 3.33, Rem. 3.34]). For X ∈ Ho(SmoothStacks∞)
(Def. A.44) let

Ho
(
ÉtX

) � � LiX // Ho
(
SmoothStacks/X∞

)
be the full subcategory of the homotopy category (Def. A.14) of the slice model structure over X (Example A.10)
of the local projective model structure on simplicial presheaves (Example A.43) on those E !X which are local
diffeomorphisms ([SS20b, Def. 3.26]).
(i) The inclusion LiX is a left-exact homotopy co-reflection, in that it preserves finite homotopy limits and has a
derived right adjoint RLcclCnstnt (sending ∞-bundles to their ∞-sheaves of ∞-sections).
(ii) There is a global section functor RΓX from Ho

(
ÉtX

)
to Ho

(
TopologicalSpacesQu

)
(Example A.33) which

also admits a left exact left adjoint:
∞-bundles over X

Ho
(
SmoothStacks/X∞

) oo LiX ? _

RLcclConstnt
∞-sheaf of local sections

⊥ //

∞-sheaves over X

Ho
(
ÉtX

) oo ∆
X

RΓ
X

global sections

⊥ // Ho
(
TopologicalSpacesQu

)
. (276)

Definition 5.13 (Non-abelian ∞-sheaf hypercohomology over ∞-stacks). Given X ∈ Ho(SmoothStacks∞) (Def.
A.44) and A ∈ Ho

(
ÉtX

)
(Prop. 5.12) we say that the set of connected components of the derived global sections

(276) of A over X
H
(
X , A

)
:= π0

(
RΓX (A )

)
is the non-abelian ∞-sheaf hypercohomology of X with coefficients in A .
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Lemma 5.14 (Twisted differential non-abelian cohomology as non-abelian ∞-sheaf hyper-cohomology). Given a
differential twist τdiff (271) on some X ∈ Ho(SmoothStacks∞) (342) consider the object

Aτdiff
:= RLcllCnstntX

(
Rτ
∗
diff(A�G)diff

)
∈ Ho

(
ÉtX

)
(277)

in the étale ∞-topos over X Prop. 5.12. The non-abelian ∞-sheaf hypercohomology (Def. 5.13) of Aτdiff
over X

coincides with the τdiff-twisted differential non-abelian cohomology of X (Def. 5.11):
non-abelian

∞-sheaf hypercohomology

π0RΓX

(
Aτdiff

)
'

twisted differential
non-abelian cohomology

Ĥτdiff
(
X , A

)
. (278)

Proof. As in [SS20b, Remark 3.34].

It is useful to decompose this construction of twisted differential cohomology via ∞-sheaf hypercohomology
again as a homotopy pullback of corresponding ∞-sheaves representing plain twisted cohomology and plain twisted
differential forms:

Remark 5.15 (Homotopy pullback of ∞-sheaves representing twisted differential cohomology). Given a differen-
tial twist τdiff (271) on some X ∈ Ho(SmoothStacks∞) (342) with components (τ,τdR,LRτ) (Example A.26),
(i) Consider the pullback stacks over X in the following diagram

Rτ∗Disc
(
A�G

)

��

//

  

Disc
(
A�G

)

  ρ

��

R(LRτ)∗[exp
(
lBG(A�G)

)

��

��

// [exp
(
lBG(A�G)

)

��

��

X
τ

// Disc(BG)

��

Rτ∗dRΩdR
(
−; lBG(A�G)

)
flat

//

��

ΩdR
(
−; lBG(A�G)

)
flat

��

X
LRτ

// [exp
(
lBG

)

!!
X

τdR // ΩdR(−; lBG)

Here the right hand side is (269) and all front-facing squares are homotopy pullbacks (Def. A.23).
(ii) By commutativity of homotopy limits over each other, these form a homotopy pullback square as on the right
of the following diagram, which gives, under the derived right adjoint RLcllCnstnt (276) a homotopy pullback
diagram of ∞-sheaves of sections as shown on the left:

Aτdiff

��

//

(hpb)

Ω
(
−; lA

)
flatτdR

��
Aτ

// [exp
(
lA
)

LRτ

:= RLcllCnstst


Rτ∗diff(A�G)diff

��

//

(hpb)

Rτ∗dRΩdR
(
−; lBG(A�G)

)
��

Rτ∗(A�G) // R(LRτ)∗[exp
(
l(A�G)

)
∈Ho

(
ÉtX

)
. (279)

Here the top left item Aτdiff
from (277) is the ∞-sheaf whose global sections give the τdiff-twisted differential

cohomology, by Lemma 5.14.

In differential enhancement of Prop. 2.37 and in twisted enhancement of Example 4.34, we have:
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Example 5.16 (Twisted differential generalized cohomology). Let X = X be a smooth manifold (Example A.45)
and R be a suitable ring spectrum, and let

E0

(hpb)

//

Rτ∗ρR

��

(R0)�GLR(1)

ρR

��
X

τ
// BGLR(1)

be a twist for twisted generalized R-cohomology over X (51), as in Lemma 2.37.
(i) Then the corresponding homotopy pullback diagram (279), which exhibits, by Lemma 5.14, twisted differential
non-abelian cohomology (Def. 5.11) with coefficients in E0 as ∞-sheaf hypercohomology (Def. 5.13), is the image
under RΩ∞

X of the homotopy pullback diagram of sheaves of spectra considered in [BN14, Def. 4.11], shown on
the right below, for canonical/minimal differential refinement as in Example 4.34:

R0τdiff

��

//

(hpb)

Ω
(
−; lR0

)
flatτdR

��
R0τ

// [exp
(
lR0
)

LRτ

' RΩX ∞


Diff

(
E
)

(hpb)

��

// HM≤0

��
Disc(E) // HM


This is the twisted/parametrized analog of the relation (236).
(ii) Accordingly, the twisted differential generalized R-cohomology according to [BN14, Def. 4.13] is subsumed
by twisted differential non-abelian cohomology, via Lemma 5.14.

In differential enhancement of Prop. 5.5 and in twisted generalization of Example 4.36 we have:

Example 5.17 (Twisted Chern character in twisted differential K-theory). Consider again the local coefficient
bundle

KU0 // KU0�BU(1)
ρ��

B2U(1)

for complex topological K-theory (Example 2.35). By Example 5.16, the twisted differential non-abelian coho-
mology theory (Def. 5.11) induced from these local coefficients is twisted differential K-theory, as discussed in
[CMW09] for torsion twists (review in [BS12, §7]). By the diagram (4) of cohomology operations on twisted
differential cohomology, one may regard the corresponding twisted curvature map (274)

K̂τdiff
(
X
) (

F
τdR
KU0

)
∗ // ΩτdR

dR

(
X ; lKU0

)
flat

(with values in flat τdR 'H3-twisted differential forms, by Example 3.92) as an incarnation of the Chern character
map on twisted differential K-theory. This is the perspective taken in [CMW09, p. 2][Pa18] for torsion twists, and
in [BN14, p. 6] for general twists.

However, in the spirit of the Cheeger-Simons homomorphism (4.3), any lift of a cohomology operation (here:
rationalization) to differential cohomology should be enhanced all the way to a secondary cohomology operation
(Def. 4.42, now to be generalized to a twisted secondary cohomology operation, Def. 5.19 below) whose codomain
is itself a (twisted) differential cohomology theory. The twisted Chern character enhanced to a secondary coho-
mology operation this way is Example 5.20 below, following the perspective taken in [GS19a, §3.2][GS19c, §2.3].

Secondary twisted non-abelian cohomology operations. We introduce the twisted generalization of secondary
non-abelian cohomology operations (Def. 5.19 below). This requires the following twisted analog of the technical
condition in Def. 4.41:
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Definition 5.18 (Twisted absolute minimal model). For

A1�G1

ρ1

��

ct // A2�G2

ρ2

��
BG1 cb

// BG2

∈ SimplicialSets

a transformation (55) between local coefficient bundles (35), and for cb an absolute minimal model (Def. 4.41) of
the map cb between spaces of twists, hence with induced transformation (251)

Disc
(
BG1

) Disc(cb) //

chBG1

##

Disc
(
BG2

)
chBG2

##
[exp

(
lBG1

)
(cb)∗

// [exp
(
lBG1

)
between the differential character maps (Def. 4.32) on the spaces of twists, we say that a corresponding twisted
absolute minimal model is a lift of cb to a morphism

lBG1(A1�G1)
ct // lBG1(A1�G1) (280)

between the relative rational Whitehead L∞-algebras of the local coefficient bundles (Prop. 3.68) which
(i) yields a transformation

Disc
(
A1�G1

) Disc(ct) //

chBG1
A1�G1

%%

Disc
(
A2�G2

)
chBG2

A2�G2

%%
[exp

(
lBG1(A1�G1)

)
(ct)∗

// [exp
(
lBG2(A2�G2)

)
of the twisted differential characters (269) (thus being an “absolute minimal model for ct relative to cb”),
(ii) compatible with the transformation of the differential characters on the twisting space, in that the following
cube commutes:

Disc
(
A1�G1

)
Disc(ct) //

ρ1

��

chBG1
A1�G1

  

Disc
(
A2�G2

)

ρ2

��

chBG2
A2�G2

!!
[exp

(
lBG1(A1�G1)

)

lBG1(A1�G1)

��

``

atlas

(ct)∗ // [exp
(
lBG1(A2�G2)

)
``

atlas

(lBG2 p2)∗

��

Disc
(
BG1

)
Disc(cb) //

chBG1

��

Disc
(
BG2

)
chBG2

��

Ω
(
−; lBG1(A1�G1)

)
flat

(ct)∗ //

(lBG1 p1)∗

��

Ω
(
−; lBG1(A1�G1)

)
flat

(lBG2 p2)∗

��

[exp
(
lBG1

)
aa

atlas

(cb)∗ // [exp
(
lBG2

)
aa

atlas

Ω
(
−; lBG1

)
flat

(cb)∗ // Ω
(
−; lBG2

)
flat

(281)

At the level of dgc-algebras, the condition that ct (280) is a twisted absolute minimal model for the transfor-
mation of local coefficient bundles means equivalently that it makes the following cube commute:
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Ω•PLdR

(
A1�G1

)
oo Ω•PLdR(ct)

ff

p
minBG1
A1�G1

OO

Ω•PLdR(ρ1)

Ω•PLdR

(
A2�G2

)
ff

p
minBG1
A1�G1

OO

Ω•PLdR(ρ2)

CE
(
lBG1

(A1�G1)
)
oo CE(ct)

CE(lρ1)

��

CE
(
lBG2

(A2�G2)
)

CE(lρ2)

��

Ω•PLdR(BG1)gg

pmin
BG1

oo Ω•PLdR(ct) Ω•PLdR(BG2)gg

pmin
BG2

CE(lBG1) oo cb CE(lBG1)

(282)

In differential enhancement of Def. 2.40 and in twisted generalization of Def. 4.42, we set:

Definition 5.19 (Twisted secondary non-abelian cohomology operations). Let

A1�G1

ρ1

��

ct // A2�G2

ρ2

��
BG1

cb // BG2

∈ SimplicialSets

be a transformation (55) between local coefficient bundles (35), together with an absolute minimal model cb (Def.
4.41) for the base map, and a compatible twisted absolute minimal model ct (Def. 5.18) for the total map. Then
forming stage-wise homotopy pullbacks (Def. A.23) in the required commuting cube (281) yields a transformation
of corresponding differential coefficient bundles (270):

(A1�G1)diff
(ct)diff //

(ρ1)diff
��

(A2�G2)diff

(ρ2)diff
��

(BG1)diff
(cb)diff

// (BG2)diff

∈ PSh
(
CartesianSpaces , SimplicialSets

)
.

This yields, in turn, a natural transformation of twisted differential non-abelian cohomology sets (Def. 5.11),
hence a twisted secondary non-abelian cohomology operation, by pasting composition, hence by right derived
base change (Example A.18) along (ρ1)diff followed by composition with (ct)diff regarded as a morphism in the
slice (Example A.10) over (BG1)diff:

Ĥτdiff
(
X ; A1

) ((ct)diff ◦(−))◦((ρ1)diff)∗ // Ĥ(cb)diff ◦τdiff
(
X ; A2

)
.

In differential enhancement of Prop. 5.5, we have:

Example 5.20 (Twisted differential character on twisted differential K-theory). Consider the rationalization (Def.
3.53) over the actual rational numbers (see Remark 3.49) of the local coefficient bundle (47) for degree-3 twisted
complex topological K-theory (Example 2.35).
(i) This is captured by the diagram

KU0�BU(1)

ρ

��

η
Q
KU0�BU(1) // LQ

(
KU0�BU(1)

)
LRρ

��
B2U(1)

η
Q
B2U(1) // LQ

(
B2U(1)

) (283)

regarded as a transformation of local coefficient bundles from twisted K-theory to twisted even-periodic rational
cohomology:

LQKU0 ' Ω
∞

(⊕
k

Σ
2kHQ︸ ︷︷ ︸

=:HperQ

)
.
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(ii) Since rationalization is idempotent (110), which here means that LR ◦ LQ ' LR , in this situation an absolute
minimal model (Def. 4.41) of the base map cb = ηR

B2U(1) and a twisted absolute minimal model (Def. 5.18) of the

total map ct = ηR
K0�BU(1) exist and are given, respectively, simply by the identity morphisms

cb := idlB2U(1) and ct := idlB2U(1)(K0�BU(1)).

(iii) Therefore, the induced twisted secondary cohomology operation Def. 5.19 exists, and is for each differential
twist τdiff a transformation

K̂τdiff
(
X
) ch

τdiff
diff :=

(
ηR

K0�BU(1)

)
diff // ĤperQ

LQτdiff(
X
)

(284)
from twisted differential K-theory to twisted differential periodic rational cohomology theory.
(iv) This is the twisted differential Chern character map on twisted differential complex K-theory as conceived in
[GS19a, §3.2][GS19c, Prop. 4]. The analogous statement holds for the twisted differential Pontrjagin character (as
in Example 4.11) on twisted differential real K-theory [GS19d, Thm. 12].
(v) Notice that this construction is close to but more structured than the plain curvature map on twisted differential
K-theory (Example 5.17): If we considered the transformation of local coefficients as in (283) but for rationaliza-
tion LR over the real numbers (Remark 3.49), then the induced twisted secondary cohomology operation would
be equivalent to the twisted curvature map. Instead, (284) refines the plain curvature map to a twisted secondary
operation that retains information about rational periods.

5.3 Twisted character on twisted differential Cohomotopy

We discuss here (Example 5.21 below) the twisted non-abelian character map (Def. 5.4) on J-twisted Cohomotopy
(Example 2.39) in degree 4, and on Twistorial Cohomotopy (Example 2.42). We close by exhibiting the key
fact that makes twisted cohomotopical characters so interesting (Prop. 5.22 below). These twisted non-abelian
character maps have been introduced and analyzed in [FSS19b] and [FSS20], respectively. The general theory
developed here shows how these cohomotopical characters are cousins both of abelian generalized characters such
as the twisted Chern character on higher K-theory (§5.1) as well as of non-abelian characters such as the Chern-
Weil homomorphism (§4.2).

Character map on twisted 4-Cohomotopy and on twistorial Cohomotopy. Recall from Example 4.13, and
Remark 4.14 that 4-Cohomotopy is a non-abelian enhancement (Example 2.25) of tmf4 on 8-manifolds, and recall
un-twisted differential Cohomotopy from Example 4.38.

Example 5.21 (Character map on J-twisted Cohomotopy and on Twistorial Cohomotopy). Let X be an 8-dimensional
smooth spin-manifold equipped with tangential Sp(2)-structure τ (58). Consider the twisted non-abelian character
maps (Def. 5.4) on J-twisted Cohomotopy (Example 2.39) in degree 4, and on Twistorial Cohomotopy (Example
2.42):

CP3�Sp(2)

Borel-equivariantized
twistor fibration

tH�Sp(2)

��

Twistorial
Cohomotopy

T τ(X) :=Hτ
(
X ; CP3

)character map on
Twistorial Cohomotopy

chτ

CP3 //

cohomology operation
along twistor fibration

(tH)∗

��

HτdR
dR

(
X ; lCP3

)

(ltH)∗

��

=


H3,
F2,

2G7,
G4

∣∣∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,

d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

/
∼

H3 F2 2G7 G47! 7! 7! 7!

0 0 2G7 G4

��

S4�Sp(2) πτ
(
X
)

J-twisted
4-Cohomotopy

:= Hτ
(
X ; S4

)
chτ

S4
character map in

J-twisted Cohomotopy

// HτdR
dR

(
X ; lS4

)
=

{
2G7,
G4

∣∣∣∣∣ d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0,

}
/
∼

Here:
(i) The twisted non-abelian de Rham cohomology targets on the right are as shown, by Example 3.94.

(ii) The vertical twisted non-abelian cohomology operation (Def. 2.40) on the left is induced from the Borel-
equivariantized twistor fibration (60), and that on the right from its associated morphism of rational White-
head L∞-algebras (Prop. 3.68).
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Proposition 5.22 (Charge-quantization in J-twisted Cohomotopy [FSS19b, Prop. 3.13][FSS20, Cor. 3.11]). Con-
sider the twisted non-abelian character maps (Def. 5.4) in J-twisted Cohomotopy and in Twistorial Cohomotopy
from Example 5.21.
(i) A necessary condition for a flat Sp(2)-twisted lS4-valued differential form datum (G4,G7) to lift through the
J-twisted cohomotopical character map (i.e. to be in its image) is that the de Rham class of G4, when shifted by
the fourth fraction of the Pontrjagin form, is in the image, under the de Rham homomorphism (Example 4.9), of an
integral class: [

G4− 1
4 p1(∇)

]
∈ H4(X ; Z) // H4

dR(X) . (285)
(ii) A necessary condition for a flat Sp(2)-twisted lCP3-valued differential form datum (G4,G7,F2,H3) to lift
through the character map in Twistorial Cohomotopy is that the de Rham class of G4 shifted by the fourth fraction
of the Pontrjagin form is in the image, under the de Rham homomorphism (Example 4.9), of an integral class, and
as such equal to the [F2] cup-square:[

G4− 1
4 p1(∇)

]
=
[
F2∧F2

]
∈ H4(X ; Z) // H4

dR(X) . (286)

Differential twisted Cohomotopy theory.

Example 5.23 (Differential twistorial Cohomotopy). Consider the local coefficient bundle (60) for twistorial Co-
homotopy (Def. 2.42)

CP3 // CP3�Sp(2) .
JCP3��

BSp(2)
(i) This induces, via Def. 5.11, a twisted differential non-abelian cohomology theory T̂ τdiff(−), to be called
differential twistorial Cohomotopy, whose value, over any X ∈ Ho(SmoothStacks∞) (Def. A.44) equipped with
twist τdiff given by an Sp(2)-connection ω on the frame bundle (via Prop. 4.37)

Sp(2)Connections(X )/∼ // Ĥ
(
X ; BSp(2)

)[
ω
]

7−!
[
τdiff
]

sits in a cohomology operation diagram (4) of this form:
differential
twistorial

Cohomotopy

T̂ τdiff(X)

��

F
τdR
CP3

twistorial
curvature

//

twistorial Bianchi identities (Example 3.94)
H3,
F2,

2G7,
G4

∈Ω•dR(X)

∣∣∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,

d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0


��

T τ(X )
twistorial

Cohomotopy
(Example 2.42)

chτ

CP3

character map
on twistorial Cohomotopy

(Example 5.21)

// HτdR
dR

(
X ; lCP3

)
.

twistorial
de Rham cohomology

(Def 3.96)

(287)

(ii) The twisted non-abelian curvature map (274) lifts the values of the twistorial character map (Example 5.21) to
differential form representatives (Example 3.94). These twistorial curvature forms satisfy the integrality condition
(286), by Prop. 5.22. In summary, this establishes the situation announced in (5).
(iii) Similarly, we obtain the differential refinement (Def. 5.11) of J-twisted 4-Cohomotopy theory (Example 2.39):

differential
J-twisted

4-Cohomotopy

π̂ τ4
diff(X)

��

F
τ4
dR

S4

J-twisted
cohomotopical

curvature
//

J-twisted cohomotopical Bianchi identities (Example 3.94){
2G7,
G4
∈Ω•dR(X)

∣∣∣∣∣ d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

}

��

πτ4
(X )

J-twisted
4-Cohomotopy
(Example 2.39)

chτ4

S4

character map
on J-twisted Cohomotopy

(Example 5.21)

// Hτ4
dR

dR

(
X ; lS4

)
.

J-twisted
de Rham cohomology

(Def 3.96)

(288)

84



Proposition 5.24 (Twisted secondary operation from twistorial to J-twisted Cohomotopy). The defining twisted
non-abelian cohomology operation (61) from twistorial Cohomotopy (Example 2.42) to J-twisted 4-Cohomotopy
(Example 2.39), induced by the Sp(2)-equivariatized twistor fibration tH�Sp(2) (60) refines to a twisted secondary
cohomology operation (Def. 5.19) from differential twistorial Cohomotopy (Example 5.23) to differential J-twisted
Cohomotopy (288):

differential
twistorial

Cohomotopy
T̂ τdiff

(
X
)

twisted secondary
cohomology operation ((tH�Sp(2))diff)∗

along
Sp(2)-equivariantized

twistor fibration
��

cτ

CP3 // T τ
(
X
)

(tH�Sp(2))∗
twisted primary

cohomology operation

��
differential
J-twisted

4-Cohomotopy
π̂τ4

diff
(
X
) cτ4

S4 // πτ4(
X
)

Proof. By Def. 5.19, we need to show that we have a twisted absolute minimal model (Def. 5.18) for the Sp(2)-
equivariantized twistor fibration (60). By (282) this means that we can find a morphism

lBSp(2)(CP3�Sp(2))
tH�lSp(2) // lBSp(2)S4�Sp(2)) (289)

between the relative Whitehead L∞-algebras (Prop. 3.68) of the two local coefficient bundles, which makes the
following cube of transformations of derived PL-de Rham adjunction units commute:

exp ◦Ω•PLdR

(
CP3�Sp(2)

)

exp ◦Ω•PLdR(JCP3 )

��

exp ◦Ω•PLdR(tH�Sp(2)) //

exp
(

p
minSp(2)
CP3�Sp(2)

)

��

exp ◦Ω•PLdR

(
S4�Sp(2)

)

��

exp
(

p
minBSp(2)
S4�Sp(2)

)

��
exp ◦CE

(
lBSp(2)

(
CP3�Sp(2)

))

��

exp ◦CE(tH�lSp(2)) // exp ◦CE
(
l
(
S4�Sp(2)

))

��

exp ◦Ω•PLdR

(
BSp(2)

)

exp
(

pmin
BSp(2)

)
��

exp ◦Ω•PLdR

(
BSp(2)

)

exp(pmin
BSp(2))

��
exp ◦CE

(
lBSp(2)

)
exp ◦CE

(
lBSp(2)

)
But, from Example 3.94, we see that the total object of the relative Whitehead L∞-algebra of CP3�Sp(2) relative
to lBSp(2) coincides with that relative to lBSp(2)S4�Sp(2). Therefore, we may take the twisted absolute minimal
model (289) to be equal to the relative Whitehead L∞-algebra projection (the top arrow in Example 3.94). This
makes the required top front square commute by the commuting triangle in Prop. 3.47.
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A Model category theory

For ease of reference and to highlight some less widely used aspects needed in the main text, we record basics
of homotopy theory via model category theory [Qu67] (review in [Ho99][Hir02][Lu09, A.2]) and of homotopy
topos theory [Re10] via model categories of simplicial presheaves [Bro73][Ja87][Du01] (review in [Du98][Lu09,
§A.3.3][Ja15]).

Topology. By
TopologicalSpaces ∈ Categories

we denote a convenient [St67] (in particular: cartesian closed) category of topological spaces such as compactly-
generated spaces [St09] or ∆-generated spaces [Du03], equivalently numerically-generated spaces [SYH10], or
D-topological spaces [SS20a, Prop. 2.4].

Categories. Let C be a category.
(i) For X ,A ∈ C a pair of objects, we write

C (X ,A) := HomC (X ,A)
for the set of morphisms from X to A.
(ii) For C ,D two categories, we denote a pair of adjoint functors between them by

D
oo L

R
⊥ // C ⇔ D(L(−) ,−) ' C (− , R(−)) . (290)

(iii) A Cartesian square in C we indicate by pullback notation f ∗(−) and/or by the symbol “(pb)”:

f ∗A

���� (pb)

f ∗p // A
p
��

B1 f
// B2 .

(291)

(iv) Dually, a co-Cartesian square in C we indicate by pushout notation f∗(−) and/or by the symbol “(po)”:

X
q //

f ��
(po)

A
q∗ f��

Y // f∗A .
(292)

Model categories.
Definition A.1 (Weak equivalences). A category with weak equivalences is a category C equipped with a sub-class
W⊂Mor(C ) of its morphisms, to be called the class of weak equivalences, such that

(i) W contains the class of isomorphisms;
(ii) W satisfies the cancellation property (“2-out-of-3”): if in any commuting triangle in C

Y g
''X

f 77

g◦ f
// Z

(293)

two morphisms are in W, then so is the third.

Definition A.2 (Weak factorization system). A weak factorization system in a category C is a pair of sub-classes
of morphisms Proj, Inj ⊂ Mor(C ) such that

(i) every morphisms X
f // Y in C may be factored through a morphism in Proj followed by one in Inj:

f : X
∈ Proj // Z

∈ Inj // Y (294)
(ii) For every commuting square in C with left morphism in Proj and right morphism in Inj, there exists a lift,

namely a dashed morphism
X //

∈Proj
��

A
∈ Inj
��

Y
∃

77

// B

(295)

making the resulting triangles commute.
(iii) Given Inj (resp. Proj), the class Proj (resp. Inj) is the largest class for which (295) holds.
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Definition A.3 (Model category [Jo08, Def. E.1.2][Rie09]). A model category is a category C that has all small
limits and colimits, equipped with three sub-classes of its class of morphisms, to be denoted

W – weak equivalences
Fib – fibrations
Cof – cofibrations

such that
(i) The class W makes C a category with weak equivalences (Def. A.1);
(ii) The pairs

(
Fib , Cof∩W

)
and

(
Fib∩W , Cof

)
are weak factorization systems (Def. A.2).

Remark A.4 (Minimal assumptions). By item (iii) in Def. A.2 a model category structure is specified already by
the classes W and Fib, or alternatively by the classes W and Cof. Moreover, it follows from Def. A.3 that also the
class W is stable under retracts [Jo08, Prop. E.1.3][Rie09, Lemma 2.4]: Given a commuting diagram in the model
category C of the form on the left here

X //

f
��

Y
∈W
��

// X

f
��

A // B // A

⇒ f ∈ W (296)

with the middle morphism a weak equivalence, then also f is a weak equivalence.

Definition A.5 (Proper model category). A model category C Def. A.3 is called
(i) right proper, if pullback along fibrations preserves weak equivalences:

X

��

p∗ f //

(pb)

A
p ∈ Fib
��

Y
f∈W

// B
⇒ p∗ f ∈ W (297)

(ii) left proper, if pushout along cofibrations preserves weak equivalences, hence if the opposite model category
(Example A.9) is right proper.

Notation A.6 (Fibrant and cofibrant objects). Let C be a model category (Def. A.3)
(i) We write ∗ ∈ C for the terminal object and ∅ ∈ C for the initial object.
(ii) An object X ∈ C is called:

(a) fibrant if the unique morphism to the terminal object is a fibration, X ∈ Fib // ∗ ;

(b) cofibrant if the unique morphism from the initial object is a cofibration, ∅ ∈ Cof // X .
We write Cfib,Ccof,Ccof

fib ⊂ C for the full subcategories on, respectively, fibrant objects, or cofibrant objects or
objects that are both fibrant and cofibrant.
(iii) Given an object X ∈ C

(a) A fibrant replacement is a factorization (294) of the terminal morphism as

X
jX

∈ Cof∩W
// PX

qX

∈ Fib
// ∗ . (298)

(b) A cofibrant replacement is a factorization (294) of the initial morphism as

∅ iX
∈ Cof

// QX
pX

∈ Fib∩W
// X . (299)

Example A.7 (Classical model structure on topological spaces [Qu67, §II.3][Hir15]). The category of TopologicalSpaces
carries a model category structure whose

(i) W – weak equivalence are the weak homotopy equivalences;
(ii) Fib – fibrations are the Serre fibrations.

We denote this model category by
TopologicalSpacesQu ∈ ModelCategories .
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Example A.8 (Classical model structure on simplicial sets [Qu67, §II.3][GJ99]). The category of SimplicialSets
carries a model category structure whose

(i) W – weak equivalence are those whose geometric realization is a weak homotopy equivalence;
(ii) Cof – cofibrations are the monomorphisms (degreewise injections).

We denote this model category by
SimplicialSetsQu ∈ ModelCategories .

Example A.9 (Opposite model category [Hir02, §7.1.8]). If C is a model category (Def. A.3) then the opposite
underlying category becomes a model category Cop with the same weak equivalences (up to reversal) and with
fibrations (resp. cofibrations) the cofibrations (resp. fibrations) of C, up to reversal.

Example A.10 (Slice model structure [Hir02, §7.6.4]). Let C be a model category (Def. A.3)
(i) For X ∈ C any object, the slice category C/X , whose objects are morphisms to X and whose morphisms are
commuting triangles in C over X

C/X(a , b
)

:=

A
a ''

f // B
bwwX


becomes itself a model category, whose weak equivalence, fibrations and cofibrations are those morphims whose
underlying morphisms f are such in C.
(ii) Dually there is the coslice model category CX/ :=

(
(Cop)/X

)op, being the opposite model category (Example
A.9) of the slice category of the opposite of C:

C/X(a , b) :=

 X

A ww
a

f
// B''

b


Homotopy categories.

Definition A.11 (Path space objects [Qu67, Def. I.4]). Let C be a model category (Def. A.3), and A ∈ Cfib be
a fibrant object (Notation A.6). Then a path space object for A is a factorization of the diagonal morphism ∆A

through a weak equivalence followed by a fibration:

A

∆A

33
∈W // Paths(A)

(p0,p1)∈Fib // A×A . (300)

Definition A.12 (Right homotopy). Let C be a model category (Def. A.3), X ∈ Ccof a cofibrant object, A ∈ Cfib
a fibrant object (Notation A.6) and let Paths(A) be a path space object for A (Def. A.11). Then a right homotopy
between a pair of morphisms f ,g ∈ C(X ,A), to be denoted

φ : f ⇒r g or X

f

%%

g

99 Aφ��

is a morphism φ ∈ C
(
X ,Paths(A)

)
which makes this diagram commute:

A

X φ //

f
55

g
))

Paths(A)

p0

OO

p1��
A

Proposition A.13 (Right homotopy classes). Let C be a model category, X ∈ Ccof and A ∈ Cfib (Notation A.6).
Then right homotopy (Def. A.12) is an equivalence relation ∼r on the hom-set C(X ,A). We write

C(X ,A)/∼r ∈ Sets (301)

for the corresponding set of right homotopy classes of morphisms from X to A.
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Definition A.14 (Homotopy category of a model category). For C a model category (Def. A.3),
(i) we write

Ho(C) :=
(
Ccof

fib
)
/∼r
∈ Categories (302)

for the category whose objects are those objects of C that are both fibrant and cofibrant (Notation A.6), and whose
morphisms are the right homotopy classes of morphisms in C (Def. 301):

X ,A ∈ Ccof
fib ⇒ Ho(C)(X , A) := C(X ,A)/∼r

and composition of morphisms is induced from composition of representatives in C.
(ii) Given a choice of fibrant replacement P and of cofibrant replacement Q for each object of C (Notation A.6) we
obtain a functor

C
γC // Ho(C) , (303)

which (a) sends any object X ∈C to PQX and sends (b) any morphism X
f // A to the right homotopy class (301)

of any lift (295) PQ f obtained from any lift Q f in the following diagrams:

∅ //

iX ��

QY
pY
��

QX

Q f

66

f ◦ px

// Y
 

QX
jQY ◦Q f //

jQX
��

PQY
qQY
��

PQX //

PQ f

55

∗

Proposition A.15 (Homotopy category is localization). Given a model category C (Def. A.3) the functor C γC // Ho
(
C
)

(303) from Def. A.14 exhibits the homotopy category as the localization of the model category at its class of weak
equivalences: γC sends all weak equivalences in C to isomorphisms, and is the universal functor with this property.

The restriction to fibrant-and-cofibrant objects in Def. A.14 is convenient for defining composition of mor-
phisms, but for computing hom-sets in the homotopy category it is sufficient that the domain object is cofibrant,
and the codomain fibrant:

Proposition A.16 ([Qu67, §I.1 Cor. 7]). Let C be a model category (Def. A.3). For X ∈ C cof a cofibrant object
and A ∈ Cfib a fibrant object, any choice of fibrant replacement PX and cofibrant replacement QA (Notation A.6).
induces a bijection between the set of right homotopy classes (Def. A.12) and the hom-set in the homotopy category
(Def. A.14) between X and A:

C (X ,A)/∼r

C ( jX ,pA)

'
// Ho(C)(X ,A) .

Quillen adjunctions.

Definition A.17 (Quillen adjunction). Let D,C be model categories (Def. A.3). Then a pair of adjoint functors
(L a R) (290) between their underlying categories is called a Quillen adjunction, to be denoted

D
oo L

R

⊥Qu // C (304)

if the following equivalent conditions hold:

• L preserves Cof, and R preserves Fib;
• L preserves Cof and Cof∩W;
• R preserves Fib and Fib∩W.

Example A.18 (Base change Quillen adjunction). Let C be a model category (Def. A.3), B1,B2 ∈ Cfib a pair of
fibrant objects (Notation A.6) and

B1
f // B2 ∈ C (305)

a morphism. Then we have a Quillen adjunction (Def. A.17)

C/B2
oo f!

f ∗
⊥Qu // C

/B1
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between the slice model categories (Example A.10), where:
(i) The left adjoint functor f! is given by postcomposition in C with f (305):

f∗ :
X

τ ((

c // A
pvvB1

7−!
X

τ ((

c // A
pvvB1

f��
B2

(306)

(ii) The right adjoint functor f ∗ is given by pullback (291) along f (305).
That these functors indeed form an adjunction f! a f ∗ follows from the defining universal property of the pullback
(291):

C/B2
(

f∗τ , ρ
)

' C/B1
(
τ , f ∗ρ

)
X c //

τ ##

A

ρ

��
B1

f ** B2

↔

X c̃ //

τ
##

f ∗A

f ∗ρ
��

//

(pb)

A

ρ

��
B1

f ** B2

(307)

That this adjunction is a Quillen adjunction (Def. A.17) follows since f! (306) evidently preserves each of W and
Cof (even Fib) separately, by Example A.10.

Lemma A.19 (Ken Brown’s lemma [Ho99, Lemma 1.1.12][Bro73]). Given a Quillen adjunction LaR (Def. A.17),
(i) the right Quillen functor R preserves all weak equialences between fibrant objects.
(ii) the left Quillen functor L preserves all weak equivalences between cofibrant objects.

Proposition A.20 (Derived functors). Given a Quillen adjunction (L aQu R) (Def. A.17), there are adjoint functors
LL a RR (290) between the homotopy categories (Def. A.14)

Ho(D)
oo LL

RR
⊥ // Ho(C) (308)

whose composites with the localization functors (303) make the following squares commute up to natural isomor-
phism:

D R //

γD ��
⇓
'

C
γC��

Ho(D)
RR

// Ho(C)

D oo L

γD �� ' ⇓
C

γC��
Ho(D) oo

LL
Ho(C) .

These are unique up to natural isomorphism, and are called the left and right derived functors of L and R, respec-
tively.

Example A.21 (Derived functors via (co-)fibrant replacement). It is convenient to leave the localization functors
γ (303) notationally implicit, and understand objects of C as objects of Ho(C), via γ . Then:

(i) The value of a left derived functor LL (Prop. A.20) on an object c ∈ C is equivalently the value of L on a
cofibrant replacement Qc (299):

LL(c) ' L(Qc) ∈ Ho(D) . (309)
(ii) The value of a right derived functor RR (Prop. A.20) on an object d ∈ D is equivalently the value of R on a

cofibrant replacement Pd (298):
RR(d) ' R(Pd) ∈ Ho(C) . (310)

(iii) The derived unit Dη of the derived adjunction (308), is, on any cofibrant object c ∈ Ccof, given by

Dηc : c
ηc // R

(
L(c)

) R( jL(c)) // R
(
PL(c)

)
∈ Ho(C) (311)

where L(c)
jL(c) // PL(c) is any fibrant replacement (298).

(iv) The derived co-unit Dε of the derived adjunction (308), is, on any fibrant object d ∈ Dfib, given by

Dεd : L
(
QR(d)

) L(pR(d)) // L
(
R(d)

) εd // d ∈ Ho(D) (312)

where QR(d)
pR(d) // R(d) is any cofibrant replacement (299).
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Homotopy fibers and homotopy pullback.

Definition A.22 (Homotopy fiber). Let C be a model category (Def. A.3).

(i) For A
p // B a morphism in C with B ∈ Cfib ⊂ C a fibrant object (Notation A.6), and for ∗ b // B a morphism

from the terminal object (a “point in B”), the homotopy fiber of p over b is the image in the homotopy category
(303) of the ordinary fiber over b, i.e. the pullback (291) along b in C, of any fibration p̃ weakly equivalent to p:

hofibb(ρ) // A

ρ

��
B

:= γC


fibb(p̃) //

��
(pb)

Ã

ρ̃ ∈ Fib
��

oo ∈W A

ρ

ww∗
b

// B

 ∈ Ho(C) . (313)

This is well-defined in that hofibb(p) ∈ Ho(C) depends on the choice of fibration replacement p̃ only up to iso-
morphism in the homotopy category.
(ii) Dually, homotopy co-fibers are homotopy fibers in the opposite model category (Def. A.9).

More generally:

Definition A.23 (Homotopy pullback). Given a model category C (Def. A.3) and a pair of coincident morphisms
A

ρ��
X

τ
// B

between fibrant objects, the homotopy pullback of ρ along τ (or homotopy fiber product of ρ with τ) is the image
of ρ , regarded as an object in the homotopy category (Def. A.14) of the slice model category (Example A.10)
under the right derived functor (Prop. A.20) of the right base change functor along τ (Example A.18):

Ho
(
C/B) 3 A

ρ
��

B

homotopy
pullback
7−!

Rτ∗A
Rτ∗ρ
��

X
:= Ho

(
C/X) , (314)

By (307) the derived adjunction counit (312) on (314) gives a commuting square in (303) the homotopy category
of C

Rτ∗A //

Rτ∗ρ
��

(hpb)

A
ρ

��
X

τ
// B

:= γC


τ∗Ã //

��
(pb)

Ã

ρ̃ ∈ Fib
��

oo ∈W A

ρ

wwX
τ

// B

 ∈ Ho(C) . (315)

This square in the homotopy category, together with its pre-image pullback square in the model category, is the
homotopy pullback square of ρ along τ .

Example A.24 (Homotopy fiber is homotopy pullback to the point). Homotopy fibers (Def. A.22) are the homo-
topy pullbacks (Def. A.23) to the terminal object, by (310).

Lemma A.25 (Factorization lemma [Bro73, p. 431]). Let C be a model category (Def. A.3) and A
ρ // B ∈Cfib a

morphism between fibrant objects. Then for Paths(B) a path space object for B (Def. A.11) the vertical composite
in the following diagram

A ∈W //

ρ

""

p∗1A

��

∈W //

(pb)

A

ρ

��
Paths(B) p1

//

p0
��

B

B

(316)

is a fibration, and in fact a fibration resolution of ρ , in that it factors ρ through a weak equivalence.
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Example A.26 (Homotopy pullback via triples). Given a model category C (Def. A.3) and a pair of coincident
morphisms

A
ρ��

X τ // B
between fibrant objects, Lemma A.25 says that the corresponding homotopy pullback (Def. A.23) is computed by
the following diagram

Rτ∗A

��

//

φ

&&

A

ρ

��
Paths(B)

p1

��

p0
// B

X τ // B

=

τ∗
(

p0 ◦ p∗1ρ
)

��

//

(pb)

p∗1A //

��
(pb)

A

ρ

��
Paths(B)

p1

��

p0
// B

X τ // B

Here the right hand side exhibits the left hand side as a limit cone. This means that the homotopy pullback Rτ∗A is
universally characterized by the fact that morphisms into it are triples ( f ,g,φ) , consisting of a pair of morphisms
f , g to A, X , respectively, and a right homotopy φ (Def. A.12) between their composites with ρ and τ , respectively:

C
(
−; Rτ

∗A
)
'

( f ,g,φ)

∣∣∣∣∣∣∣∣
f //

g
��

A
ρ

��
X τ // B

φrz

 (317)

Quillen equivalences.

Lemma A.27 (Conditions characterizing Quillen equivalences). Given a Quillen adjunction L aQu R (Def. A.17),
the following conditions are equivalent:

• The left derived functor (Prop. A.20) is an equivalence of homotopy categories (Def. A.14) Ho(D) oo
LL
' Ho(C ).

• The right derived functor (Prop. A.20) is an equivalence of homotopy categories (Def. A.14) Ho(D)
RR
'
// Ho(C ).

• Both of the following two conditions hold:

(i) The derived adjunction unit Dη (311) is a natural isomorphism, hence (311) is a weak equivalence in
C;

(ii) The derived adjunction counit Dε (312) is a natural isomorphism, hence (312) is a weak equivalence
in D.

• For c ∈Ccof and d ∈Dfib, a morphism out of L(c) is a weak equivalence precisely if its adjunct into R(d) is:

L(c)
f

∈W
// d ⇔ c

f̃

∈W
// R(d) . (318)

Definition A.28 (Quillen equivalence). If the equivalent conditions from Lemma A.27 are met, a Quillen adjunc-
tion L aQu R (Def. A.17) is called a Quillen equivalence, which we denote as follows:

D
oo L

R

'Qu // C .

Hence:

Proposition A.29 (Derived equivalence of homotopy categories). The derived adjunction (Prop. A.20) of a Quillen
equivalence (Def. A.28) is an adjoint equivalence of homotopy categories (Def. A.14):

Ho(D)
oo LL

RR

' // Ho(C) . (319)
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Lemma A.30 (Quillen equivalence when left adjoint creates weak equivalences [EI19, Lemma 3.3]). Let L aQu R
be a Quillen adjunction (Def. A.17) such that the left adjoint functor L creates weak equivalences, in that for all
morphisms f in C we have

f ∈ WC ⇔ L( f ) ∈ WD . (320)

Then L aQu R is a Quillen equivalence (Def. A.28) precisely if the adjunction co-unit εd is a weak equivalence on
all fibrant objects d ∈ Cfib.

Proof. By Lemma A.27, it is sufficient to check that the (i) derived unit and (ii) derived counit of the adjunction
are weak equivalences precisely if the ordinary counit is a weak equivalence.
(ii) For the derived counit (312)

Dεc : L
(
QR(d)

) L(pR(d))

∈W
// L
(
R(d)

) εd // d

we have that pR(d) is a weak equivalence (299), and since L preserves this, by assumption, so is L
(

pR(d)
)
. Therefore

Dεd is a weak equivalence precisely if εd is, by 2-out-of-3 (293).
(i) For the derived unit (311)

c
ηc // R

(
L(c)

) R( jL(c)) // R
(
PL(c)

)
consider the composite of its image under L with the adjunction counit, as shown in the middle row of the following
diagram:

L(c) L(ηc) //

jL(c)∈W

22

L(Dηc)

,,
L◦R

(
L(c)

)
L◦R( jL(c)) // L◦R

(
PL(c)

) εPL(c) // PL(c) .

By the formula for adjuncts, this composite equals the adjunct of the derived adjunction unit, hence jL(c), as
shown by the bottom morphism, which is a weak equivalence (298). Now, since L creates weak equivalences by
assumption, L(Dηc) is a weak equivalence precisely if Dηc is a weak equivalence. Therefore it follows, again by
2-out-of-3 (293), that this is the case precisely if the adjunction counit ε is a weak equivalence on the fibrant object
PL(c).

Proposition A.31 (Base change along weak equivalence in right proper model category). Let C be a right proper
model category (Def. A.5). Then its base change Quillen adjunction (Example A.18) along any weak equivalence

B1
f

∈W
// B2 ∈ C

is a Quillen equivalence (Def. A.28):

C/B2
oo f!

f ∗
'Qu // C

/B1 .

Proof. Observe that B2
id // B2 is the terminal object of C/B2 , so that the fibrant objects of C/B2 correspond to

the fibrations in C over B2. Therefore, the condition (318) says that for f! a f ∗ to be a Quillen equivalence it is
sufficient that in (307) c is a weak equivalence precisely if c̃ is, assuming that ρ is a fibration:

X c //

τ

$$

A

ρ∈ Fib

��
B1

f∈W ++ B2

↔

X c̃ //

τ

&&

f ∗A

f ∗ρ
��

ρ∗ f∈W //

(pb)

A

ρ∈ Fib

��
B1

f∈W ++ B2

(321)

But under this assumption, right-properness implies that ρ∗ f is a weak equivalence (297), so that the statement
follows by 2-out-of-3 (293).

Alternative Proof. The conclusion also follows with Lemma A.30: The left adjoint functor L = f! clearly creates
weak equivalences (320) (by the nature of the slice model structure, Example A.10), so that Lemma A.30 asserts
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that we have a Quillen equivalence as soon as the ordinary adjunction counit is a weak equivalence on all fibrant
objects. By (307), the adjunction counit on a fibration ρ ∈ Fib is the dashed morphism ρ∗ f in the following
diagram on the right:

f ∗A id //

f ∗ρ
''

f ∗A

f ∗ρ
��

ρ∗ f∈W //

(pb)

A

ρ∈ Fib

��
B1

f∈W ++ B2

↔

f ∗A
ρ∗ f∈W //

f ∗ρ
%%

A

ρ∈ Fib

��
B1

f∈W ++ B2

(322)

And hence this is a weak equivalence, again by right-properness.

Example A.32 (Quillen equivalence between topological spaces and simplicial sets [Qu67]). Forming simplicial
sets constitutes a Quillen equivalence (Def. A.28)

TopologicalSpacesQu

oo

geometric realization

|−|

Sing
singular simplicial complex

'Qu // SimplicialSetsQu (323)

between the classical model structure on topological spaces (Example A.7) and the classical model structure on
simplicial sets (Example A.8).

Example A.33 (Classical homotopy category). By Prop. A.29 and the derived adjunction (Prop. A.20) of the
|−| a Sing-adjunction (Example A.32) is an equivalence between the homotopy categories (Def. A.14) of the
classical model category of topological spaces (Example A.7) and the classical model category of simplicial sets
(Example A.8):

Ho
(
TopologicalSpacesQu

) oo L|−|

RSing

' // Ho
(
SimplicialSetsQu

)
. (324)

Either of these is the classical homotopy category. We refer to its objects as homotopy types, to be distinguished
from the actual topological spaces or simplicial set that represent them.

Cell complexes.

Proposition A.34 (Skeleta and truncation [May67, §II.8][DK84, §1.2 (vi)] ). For each n ∈ N there is a pair of
adjoint functors

SimplicialSets
oo sk

cosk
⊥ // SimplicialSets , (325)

where skn(S) is the simplicial sub-set generated by the simplices in S of dimension ≤ n (hence including only all
their degenerate higher simplices), and where

coskn(S) : [k] 7! SimplicialSets
(
skn(∆[k]) , S

)
.

Here coskn+1 preserves fibrant objects of the classical model structure (Example A.8) and models n-truncation, in
that:

πk
∣∣coskn+1(S)

∣∣ = 0 for k ≥ n+1

and there are natural fibrations S
pn // coskn(S) such that

πk
∣∣S∣∣ πk|pn|

'
// πk
∣∣coskn+1(S)

∣∣ for k ≤ n .

For A ∈ Ho
(
TopologicalSpacesQu

)
we write

A(n) :=
∣∣coskn+1

(
Sing(A)

)∣∣ (326)

We say that A is n-truncated if it is equivalent to its n-truncation:

A is n-truncated ⇔ A ' A(n) . (327)
for its n-truncation.
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Example A.35 (Simplicial sets are weakly equivalent to singular simplicial sets of their realization). For S ∈
SimplicialSets, the unit of the adjunction (323) is a weak equivalence:

S
ηS

∈W
// Sing(|S|) . (328)

Notice that, a priori, the characterization of Quillen equivalences (Lemma A.27) only says, with Example A.32,
that the derived adjunction unit, hence the composite

S
ηS // Sing(|S|)

Sing(| j|S||) // Sing(P |S|)

is a weak equivalence, where j|S| is a Kan fibrant replacement for |S|. But since all topological spaces are fibrant
(Example A.7), the above simpler condition follows.

Example A.36 (Homotopy types of manifolds via triangulations). For X ∈ TopologicalSpaces equipped with the
stucture of an n-manifold, there exists a triangulation of X , namely an n-skeletal simplicial set (Prop. A.34)

Tr(X) ∈ SimplicialSets , skn
(
Tr(X)

)
= Tr(X) (329)

equipped with a homeomorphism to X out of its geometric realization (323)

|Tr(X)| p

homeo
// X , (330)

Since the inclusion
Tr(X) �

� ηTr(X)

∈W
// Sing

(
|Tr(X)|

) Sing(p)

∈ Iso
// Sing(X) , (331)

is a weak equivalence (by Example A.35), the triangulation represents the homotopy type (324) of the manifold.

Proposition A.37 (Homotopy classes of maps out of n-manifolds). Let X ∈ TopologicalSpaces admit the stucture
of an n-manifold. Then for any A ∈ Ho

(
TopologicalSpacesQu

)
(Example A.33) the homotopy classes of maps

X // A are in natural bijection to the homotopy classes into the (n−1)-truncation (326) of A:

Ho
(
TopologicalSpacesQu

)(
X , A

)
' Ho

(
TopologicalSpacesQu

)(
X , A(n−1)

)
(332)

Proof. Consider the following sequence of natural isomorphisms

Ho
(
TopologicalSpacesQu

)(
X , A

)
' Ho

(
SimplicialSetsQu

)(
Sing(X) , Sing(A)

)
' Ho

(
SimplicialSetsQu

)(
Tr(X) , Sing(A)

)
' Ho

(
SimplicialSetsQu

)(
skn
(
Tr(X)

)
, Sing(A)

)
' Ho

(
SimplicialSetsQu

)(
Tr(X) , coskn

(
Sing(A)

))
' Ho

(
TopologicalSpacesQu

)(∣∣Tr(X)
∣∣ , ∣∣coskn

(
Sing(A)

)∣∣)
' Ho

(
TopologicalSpacesQu

)(
X , A(n−1)

)
.

Here the first step is (A.33), using, with Example A.21, that all topological spaces are fibrant and all simplicial sets
cofibrant. The second step uses (331). The third step is (329). Using that we do not need to fibrantly replace the
skeleton in the domain, by Prop. A.16, the fourth step is the skeleta-adjunction (325). The fifth step is the reverse
of the first step, with the same argument on (co-)fibrancy. The last step uses (330) in the first argument and (326)
in the second. The composite of these isomorphisms is the desired (332).

Proposition A.38 (Postnikov tower [GJ99, Cor. 3.7]). Let X ∈ Ho
(
TopologicalSpacesQu

)
(Example A.33). If X is

connected, then its sequence of n-truncations (326) forms a system of fibrations with homotopy fibers (Def. A.22)
the Eilenberg-MacLane spaces (14) of the homotopy group in the given degree:

95



...

��
K(π3(X),3)

hfib(pX
3 ) // X(3)

pX
3��

K(π2(X),2)
hfib(pX

2 ) // X(2)
pX

2��
K(π1(X),1)

hfib(pX
1 ) // X(1)

pX
1��

X(0) .
If X is not connected then this applies to each of its connected components.

Stable model categories.

Example A.39 (Looping/suspension-adjunction). On the category of pointed topological spaces, equipped with
the coslice model structure under the point (Example A.10) of the classical model structure (Example A.7), the
operation of forming based loop spaces ΩX := Maps∗/(S1,X) is the right adjoint in a Quillen adjunction (Def.
A.17)

TopologicalSpaces∗/Qu

oo Σ

Ω

⊥Qu // TopologicalSpaces∗/Qu (333)

whose left adjoint is the reduced suspension operation ΣX := S1∧X :=
(
S1×X

)
/
(
S1×{∗X} t {∗S1}×X

)
.

Example A.40 (Stable model category of sequential spectra [BF78][GJ99, §X.4]). There exists a model category
(Def. A.3) SequentialSpectraBF whose objects are sequences

E :=
{

En ∈ TopologicalSpaces, ΣEn
σn // En+1

}
n∈N

of topological spaces En and continuous function σn from their suspension ΣEn (Example A.39) to the next space

in the sequences; and whose morphisms E
f // F are sequences of component maps En

fn // Fn that commute with
the σs. Moreover:
W – weak equivalences are the morphisms that induce isomorphisms on all stable homotopy groups π•(X) :=

lim
−!

n

π•+k(Xk) (where the colimit is formed using the σ ’s);

Cof – cofibrations are those morphisms E
f // F such that the maps

E0
f0

∈ Cof
// F0 and ∀

n∈N
En+1 t

ΣEn
ΣFn

( fn+1,σ
F
n )

∈ Cof
// Fn+1

are cofibrations in the classical model structure on topological spaces (Example A.7).
Fib – Fibrant objects are the Ω-spectra, namely those sequences of spaces {En} for which the Σ aΩ-adjunct (333)

of each σn is a weak equivalence:{
En ∈ TopologicalSpaces∗/Qu , En

σ̃n

∈W
// ΩEn+1

}
n∈N

(334)

Example A.41 (Derived stabilization adjunction). The suspension/looping Quillen adjunction on pointed spaces
(Example A.39) extends to a commuting diagram of Quillen adjunctions (Def. A.17) to and on the stable model
category of spectra (Example A.40)

TopologicalSpaces∗/Qu

oo Σ

Ω

⊥Qu //

Σ∞ aQu

��

OO

Ω∞

TopologicalSpaces∗/Qu

Σ∞ aQu

��

OO

Ω∞

SequentialSpectraBF
oo Σ

Ω

⊥Qu // SequentialSpectraBF .

(335)
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such that the bottom adjunction is a Quillen equivalence (Def. A.28), hence such that under passage to derived
adjunctions (Prop. A.20)

Ho
(

TopologicalSpaces∗/Qu

) oo LΣ

RΩ

⊥ //

LΣ∞ a
��

OO

RΩ∞

Ho
(

TopologicalSpaces∗/Qu

)
LΣ∞ a
��

OO

RΩ∞

Ho
(

SequentialSpectraBF
) oo LΣ

RΩ

' // Ho
(

SequentialSpectraBF
) (336)

the bottom adjunction is an equivalence, thus exhibiting the homotopy category of spectra as being stable under
looping/suspension.
We say that
(i) Ho

(
SequentialSpectraBF

)
is the stable homotopy category of spectra;

(ii) the vertical adjunction (LΣ∞ aRΩ∞) is the stabilization adjunction between homotopy types (324) and spectra.
(iii) the images of Σ∞ are the suspension spectra.
(iv) For E ∈ Ho

(
SequentialSpectraBF

)
and n ∈ N we write (for brevity and in view of (334))

En := RΩ
∞
(
(LΣ)nE

)
∈ Ho

(
TopologicalSpaces∗/Qu

)
(337)

for the homotopy type of the nth component space of the spectrum.

Smooth ∞-stacks.

Definition A.42 (Simplicial presheaves over Cartesian spaces). We write
(i)

CartesianSpaces :=
{
Rn1 smooth // Rn2

}
ni∈N (338)

for the category whose objects are the Cartesian spaces Rn, for n ∈ N, and whose morphisms are the smooth
functions between these (hence the full subcategory of SmoothManifolds on the Cartesian spaces).
(ii)

PSh
(
CartesianSpaces,SimplicalSets

)
:= Functors

(
CartesianSpacesop,SimplicalSets

)
(339)

for the category of functors from the opposite of CartesianSpaces (338) to SimplicialSets,

Example A.43 (Model structure on simplicial presheaves over Cartesian spaces [Du98][Du01][FSSt10, §A]). The
category of simplicial presheaves over Cartesian spaces (Prop. 339) carries the following model category structures
(Def. A.3):
(i) The global projective model structure

PSh
(
CartesianSpaces,SimplicalSets

)
proj (340)

whose
W – weak equivalences are the morphisms which over each Rn are weak equivalence in SimplicialSetsQu (Exam-

ple A.8),

Fib – fibrations are the morphisms which over each Rn are fibrations in SimplicialSetsQu (Example A.8),

(ii) The local projective model structure

SmoothStack∞ := PSh
(
CartesianSpaces,SimplicalSets

)
proj
loc

(341)

whose:
W – weak equivalences are the morphisms whose stalk at 0 ∈ Rn is a weak equivalence in SimplicialSetsQu

(Example A.8), for all n ∈ N;

Cof – cofibrations are the morphisms with the left lifting property (295) against the class of morphisms which over
each Rn are in Fib∩W of SimplicialSetsQu.
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Definition A.44 (Homotopy category of smooth ∞-stacks). We write
Ho(SmoothStacks∞) := Ho

(
PSh

(
CartesianSpaces,SimplicalSets

)
proj
loc

)
(342)

for the homotopy category (Def. A.14) of the local projective model category of simplicial presheaves over
CartesianSpaces (Example A.43). We say that the objects of Ho(SmoothStacks∞) (342) are smooth ∞-stacks.

For exposition of smooth ∞-stack theory see [FSS12b, §2][FSS13a][SS20a, §1]. In particular, notice:

Example A.45 (Smooth manifolds as smooth ∞-stacks). For X ∈ SmoothManifolds it is incarnated as a smooth
∞-stack (Def. A.44) by the rule

X =
(
Rn 7!

(
∆[k] 7! SmoothManifolds(Rn , X)

))
. (343)

This construction constitutes to a full embedding
SmoothManifolds �

� // Ho(SmoothStacks∞)

of smooth manifolds into smooth ∞-stacks.

Lemma A.46 (∞-Stackification preserves finite homotopy limits). The identity functors constitute a Quillen ad-
junction (Def. A.17) between the local and the global projective model categories of Example A.43:

PSh
(
CartesianSpaces,SimplicalSets

)
proj
loc

oo id

id

⊥Qu // PSh
(
CartesianSpaces,SimplicalSets

)
proj .

Moreover, this is such that the derived left adjoint functor (Prop. A.20)

Lloc : Ho
(

PSh
(
CartesianSpaces,SimplicalSets

)
proj

)
L id // Ho(SmoothStacks∞) (344)

(the ∞-stackification functor) preserves homotopy pullbacks (Def. A.23).

Proposition A.47 (Shape Quillen adjunction [Sc13, Prop. 4.4.8][SS20a, Example 3.18]). We have a Quillen
adjunction (Def. A.17)

PSh
(
CartesianSpaces,SimplicalSets

)
proj
loc

Shp //

oo
Disc

⊥Qu SimplicialSetsQu

between the projective local model structure on simplicial presheaves over CartesianSpaces (Example A.43) and
the classical model structure on simplicial sets (Example A.8), hence a derived adjunction (Prop. A.20) between
homotopy category of ∞-stacks (Def. A.44) and the classical homotopy category (Example A.33)

Ho(SmoothStacks∞)

LShp //

oo
RDisc

⊥Qu Ho
(
SimplicialSetsQu

)
whose (underived) right adjoint sends a simplicial set to the presheaf which is constant on that simplicial set:

Disc(S) := const(S) :
(
Rn 7! S

)
. (345)

Homological algebra.

Example A.48 (Projective model structure on connective chain complexes [Qu67, §II.4 (5.)]). The category
ChainComplexes≥ 0

Z of connective chain complexes of abelian groups (i.e. concentrated in non-negative degrees
with differential of degree -1) carries a model category structure (Def. A.3) whose
W – weak equivalences are the quasi-isomorphisms (those inducing isomorphisms on all chain homology groups)

Fib – fibrations are the positive-degree wise surjections
Cof – cofibrations are the morphisms with degreewise injective kernels.
We write

(
ChainComplexes≥ 0

Z

)
proj for this model category.

More generally:

Example A.49 (Projective model structure on presheaves of connective chain complexes [Ja03, p. 7]). The cate-
gory of presheaves of connective chain complexes over CartesianSpaces (338) carries the structure of a model cat-
egory whose weak equivalences and fibrations are objectwise those of

(
ChainComplexes≥ 0

Z

)
proj (Example A.48).

We write PSh
(
CartesianSpaces , ChainComplexes≥ 0

Z

)
proj for this model category.
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Proposition A.50 (Dold-Kan correspondence [Do58, Thm 1.9][Ka58][GJ99, §III.2][SSh03a, §2.1]). Given A• ∈
SimplicialAbelianGroups, its normalized chain complex is the connective chain complex of abelian groups (Ex-
ample A.48) which in degree n ∈ N is the quotient of An by the degenerate cells and whose differential is the
alternating sum of the face maps:

N(A)• :=
{

N(A)n := An/σ(An+1) , ∂n :=
n

∑
i=0

(−1)idi : N(A)n // N(A)n−1

}
n∈N
∈ ChainComplexes≥ 0

Z . (346)

(i) This construction constitutes an adjoint equivalence of categories

ChainComplexes≥ 0
Z

oo N
' // SimplicialAbelianGroups (347)

(ii) such that simplicial homotopy groups of A ∈ SimplicialAbelianGroups! SimplicialSet are identified with
chain homology groups of the normalized chain complex ([GJ99, Cor. III.2.5]):

π•(A) ' H•(NA) . (348)

Example A.51 (Model structure on simplicial abelian groups [Qu69, §III.2][SSh03a, §4.1]). The category of
SimplicialAbelianGroups carries a model category structure (Def. A.3) whose
W – weak equivalences are the morphisms which are weak equivaleces as morphisms in SimplicialSetsQu (Ex-

ample A.8)
Fib – fibrations are the morphisms which are fibrations as morphisms in SimplicialSetsQu (Example A.8)
In other words, this is the transferred model structure along the free/forgetful adjunction, which thus becomes a
Quillen adjunction (Def. A.17):

SimplicialAbelianGroupproj

oo Z[−]

⊥Qu // SimplicialSetsQu . (349)

Proposition A.52 (Dold-Kan Quillen equivalence [SSh03a, §4.1][Ja03, Lemma 1.5]). With respect to the projec-
tive model structure on connective chain complexes (Example A.48) and the projective model structure on sim-
plicial abelian groups (Example A.51) the Dold-Kan correspondence (Prop. A.50) is a Quillen equivalence (Def.
A.28): (

ChainComplexes≥ 0
Z

)
proj

oo N
'Qu // SimplicialAbelianGroupsproj , (350)

where both functors preserve all three classes of morphims, Fib, Cof and W, separately.

Example A.53 (Dold-Kan construction [FSSt10, §3.2.3][FSS12b, §2.4]). i) We write DK for the total right adjoint
in the composite of the free Quillen adjunction (349) and the Dold-Kan equivalence (350):

(
ChainComplexes≥ 0

Z

)
proj

oo N
'Qu //

DK

22
SimplicialAbelianGroupsproj

oo Z[−]

⊥Qu // SimplicialSetsQu . (351)

ii) This extends to a right Quillen functor on global projective model categories of presheaves (Example A.43,
Example A.49). whose right derived functor (Prop. A.20) RDK composed with the ∞-stackification functor (344)
is thus of the form

Ho
(

PSh
(
CartesianSpaces , ChainComplexes≥ 0

Z

)
proj

) derived
Dold-Kan construction

RDK //

∞-stackified
Dold-Kan construction ,,

Ho
(

PSh
(
CartesianSpaces , SimplicialSets

)
proj

)
Lloc

∞-stackification
��

Ho(SmoothStacks∞)

and preserves homotopy pullbacks (by Lemma A.46).
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Example A.54 (Projective model structure on unbounded chain complexes [Ho99, Thm. 2.3.11]). The category
ChainComplexesZ of unbounded chain complexes of abelian groups carries a model category structure (Def. A.3)
whose:
W – weak equivalences are the quasi-isomorphisms;

Fib – fibrations are the degreewise surjections.
We write

(
ChainComplexesZ

)
proj for this model category.

Proposition A.55 (Stable Dold-Kan construction). The Dold-Kan construction (Def. A.53) lifts along the stabi-
lization adjunction (Example A.41) from connective to unbounded chain complexes (Example A.54), such as to
make the following diagram commute:

Ho
((

ChainComplexes≥ 0
Z

)
proj

)
Dold-Kan correspondence

RDK

,,
' //

_�

a
��

OO

RΩ∞

Ho
(
SimplicialAbelianGroupsproj

)
// Ho
(
SimplicialSetsQu

)
LΣ∞ a
��

OO

RΩ∞

Ho
((

ChainComplexesZ

)
proj

)
RDKst

stable Dold-Kan construction

22
' // Ho

(
(HZ)ModuleSpectra

)
// Ho
(
SequentialSpectraBF

)
.

(352)

Here the right adjoint on chain complexes is the homological truncation from below:

RΩ
∞

(
· · · ∂2−!V2

∂1−!V1
∂0−!V0

∂−1
−!V−1

∂−2
−! · · ·

)
=

(
· · · ∂2−!V2

∂1−!V1
∂0−! ker(∂−1)

)
. (353)

Proof. (i) It is clear from inspection that the assignment (353) is right adjoint to the inclusion of connective chain
complexes, so that we have a pair of adjoint functors(

ChainComplexesZ

)
proj

oo ? _

Ω∞

⊥Qu //
(
ChainComplexes≥ 0

Z

)
proj . (354)

Moreover, it is immediate that this is a Quillen adjunction (Def. A.17) between the projective model structure on
connective chain complexes (Example A.48) and that on unbounded chain complexes (Example A.54): Ω∞ clearly
preserves fibrations (using that those between connective chain complexes need to be surjective only in positive
degrees!) and clearly preserves all weak equivalences. Finally, since all chain complexes in the projective model
structure are fibrant, we have that with Ω∞ also RΩ∞ is given by (353), via Example A.21.
(ii) A Quillen adjunction of the form(
ChainComplexesZ

)
proj

oo

H

⊥' //

DKst

22
(HZ)ModuleSpectra

oo
⊥Qu // SequentialSpectraBF (355)

is established in [SSh01, §B.1], where
(a) the first step is a Quillen equivalence (Def. A.28) between the projective model structure on unbounded chain
complexes (Example A.54) and a model category of module spectra over the Eilenberg-MacLane spectrum HZ
[SSh01, §B.1.11];
(b) the second step is a Quillen adjunction [SSh01, p. 37, item ii)] to the Bousfield-Friedlander model structure
(Example A.40) whose right adjoint assigns underlying sequential spectra; such that
(c) the composite right adjoint DKst (355) further composed with Ω∞ on spectra (335) equals the composite of Ω∞

on chain complexes (354) with the unstable Dold-Kan construction (351):

Ω
∞ ◦ DKst ' DK ◦ Ω

∞

(by immediate inspection of the construction in [SSh01, p. 38-39]).
(iii) By uniqueness of adjoints, this implies that the Quillen adjunction of the stable Dold-Kan construction (355)
is intertwined by the Quillen adjunctions involving Ω∞ with the Quillen adjunction of the unstable Dold-Kan
construction (351), and hence the commuting diagram of derived functors (A.55) follows (Prop. A.20).
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IHÉS 38 (1970), 5-25, [numdam:PMIHES 1970 38 5 0].

[DH11] C. Douglas and A. Henriques, Topological modular forms and conformal nets, in: H. Sati, U. Schreiber
(eds.), Mathematical Foundations of Quantum Field and Perturbative String Theory, Proc. Sympo. Pure
Math. 83, Amer. Math. Soc., 2011, [doi:10.1090/pspum/083], [arXiv:1103.4187].

[DFHH14] C. L. Douglas, J. Francis, A. G. Henriques, and M. A. Hill (eds.), Topological Modular Forms, Math-
ematical Surveys and Monographs vol. 201, Amer. Math. Soc., 2014, ISBN:978-1-4704-1884-7].

[DDK80] E. Dror, W. Dwyer and D. Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer.
Math. Soc. 80 (1980), 670-672, [jstor:2043448].

[Du98] D. Dugger, Sheaves and homotopy theory, 1998,
[ncatlab.org/nlab/files/DuggerSheavesAndHomotopyTheory.pdf]

[Du01] D. Dugger, Universal homotopy theories, Adv. Math. 164 (2001), 144-176,
[doi:10.1006/aima.2001.2014], [arXiv:math/0007070].

[Du03] D. Dugger, Notes on Delta-generated spaces, 2003, [pages.uoregon.edu/ddugger/delta.html].
[Dun10] G. Dungan, Review of model categories, Florida State University, 2010,

[ncatlab.org/nlab/files/DunganModelCategories.pdf]
[DK84] W. Dwyer and D. Kan, An obstruction theory for diagrams of simplicial sets, Nederl. Akad. Wetensch.

Indag. Math. 87 (1984), 139-146, [doi:10.1016/1385-7258(84)90015-5].
[Ei40] S. Eilenberg, Cohomology and Continuous Mappings, Ann. Math. 41 (1940), 231-251, [jstor:1968828].
[EML53] S. Eilenberg and S. Mac Lane, On the Groups H(Π,n), I, Ann. Math. 58 (1953), 55-106,

[jstor:1969820].
[EML54a] S. Eilenberg and S. MacLane, On the Groups H(Π,n), II: Methods of Computation, Ann. Math. 60

(1954), 49-139, [jstor:1969702].
[EML54b] S. Eilenberg and S. Mac Lane, On the Groups H(Π,n), III: Operations and Obstructions, Ann. Math.

60 (1954), 513-557, [jstor:1969849].
[EKMM97] A. Elmendorf, I. Kriz, M. Mandell, and P. May, Rings, modules and algebras in stable homotopy

theory, Mathematical Surveys and Monographs vol. 47, Amer. Math. Soc., Providence, RI, 1997,
[ISBN:978-0-8218-4303-1], [www.math.uchicago.edu/∼may/BOOKS/EKMM.pdf]
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[FSSt10] D. Fiorenza, U. Schreiber and J. Stasheff, Čech cocycles for differential characteristic classes – An ∞-
Lie theoretic construction, Adv. Theor. Math. Phys. 16 (2012), 149-250,
[doi:10.4310/ATMP.2012.v16.n1.a5], [arXiv:1011.4735].

[FH17] Y. Félix and S. Halperin, Rational homotopy theory via Sullivan models: a survey, Notices of the Inter-
national Congress of Chinese Mathematicians vol. 5 (2017) no. 2, [doi:10.4310/ICCM.2017.v5.n2.a3],
[arXiv:1708.05245].

[FHT00] Y. Félix, S. Halperin, and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics,
205, Springer-Verlag, 2000, [doi:10.1007/978-1-4613-0105-9].

[FHT15] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory II, World Scientific, 2015,
[doi:10.1142/9473].
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[numdam:PMIHES 1977 47 269 0].

[Ta09] L. Taylor, The principal fibration sequence and the second cohomotopy set, Geom. & Topol. Monogr. 18
(2012), 235-251, [doi:10.2140/gtm.2012.18.235], [arXiv:0910.1781].

[Te04] C. Teleman, K-theory and the moduli space of bundles on a surface and deformations of the Verlinde
algebra, Topology, geometry and quantum field theory, 358-378, Cambridge Univ. Press, Cambridge, 2004,
[arXiv:math/0306347] [math.AG].

[Th62] E. Thomas, On the cohomology groups of the classifying space for the stable spinor groups, Bol. Soc. Mat.
Mexicana (2) 7 (1962), 57-69.
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