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Abstract

The Chern character on K-theory has a natural extension to arbitrary generalized cohomology theories,
known as the Chern-Dold character. Here we further extend this to (twisted, differential) non-abelian cohomol-
ogy theories, where its target is a non-abelian de Rham cohomology of twisted L∞-algebra valued differential
forms. The construction amounts to leveraging the fundamental theorem of dg-algebraic rational homotopy
theory to a twisted non-abelian generalization of the de Rham theorem. We show that the non-abelian charac-
ter reproduces, besides the Chern-Dold character, also the Chern-Weil homomorphism as well as its secondary
Cheeger-Simons homomorphism on (differential) non-abelian cohomology in degree 1, represented by principal
bundles (with connection); and thus generalizes all these to higher (twisted, differential) non-abelian cohomol-
ogy, represented by higher bundles/higher gerbes (with higher connections). As a fundamental example, we
discuss the twisted non-abelian character map on twistorial Cohomotopy theory over 8-manifolds, which may
be viewed as a twisted non-abelian enhancement of topological modular forms (tmf) in degree 4. This turns
out to exhibit a list of subtle topological relations that in high energy physics are thought to govern the charge
quantization of fluxes in M-theory.

Contents

1 Introduction 2

2 Non-abelian cohomology 9
2.1 Non-abelian cohomology theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Twisted non-abelian cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Non-abelian de Rham cohomology 22
3.1 Dgc-Algebras and L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 R-Rational homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Non-abelian de Rham theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The (differential) non-abelian character map 57
4.1 Chern-Dold character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Cheeger-Simons homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 The twisted (differential) non-abelian character map 78
5.1 Twisted Chern character on higher K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Twisted differential non-abelian character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Twisted character on twisted differential Cohomotopy . . . . . . . . . . . . . . . . . . . . . . . . 87

A Model category theory 93

1



1 Introduction

Generalized cohomology theories [Wh62][Ad75] – such as K-theory, elliptic cohomology, stable Cobordism and
stable Cohomotopy – are rich. This makes them fascinating but also intricate to deal with. In algebraic topology it
has become commonplace to apply filtrations by iterative localizations [Bou79] (review in [EKMM97, §V][Ba14])
that allow generalized cohomology to be approximated in consecutive stages; a famous example of current interest
is the chromatic filtration on complex oriented cohomology theories ([MR87], review in [Ra86][Lu10]).

The Chern-Dold character. The primary approximation stage of generalized cohomology theories is their ratio-
nalization (e.g., [Hil71][Ba14]) to ordinary cohomology (e.g., singular cohomology) with rational coefficients or
real coefficients (see Remark 3.64). This goes back to [Do65]; and since on topological K-theory (Ex. 4.13) it
reduces to the Chern character map [Hil71, Thm. 5.8], this has been called the Chern-Dold character [Bu70]:

En
Q(X)

⊕
k

Hn+k
(
X ; πk(E)⊗Z Q

)
rational

cohomology

generalized
cohomology En(X)

En
R(X) HomR

(
[π•(E),R], H•+n

dR (X)
)

de Rham
cohomology

Dold’s equivalence
∼

extensions
of scalars

rationalization

Chern-Dold character chn
E

differential-geometric Chern-Dold character

de Rham theorem
∼

(1)

That the left map in (1) is indeed the rationalization approximation on coefficient spectra is left somewhat implicit
in [Bu70] (rationalization was properly formulated only in [BK72b]); a fully explicit statement is in [LSW16,
§2.1]. The equivalence on the top of (1) serves to make explicit how the result of that rationalization operation
indeed lands in ordinary cohomology, and this was Dold’s original observation [Do65, Cor. 4] (see Prop. 4.8).

At the heart of differential cohomology. While rationalization is the coarsest of the localization approximations,
it stands out in that it connects, via the de Rham theorem, to differential geometric data – when the base space X has
the structure of a smooth manifold, and the coefficients are taken to be R instead of Q. Indeed, this “differential-
geometric Chern-Dold character” shown on the bottom of (1), underlies (usually without attribution to either Dold
or Buchstaber) the pullback-construction of differential generalized cohomology theories [HS05, §4.8] (see [BN14,
p. 17][GS17b, Def. 7][GS18b, Def. 17][GS19a, Def. 1], recalled as Def. 4.38 and Example 4.39 below).

At the heart of non-perturbative field theory. It is in this differential-geometric form that the Chern-Dold
character plays a pivotal role in high energy physics. Here closed differential forms encode flux densities Fp ∈
Ω

p
dR(X) of generalized electromagnetic fields on spacetime manifolds X ; and the condition that these lift through

(i.e., are in the image of) the differential-geometric Chern-Dold character (1) for E-cohomology theory encodes a
charge quantization condition in E-theory (see [Fr00][Sa10][GS19c]), generalizing Dirac’s charge quantization of
the ordinary electromagnetic field in ordinary cohomology [Di31] (review in [Al85, §2][Fra97, 16.4e]):

En(X)
chn

E

differential-geometric
Chern-Dold character // HomR

([
π•(E), R

]
, Hn+•

dR (X)
)

[c]
class in

E-cohomology

� //
[{

F (a)
ra ∈Ω

ra
dR(X)

}
1≤a≤dim[π•(E),R]

charge-quantized flux densities

∣∣d F (a)
ra = 0

] (2)

This idea of charge quantization in a generalized cohomology theory has become famous for the case of topological
K-theory – E = KU,KO – where it is argued to capture aspects of the expected nature of the Ramond-Ramond
(RR) fields in type II/I string theory (see [FH00][Fr00][Ev06][GS19c][GS18b]).

Need for non-abelian generalization. However, various further topological conditions (recalled in [FSS19b,
Table 1][FSS19c, p. 2][SS20a, Table 3][FSS20, p. 2], see Rem. 5.30 below), in non-perturbative type IIA string
theory (“M-theory”) are not captured by charge-quantization (2) in K-theory, nor in any Whitehead-generalized
cohomology theory, since they involve non-linear functions (351) in the fluxes.

In order to systematically discuss the rich but under-appreciated area of non-abelian charge quantization, we
introduce and explore, in §4 and §5, the natural non-linear/non-abelian generalization of the character map. This
is based on classical constructions of dg-algebraic rational homotopy theory which we recall and develop in §3.
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The non-abelian character map. Indeed, despite their established name, generalized cohomology theories in the
traditional sense of Whitehead [Wh62][Ad75] are not general enough for many purposes:
(i) Already the time-honored non-abelian cohomology that classifies principal bundles (Ex. 2.3 below), being the
domain of the Chern-Weil homomorphism [Ch50] (recalled as Def. 4.24, Prop. 4.26 below), falls outside the scope
of Whitehead-generalized cohomology. Its flat sector alone, observed by secondary Cheeger-Simons invariants (re-
derived as Thm. 4.54 below), is controlled by the classical Maurer-Cartan equation (e.g. [Na03, §5.6.4][RS17,
Prop. 1.4.9]) on a Lie algebra valued differential form A1:

d A(c)
1 = f c

ab A(b)
1 ∧A(a)

1 ∈ Ω
2
dR(−) (3)

(for f c
ab the structure constants, recalled as Ex. 3.87 below) whose importance in large areas of mathematics and

mathematical physics is hard to overstate (the “master equation”, e.g. [Mar12, Rem. 3.12][CL13]), but whose
cohomological content is not captured by Whitehead-generalized abelian cohomology theory.
(ii) Similarly outside the scope of Whitehead-generalized cohomology is the non-abelian cohomology classifying
gerbes [Gi71] (see Ex. 2.6 below). In its flat sector this serves to adjoin to (3) the higher-degree condition

d B2 = µabc A(a)
1 ∧A(b)

1 ∧A(a)
1 ∈ Ω

3
dR(−) (4)

(for some differential 2-form, see Ex. 3.89) which has come to be recognized as a deep stringy refinement of the
classical Maurer-Cartan equation (3) (see [FSS12a, App.] for pointers).

However – and this is our topic here – these two items are just the first two stages within a truly general concept
of higher non-abelian cohomology (Def. 2.1 below), that classifies higher bundles/higher gerbes (Ex. 2.7 below),
whose non-abelian character map (Def. 4.3 below) takes values in flat L∞-algebra valued differential forms (Def.
3.86 below) satisfying non-linear polynomial differential relations (L∞-algebraic Maurer-Cartan equations, e.g.
[DMZ07, (31)][La14, Def. 5.1]) which in string-theoretic applications (see (9) and §5.3 below) are identified with
higher Bianchi identities on flux densities:

non-abelian
cohomology

A(X)

non-abelian

de Rham cohomology

HdR
(
X ;

Whitehead L∞
-algebra

lA
)

[c]
class in

A-cohomology

[{
F (a)

ra ∈ Ω
ra
dR(X)

}
1≤a≤dim[π•(A),R]

∣∣∣
charge-quantized flux densities

d F (a)
ra = Pra

(
{F (b)

rb }b≤a
)

higher Bianchi identities

]chA

non-abelian character (5)

This generalizes (by Thm. 4.11 below) the Chern-Dold character (2) on Whitehead-generalized cohomology, which is sub-
sumed as the abelian sector within the non-abelian theory (Ex. 2.13).

While the non-abelian character map (5) is built from mostly classical ingredients of dg-algebraic rational homotopy
theory (recalled and developed in§3.2), its re-incarnation within non-abelian cohomology provides a new unifying perspective
on mathematical phenomena expected to be relevant for non-perturbative physics:
Yang-Mills monopoles via higher non-abelian cohomology. In modern formulation, Dirac’s charge quantization (e.g.
[Al85, §2])s of the electromagnetic field around a magnetic monopole with worldline R0,1 ↪−! R3,1, is the statement that the
topological class of the field is encoded by a continuous map from the surrounding spacetime, which in the classical homotopy
category (Ex. A.39) is the 2-sphere R3,1 \R0,1 ' R3 \ {0} ' S2 ∈ Ho

(
TopSpQu

)
, to the classifying space of the circle

group BU(1) ' K(Z,2) (22):
c

−−−−−−−−−−−−−−−−−!
electromagnetic field sourced by monopole

R0,1×
(
R3\{0}

)
' S2

spacetime around a magnetic monopole︷ ︸︸ ︷ BU(1)' CP∞

classifying space of electromagnetic gauge group︷ ︸︸ ︷

CP1

higher
cells
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Since this is the classifying space for integral 2-cohomology (Exp. 2.2), one deduces, generally, that magnetic charge of the
abelian U(1)-Yang-Mills field is measured in ordinary abelian cohomology H2(−;Z) (e.g. [FMS07, p. 7]). But the minimal
cell decomposition of this classifying space is by complex projective k-spaces for k ∈ N:

BU(1) ' B2Z = K(Z,2) '
infinite (stable, abelian)

complex projective space

CP∞ '
direct
limit

lim
−!
k!∞

CPk ' lim
−!
k!∞

finite (unstable, non-abelian)
complex projective k-space

SU(k+1)
U(k)

. (6)

While none of these finite-dimensional stages CPk by themselves classify an abelian Whiethead-type cohomology theory,
each of them classifies a higher non-abelian cohomology theory H1

(
−;ΩCPk

)
(by Ex. 2.7 below).

We observe that this formal mathematical fact (Prop. 2.8 below) actually captures fine detail of the motivating physics,
in that this higher non-abelian deformation of abelian cohomology measures magnetic charge of non-abelian magnetic
monopoles in SU(k)-Yang-Mills theory (review in [AHit88][Sut97]) obtained by reduction from higher dimensional space-
times R0,1×R3×Xd on a smooth fiber manifold Xd :

gauge-equivalence class of moduli
of N magnetic monopoles on R3

of SU(k+1)-Yang-Mills theory
minimally broken to U(k)

M
(
SU(k+1)

)
N

holomorphic maps of algebraic degree N
from Riemann sphere around monopoles

to the complex projective k-manifold

Mapshol
(
CP1, CPk

)
deg=N

continuous maps of topological degree N
from 2-sphere around monopoles

to complex projective k-space

Maps
(
S2, CPk

)
deg=N

Xd -parameterized deformation classes
of moduli of N magnetic monopoles

H
(

Xd ; M
(
SU(k+1)

)
N

) higher non-abelian cohomology

H1
(
Xd×S2; ΩCPk

)
×

π2(S2)
Cohomotopy

{N}

Donaldson-Jarvis’
theorem

homeomorphism

Segal’s theorem

N(2k−1)-equivalence (367)

for d<N(2k−1)

(7)

This is a direct consequence (using Prop. A.43 below) of classical theorems shown in the first line of (7): due to Donaldson
([Don84], for k = 1), Jarvis ([Jar98][Jar00] for general k, originally conjectured by Atiyah [At84, §5], review in [IS99]) and
Segal ([Seg79, Prop. 1.2], see also [CCMM91][Kam07]). Notice that the same moduli spaces of holomorphic maps out of
CP1 (often regarded and referred to as rational maps out of C), hence the same non-abelian cohomology sets (7), control
numerous other aspects of non-abelian Yang-Mills theory, notably the topological field configurations known as Skyrmions
(an observation due to [HMS98][Mapi01] whose homotopy-theoretic implications through Segal’s theorem (7) have been
found in [Kru03][Kru06]), which are of deep relevance in non-perturbative quantum chromodynamics (hadrodynamics), not
only theoretically but also experimentally (review in [RZ16], see [BMS10, p. 23] for the impact of Segal’s theorem (7)).
Moreover, the homotopy quotient of these spaces by the symmetries of CP1 (after compactification via adjoining of “stable
maps” on degeneration limits of CP1) govern the Gromov-Witten invariants of CPk (review in [Be02, §2][Kat06] ) and,
for k = 3, the D-instantons of twistor string theory ([Wi04]), the scattering amplitudes of N = 4 super Yang-Mills theory
[RSV04] and those of N = 8 supergravity ([CSk12][Ad15]), for mathematical review see [ADM17, §7].

Non-abelian character of Yang-Mills monopoles. It turns out (Ex. 4.4) that the non-abelian character map (5) on these non-
abelian magnetic monopole charges (7) extracts the underlying abelian magnetic flux density F2 together with a non-linear
differential relation:

CP1 = SU(2)/U(1)
non-abelian character:
non-linear Bianchi identity

d H3 = −F2∧F2

d F2 = 0

CP2 = SU(3)/U(2) d H5 = −F2∧F2∧F2

d F2 = 0

CP3 = SU(4)/U(3) d H7 = −F2∧F2∧F2∧F2

d F2 = 0

Xd×
(
R3\{0}

)
transversal spacetime

' Xd×CP1 CP∞' B2Z
classifying space

d F2 = 0
abelian character:
linear Bianchi-identity

...
underlying abelian
magnetic charge

SU(4)
-monopole

min. symm. break.SU(
3)-m

onopole
Xd -parameterized SU

(2
)-m

on
op

ole

(8)

While the algebraic form of this non-abelian character data follows readily – once the non-abelian character map has been
conceived in the first place, that is, according to our Def. 4.3 – from the well-known Sullivan model for complex projective
spaces (Ex. 3.75), it is curious to observe [FSS20][SS20c] and seems to have gone unnoticed before1, that its non-linear

1Recently the string physics community is picking up some terminology of higher gauge theory in interpreting the Green-Schwarz
mechanism, following [SSS09a][SSS12][FSS12a], identifying the Green-Schwarz-type Bianchi identity (9), Ex. 5.24, as reflecting 2-group
symmetry, e.g. [CDI00, (1.18)][DZO21, (3.3)]. To justify this terminology, one has to exhibit the GS-identity as the higher curvature
invariant of a higher gauge bundle, hence as the non-abelian character of a higher non-abelian cohomology theory, foundations for which
we mean to lay out here. Our results [FSS20][SS20c] (see §5.3 below) indicate that to account for the fine structure of string/M-theory a
2-group is not sufficient, but a full ∞-group (Ex. 2.7, such as ΩS4 (Rem. 2.9) equipped with twisting and equivariance, is required.
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differential relations (8) on magnetic flux densities are those of important anomaly cancellation mechanisms in string theory.
Notably the first non-linear relation in the list

2-Cohomotopy

π2(−) := H1
(
−; ΩCP1

)
HdR

(
−; lCP1

)
[c] 7−!

[
H3 ∈ Ω3

dR(−)
F2 ∈ Ω2

dR(−)

∣∣∣∣ d H3 = −F2∧F2
d F2 = 0

]
Green-Schwarz-like Bianchi identity

ordinary abelian Bianchi identity

chCP1

non-abelian character map

(9)

has the non-linear form of the Bianchi identity governing the Green-Schwarz mechanism [GrSc84, (4)-(6)][CHSW85, [p.
49] (a mathematical account is in [Fr00, p. 40]) for anomaly cancellation in heterotic string theory (the “first superstring
revolution” [Schw07]), here for the case of heterotic line bundles (of phenomenological interest [AGLP12][AGLP11], see
[ADO20a, §4.2][ADO20b, §2.2] for the case at hand), namely heterotic gauge bundles whose gauge group is reduced along
the symmetry breaking U(1) ↪−!SU(2) ↪−!E8 of the Yang-Mills monopole (8). Of course, the full Green-Schwarz mechanism
is as in equation (9) but with a further contribution from a gravitational flux. This turns out to arise through tangential twisting
of the non-abelian character, which is the main result of [FSS19b][FSS19c][FSS20][SS20c] discussed in detail in §5.3 below,
surveyed in a moment, in (14) below.

Cohomotopy theory as higher non-abelian cohomology. The higher non-abelian cohomology theory on the left of (9) is an
example of a classical concept in homotopy theory, namely of Cohomotopy sets (Ex. 2.10) of homotopy classes of continuous
maps into an n-sphere:

n-Cohomotopy

π
n(−) :=

homotopy classes of contin.
maps into n-sphere

Ho(TopSpQu)
(
−, Sn) =

higher non-abelian
Sn-cohomology

H1
(
−; ΩSn

) cobordism classes of submanifolds
of codimension n

and normally framed

Cobn
Fr(−) .

Pontrjagin’s theorem

(on clsd. manifolds)
(10)

The stabilization of (10) to stable Cohomotopy (Ex. 2.16) is a widely recognized Whitehead-generalized cohomology theory,
usually discussed in the context of the stable Pontrjagin-Thom theorem. But the original Pontrjagin theorem ([Pon55], see
[SS21][SS19a] for review and further pointers) is decidedly unstable and as such says that the non-abelian Cohomotopy coho-
mology theory in (10) measures non-abelian charges carried by (normally framed) submanifolds (“branes”), which generalize
the monopole charges in (9) to higher codimension.

Non-abelian character of Cobordism. The non-abelian character (5) on unstable Cohomotopy/Cobordism (10) turns out
(Ex. 4.4 below) to generalize the non-linear Green-Schwarz-type Bianchi identity (9) to higher even degrees. In degree 4
this yields the Bianchi identity of the C3-field in D = 11 supergravity (due to [Sa13, §2.5][FSS16a, §2], review in [FSS19a,
§7]), which merges with the monopole characters (8) to the mixed Bianchi identity2 expected in Hořava-Witten’s heterotic
M-theory (due to [FSS20][SS20c], see §5.3 below):

CP1

non-abelian characters
d H3 = −F2∧F2

d F2 = 0
Green-Schwarz-type Bianchi identity
on gauge field flux

CP3

d H3 = G4−F2∧F2

d F2 = 0
d G7 = − 1

2 G4∧G4

d G4 = 0

Hořava-Witten-type Bianchi identity
on gauge & C3-field flux

Xd×
(
R3\{0}

)
' Xd×CP1 S4 d G7 = − 1

2 G4∧G4

d G4 = 0
11d SuGra-type Bianchi identity
on C3-field flux

tH
twistor

fibrationSU(4)-monopole

breaking to SU(3)

SU(2
)-m

onopole

Xd -parametrized

underlying Cohomotopy
/ underlying Cobordism

(11)

Twisted Cohomotopy as twisted non-abelian cohomology. Classical constructions in differential topology revolving around
the Poincaré-Hopf theorem (e.g. [BT82, §11]) involve deformation classes of non-vanishing vector fields on a smooth man-
ifold X , hence of homotopy-classes of sections of the unit sphere bundle S(T X) in the tangent bundle T X . Generally, for τ

the class of a real vector bundle of rank n+1 over a paracompact Hausdoff space X , we may consider the homotopy-classes
of sections of its unit sphere bundle S(τ) (with respect to any fiberwise metric) as the τ-twisted generalization (Ex. 2.41) of
non-abelian n-Cohomotopy theory from (10):

τ-twisted
Cohomotopy

π
τ(−) :=

homotopy classes of cts. sections

Ho
(

TopSp/X
Qu

)(
−, S(τ)

)
=

τ-twisted non-abelian
Sn-cohomology

Hτ
(
−; Sn

) cobordims classes of submanifolds
with normal τ ′-framing

Cobτ ′
Fr(−) .

twisted
Pontrjagin theorem

(for smth. τ'τ ′⊕1 ) (12)

Indeed, when τ admits smooth structure and there is any section of S(τ) at all, then a twisted version of Pontrjagin’s theorem
still applies (e.g. [Cru03, Lem. 5.2]) to show that the twisted non-abelian cohomology theory which we may call twisted
Cohomotopy [FSS19b, §2.1] still measures charges carried by cobordism classes of suitable submanifolds (“branes”).

2The physics-inclined reader may want to think of the broken SU(4) in (11) as a flavor symmetry group, along the lines of [FSS21a].
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Non-abelian character of twisted Cohomotopy. In §5 below we construct the twisted generalization of the non-abelian
character map (5), serving to extract differential form data underlying such twisted non-abelian cohomology classes. For in-
stance, applied to the example of tangentially twisted Cohomotopy (12) on even-dimensional smooth manifolds, this deforms
the Bianchi identity of ordinary odd-degree cohomology by the Euler form χ (260) of the manifold:

unit tangent
bundle

S(T X)

universal n-sphere bundle

S2k−1�O(2k)
twisted non-abelian character

d θ2k−1 = χ2k(∇)
tangential de Rham twist

X X BO(2k)

Chern-Weil character of tangential twist

d χ2k(∇) = 0
d p•(∇) = 0

Euler form

Pontrjagin form

tangentially twiste
d

Cohomotopy

τ := `T X
tangential twist

(13)

Hence the mere existence of the twisted non-abelian character on odd-degree Cohomotopy reflects part of the classical
Poincaré-Hopf theorem (e.g. [BT82, §11]), namely the vanishing of the Euler number of a manifold implied by the exis-
tence of a unit vector field. The further extension of this twisted non-abelian character to even-degree Cohomotopy yields a
tangentially twisted enhancement of the classical Hopf invariant [FSS19c, §4].

Twisted non-abelian character of Yang-Mills monopoles. The exceptional isomorphism Sp(2) ' Spin(5) between the
quaternion unitary group (the compact “symplectic group”) and the spin-group in 5 dimensions, together with the equivariance
of the twistor fibration (11) under the canonical action of these groups implies a unification of all the above examples in a
twisted non-abelian cohomology theory which we will call twistorial Cohomotopy (Ex. 2.45 below). The twisted non-abelian
character on this theory is interesting in that it exhibits a variety of aspects expected of non-linear Bianchi identities in
non-perturbative string theory (due to [FSS19b][FSS19c][FSS20][SS20c], surveyed in Rem. 5.30 below) which cannot be
explained by traditional twisted Whitehead-generalized cohomology theory (Ex. 2.37):

CP3�Sp(2)

twisted non-abelian character
d H3 = −F2∧F2

monopole char.
+G4− 1

4 p1(∇)

tangential de Rham twist

d F2 = 0

X S4�Sp(2) d 2G7 =
cobordism char.
−G4∧G4

tangential de Rham twist
+ 1

4 p1(∇)∧ 1
4 p1(∇)−χ8(∇)

d G4 = 0

BSp(2)

tH�Sp(2)

equivariant
tw

istor
fibration

tangential twist

twisted Cohomotopy

twisto
rial Cohomotopy

(14)

The desire to systematicall understand this rich example (see §5.3) as a non-abelian generalization of the traditional character
map on twisted Whitehead-generalized cohomology originally motivated us to develop the theory of the twisted non-abelian
character map presented here.

To fully bring out the unifying picture, we will discuss in detail how relevant examples of twisted Whitehead-generalized
cohomology theories are subsumed by our twisted non-abelian character map (the “inverse Whitehead principle”, Rem. 2.35).
Non-abelian cohomology via classifying spaces. As shown by these motivating examples, in higher non-abelian cohomol-
ogy the very conceptualization of cohomology finds a beautiful culmination, as it is reduced to the pristine concept of
homotopy types of mapping spaces (19), or rather, if ge-
ometric (differential, equivariant,...) structures are incor-
porated, of higher mapping stacks (Remark 2.27 below).
In particular, the concept of twisted non-abelian coho-
mology is most natural from this perspective (Def. 2.29
below) and naturally subsumes the traditional concept of
twisted generalized cohomology theories (Prop. 2.38 be-
low).

twisted
non-abelian
cohomology

Hτ(X ; A) =


X

cocycle
c //

twist τ ##

coefficient
∞-stack

A�G

ρ

local
coefficients

{{
BG

'nv

/
homotopy

relative BG

State of the literature. It is fair to say that this transparent fundamental nature of higher non-abelian cohomology is not
easily recognized in much of the traditional literature on the topic, which is rife with unwieldy variants of cocycle conditions
presented in combinatorial n-category-theoretic language. As a consequence, the development of non-abelian cohomology
theory has seen little and slow progress, certainly as compared to the flourishing of Whitehead-generalized cohomology the-
ory. In particular, the concepts of higher and of twisted non-abelian cohomology had tended to remain mysterious (see [Si97,
p. 1]). It is the more recently established homotopy-theoretic formulation of ∞-category theory (see Rem. A.35) in its guise as
∞-topos theory (∞-stacks, recalled around Def. A.57 below) that provides the backdrop on which twisted higher non-abelian
cohomology finds its true nature [Si97][Si99][To02][Lu09, §7.1][SSS12][NSS12a][NSS12b][Sch13][FSS19b][SS20b]; see
§2 for details.
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The non-abelian character map. From this homotopy-theoretic perspective, we observe, in §4 and §5, that the generaliza-
tion of the Chern-Dold character (1) to twisted non-abelian cohomology naturally exists (Def. 4.3, Def. 5.4), and that the
non-abelian analogue of Dold’s equivalence in (1) may neatly be understood as being, up to mild re-conceptualization, the
fundamental theorem of dg-algebraic rational homotopy theory (recalled as Prop. 3.60 below). We highlight that this clas-
sical theorem is fruitfully recast as constituting a non-abelian de Rham theorem (Theorem 3.96 below) and, more generally,
a twisted non-abelian de Rham theorem (Theorem 3.117 below). With this in hand, the notion of the (twisted) non-abelian
character map appears naturally (Def. 4.3 and Def. 5.4 below):

twisted
non-abelian

character map
(Def. 5.4)

chρ :

twisted
non-abelian cohomology

(Def. 2.29)

Hτ(X ; A)
(ηR

ρ )∗

R-rationalization
(Def. 4.1)

//

twisted non-abelian
real cohomology

(Def. 3.85)

HLRτ
(
X ; LRA

) '
twisted non-abelian
de Rham theorem

(Thm. 3.117)

//

twisted non-abelian
de Rham cohomology

(Def. 3.107)

HτdR
dR (X ; lA) . (15)

Twisted differential non-abelian cohomology. Moreover, with the (twisted) non-abelian character in hand, the notion of
(twisted) differential non-abelian cohomology appears naturally (Def. 4.38, Def. 5.14) together with the expected natural
diagrams of twisted differential non-abelian cohomology operations:

differential
non-abelian cohomology

(Def. 4.38)

Ĥ(X ; A)
curvature

(279) //

differential
non-abelian character

(280)

''

characteristic
class
(278)

��

flat L∞-algebra valued
differential forms

(Def. 3.86)

ΩdR(X ; lA)

��
H(X ; A)

non-abelian cohomology
(Def. 2.1)

non-abelian character
(Def. 4.3)

chA // HdR(X ; lA)
non-abelian

de Rham cohomology
(Def. 3.93)

twisted differential
non-abelian cohomology

(Def. 5.14)

Ĥτdiff(X ; A)

twisted
curvature

(330) //

twisted differential
non-abelian character

(331)

''

twisted
characteristic

class
(329)

��

twisted flat
L∞-algebra valued
differential forms

(Def. 3.101)

Ω
τdR
dR (X ; lA)

��
Hτ(X ; A)

twisted
non-abelian cohomology

(Def. 2.29)

twisted
non-abelian character

(Def. 5.4)

chτ
A // HτdR

dR (X ; lA)
twisted non-abelian

de Rham cohomology
(Def. 3.107)

(16)

Unifying Chern-Dold, Chern-Weil and Cheeger-Simons. In order to show that this generalization of (twisted) character
maps and (twisted) differential cohomology to higher non-abelian cohomology is sound, we proceed to prove that the non-
abelian character map (Def. 4.3) specializes to:

the Chern-Dold character
on generalized cohomology (Theorem 4.11),

the Chern-Weil homomorphism
on degree-1 non-abelian cohomology (Theorem 4.30),

the Cheeger-Simons homomorphism
on degree-1 differential non-abelian cohomology (Theorem 4.54).

All these classical invariants are thus seen as different low-degree aspects of the higher non-abelian character map.

Examples of twisted higher character maps. To illustrate the mechanism, we make explicit several examples of the (twisted)
non-abelian character map on cohomology theories of relevance in high energy physics:

the Chern character on complex differential K-theory (Example 4.13, 4.41),
the Pontrjagin character on real K-theory (Example 4.14),
the Chern character on twisted differential K-theory (Example 5.6, 5.23),
the MMS-character on cohomotopy-twisted K-theory (Example 5.8),
the LSW-character on twisted higher K-theory (Example 5.11),
the character on integral Morava K-theory (Example 4.18),
the character on topological modular forms, tmf (Example 4.15).

Once incarnated this way within the more general context of non-abelian cohomology theory, we may ask for non-abelian
enhancements (Example 2.24) of these abelian character maps:

Non-abelian enhancement of the tmf-character – the cohomotopical character. Our culminating example, in §5.3, is
the character map on twistorial Cohomotopy theory [FSS19b][FSS20], over 8-manifolds X8 equipped with tangential Sp(2)-
structure τ (74). This may be understood (Remark 4.17) as an enhancement of the tmf-character (Example 4.15) from
traditional generalized cohomology to twisted differential non-abelian cohomology:
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tmf-cohomology
in degree 4

(Example 4.15)

tmf4(X8) '
tmf approximates
sphere spectrum
(Example 4.16)

stable Cohomotopy
in degree 4

(Example 2.16)

S4(X8) ∼∼∼∼�
non-abelian

enhancement
(Example 2.25)

unstable/non-abelian
4-Cohomotopy
(Example 2.10)

π
4(X8) ∼∼∼∼�

twisting by
J-homomorphism

(Def. 2.29)

twisted non-abelian
4-Cohomotopy
(Example 2.41)

π
τ4(

X8) ∼∼∼∼∼∼∼∼�
lift through

twisted cohomology operation
induced by twistor fibration

(Example 2.45)

twistorial
Cohomotopy

(Example 2.45)

T τ4(
X8) ∼∼∼∼�

differential
enhancement

(Def. 5.14)

differential
twistorial

Cohomotopy
(Example 5.27)

T̂ τ4(
X8).

The non-abelian character map on twistorial Cohomotopy has the striking property (Prop. 5.25, the proof of which is the
content of the companion physics article [FSS20, Prop. 3.9]) that the corresponding non-abelian version of Dirac’s charge
quantization (2) implies Hořava-Witten’s Green-Schwarz mechanism in heterotic M-theory for heterotic line bundles F2 (see
[FSS20, §1]) and other subtle effects expected in non-perturbative high energy physics; these are discussed in Remark 5.30
below.

Quadratic character functions from Whitehead brackets in non-abelian coefficient spaces. In summary, the crucial
appearance of quadratic functions in the character map (351) is brought about by the intrinsic nature of (twisted) non-abelian
cohomology theory, here specifically of Cohomotopy theory. These non-linearities originate in non-trivial Whitehead brackets
(Rem. 3.71) on the non-abelian coefficient spaces, such as S4 (Exp. 3.72) and CP3 (Exp. 3.105). Generally, the non-
abelian character map (15) involves also higher monomial terms of any order (cubic, quartic, ...), originating in higher order
Whitehead brackets on the non-abelian coefficient space (Rem. 3.71).

The desire to conceptually grasp character-like but quadratic functions appearing in M-theory had been the original
motivation for developing differential generalized cohomology, in [HS05]. Here, in differential non-abelian cohomology,
they appear intrinsically.

Acknowledgements. We thank John Lind, Chris Rogers, Carlos Simpson, Danny Stevenson, and Mathai Varghese for
comments on an earlier version of this text. Particular thanks go to an anonymous referee for their detailed comments.
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2 Non-abelian cohomology
We make explicit the concept of general non-abelian cohomology (Def. 2.1 below) and of twisted non-abelian cohomol-
ogy (Def. 2.29 below), following [Si97][Si99][To02][SSS12][NSS12a][NSS12b][FSS19b][SS20b]; and we survey how this
concept subsumes essentially every notion of cohomology known.

In the following, we make free use of the basic language of category theory and homotopy theory (for joint introduction
see [Rie14][Ri20]). For C a category and X ,A ∈ C a pair of its objects, we write

C (X , A) := HomC (X , A) ∈ Sets (17)
for the set of morphisms from X to A. These are, of course, contravariantly and covariantly functorial in their first and second
argument, respectively:

C
C (X ,−) // Sets , C op C (− ,A) // Sets . (18)

Basic as this is, contravariant hom-functors are of paramount interest in the case where C is the homotopy category Ho(C)
(Def. A.16) of a model category (Def. A.3), such as the classical homotopy category of topological spaces or, equivalently,
of simplicial sets (Example A.39).

2.1 Non-abelian cohomology theories
Definition 2.1 (Non-abelian cohomology). For X ,A ∈ Ho

(
∆SetsQu

)
(Example A.39) we say that their hom-set (17) is the

non-abelian cohomology of X with coefficients in A, or the non-abelian A-cohomology of X , to be denoted:

non-abelian
cohomology

H(X ; A) := Ho
(
∆SetsQu

)
(X , A) =


X

map = cocycle
c

��

c′
map = cocycle

AAA
homotopy =
coboundary
��

/
homotopy

(19)

We also call the contravariant hom-functor (18)

H(−; A) : Ho
(
∆SetsQu

)
// Sets (20)

the non-abelian A-cohomology theory.

Example 2.2 (Ordinary cohomology). For n ∈ N and A a discrete abelian group, the ordinary cohomology (e.g. singular
cohomology) in degree n with coefficients in A is equivalently ([Ei40, p. 243][EML54b, p. 520-521], review in [St72,
§19][May99, §22][AGP02, §7.1, Cor. 12.1.20]) non-abelian cohomology in the sense of Def. 2.1

ordinary
cohomology

Hn(−; A) ' H
(
−; K(A,n)

)
(21)

with coefficients in an Eilenberg-MacLane space [EML53][EML54a]:

K(A,n) ∈ Ho
(
∆SetsQu

)
such that πk

(
K(A,n)

)
=

{
A | k = n
0 | k 6= n .

(22)

Example 2.3 (Traditional non-abelian cohomology). For G a well-behaved3 topological group, the traditional non-abelian
cohomology H1(−;G) classifying G-principal bundles, is equivalently ([St51, §19.3][RS12, Thm 1.], review in [Add07, §5])
non-abelian cohomology in the general sense of Def. 2.1

classification of
principal bundles

H1(−;G) ' H(−;BG) (23)

with coefficients in the classifying space BG ([Mi56][Seg68][St68][St70], review in [Koc96, §1.3][May99, §23.1] [AGP02,
§8.3][NSS12b, §3.7.1]). The latter may be given as the homotopy colimit (in the classical model structure of TopSpQu,
Example A.7) over the nerve of the topological group G (e.g. [NSS12a, Rem. 2.23]):

BG ' holim
−!

 · · · G×G

//
oo

(−)·(−) //
oo

//
G

//
oo e // ∗

 . (24)

3The technical condition is that G be well-pointed, which means that the inclusion ∗ e
−! G of the neutral element is a closed Hurewicz

cofibration, hence that (G,{e}) is an NDR pair, see [BS09] for pointers and [RS12] for details. All Lie groups are well-pointed.
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Example 2.4 (Group cohomology and Characteristic classes). Conversely, the ordinary cohomology (Example 2.2) of the
classifying space BG (24) of a Lie group G with coefficients in a discrete group A ∈ Grps(Sets) (such as A = Z) is, equiva-
lently:4

(i) the group cohomology of G;
(ii) the universal characteristic classes of G-principal bundles:

group
cohomology

H
(
BG; K(A,n)

)
' Hn(BG; A) ' Hn

Grp(G; A) .

Example 2.5 (Non-abelian cohomology in degree 2). For a well-behaved topological 2-group, such as the string 2-group
String(G) (of a connected, simply connected semi-simple Lie group G) [BCSS07][He08, Thm. 4.8][NSW11], the non-abelian
cohomology H1(−; String(G)) classifying principal 2-bundles [NW11] with structure 2-group String(G) is, equivalently
[BS09], classification of

String-bundles

H1(−;String(G)
)
' H

(
−;BString(G)

)
(25)

non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying space BString(G).

Example 2.6 (Non-abelian gerbes). For G a well-behaved topological group, a non-abelian G-gerbe [Gi71][Br09] is equiva-
lently [NSS12a, §4.4] a fiber 2-bundle associated to principal 2-bundles with a certain topological structure 2-group Aut(BG)
(the automorphism 2-group of the moduli stack of G, see Rem. 2.27). Hence, as in Example 2.5, G-gerbes are classified by
non-abelian cohomology with coefficients in BAut(BG) [NSS12a, Cor 4.51]:

classification of
non-abelian gerbes

GGerbes(X)/∼ ' H1(X ; Aut(BG)
)
' H

(
X ; BAut(BG)

)
.

Example 2.7 (Non-abelian cohomology in unbounded degree). For any ∞-group G (see [NSS12a, §2.2][NSS12b, §3.5]), the
non-abelian cohomology H1

(
−; G

)
classifying principal ∞-bundles [Gl82][JL06][NSS12a][NSS12b] with structure ∞-group

G is, equivalently [We10][RS12],
classification of

non-abelian ∞-gerbes

H1(−;G ) ' H(−;BG ) (26)
non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying space BG (see also [Stv12]).

Example 2.7 is, in fact, universal:

Proposition 2.8 (Connected homotopy types are higher non-abelian classifying spaces [May72][Lu09, 7.2.2.11], [NSS12a,
Thm. 2.19][NSS12b, Thm. 3.30, Cor. 3.34]). Every connected homotopy type A ∈ Ho

(
∆SetsQu

)
(404) is the classifying

space of a topological group, namely of its loop group5 ΩA

A ' B(ΩA) ∈ Ho
(
∆SetsQu

)
. (27)

This allows to make precise the core nature of non-abelian cohomology:

Remark 2.9 (From non-abelian to abelian ∞-groups). For A ' BG (27), the ∞-group structure on G is reflected by its weak
homotopy equivalence G'ΩBG with a based loop space.

• There is no commutativity of composition of loops in a generic loop space, and hence this exhibits G as a non-abelian
∞-group.

• But it may happen that A itself is already equivalent to a loop space, which by (27) means that A ' B
(
BG
)
=: B2G is

a double delooping. In this case G ' Ω
(
ΩA
)
=: Ω2A is an iterated loop space [May72], specifically a double loop

space; hence a braided ∞-group ([GM97, §1][GM00, §6][FSS12a, Def. 4.28]). By the Eckmann-Hilton argument
[EH61, Thm. 1.12][SY19], this implies a first level of commutativity of the group operation in G. Indeed, in the
special case that such G is also 0-truncated (408), it implies that G is an ordinary abelian group.

• Next, it may happen that A ' B3G is a 3-fold delooping, hence that G ' Ω3A is a 3-fold loop space, hence a sylleptic
∞-group (where the terminology follows [DS97, §5][Cr98, §4] see [GO13, §2.2] for relation to our context). This is
one step “more abelian” than a braided ∞-group.

4 If G is a topological or Lie group, then the appropriate (continuous or smooth, respectively) group cohomology of G is (by [Sch13,
Thm. 4.4.36]) in general not that of the classifying space BG, but of the universal moduli stack BG (Rem. 2.27) with coefficients in
the higher stack BnA. However, for discrete coefficients A this reduces (by [Sch13, Prop. 4.4.35]) to the cohomology of the geometric
realization of BG, which, at least for Lie groups G, coincides (by [Sch13, Prop. 4.4.30]) with that of the classifying space BG.

5A priori, the loop group is an A∞-group, for which classifying spaces are defined as in [NSS12a, Rem. 2.23], but each such is weakly
equivalent to an actual topological group, see [NSS12b, Prop. 3.35].
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• In the limiting case that G is an n-fold loop space for any n ∈ N, hence an infinite loop space [May77][Ad78], it is as
abelian as possible for an ∞-group. Such symmetric (in the monoidal ∞-category theoretic terminology of [Lu09b]) or,
we may say, abelian ∞-groups are the coefficients of abelian cohomology theories, namely of generalized cohomology
theories in the sense of Whitehead (Example 2.13).

• The fewer deloopings an ∞-group G admits, the “more non-abelian” is the cohomology theory represented by BG.

Coefficients H(X ; BG) Examples

non-abelian ∞-group G ' Ω B G

non-abelian

cohomology

πn(−) (n-Cohomotopy, Example 2.10)

braided ∞-group G ' Ω2B2G π3(−) (3-Cohomotopy)

sylleptic ∞-group G ' Ω3B3G
... G ' ΩnBnG

abelian ∞-group G ' Ω∞B∞G abelian cohomology En(−) (Whitehead-general. cohom., Ex. 2.13)

The most fundamental connected homotopy types are the n-spheres (all other are obtained by gluing n-spheres to each other):

Example 2.10 (Cohomotopy theory). The non-abelian cohomology theory (Def. 2.1) with coefficients in the homotopy types
of n-spheres is (unstable) Cohomotopy theory [Bo36][Sp49][Pe56][Ta09][KMT12]:

Cohomotopy

π
n(−) = H(−;Sn) ' H1(−; ΩSn) for n ∈ N+ .

(i) By Prop. 2.8, Cohomotopy theory classifies principal ∞-bundles (Example 2.7) with structure ∞-group of the homotopy
type of the ∞-group ΩSn.
(ii) By Remark 2.9, Cohomotopy theory is a maximally non-abelian cohomology theory, in that Sn does not admit deloopings,
for general n (it admits a single delooping for n = 3 and arbitrary deloopings for n = 0,1).

Example 2.11 (Bundle gerbes). The classifying space (24) of the circle group U(1) is an Eilenberg-MacLane space (22)

BU(1) ' K(Z,2) ∈ Ho
(
∆SetsQu

)
.

Since U(1) is abelian, this space carries itself the structure of (the homotopy type of) a 2-group, and hence has a higher
classifying space

B2U(1) := B(BU(1)) ' K(Z,3) ∈ Ho
(
∆SetsQu

)
,

in the sense of Example 2.5, which is an Eilenberg-MacLane space in one degree higher. The higher principal 2-bundles
with topological structure 2-group BU(1) are equivalently [NSS12a, Rem. 4.36] known as bundle gerbes [Mu96][SWa07].
Therefore, Example 2.7 combined with Example 2.2 gives the classification of bundle gerbes by ordinary integral cohomology
in degree 3:

classification of
bundle gerbes

H1(−; BU(1)
)
' H

(
−; B2U(1)

)
' H3(−; Z) .

Example 2.12 (Higher bundle gerbes). In fact, Prop. 2.8 implies that, for all n ∈ N,

Bn+1U(1) := B
(
BnU(1)

)
' K(Z,n+2) ∈ Ho

(
∆SetsQu

)
, (28)

in the sense of Example 2.7. The higher principal bundles with structure (n+1)-group BnU(1) [Ga97][FSSt10, §3.2.3][FSS12b,
§2.6] are also known as higher bundle gerbes (for n = 2 see [CMW97][Stv01]). On these coefficients, Example 2.7 reduces
to the classification of higher bundle gerbes by ordinary integral cohomology in higher degree:

classification of
higher bundle gerbes

H1(−; BnU(1)
)
' H

(
−; Bn+1U(1)

)
' Hn+2(−; Z) .

More generally, the special case of Example 2.7 where the coefficient ∞-group happens to be abelian is “generalized co-
homology” in the standard sense of algebraic topology (including cohomology theories such as K-theory, elliptic cohomology,
stable Cobordism theory, stable Cohomotopy theory, etc.):

Example 2.13 (Whitehead-generalized cohomology). For E a generalized cohomology theory in the traditional sense of
[Wh62] (review in [Ad75][Ad78][TK06]), Brown’s representability theorem ([Ad75, §III.6][Koc96, §3.4]) says that there is
a spectrum (“Ω-spectrum”, Example A.46) of pointed homotopy types{

En ∈ Ho
(
∆Sets∗/Qu

)
, En

σ̃n

'
// ΩEn+1

}
n∈N

(29)
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such that the generalized E-cohomology in degree n is equivalently non-abelian cohomology theory in the sense of Def. 2.1
with coefficients in En: generalized

cohomology

En(−) ' H(−; En) . (30)

Often one is interested in the special case that the representing spectrum carries the structure of an E∞-ring (review in
[BR04][Ri21]), in which case E•(−) is a multiplicative cohomology theory (e.g. [TK06, §2.6]) where, in particular, the
generalized cohomology groups (30) inherit ordinary ring-structure.

Example 2.14 (Topological K-theory). The classifying space (29) representing complex K-cohomology theory KU [AH59,
§2] (review in [At67]) in degree 0 is [AH61, §1.3]:

KU0 ' Z×BU , (31)
where

BU := lim
−!

n

BU(n) (32)

is the classifying space (24) for the infinite unitary group (e.g. [EU14]). Hence for the case of complex K-theory, Example
2.13 says that: topological

K-theory

KU0(−) ' H(−; Z×BU) .

Example 2.15 (Iterated K-theory). Given an E∞-ring spectrum R (Ex. 2.13), one may form its algebraic K-theory spec-
trum K(R) [EKMM97, §VI][BGT10, §9.5][Lu14] and hence the corresponding generalized cohomology theory (Example
2.13). Much like complex topological K-theory (Example 2.14) is the K-theory of topological C-module bundles, so K(R)-
cohomology theory is the K-theory of R-module ∞-bundles [Li13]. Specifically, for R = ku the connective spectrum of
topological K-theory, its algebraic K-theory K(ku) [Au09][AR02][AR07] has been argued to be the K-theory of certain
categorified complex vector bundles [BDR03] [BDRR09].

Moreover, if R is connective, then K(R) itself carries the structure of a connective E∞-ring spectrum (by [SV94, Thm.
1][EKMM97, Thm. 6.1]), so that the construction may be iterated to yield iterated algebraic K-theories [Ro14] K◦2(R) :=
K(K(R)), K◦3(R) := K(K(K(R))), et cetera.

For R = ku, this generalizes the above “form of elliptic cohomology” K(ku) to higher degrees [LSW16]. By Example
2.13, we will regard these (connective) iterated algebraic K-theories K◦n(ku) of the complex topological K-theory spectrum
as examples of non-abelian cohomology theories (that happen to be abelian):

iterated K-theory

K◦n(ku)0(−) ' H
(
−; K◦n(ku)0

)
.

Example 2.16 (Stable Cohomotopy). The generalized cohomology theory (Example 2.13) represented by the suspension
spectra (Example A.47) of n-spheres is called stable Cohomotopy theory (e.g. [Str81][No03]) or stable framed Cobordism
theory:

Sn(−) = H
(
−; (Σ∞Sn)0

)
. (33)

Non-abelian cohomology operations.

Definition 2.17 (Non-abelian cohomology operation). For A1,A2 ∈ Ho
(
∆SetsQu

)
(Example A.39), we say that a natural

transformation in non-abelian cohomology (Def. 2.1) from A1-cohomology theory to A2-cohomology theory (20) is a (non-
abelian) cohomology operation

φ∗ : H(−; A1) // H(−; A2) . (34)
By the Yoneda lemma, these are in bijective correspondence to morphisms of coefficients

A1
φ // A2 ∈ Ho

(
∆SetsQu

)
(35)

via the covariant functoriality of the hom-sets (18):
φ∗ = H(−; φ) := Ho

(
∆SetsQu

)
(−; φ) . (36)

Example 2.18 (Cohomology of coefficient spaces parametrizes cohomology operations). By the Yoneda lemma (36) in
Ho
(
∆SetsQu

)
(Example A.39), the set of all cohomology operations (Def. 2.17) from A1-cohomology theory to A2-cohomology

theory (34) coincides with the non-abelian A2-cohomology (Def. 2.1) of the coefficients A1:
non-abelian A2-cohomology of A1
acting as cohomology operations

H(A1; A2)×H(−;A1)
(−)◦(−) // H(−; A2) (37)

acting by composition composition in Ho
(
∆SetsQu

)
.
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Example 2.19 (Cohomology operations in ordinary cohomology). In specialization to Example 2.2 the non-abelian cohomol-
ogy operations according to Def. 2.17 reduce to the classical cohomology operations in ordinary cohomology [St72][MT08]
(review in [May99, §22.5]), such as Steenrod operations [St47][SE62] (review in [Koc96, §2.5]). These operations admit
refinements, involving rational/real form data, to differential cohomology operations [GS18a].

Example 2.20 (Cohomology operations in generalized cohomology). In specialization to Example 2.13, the non-abelian
cohomology operations according to Def. 2.17 on a Whitehead-generalized cohomology theory E•(−) regarded as a system of
non-abelian cohomology theories

{
En(−)

}
reduce to the traditional notion of unstable cohomology operations on generalized

cohomology theories [BJW95], such as the Adams operations in K-theory [Ad62] (review in [AGP02, §10]) or the Quillen
operations in stable Cobordism theory (review in [Koc96, §4,5]). For differential refinements see [GS18b].

Example 2.21 (Characteristic classes of principal ∞-bundles). For G a topological group, the ordinary group cohomology
of G (Example 2.4) parametrizes, via Example 2.18, the cohomology operations from non-abelian cohomology classifying
G-principal bundles (Examples 2.3, 2.5, 2.7) to ordinary cohomology of the base space (Example 2.2):

group
cohomology

Hn
Grp
(
G; A

)
×

G-principal
bundles

H1(−; G)

characteristic
classes

(37)
//

ordinary
cohomology

Hn(−;A) . (38)

This is the assignment of characteristic classes to principal bundles (principal ∞-bundles). In the case when A = R, this is
equivalently the Chern-Weil homomorphism, by Chern’s fundamental theorem (see Remark 4.19 and Theorem 4.30 below).

Example 2.22 (Rationalization cohomology operation). For fairly general non-abelian coefficients A (see Def. 3.53, Def. 4.1
for details), their rationalization6 A ηR

A
// LRA (Def. 3.53, 3.61 below) induces a cohomology operation (Def. 2.17) from

non-abelian A-cohomology theory (Def. 2.1) to non-abelian real cohomology (Def. 3.78 below):

non-abelian
cohomology

H(−;A)
(ηR

A )∗

rationalization
//

non-abelian
real cohomology

H
(
−;LRA

)
. (39)

Remark 2.23 (Rationalization as character map). Up to composition with an equivalence provided by the non-abelian de
Rham theorem (Theorem 3.96 below), which serves to bring the right hand side of (39) into neat minimal form, this rational-
ization cohomology operation is the character map in non-abelian cohomology (Def. 4.3 below).

Example 2.24 (Stabilization cohomology operation). For A ∈ Ho
(
∆SetsQu

)
, the non-abelian cohomology operation (Def.

2.17) induced (36) by the unit of the derived stabilization adjunction (Example A.47) goes from non-abelian A-cohomology
theory (Def. 2.1) to (abelian) generalized cohomology theory (Example 2.13) represented by the 0th component space of the
suspension spectrum of A: non-abelian

A-cohomology

H
(
−; A

)
stabilization

//

generalized
Σ∞A-cohomology

H
(
−; (DΣ∞A)0

)
.

Hence a lift through this operation is an enhancement of generalized cohomology to non-abelian cohomology.

Example 2.25 (Non-abelian enhancement of stable Cohomotopy). The canonical non-abelian enhancement (in the sense of
Example 2.24) of stable Cohomotopy (Example 2.16) is actual Cohomotopy theory (Example 2.10):

Cohomotopy

πn(−)
stabilization

//

stable
Cohomotopy

Sn(−) .

Example 2.26 (Hurewicz homomorphism and Hopf degree theorem). By definition of Eilenberg-MacLane spaces (22) there
is, for n ∈ N, a canonical map

Sn e(n) // K(Z,n) ∈ Ho
(
∆SetsQu

)
,

which represents the element 1 ∈ Z' πn
(
K(Z,n)

)
. The non-abelian cohomology operation (Def. 2.17) induced by this, from

degree n Cohomotopy (Example 2.10) to degree n ordinary cohomology (Example 2.2)

πn(−)
e(n)∗ // Hn(−;Z)

is the cohomological version of the Hurewicz homomorphism. The Hopf degree theorem (e.g. [Kos93, §IX (5.8)]) is the
statement that the non-abelian cohomology operation e(n)∗ becomes an isomorphism on connected, orientable closed manifolds
of dimension n. These maps, together with their differential refinements, are analyzed in more detail via Postnikov towers in
[GS20].

6To make the connection to differential cohomology, we consider rationalization over the real numbers; see Remark 3.64 below.
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Structured non-abelian cohomology.

Remark 2.27 (Structured non-abelian cohomology). More generally, it makes sense to consider the analog of Def. 2.1 for
the homotopy category Ho(H) of a model category which is a homotopy topos [TV05][Lu09][Re10].
(i) This yields structured non-abelian cohomology [Si97][Si99][To02][SSS12][NSS12a][NSS12b][Sch13][FSS19b] [SS20b]:

structured
non-abelian cohomology

H
(
X ; A

)
:=

homotopy topos

Ho(H)
(
X , A
∞-stacks

)
,

including the stacky non-abelian cohomology originally considered in [Gi71][Br90] (“gerbes”, see [NSS12a, §4.4]), and,
more generally, differential-, étale-, and equivariant- nonabelian cohomology theories (see [SS20b, p. 6]) based on ∞-stacks.
(ii) In good cases (cohesive homotopy toposes [Sch13][SS20b, §3.1]), the homotopy topos Ho(H) comes equipped with a
shape operation down to the classical homotopy category (Example A.39):

homotopy topos

Ho(H)
Shp //

classical homotopy category

Ho
(
∆SetsQu

)
H
(
X ; A

)
structured

non-abelian cohomology

� // H
(
Shp(X ); Shp(A)

)
plain

non-abelian cohomology

(40)

which takes, for well-behaved group ∞-stacks G, the classifying stacks BG of G-principal bundles to the traditional classifying
spaces BG ' Shp(BG) of underlying topological groups (24). This gives a forgetful functor from structured non-abelian
cohomology to plain non-abelian cohomology in the sense of Def. 2.1. A classical example is the map from non-abelian
Čech cohomology with coefficients in a well-behaved group G to homotopy classes of maps to the classifying space of G, in
which case this comparison map is a bijection (Example 2.3).
(iii) All constructions on non-abelian cohomology have their structured analogues, for instance non-abelian cohomology
operations (Def. 2.17) in structured cohomology

H
(
X ; A1

) φ∗ // H
(
X ; A2

)
(41)

are induced by postcomposition with morphisms A1
φ
−! A2 of coefficient stacks.

Ultimately, one is interested in working with structured non-abelian cohomology on the left of (40). However, since this
is rich and intricate, it behooves us to study its projection into plain non-abelian cohomology on the right of (40). This is
what we are mainly concerned with here. But we provide in §4.3 a brief discussion of non-abelian differential cohomology
on smooth ∞-stacks.

2.2 Twisted non-abelian cohomology.
For C any category and B ∈ C any object, there is the slice category C /X , whose objects are morphisms in C to X and whose
morphisms are commuting triangles over X in C . Basic as this is, hom-sets in the homotopy category Ho(C/B) (Def. A.16)
of a slice model category C/B (Example A.11) are of paramount interest:

The slicing imposes twisting on the corresponding non-abelian cohomology (Def. 2.1), in that the slicing of the domain
space serves as a twist, the slicing of the coefficient space as a local coefficient bundle, and the slice morphisms as twisted
cocycles.

Proposition 2.28 (∞-Actions on homotopy types [DDK80][Pr10, §5][NSS12a, §4][Sh15][SS20b, §2.2]).
For any A ∈ Ho

(
∆SetsQu

)
(Ex. A.39) and G a topological group, homotopy-coherent actions of G on A are equivalent to

fibrations ρ with homotopy fiber A (Def. A.27) over the classifying space BG (24)

A // A�G
ρ
��

BG .

(42)

Here
A�G '

(
A×EG

)
/diagG

is the homotopy quotient (Borel construction) of the action.
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Definition 2.29 (Twisted non-abelian cohomology [NSS12a, §4][FSS19b, (10)][SS20b, Rem. 2.94]).
For X ,A ∈ Ho

(
∆SetsQu

)
(Def. A.39) we say:

(i) A local coefficient bundle for twisted A-cohomology is an A-fibration ρ over a classifying space BG (24) as in Prop. 2.28:

A // A�G
ρ
��

local coefficient
bundle

BG .

(43)

(ii) A twist for non-abelian A-cohomology theory on X with local coefficient bundle ρ over BG is a map

X τ // BG ∈ Ho
(
∆SetsQu

)
. (44)

(iii) The non-abelian τ-twisted A-cohomology of X with local coefficients ρ is the hom-set from τ (44) to ρ (42)

twisted
non-abelian
cohomology

Hτ(X ; A) := Ho
(

∆Sets/BG
Qu

)(
τ , ρ

)
=


X

cocycle
c //

twist τ
  

A�G

ρ

local
coefficients

}}
BG

'px

/
homotopy
relative BG

(45)

in the homotopy category (Def. A.16) of the slice model category over BG (Example A.11) of the classical model category
on topological spaces (Example A.7).

Definition 2.30 (Associated coefficient bundle [NSS12a, §4.1][SS20b, Prop. 2.92]). Given a local coefficient A-fiber bundle
ρ (43) and a twist τ (44) on a domain space X , the corresponding associated A-fiber bundle over X is the homotopy pullback
(Def. A.28) of ρ along τ , sitting in a homotopy pullback square (395) of this form:

associated
A-fiber bundle E //

Rτ∗ρ

��

(hpb)
homotopy pullback

A�G

ρ

��

local
coefficient bundle

X τ

twist
// BG

(46)

We write
sections of

associated bundle

ΓX (E)/∼ := Ho
(

TopSp/X
Qu

)(
idX , Rτ

∗
ρ
)

=


E associated

bundle

��
X

section
σ

66

X

/
vertical

homotopy

(47)

for the set of vertical homotopy classes of section of the associated bundle, hence for the hom-set, from the identity on X to
the associated bundle projection, in the homotopy category (Def. A.16) of the slice model category over X (Example A.11)
of the classical model category on topological spaces (Example A.7).

Proposition 2.31 (Twisted non-abelian cohomology is sections of associated coefficient bundle [NSS12a, Prop. 4.17]). Given
a local coefficient bundle ρ (43) and a twist τ (44), the τ-twisted non-abelian cohomology (Def. 2.29) with local coefficient
in ρ is equivalent to the vertical homotopy classes of sections (47) of the associated coefficient bundle E (Def. 2.30):

twisted non-abelian
cohomology

Hτ(X ; A) '
sections of

associated bundle

ΓX (E)/∼ . (48)

Proof. Consider the following sequence of bijections:

Hτ(X ; A) = Ho
(

TopSp/BG
Qu

)(
τ , ρ

)
' Ho

(
TopSp/BG

Qu

)(
Dτ∗idX , ρ

)
' Ho

(
TopSp/X

Qu

)(
idX , Dτ

∗
ρ
)

= ΓX (E)/∼ .

Here the first line is the definition (45). Then the first step is the observation that every slice object is the derived left base
change (Ex. A.21, Prop. A.25) along itself of the identity on its domain, by (381). With this, the second step is the hom-
isomorphism (355) of the derived base change adjunction Dτ! a Rτ∗. The last line is (47).

In twisted generalization of Example 2.2 we have:
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Example 2.32 (Twisted ordinary cohomology with local coefficients). Let n ∈ N, let X ∈ Ho
(
∆SetsQu

)
(Ex. A.39) be con-

nected and consider a traditional system of local coefficients [St43, §3] (see also [MQRT77][ABG10][GS18c])

Π1(X)
t // AbGrps ,

namely, a functor from the fundamental groupoid of X to the category of abelian groups. Since the construction A 7!K(A,n) of
Eilenberg-MacLane spaces (22) is itself functorial and using the assumption that X is connected, this induces (see [BFGM03,
Def. 3.1]) a local coefficient bundle (43) of the form

K(A,n) // K(A,n)�π1(X) .
ρt��

Bπ1(X)

(49)

Finally, write X τ // Bπ1(X) for the classifying map (via Example 2.3) of the universal connected cover of X (equivalently:
for the 1-truncation projection of X). Then the τ-twisted non-abelian cohomology (Def. 2.29) of X with local coefficients in
ρt (49) is equivalently t-twisted ordinary cohomology, traditionally known as ordinary cohomology with local coefficients t:

twisted
ordinary cohomology

Hn+t(X ; A) ' Hτ
(
X ; K(A,n)

)
.

This is manifest from comparing Def. 2.29 with the characterization of cohomology with local coefficients found in [Hir79,
Cor. 1.3][GJ99, p. 332][BFGM03, Lemma 4.2].

Example 2.33 (Classification of tangential structure). Let X be a smooth manifold of dimension n. Its frame bundle is an
O(n)-principal bundle Fr(X)! X , whose class (a diffeomorphism invariant of X)

O(n)Bundles(X)/∼
' // H

(
X ; BO(n)

)[
Fr(X)

]
↔

[
τfr
] (50)

gives, by Example 2.3, the class of a twist τfr (44) in the non-abelian O(n)-cohomology of X .

Now for BG any connected homotopy type (Prop. 2.8) and for BG
ρ // BO(n) any map (equivalently the delooping of

a morphism of ∞-groups G // O(n) ), we get a local coefficient bundle (43) with (homotopy-)coset space fiber [FSS19b,
Lemma 2.7]:

O(n)�G
hofib(ρ) // BG

ρ

��
BO(n) .

(51)

The relative homotopy class of a homotopy lift of the frame bundle classifier τfr (2.33) through this map ρ
X

tangential structure //

τfr ""

BG

ρ
{{

BO(n)

gow

 ∈ GTangentialStructures(X) (52)

is known a topological G-structure or tangential ρ-structure on X (e.g. [Koc96, §1.4][GMTW09, §5][SS20b, Def. 4.48]).
For instance, for ρ a stage in the Whitehead tower of O(n), this is, in turn, Orientation, Spin structure, String structure,
Fivebrane structure [SSS12], etc.: ...

��
BFivebrane(n)

��
BString(n)

��
BSpin(n)

��
BSO(n)

��
X

Orientation

33
Spin

structure

44String
structure

55
Fivebrane
structure

55

τfr
// BO(n)
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By comparison of (52) with (45) we see that tangential G-structures on X are classified by twisted non-abelian cohomol-
ogy (Def. 2.29) with coefficients in (homotopy-)coset spaces O(n)�G (51) and twisted by the class τfr of the frame bundle
(50):

GTangentialStructures(X) ' Hτfr
(
X ; O(n)�G

)
. (53)

According to Prop. 2.8, this example is actually universal for τfr-twisted non-abelian cohomology.

As a special case of Example 2.32 and in twisted generalization of Examples 2.11, 2.12 we have:

Example 2.34 (Orientifold gerbes). Consider the action σU(1) of Z2 on the circle group U(1) ⊂ C× given by complex
conjugation. This deloops (see [FSS15a, §4.4]) to an action σBnU(1) of Z2 on the classifying spaces BnU(1) (24). By Prop.
2.28 there is a corresponding local coefficient bundle

BnU(1) // BnU(1)�Z2

σBnU(1)��
BZ2

(54)

Moreover, consider a smooth manifold X , with orientation bundle classified by X or // BZ2 . Then the or-twisted cohomology
(Def. 2.29) of X ...
(i) ...with local coefficients in σB2U(1) classifies what is equivalently known as Jandl gerbes [SSW07][GSW11] or real gerbes
[HMSV19] or orientifold B-fields;
(ii) ...with local coefficients in σB3U(1) classifies what is equivalently known as topological sectors of orientifold C-fields
[FSS15a, §4.4].
More generally, one can consider twisted Deligne cohomology [GS18c] as well as higher-twisted periodic integral- and
Deligne-cohomology [GS19b] (see also §4.3).

Remark 2.35 (The Whitehead principle of non-abelian cohomology).
Let A ∈ Ho

(
∆SetsQu

)
be connected, so that A' BG (Prop. 2.8).

(i) If A is also n-truncated (409), then its Postnikov tower (Prop. A.44) says that A is the total space of a local coefficient
bundle (2.29) of the form

K(πn(A),n)
hfib(pn) // A

pA
n��

A(n−1)' B
(
G(n−2)

)
with homotopy fiber an Eilenberg-MacLane space (22).
(ii) Accordingly, non-abelian cohomology with coefficients in A (Def. 2.1) is equivalently the disjoint union, over the space of
twists τn (44) in non-abelian cohohomology with coefficients in A(n−1), of τ-twisted non-abelian cohomology (Def. 2.29)
with coefficients in K(πn(A),n): non-abelian cohomology

in higher degree

H(X ; A) '
⊔

τn∈H(X ;A(n−1))
twist in

non-abelian cohomology
of lower degree

higher twisted
ordinary cohomology

Hτn
(
X ; K(πn(A),n)

)
. (55)

(iii) But notice that this is just the first step, and that iterating this unravelling yields unwieldy formulas:

H(X ; A) '
⊔

τn∈
⊔

τn−1∈ H(X ;A(n−2))
Hτn−1

(
X ;K(πn−1(A),n−1)

)Hτn
(
X ; K(πn(A),n)

)
, then H(X ; A) '

⊔
τn∈

⊔
τn−1∈

⊔
τn−2∈H

(
X ;A(n−3)

)H
τn−2
(

X ;K(πn−2(A),n−2)
)Hτn−1

(
X ;K(πn−1(A),n−1)

)Hτn
(
X ; K(πn(A),n)

)
etc. . (56)

(iv) Thus, non-abelian cohomology in higher degrees (Example 2.7) decomposes as a tower of consecutively higher twisted
but otherwise ordinary cohomology theories, starting with a twist in non-abelian cohomology in degree 1. This phenomenon
has been called the Whitehead principle of non-abelian cohomology [To02, p. 8] and has been interpreted as saying that
“nonabelian cohomology occurs essentially only in degree 1” [Si96, p. 1].
(v) But the above formulas (55), (56), make manifest that there are two perspectives on this phenomenon. On the one
hand: non-abelian cohomology in higher degrees may be computed by brute force as a sequence of consecutively higher
twisted abelian cohomologies, with lowest twist starting in degree-1 non-abelian cohomology. On the other hand, conversely:
intricate such systems of consecutively twisted abelian cohomology theories are neatly understood as unified by non-abelian
cohomology.
(vi) Similarly, even though Postnikov towers do exist (Prop. A.44) in the classical homotopy category (Example A.39), the
latter is far from being equivalent to the stable homotopy category (417) “up to twists in degree 1”.
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In twisted generalization of Example 2.14, we have:

Example 2.36 (Twisted topological K-theory). The classifying space KU0 ' Z×BU (31) for complex topological K-theory
(Example 2.14) is the fiber of a local coefficient bundle (43) over K(Z,3)' B3U(1) (28):

KU0 // KU0�BU(1)
��

B2U(1)
(57)

For X τ // B2U(1) a corresponding twist (44) (hence equivalently a bundle gerbe, by Example 2.11), the corresponding
twisted non-abelian cohomology (Def. 2.29) is twisted complex topological K-theory [Ka68][DK70]:

twisted
topological K-theory

KUτ(−) ' Hτ
(
−; Z×BU

)
. (58)

This is manifest from comparing (45) with [FrHT08, (2.6)]. Alternatively, under Prop. 2.31, this is manifest from comparing
the equivalent right hand side of (48) with [Ros89, Prop. 2.1] (using [NSS12a, Cor. 4.18]) or, more directly, with [AS04,
§3][ABG10, §2.1].

Generally, in twisted generalization of Example 2.13, we have:

Example 2.37 (Local coefficient bundle for twisted Whitehead-generalized cohomology). Let R be an E∞-ring spectrum (Ex.
2.13) and write GL(1,R) for its ∞-group of units [Schl04, §2.3][MaSi04, §22.2][ABGHR08, §3][ABGHR14a, §2], defined
as the homotopy pullback (Def. A.28) of the component space R0 = DΩ∞R (418) fibered over its 0-truncation (i.e. its
1-coskeleton (407)) to the ordinary group of units of this ordinary ring of connected components:

∞-group of units

GL(1,R)
E∞-ring space

R0

GL(1,π0(R0))
ordinary group

of units

π0
(
R0
)

ordinary ring of
connected components

(hpb) p0 (59)

This makes GL(1,R) as an ∞-group (as in Example 2.7) with group operation induced from the multiplicative structure on
R0. The canonical action of GL(1,R) on R0 is given, via Prop. 2.28, by a local coefficient bundle (43) of this form:

R0 (R0)�GL(1,R)

BGL(1,R) .

ρR (60)

Proposition 2.38 (Twisted non-abelian cohomology subsumes twisted generalized cohomology). For R an E∞-ring spec-
trum (Ex. 2.13), the twisted non-abelian cohomology (Def. 2.29) with local coefficient bundle ρR from Example 2.37 is,
equivalently, twisted generalized R-cohomology in the traditional sense (e.g. [MaSi04, §22.1]):

twisted Whitehead-
generalized cohomology

Rτ(−) '

twisted non-abelian cohomology
with local ρR-coefficients

Hτ(−; ρR) . (61)

Proof. Given any twist X τ // BGL(1,R) (2.29), write P! X for the homotopy pullback (Def. A.28) along τ of the essen-
tially unique point inclusion:

P //

��
(hpb)

∗

��
X

τ
// BGL(1,R)

(
P×R0

)
�diagGL(1,R)' E //

Rτ∗ρR
��

(hpb)

R0�GL(1,R)

ρR
��

X
τ

// BGL(1,R)

(62)

This P is the GL(1,R)-principal ∞-bundle which is classified by τ , [NSS12a, Thm. 3.17], to which the coefficient bundle
E (46) is GL(1,R)-associated [NSS12a, Prop. 4.6], as shown on the right of (62). Consider then the following sequence of
natural bijections:

Hτ
(
X ; R0

)
' ΓX (E)

' Ho
(
GL(1,R)Actions

)
(P; R0)

' Ho
(
RModules

)
(Mτ; R)

' Rτ(X) .

(63)
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Here the first step is Prop. 2.31, while the second step is [NSS12a, Cor. 4.18]. The third step is [ABGHR08, (2.15)][ABGHR14a,
(3.15)], with Mτ denoting the R-Thom spectrum of τ [ABGHR08, Def. 2.6][ABGHR14a, Def. 3.13]. The last step is
[ABGHR08, §2.5] [ABGHR14a, §1.4][ABGHR14b, §2.7]. The composite of these natural bijections is the desired (61).

Example 2.39 (Higher Cohomotopy-twisted K-theory). For complex topological K-theory R = KU (Ex. 2.14) with KU0 =
Z×BU (31) – where the Z-factor encodes the virtual rank of vector bundles and the multiplicative operation in the ring
structure corresponds to tensor product of vector bundles – the ∞-group of units (59) classifies the virtual vector bundles of
invertible rank in {±1}= GL(1,Z)⊂ Z:

GL(1,KU) '
(
{±1}×BU

)
⊗ . (64)

(Here the subscript just indicates the ∞-group structure, now with respect to the multiplicative operation corresponding to
tensor product of virtual vector bundles.) Since delooping B(−) shifts up homotopy groups by one, it follows that the
homotopy groups of BGL(1,KU), appearing in (60), are freely generated by the powers of the Bott generator β ∈ π2(KU),
shifted up in degree by one:

π•
(
KU0

)
'

{
Z' 〈β k〉 if n = 2k is even

0 if n is odd
⇒ πn

(
GL(1,KU)

)
'


Z2 if n = 1

Z' 〈β 2k〉 if n = 2k+3

0 if n is even.

(65)

It follows that, parameterized by any odd-dimensional sphere S2k+1 for positive k ∈ N+, there are exactly Z worth of higher
twists of complex K-theory, up to equivalence, embodied by the local coefficient bundles which are the homotopy pullback
of (60) along the classifying maps of the elements (65). The universal one among these is the pullback along the classifying
map for the suspended power of the Bott generator itself:

KU0

local coefficient bundle for
Cohomotopy-twisted K-theory(

KU0
)
�ΩS2k+1

universal local coefficient bundle
for twisted complex K-theory(
KU0

)
�GL(1,KU)

S2k+1 BGL(1,KU)

(hpb)ρS2k+1
KU

ρKU

Σ(β 2k)

shifted power of Bott generator

(66)

By Def. 2.29, these local coefficient bundles encode higher twists of complex K-theory (Ex. 2.14) by classes in unstable/non-
abelian Cohomotopy (Ex. 2.10) in degree 2k+1:

twist in Cohomotopy

[λ ] ∈ π
2k+1(X) `

cohomotopically-twisted topological K-theory

KUλ (X) = Hλ (X ; KU0) . (67)

This cohomotopically higher twisted K-theory has been considered in [MMS20, Def. 2.5].

In twisted generalization of Example 2.15, we have:

Example 2.40 (Twisted iterated K-theory). Let r ∈ N, r ≥ 1. By [LSW16, Prop. 1.5, Def. 1.7] and using Prop. 2.38, there is
a local coefficient bundle (43) of the form(

K2r−2(ku)
)

0
//
((

K2r−2(ku)
)

0

)
�B2r−1U(1)

ρlsw2r−1��
B2rU(1) ,

(68)

where K2r−2(ku)0 is the 0th space in the spectrum (29) representing iterated K-theory (Ex. 2.15) and B2rU(1) ' K(Z,2r+1)

is the classifying space for bundle (2r−1)-gerbes (Ex. 2.12). This means that for X τ // B2rU(1) a classifying map for such
a higher gerbe, the τ-twisted non-abelian cohomology (Def. 2.29) with local coefficients in (68) is equivalently (still by Prop.
2.38) integrally twisted iterated K-theory according to [LSW16]:

twisted
iterated K-theory(

K◦2r−1(ku)
)τ
(−) ' Hτ

(
−;K◦2r−2(ku)0

)
.

In twisted generalization of Example 2.10, we have:

Example 2.41 (Twisted Cohomotopy theory [FSS19b, §2.1]). For n ∈ N, consider the canonical action of the orthogonal
group O(n+1) on the homotopy type of the n-sphere, via the defining action on the unit sphere in Rn+1, which restricts along
the canonical inclusion O(n) ↪−! O(n+1) to the defining action of O(n) on the one-point compactification

(
Rn
)cpt

= Sn. By
Prop. 2.28, this corresponds to local coefficient bundles (43) for twisting Cohomotopy theory (Example 2.10):
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Sn Sn�O(n) Sn�O(n+1)

BO(n) BO(n+1)

(hpb)ρJ (69)

The classifying map BO(n) J
−! BAut(Sn) of ρJ is the unstable J-homomorphism (e.g. [TK06, §4.4]). For X a smooth manifold

of dimension d ≥ n+1, and equipped with tangential O(n+1)-structure (e.g. [SS20b, Def. 4.48])

X

T X %%

τ // BO(n+1)

Bivv
BO(d)

'mu

the τ-twisted non-abelian Cohomology (Def. 2.29) with local coefficients in (69) is the tangentially twisted Cohomotopy
theory of [FSS19b][FSS19c][SS20a]:

tangentially twisted
Cohomotopy

π
τ(−) := Hτ

(
−;Sn) .

This twisted Cohomotopy theory in degree n = 4 encodes, in particular, the shifted flux quantization condition of the C-field
[FSS19b, Prop. 3.13] and the vanishing of the residual M5-brane anomaly [SS20a]; while J-twisted Cohomotopy in degree
n = 7 encodes, in particular, level quantization of the Hopf-Wess-Zumino term on the M5-brane [FSS19c].

Twisted non-abelian cohomology operations. In generalization of Def. 2.17, we set:

Definition 2.42 (Twisted non-abelian cohomology operation). Given a transformation of local coefficient bundles (43) pre-
sented (under localization (377) to homotopy types (404)) as a strictly commuting diagram

A1�G1

ρ1 ��

φt // A2�G2

ρ2��
BG1

φb // BG2

∈ TopSpQu , (70)

pasting composition induces, 7 for each twist X τ
−! BG1 (44), a map

φ∗ : Hτ(X ; A1)
(φt ◦(−))◦(ρ1)∗ // Hφb◦τ(X ; A2) (71)

of twisted non-abelian cohomology sets (Def. 2.29). We call these twisted non-abelian cohomology operations.

Example 2.43 (Total non-abelian class of twisted cocycles). For any coefficient bundle ρ (43) there is the tautological
transformation (70) to its total space regarded as fibered over the point:

A�G
ρ ��

A�G

��
BG // ∗ .

The induced twisted non-abelian cohomology operation (71) goes from twisted cohomology to non-twisted cohomology with
coefficient in the total space:

Hτ(X ; A)
ρ∗ // H

(
X ; A�G

)
. (72)

Example 2.44 (Hopf cohomology operation in twisted Cohomotopy [FSS19b, §2.3]). The quaternionic Hopf fibration
S7 hH // S4 is equivariant under the symplectic unitary group Sp(2)' Spin(5), so that after passage to classifying spaces it

induces a morphism of local coefficient bundles (70) for twisted Cohomotopy (69) in degrees 4 and 7:

S7�Sp(2)
hH�Sp(2)

Borel-equivariantized
quaternionic Hopf fibration //

J7

��

S4�Sp(2)

J4

��
BSp(2) +3 BSp(2) .

(73)

Via (71), this induces for each Spin 8-manifold X equipped with tangential Sp(2)-structure (Example 2.33)

7We postpone discussing the details of forming pasting composites to §5, where they are provided by Def. 5.2.
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X

T X %%

τ // BSp(2)

Biww
BO(8)

'mu
(74)

a twisted non-abelian cohomology operation (Def. 2.42)

πτ7(X)
(hH�Sp(2))∗ // πτ4

(X) (75)

in twisted non-abelian Cohomotopy theory (Example 2.41). Lifting through the twisted non-abelian cohomology transforma-
tion (75) encodes vanishing of C-field flux up to C-field background charge [FSS19b, Prop. 3.14].

Example 2.45 (Twistorial Cohomotopy [FSS20, §3.2] ). The equivariantized Hopf morphism (73) of coefficient bundles
factors through Borel-equivariantizations of the complex Hopf fibration hC followed by that of the twistor fibration tH

S7�Sp(2)
hC�Sp(2)

Borel-equivariantized
complex Hopf fibration //

JS7

��

CP3�Sp(2)
tH�Sp(2)

Borel-equivariantized
twistor fibration //

JCP3

��

S4�Sp(2)

JS4

��
BSp(2) +3 BSp(2) +3 BSp(2)

(76)

The twisted non-abelian cohomology theory (Def. 2.29) with local coefficients in the bundle appearing in this factorization is
the Twistorial Cohomotopy of [FSS20]

Twistorial
Cohomotopy

T τ(−) := Hτ
(
−;CP3) .

Via (71), the morphisms (76) induce, for each spin 8-manifold X equipped with tangential Sp(2)-structure (74), twisted
non-abelian cohomology operations (Def. 2.42)

J-twisted
7-Cohomotopy

πτ7
(X)

(hC�Sp(2))∗ //

Twistorial
Cohomotopy

T τ(X)s
(tH�Sp(2))∗ //

J-twisted
4-Cohomotopy

πτ4
(X) (77)

between J-twisted non-abelian Cohomotopy theory (Example 2.41) and Twistorial Cohomotopy.
We turn to the differential refinement of this statement in §5.3 below.
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3 Non-abelian de Rham cohomology
We formulate (twisted) non-abelian de Rham cohomology (Def. 3.93, Def. 3.107) of differential forms with values in
L∞-algebras (Example 3.25) and prove the (twisted) non-abelian de Rham theorem (Theorem 3.96, Theorem 3.117), as a
consequence of the fundamental theorem of dg-algebraic rational homotopy theory, which we recall (Prop. 3.60).

3.1 Dgc-Algebras and L∞-algebras
Here we fix notation and conventions for the following system of categories and functors:

( Def. 3.34

L∞Algs≥ 0,nil
R,fin

)op
� _

��

(120)

CE
'

//
Def. 3.31

SullModels≥ 1
R� _

��
Def. 3.25(

L∞Algs≥ 0
R,fin

)op � �
(103)

CE //
Def. 3.17

dgcAlgs≥ 0
R

oo

Def. 3.19
Sym

⊥ //
Def. 3.18

GrddCmmttvAlgbr
��

Def 3.14

CochainComplexes≥ 0
R

Def. 3.15

GrddVctrSpc
��

gcAlgs≥ 0
R

Def. 3.8

oo

Def. 3.10
Sym

⊥ // GrdVectSp≥ 0
R

Def. 3.2

(78)

Remark 3.1 (Homotopical grading). Our grading conventions, to be detailed in the following, are strictly homotopy theoretic,
in that all algebraic data in degree n always corresponds to homotopy groups in that same degree:
(i) Every graded-algebraic object discussed here corresponds, under the equivalences of rational homotopy theory laid out in
§3.2 below, to a rational space, such that algebraic generators in degree n correspond to homotopy groups in the same degree
n. Since homotopy groups of spaces are in non-negative degree n ∈ N, all dg-algebraic objects discussed, both homological
as well as cohomological, we take to be concentrated in non-negative degree. This implies that we take linear duality of
(co)chain complexes (Def. 3.6) to preserve the degree as opposed to changing it by a sign.
(ii) In particular, our L∞-algebras are in non-negative degree, hence are connective, naturally accommodating (as in [LM95]
[BFM06, §2.9]) the rationalized Whitehead homotopy Lie algebras π•(ΩX)⊗Z R of connected spaces X , with their natural
non-negative grading induced from that of the homotopy groups of ΩX . See Prop. 3.68 and Prop. 3.70 below.
(iii) Accordingly, all Chevalley-Eilenberg (CE) dgc-algebras (Ex. 3.24) are taken to be in non-negative degree, as usual, so
that their generators in degree n correspond to dual homotopy groups in degree n. For example, the CE-algebra model for an
Eilenberg-MacLane space K(Z,n) has a single generator which is in degree +n (Ex. 3.73).

Graded vector spaces.

Definition 3.2 (Connective graded vector spaces). (i) We write

GrdVectSp≥ 0
R ∈ Cats (79)

for the category whose objects are N-graded (i.e. non-negatively Z-graded) vector spaces over the real numbers; and we write

GrdVectSp≥ 0,fin
R
� � // GrdVectSp≥ 0

R ∈ Cats (80)

for its full subcategory on those objects which are of finite type, namely degree-wise finite-dimensional.
(ii) For V ∈ GrdVectSp≥ 0

R and k ∈ N, we write
V k ∈ VectSpR

for the component vector space in degree k.

Example 3.3 (The zero-object in graded vector spaces). We write

0 ∈ GrdVectSp≥ 0
R (81)

for the graded vector space which is the zero vector space in each degree. This is both the initial as well as the terminal object
(hence the zero object) in GrdVectSp≥ 0

R .

Example 3.4 (Graded linear basis). For n1,n2, · · · ,nk ∈ N a finite sequence of non-negative integers, we write〈
αn1 ,αn2 , · · · ,αnk

〉
∈ GrdVectSp≥ 0,fin

R

for the graded vector space (Def. 3.2) spanned by elements αni in degree ni, respectively.
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Definition 3.5 (Tensor product of graded vector spaces). The category of GrdVectSp≥ 0
R (Def. 3.2) becomes a symmetric

monoidal category under the graded tensor product given by

(V ⊗W )k :=
⊕

n1+n2=k

V n1 ⊗W n2 .

and the symmetric braiding isomorphism given by

V ⊗W σV,W

'
// W ⊗V

V n1 ⊗W n2
?�

OO

σ
V,W
n1,n2

'
// W n2 ⊗V n1

?�

OO

(v,w)

∈

7−! (−1)n1n2 · (w,v)

∈

(82)

We denote this by (
GrdVectSp≥ 0

R ,⊗,σ
)
∈ SymmetricMonoidalCategories . (83)

Definition 3.6 (Degreewise linear dual). For V ∈ GrdVectSp≥ 0,fin
R (Def. 3.2) we write

V∨ ∈ GrdVectSp≥ 0,fin
R

for its degree-wise linear dual: 8

(V∨)k := (V k)∗ . (84)

Definition 3.7 (Degree shift). For V ∈ GrdVectSp≥ 0
R (Def. 3.2) we write

bV ∈ GrdVectSp≥ 0
R (85)

for the result of shifting degrees up by 1:
(bV )k :=

{
V k−1 | k ≥ 1,

0 | k = 0.

Graded-commutative algebras.

Definition 3.8 (Graded-commutative algebras). We write

gcAlgs≥ 0
R := CommMonoids

(
GrdVectSp≥ 0

R ,⊗,σ
)
∈ Cats (86)

for the category whose objects are non-negatively Z-graded, graded-commutative unital algebras over the real numbers (hence
commutative unital monoids with respect to the braided tensor product of Def. 3.5); and we write

gcAlgs≥ 0,fin
R
� � // gcAlgs≥ 0

R ∈ Cats (87)

for its full sub-category in those objects which are of finite type, namely degree-wise finite dimensional.

Definition 3.9 (Underlying graded vector space). We write

gcAlgs≥ 0
R

GrddVctrSpc // GrdVectSp≥ 0
R (88)

for the functor on graded algebras (Def. 3.8) that forgets the algebra structure and remembers only the underlying graded
vector space (Def. 3.2).

Example 3.10 (Free graded-commutative algebras). For V ∈ GrdVectSp≥ 0
R (Def. 3.2), we write

Sym(V ) ∈ gcAlgs≥ 0
R (89)

for the graded-commutative algebra (Def. 3.8) freely generated by V , hence that whose underlying graded vector space (88)
is

GrddVctrSpc
(
Sym(V )

)
= R ⊕ V ⊕

(
V ⊗V

)
/Sym(2) ⊕

(
V ⊗V ⊗V

)
/Sym(3) ⊕ ·· · ,

where the symmetric groups Sym(n) act via the braiding (82).

Example 3.11 (Graded Grassmann algebra). For V ∈ GrdVectSp≥ 0
R (Def. 3.2), we write

∧•V := Sym
(
bV
)
∈ gcAlgs≥ 0

R

for the free graded-commutative algebra (Def. 3.10) on V shifted up in degree (Def. 3.7); and we call this the graded
Grassmann-algebra on V .

8This is in contrast to the intrinsic duality (−)∗ in the monoidal category of graded vector spaces in unbounded degree (not considered
here), which instead goes along with inversion of the degree: (V ∗)k = (V−k)∗.
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Example 3.12 (Graded polynomial algebra). For n1,n2, · · · ,nk ∈ N a finite sequence of non-negative integers, we write

R
[
αn1 ,αn2 , · · · ,αnk

]
:= Sym

(〈
αn1 ,αn2 , · · · ,αnk

〉)
∈ gcAlgs≥ 0,fin

R

for the free graded-commutative algebras (Def. 3.10) the graded vector space spanned by the αni (Def. 3.4).

Remark 3.13 (Incarnations of Grassmann algebras). With these notation conventions from Examples 3.10, 3.11, 3.12, an
ordinary Grassmann algebra on k generators is equivalently:

∧•
(
Rk) = Sym

(
bRk) = R

[
θ
(1)
1 ,θ

(2)
1 , · · · ,θ (k)

1

]
.

Cochain complexes.

Definition 3.14 (Connective cochain complexes). We write
CochainComplexes≥ 0

R ∈ Cats
for the category of cochain complexes (i.e. with differential of degree +1) of real vector spaces in non-negative degree.

Definition 3.15 (Underlying graded vector space). We write

CochainComplexes≥ 0
R

GrddVctrSpc // GrdVectSp≥ 0
R (90)

for the forgetful functor on connective cochain complexes (Def. 3.14) which forgets the differential and remembers only the
underlying connective graded vector space (Def. 3.2).

Definition 3.16 (Tensor product on cochain complexes). The tensor product and braiding of graded vector spaces from Def.
3.5 lifts, through (90), to a tensor product and braiding on CochainComplexes≥ 0

R (Def. 3.14), making it a symmetric monoidal
category: (

CochainComplexes≥ 0
R ,⊗,σ

)
∈ SymmetricMonoidalCategories . (91)

Differential graded commutative algebras.

Definition 3.17 (Connective differential graded commutative algebras [GM96, V.3.1]). We write

dgcAlgs≥ 0
R := CommMonoids

(
CochainComplexes≥ 0

R ,⊗,σ
)
∈ Cats

for the category whose objects are differential-graded, graded-commutative, unital algebras over the real numbers concen-
trated in non-negative degrees (hence commutative unital monoids in the symmetric monoidal category of Def. 3.16).

Definition 3.18 (Underlying graded-commutative algebra). We write

dgcAlgs≥ 0
R

GrddCmmttvAlgbr // gcAlgs≥ 0
R (92)

for the functor on dgc-algebras (Def. 3.17) that forgets the differential and remembers only the underlying graded-commutative
algebra (Def. 3.8).

Definition 3.19 (Free differential graded algebras). For V • in CochainComplexes≥ 0
R (Def. 3.14) we write

Sym(V •) ∈ dgcAlgs≥ 0
R

for the free differential graded-commutative algebra on V •, (Def. 3.17), hence whose underlying graded-commutative algebra
algebra (92) is as in Example 3.10.

Example 3.20 (Initial algebra). The real algebra of real numbers, regarded as concentrated in degree-0

R ∈ gcAlgs≥ 0
R
� � // dgcAlgs≥ 0

R

is the initial object: For any other A∈ gcAlgs≥ 0
R (Def. 86) or ∈ dgcAlgs≥ 0

R (Def. 3.17) there is a unique morphism R �
� iR // A

(because our algebras are unital and homomorphims need to preserve the unit element).

Example 3.21 (The terminal algebra). We write
0 ∈ gcAlgs≥ 0

R
� � // dgcAlgs≥ 0

R (93)
for the unique graded-commutative algebra (Def. 3.8) or dgc-algebra (Def. 3.17) whose underlying graded vector space (Def.
3.9) is the zero-vector space 9 (81). This is the terminal object 10 in gcAlgs≥ 0

R : For every A ∈ gcAlgs≥ 0
R , there is a unique

morphism A ∃! // 0 .

9Notice that the algebra 0 (93) is indeed a unital algebra (86).
10Beware that the corresponding statement in [GM96, p. 335] is incorrect.
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Example 3.22 (Product and co-product algebras). In the categories gcAlgs≥ 0
R (Def. 3.8) and dgcAlgs≥ 0

R (Def. 3.17):
(i) the coproduct is given by the tensor product (Def. 3.5),
(ii) the product is given by the direct sum
on underlying graded vector spaces (Def. 3.9).
(The first follows by [Joh02, p. 478, Cor. 1.1.9], while the second holds since (88) is a right adjoint.)

Example 3.23 (Smooth de Rham complex (e.g. [BT82])). For X be a smooth manifold, its de Rham algebra of smooth
differential forms is a dgc-algebra in the sense of Def. 3.17, to be denoted here:

Ω
•
dR(X) ∈ dgcAlgs≥ 0

R .

Example 3.24 (Chevalley-Eilenberg algebras of Lie algebras). For (g, [−,−]) a finite-dimensional real Lie algebra, its
Chevalley-Eilenberg algebra is a dgc-algebra (Def. 3.17):

CE(g) :=
(
∧• g∗ , d|∧1g∗ = [−,−]∗

)
∈ dgcAlgs≥ 0

R

with underlying graded-commutative algebra (Def. 3.8) the Grassmann algebra on the linear dual space g∗ (Def. 3.11, Remark
3.13), and with differential given on ∧1g∗ by the linear dual of the Lie bracket. More explicitly, for {va}dimR(g)

a=1 a linear basis
for the underlying vector space of the Lie algebra

g ' 〈v1,v2, · · · ,vdim(g)〉 , (94)

with Lie brackets
[va,vb] = f c

abvc , for structure constants f c
ab ∈ sR (95)

we have
CE(g) ' R

[
θ
(1)
1 ,θ

(2)
1 , · · ·θ (dim(g))

1

]/(
d θ

(c)
1 = fab

c
θ
(b)
1 ∧θ

(a)
1

)
. (96)

One observes that the Jacobi identity on [−,−] is equivalent to the condition that the differential d := [−,−]∗ squares to zero,
so that (96) being a dgc-algebra is actually equivalent to (g, [−,−]) being a Lie algebra.

This construction is evidently contravariantly functorial and constitutes a full subcategory inclusion

LieAlgebrasR,fin

� � CE //
(
dgcAlgs≥ 0

R

)op
, (97)

meaning that, in addition, homomorphisms of Lie algebras are in natural bijection to dgc-algebra morphisms between their
CE-algebras.

This observation is the golden route to approaching L∞-algebras:

L∞-algebras.

Definition 3.25 (Chevalley-Eilenberg algebras of L∞-algebras [LM95, Thm . 2.3][SSS09a, Def. 13][BFM06, §2]). In direct
generalization of (97), consider those A ∈ dgcAlgs≥ 0

R (Def. 3.17) whose underlying graded-commutative algebra (92) is free
(Example 3.10, Remark 3.13) on the degreewise dual bg∨ (Def. 3.6) of the degree shift bg (Def. 3.7) of some connective
finite-type graded vector space (Def. 3.2)

g ∈ GrdVectSp≥ 0,fin
R (98)

in that
A :=

(
∧• g∨ , d

)
:=
(
Sym(bg∨) , d

)
∈ dgcAlgs≥ 0

R . (99)

In this case the differential d restricted to ∧1g∨ defines, under linear dualization, a sequence of n-ary graded-symmetric
multilinear maps {−, · · · ,−} on g:

d|∧1g∨(−) = {−}∗ + {−,−}∗ + {−,−,−}∗ + · · ·

∧1g∨
d // ∧1g∨ ⊕ ∧2g∨ ⊕ ∧3g∨ ⊕ · · · = ∧•g∨ = Sym

(
bg∨
)
,

(100)

and the condition d ◦d = 0 imposes a sequence of compatibility conditions on these brackets, generalizing the Jacobi identity
in Example 3.24. The corresponding graded skew-symmetric n-ary brackets ([LS93, (3)])

[a1, · · · ,an] := (−1)n+∑i≤n/2 deg(ai){a1, · · · ,an} (101)

subject to these conditions give g the structure of an L∞-algebra (or strong homotopy Lie algebra):(
g , [−], [−,−], [−,−,−], · · ·

)
∈ L∞Algs≥ 0

R,fin , (102)

which makes A in (99) its Chevalley-Eilenberg algebra:
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CE(g) :=
(
∧• g∨ , d = {−}∗+{−,−}∗+{−,−,−}∗+ · · ·

)
=
(
Sym(bg∨) , dCE

)
.

(103)

This construction constitutes a full subcategory inclusion

L∞Algs≥ 0
R,fin

� � CE //
(
dgcAlgs≥ 0

R

)op
. (104)

into the category of dgc-algebras of the category of connective finite-type L∞-algebras, with the homotopy-correct morphisms
between them (known as “weak maps” [LM95, Rem. 5.4], “sh maps” [Mer02, §2.11] or “L∞-morphisms” [Kon03, p. 12]).

Example 3.26 (Differential graded Lie algebras). A differential graded Lie algebra is an L∞-algebra (102) whose only pos-
sibly non-vanishing brackets are the unary bracket ∂ := [−] (its differential) and the binary bracket [−,−] (its graded Lie
bracket). In further specialization, a plain Lie algebra (Example 3.24) is an L∞-algebra/dg-Lie algebra concentrated in degree
0:

LieAlgebrasR,fin

� � // DiffGradedLieAlgebras≥ 0
R,fin

� � // L∞Algs≥ 0
R,fin . (105)

Example 3.27 (Line Lie n-algebra). For n ∈ N, the line Lie (n+1)-algebra is the L∞-algebra (Def. 3.25)

bnR ∈ L∞Algs≥ 0
R,fin (106)

whose Chevalley-Eilenberg algebra (103) is the polynomial dgc-algebra (Example 3.29) on a single closed generator in degree
n+1:

CE
(
bnR

)
:= R[cn+1]

/
(d cn+1 = 0) . (107)

More generally, for V ∈ VectSpfin
R , we have

bnV '
⊕

dim(V )

bnR ∈ L∞Algs≥ 0
R,fin , with CE

(
bnV

)
' R

[
c(1)

n+1,c
(2)

n+1, · · · ,c
(dimV )

n+1

]/ d c(1)

n+1 = 0 ,
...
d c(dimV )

n+1 = 0

 . (108)

Example 3.28 (String Lie 2-algebra [BCSS07, §5][He08, §1.2][FSS12a, App.]). Let g∈ LieAlgebrasR,fin be semisimple (such
as g= su(n+1),so(n+3), for n ∈N), hence equipped with a non-degenerate, symmetric, g-invariant bilinear form (“Killing
form”)

g⊗g
〈−,−〉 // R . (109)

Then the element
µ :=

〈
−, [−,−]

〉
∈ CE(g)

in the Chevalley-Eilenberg (3.24) is closed (is a Lie algebra cocycle)

dµ = 0 .

In terms of a linear basis {va} (94) with structure constants { f c
ab} (95) and inner product kab := 〈va,vb〉 we have, in terms

of (96):
µ := fab

c′kc′c θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1 .

Hence we get an L∞-algebra (Def. 3.25)
stringg ∈ L∞Algs≥ 0

R,fin (110)
with the following Chevalley-Eilenberg algebra (103):

CE
(
stringg

)
:= R

[
{θ a

1 },
b2

]/d θ
(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

d b2 = f c′
ab kc′c θ

(c)
1 ∧θ

(b)
1 ∧θ

(a)
1︸ ︷︷ ︸

=µ

. (111)

This is known as the string Lie 2-algebra, since it is [BCSS07][He08] the L∞-algebra of the String 2-group of Ex. 2.5.

Sullivan models and nilpotent L∞-algebras.

Example 3.29 (Polynomial dgc-algebras). For A ∈ dgcAlgs≥ 0
R (Def. 3.17), and

µ ∈ An+1 ⊂ A , d µ = 0 (112)
a closed element of homogeneous degree n+1, we write

A
[
αn
]/(

d αn = µ
)
∈ dgcAlgs≥ 0

R (113)
for the dgc-algebra obtained by adjoining a generator αn of degree n to the underlying graded-commutative algebra (92) of A
and extending the differential from A to A

[
αn
]

by taking its value on the new generator to be µ . The polynomial dgc-algebra
(113) receives a canonical algebra inclusion of A:

A �
� iA // A[αn]

/
(d αn = µ) . (114)
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Example 3.30 (Multivariate polynomial dgc-algebras). Let A ∈ dgcAlgs≥ 0
R (Def. 3.17), µ(1) ∈ An1+1, dµ(1) = 0, with corre-

sponding polynomial dgc-algebra (113) as in Example 3.29. Then, for

µ
(2) ∈ A

[
α
(1)
n1

]/(
d α

(1)
n1 = µ

(1)) , d µ
(2) = 0

another closed element of some homogeneous degree n2 + 1, in the new algebra (113) we may iterate the construction of
Example 3.29 to obtain the bivariate polynomial dgc-algebra over A, to be denoted:

A

 α
(2)
n2+1

α
(1)
n1+1,

/d α
(2)
n1 = µ

(2)
n2+1 ,

d α
(1)
n1 = µ

(1)
n1+1

 :=
(

A
[
µ
(1)
n1+1

]/(
d α

(1)
n1+1 = µ

(1)))[
α
(2)]/(d α

(2)
n2+1 = µ

(2)) .
Iterating further, we have multivariate polynomial dgc-algebras over A, to be denoted as follows:

A


α
(k)
nk+1 ,

...

α
(2)
n2+1

α
(1)
n1+1,


/


d α
(k)
nk ,= µ

(k)

...

d α
(2)
n1 = µ

(2) ,

d α
(1)
n1 = µ

(1)

 ∈ dgcAlgs≥ 0
R (115)

with

µ
r ∈ A


α
(r−1)
nr−1+1 ,

...

α
(1)
n1+1,

 , for 1≤ r ≤ k.

These multivariate polynomial algebras (115) receive the canonical inclusion (114) of A:

A �
� iA // A


α
(k)
nk+1 ,

...

α
(2)
n2+1

α
(1)
n1+1,


/


d α
(k)
nk = µ

(k),

...

d α
(2)
n1 = µ

(2) ,

d α
(1)
n1 = µ

(1)

, (116)

these being the composites of the stage-wise inclusions (114).

Definition 3.31 (Semifree dgc-Algebras/Sullivan models/FDAs). The multivariate polynomial dgc-algebras of Example 3.30
are sometimes called (i) semi-free dgc-algebras over A (since their underlying graded-commutative algebra (92) is free, as in
Example 3.10), but they are traditionally known (ii) in rational homotopy theory as relative Sullivan models (due to [Su77],
review in [FHT00, II][Me13][FH17]), or, (iii) in supergravity theory (following [vN82][D’AF82]), as FDAs11 [CDF91], (for
translation see [FSS13b][FSS16a][FSS16b][HSS18][BMSS19][FSS19a]). Here we write:

SullModels≥ 1
R
� � // SullModelsR

� � // dgcAlgs≥ 0
R (117)

for, from right to left, (a) the full subcategory of connective dgc-algebras (Def. 3.17) on those which are isomorphic to a
multivariate polynomial dgc-algebra over R, as in Example 3.30 (i.e., the ordering of the generators in (115) is not part of the
data of a Sullivan model, only the resulting dgc-algebra); and (b) for the further full subcategory on those Sullivan model that
are generated in positive degree ≥ 1.

Example 3.32 (Polynomial dgc-algebras as pushouts). For A ∈ dgcAlgs≥ 0
R (Def. 3.17) the polynomial dgc-algebras over A

(Def. 3.29) are pushouts in dgcAlgs≥ 0
R of the following form:

A
[
αn
]/(

d αn = µ
)

(po)

OO

iA

� ?

oo

αn  [ αn

µ  [ cn+1
R

[
αn ,

cn+1

]/(d αn = cn+1
d cn+1 = 0

)
OO

cn+1

7!

cn+1� ?
A oo

µ  [ cn+1

R
[
cn+1

]/(
d cn+1 = 0

) (118)

Here on the right we have multivariate polynomial dgc-algebras (Example 3.30) over R (Example 3.20) as shown. The
horizontal morphisms encode the choice of µ ∈ A (112) and the left vertical morphism is the canonical inclusion (114).

11Beware that “FDA” in the supergravity literature is meant to be short-hand for “free differential algebra”, which is misleading, because
what is really meant are not free dgc-algebras as in Example 3.19 (in general) but just “semi-free” dcg-algebras, only whose underlying
graded-commutative algebras (92) is required to be free (Example 3.10).
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Example 3.33 (Chevalley-Eilenberg algebras of nilpotent Lie algebras). Beware that not every Lie algebra g has Chevalley-
Eilenberg algebra (Example 3.24) which satisfies the stratification in the Definition 3.30 of multivariate polynomial dgc-
algebras.
(i) For instance, the Lie algebra su(2) has

CE
(
su(2)

)
= R

[
θ1,θ2,θ3

]/(
d θi = ∑

j,k
εi jkθ j ∧θk

)
and no ordering of {1,2,3} brings this into the iterative form required in (115).
(ii) Instead, those Lie algebras whose CE-algebra is of the form (115) are precisely the nilpotent Lie algebras.

In generalization of Example 3.33, we may say (by [Ber15, Thm 2.3] this matches [Ge09, Def. 4.2]):

Definition 3.34 (Nilpotent L∞-algebras). An L∞-algebra (102) is nilpotent if its CE-algebra (Def. 3.25) is a multivariate
polynomial dgc-algebra (Example 3.30), hence is in the sub-category of SullModelsR (117):

L∞Algs≥ 0,nil
R,fin

� � CE //
� _

��
(pb)

(
SullModelsR

)op
� _

��
L∞Algs≥ 0

R,fin

� � CE //
(
dgcAlgs≥ 0

R

)op

(119)

In fact, from (99) it is clear that every connected Sullivan model, hence with generators in degrees ≥ 1, is the Chevalley-
Eilenberg algebra of a unique nilpotent L∞-algebra, so that the defining inclusion at the top of (119) further restricts to an
equivalence of homotopy categories:

L∞Algs≥ 0,nil
R,fin

CE
'

//
(
SullModels≥ 1

R

)op
. (120)

Homotopy theory of connective dgc-Algebras. We recall the homotopy theory of connective differential graded-commutative
algebras, making free use of model category theory [Qu67]; for a review see [Hov99][Lu09, A.2] and appendix A.

Definition 3.35 (Homotopical structure on connective cochain complexes). Consider the following sub-classes of morphisms
in the category CochainComplexes≥ 0

R (Def. 3.14):
(i) W – weak equivalences are the quasi-isomorphisms;
(ii) Fib – fibrations are the degreewise surjections;
(iii) Cof – cofibrations are the injections in positive degrees.
We call this the injective homotopical structure on CochainComplexes≥ 0

R .

Proposition 3.36 (Injective model structure on connective cochain complexes [He07, p. 6]). Equipped with the injective
homotopical structure of Def. 3.35 the category of CochainComplexes≥ 0

R (Def. 3.14) becomes a model category (Def. A.3)
which is right proper (Def. A.5). We denote this by:(

CochainComplexes≥ 0
R

)
inj ∈ ModelCategories .

Proof. The proof of the model structure itself is formally dual to the proof of the projective model structure on connective
chain complexes [Qu67, II.4][GoS06, Thm. 1.5]; it is spelled out in [Dun10, Thm. 2.4.5]. (Here we are using that for modules
over a field of characteristic zero, as in our case, the condition that kernels of epimorphisms be injective is automatic.) A
proof of right properness with respect to degreewise surjections is spelled out in [Stri20, Prop. 24].

Definition 3.37 (Homotopical structure on connective dgc-algebras [BG76, §4.2][GM96, §V.3.4]). Consider the following
sub-classes of morphisms in the category of dgcAlgs≥ 0

R (Def. 3.17):
(i) W – weak equivalences are the quasi-isomorphisms;
(ii) Fib – fibrations are the degreewise surjections;
We call this the projective homotopical structure on dgcAlgebras≥0

R .

Proposition 3.38 (Projective model structure connective on dgc-algebras). Equipped with the projective homotopical struc-
ture from Def. 3.37, the category of dgcAlgs≥ 0

R (Def. 3.17), becomes a model category (Def. A.3) which is right proper (Def.
A.5), in fact this is the case over any ground field k of characteristic 0.(

dgcAlgs≥ 0
k

)
proj ∈ ModelCategories . (121)
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Proof. The model structure itself is due to [BG76, §4.3], the proof is spelled out in [GM96, V.3.4]. Right properness fol-
lows from the right properness of the injective model structure on cochain complexes (Prop. 3.36) since the free/forgetful
adjunction (122) implies that underlying pullbacks of dgc-algebras are pullbacks of the underlying cochain complexes.

Proposition 3.39 (Quillen adjunction between dgc-algebras and cochain complexes). The adjunction (78) between dgcAlgs≥ 0
R

(Def. 3.17) and CochainComplexes≥ 0
R (Def. 3.14) is a Quillen adjunction (Def. A.20) with respect to the model category

structures from Prop. 3.36 and Prop. 3.38:

(
dgcAlgs≥ 0

R

)
proj

oo Sym

⊥Qu

underlying
//

(
CochainComplexes≥ 0

R

)
inj . (122)

Proof. It is immediate from Def. 3.35 and Def. 3.37 that the forgetful right adjoint preserves the classes W and Fib.

Remark 3.40 (All dgc-algebras are projectively fibrant). Every object A ∈
(
dgcAlgs≥ 0

R

)
proj (121) is fibrant: By Example 3.21

the terminal morphism is to the 0-algebra, and this is clearly surjective, hence is a fibration, by Def. 3.37: A
∈Fib
// 0 .

Cofibrant dgc-algebras. With all dgc-algebras being fibrant (Rem. 3.40), the crucial property is cofibrancy.

Lemma 3.41 (Generating cofibrations). The following inclusions of multivariate polynomial dgc-algebras (Example 3.30)
are cofibrations in

(
dgcAlgs≥ 0

R

)
proj (Def. 3.38)

R[cn+1]
/
(d cn+1 = 0) �

� cn+1 7!cn−1

∈Cof
// R

[
αn ,

cn+1

]/( d αn = cn+1 ,
d cn+1 = 0

)
for n ∈ N. (123)

Proof. Consider the following morphisms of cochain complexes, for n ∈ N:

...

0

" d

0

" d

〈cn+1〉
" d

0

" d

0

" d

...

" d

0



� � in //



...

0

" d

0

" d

〈cn+1〉
" d

〈αn〉
" d

0

" d

...

" d

0



with dαn = cn+1. (124)

Since these are injections, they are cofibrations in
(
CochainComplexes≥ 0

R

)
inj (Prop. 3.36), by Def. 3.35. Thus also their

images under Sym (Def. 3.19) are cofibrations in
(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38) because Sym is a left Quillen functor, by Prop.

3.39. But Sym(in) manifestly equals (123), and so the claim follows.

Proposition 3.42 (Relative Sullivan algebras are cofibrations). For a multivariate polynomial dgc-algebra from Example
3.30, the canonical inclusion (125) of the base algebra is a cofibration in

(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38):

A �
�

iA

∈Cof // A


α
(k)
nk+1 ,

...

α
(1)
n1+1,


/

d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)

. (125)

In particular, since R ∈ dgcAlgs≥ 0
R is the initial object (Example 3.20), all multivariate polynomial dgc-algebras over R (the

Sullivan models, Def. 3.31) are cofibrant objects in
(
dgcAlgs≥ 0

R

)
proj.
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Proof. By Lemma 3.41, the right vertical morphisms in the pushout diagram (118) are cofibrations. Since the class of cofibra-
tions is preserved under pushout, so are hence the left vertical morphisms in (118), which are the base algebra inclusions (114)
of polynomial dgc-algebras. The base algebra inclusions into general multivariate polynomial dgc-algebras are composites of
these, and since the class of cofibrations is presered under composition, the claim follows.

Lemma 3.43 (Pushout along relative Sullivan algebras preserves quasi-isomorphisms [FHT00, Prop. 6.7 (ii), Lemma 14.2]).
The operation of pushout (359) along the canonical inclusion (125) of a base dgc-algebra into a multivariate polynomial
dgc-algebra (Example 3.30) preserves quasi-isomorphisms. In fact, it sends quasi-isomorphism between base algebras to
quasi-isomrophisms of multivariate polynomial dgc-algebras:

A �
�

iA

∈Cof //

f ∈W

��

(po)

A


α
(k)
nk+1 ,

...

α
(1)
n1+1,


/

d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)


(iA)∗ f
��

A′ �
�

iA

∈Cof // A′


α
(k)
nk+1 ,

...

α
(1)
n1+1,


/

d α
(k)
nk = µ

(k),

...

d α
(1)
n1 = µ

(1)


⇒ (ia)∗ f ∈ W . (126)

Lemma 3.44 (Weak equivalences of nilpotent L∞-algebras [FHT00, Prop. 14.13]). A morphism between Chevalley-Eilenberg
algebras (Def. 3.25) of nilpotent L∞-algebras (Def. 3.34), is a quasi-isomorphism of dgc-algebras (hence a weak equivalence
according to Def. 3.37) precisely if the corresponding morphism (97) of L∞-algebras is a quasi-isomorphism between the
chain complexes given by the unary bracket operation ∂ := [−] (101):

CE(g) oo
CE(φ)

∈W
CE(h) ⇔

(
g, [−]g

) φ

∈W
//
(
h, [−]h

)
.

Remark 3.45 (Homotopy theory of nilpotent L∞-algebras inside all L∞-algebras).
(i) Prop. 3.42, with Remark 3.40 and Def. 3.25, allows to identify the homotopy category of finite-type nilpotent connective
L∞-algebras (Def. 3.34), with a full subcategory of the homotopy category (Def. A.16) of the opposite (Example A.10) of
dgc-algebras (Prop. 3.38):

Ho
(
L∞Algs≥ 0,nil

R,fin

) � � CE // Ho
((

dgcAlgs≥ 0
R

)op
proj

)
. (127)

(ii) There is also the homotopy theory of more general L∞-algebras [Hin01][Pr10][Va14][Ro20], whose weak equivalences
are the quasi-isomorphisms on chain complexes formed by the unary bracket [−] (101). Lemma 3.44 says that the homotopy
theory (127) of finite-type, nilpotent connective L∞-algebras that we are concerned with here is fully faithfully embedded into
this more general L∞ homotopy theory:

Ho
(
L∞Algs≥ 0,nil

R,fin

) � � // Ho
(
L∞AlgsR

)
.

Minimal Sullivan models

Definition 3.46 (Minimal Sullivan models [BG76, Def. 7.2][He07, Def. 1.10]). A connected (relative) Sullivan model dgc-
algebra A ∈ SullModels≥ 1

R (Def. 3.31) is called minimal if it is given by a multivariate polynomial dgc-algebra as in (115) the
degrees ni of whose generators α

(i)
ni are monotonically increasing

i < j ⇒ n j ≤ n j .

Example 3.47 (Minimal models of simply connected dgc-algebras [BG76, Prop. 7.4]). If A ∈ SullModels≥ 1
R (Def. 3.31) is

trivial in degree 1, then it is minimal (Def. 3.46) precisely if the unary bracket [−] (100) of the corresponding L∞-algebra
(120) vanishes:

A1 = 0 ⇒
(
A is minimal ⇔ [−] = 0

)
.

Proposition 3.48 (Existence of minimal Sullivan models [BG76, Prop. 7.7, 7.8][FHT00, Thm. 14.12]).
If A ∈ dgcAlgs≥ 0

R is cohomologically connected, in that H0(A) = R, then:
(i) There exists a minimal Sullivan model Amin (Def. 3.46) with weak equivalence in

(
dgcAlgs≥ 0

R

)
proj (121) to A

Amin
pmin

A ∈W
// A . (128)
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(ii) This Amin is unique up to isomorphisms of dgcAlgs≥ 0
R compatible with the weak equivalences in (128): Any two pmin

A , pmin′
A

in (128), make a commuting diagram of this form ([FHT00, Thm. 14.12]):

Amin

A .
Amin′

pmin
A

'

pmin′
A

(129)

More generally:

Proposition 3.49 (Existence of minimal relative Sullivan models [FHT00, Thm. 14.12]). Let B
φ // A be a morphism in

dgcAlgs≥ 0
R (Def. 3.17) such that

(a) A and B are cohomologically connected, in that H0(A) = R and H0(B) = R,
(b) H1(φ) : H1(B)−! H1(A) is an injection.

Then:
(i) There exists a minimal relative Sullivan model B ↪−! AminB (Def. 3.46) equipped with a weak equivalence to φ in(
dgcAlgs≥ 0

R

)
proj (Def. 121):

AminB
∈W // A

B φ

55

X8

jj (130)

(ii) This AminB is unique up to isomorphism in the coslice category
(
dgcAlgs≥ 0

R

)B/ compatible with the weak equivalence in
(130), in cosliced generalization of (129).

3.2 R-Rational homotopy theory
We recall fundamental facts of dg-algebraic rational homotopy theory [Su77][BG76][GM13] (review in [FHT00][He07][FOT08]
[FH17]), 12 with emphasis on its incarnation over the real numbers (Rem. 3.64) and streamlined towards the application to
non-abelian de Rham theory below in §3.3 and thus to the non-abelian character map in §4. For the usual technical reasons
(Rem. 3.51), we focus on the following class of homotopy types (with little to no restriction in practice):

Definition 3.50 (Connected nilpotent spaces of finite rational type [BG76, 9.2]). Write

Ho
(
∆SetsQu

)finQ
≥1,nil

� � // Ho
(
∆SetsQu

)
for the full subcategory of homotopy types of topological spaces X (404) on those which are:

(i) connected: π0(X)' ∗;
(ii) nilpotent: π1(X) ∈ NilpotentGroups, and πn≥2(X) are nilpotent π1(X)-modules (e.g. [Hil82]);
(iii) finite rational type: dimQ

(
Hn(X ; Q)

)
< ∞ , for all n ∈ N.

Remark 3.51 (Technical assumptions). The connectedness assumption in Def. 3.50 is a pure convenience; for non-connected
spaces all of the following applies just by iterating over connected components. On the other hand, the nilpotency and R-
finiteness condition in Def. 3.50 are strictly necessary for the plain dg-algebraic formulation of rational homotopy theory
(due to [BG76][Su77]) to satisfy the fundamental theorem (Theorem 3.60 below). The generalizations required to drop these
assumptions are known, but considerably more unwieldy:
(i) To drop the nilpotency assumption, all dgc-algebra models need to be equipped with the action of the fundamental group
(see [FHT15]).
(ii) To drop the finite-type assumption one needs dgc-coalgebras in place of dgc-algebras, as in the original [Qu69].
Therefore, we expect that the construction of the (twisted) non-abelian character map, below in sections §4 and §5, works also
without imposing these technical assumptions, but a discussion in that generality is beyond the scope of the present article.

Example 3.52 (Examples of nilpotent spaces [Hil82, §3][MP12, §3.1]). Such examples (Def. 3.50) include:
(i) every simply connected space X , π1(X) = 1;

(ii) every simple space X , i.e. with abelian fundamental group acting trivially, such as tori;
(iii) hence every connected H-space;
(iv) hence every loop space X 'ΩY , and hence every ∞-group (Prop. 2.8);
(v) hence every infinite-loop space, i.e., every component space En of a spectrum E (29);

(vi) the classifying spaces BG (24) of nilpotent Lie groups G;
(vii) the mapping spaces Maps(X ,A) out of manifolds X into nilpotent spaces A.

12One may naturally understand rational homotopy theory also within the theory of derived algebraic ∞-stacks [To06][Lu11, §1]. The
real character map in §4 instead expresses rational homotopy theory within smooth (differential-geometric) ∞-stacks in non-abelian gener-
alization of the way it appears in differential cohomology theory, see §4.3.
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Rational homotopy theory is concerned with understanding the following notion:

Definition 3.53 (Rationalization [BK72b, p. 133][BG76, §11.1][He07, §1.4, §1.7]).
(i) A connected nilpotent homotopy type X ∈ Ho

(
TopSpQu

)
≥1,nil (Def. 3.50) is called rational if the following equivalent

conditions hold [BK72b, §V 3.3][BG76, §9.2]:
• the higher homotopy groups π•≥2(X) have the structure of Q-vector spaces, and the fundamental group π1(X) is

uniquely divisible in that each element g has a unique nth root x, i.e. with xn = g, for all n ∈ N+;
• the integral homology groups H•≥1(X ; Z) all carry the structure of Q-vector spaces;

(ii) A rationalization of X is a map

X
η
Q
X // LQ(X) ∈ Ho

(
TopSpQu

)
≥1,nil (131)

such that:
(a) LQ is rational in the above sense;
(b) the map η

Q
X induces an isomorphism on rational cohomology groups:

H•
(
LQX ; Q

) H•(ηQ
X ;Q)

'
// H•(X ; Q) .

Rationalization exists essentially uniquely, and defines a reflective subcategory inclusion
connected, nilpotent,

rational homotopy types

Ho
(
TopSpQu

)Q
≥1,nil

oo
LQ

� � ⊥ //

connected, nilpotent
homotopy types

Ho
(
TopSpQu

)
≥1,nil (132)

whose adjunction unit (356) is (131).

PL de Rham theory. At the heart of dg-algebraic rational homotopy theory is the observation that a variant of the de
Rham dg-algebra of a smooth manifold (Example 3.23) applies to general topological spaces: the PL de Rham complex13

(Def. 3.54). This satisfies an appropriate PL de Rham theorem (Prop. 3.55) and makes dg-algebras of PL differential forms
detect rational homotopy type (Prop. 3.60). At the same time, over a smooth manifold the PL de Rham complex is suitably
equivalent to the smooth de Rham complex (Lemma 3.99).

Definition 3.54 (PL de Rham complex and PL de Rham cohomology [BG76, pp. 1-7][GM13, §9.1]). Let k be a field of
characteristic zero.
(i) simplicial dgc-algebra of k-polynomial differential forms on the standard simplices ([Su77, p. 297][BG76, p. 1][GM13,
p. 83]) is:

Ω•kpdR

(
∆(−)) : ∆op dgcAlgs≥ 0

k

[n] 7−! k
[
t(0)0 , · · · , t(n)0 , θ

(0)
1 , · · · ,θ (n)

1

]/(
∑i t(i)0 = 1,
∀i d t(i)0 = θ

(i)
1

)

[m] 7−! k
[
t(0)0 , · · · , t(m)

0 , θ
(0)
1 , · · · ,θ (m)

1

]/(
∑ j t( j)

0 = 1,
∀j d t( j)

0 = θ
( j)
1

)
f

∑

i∈ f−1({ j})
t(i)0

7!

t( j)
0

(133)

(ii) For S ∈ ∆Sets, its PL de Rham complex is the hom-object of simplicial objects from S to Ω•kpdR

(
∆(−)) (133), hence is the

following end (e.g. [Bor94, Def. 6.6.8]) in dgcAlgs≥ 0
R :

Ω
•
PkLdR(S) :=

∫
[n]∈∆

∏
Sn

Ω
•
kpdR(∆

n) . (134)

This means that an element ω ∈ Ω•PkLdR(S) is a k-polynomial differential form ω
(n)
σ ∈ Ω•kpdR(∆

n) (133) on each n-simplex
σ ∈ Sn for all n∈N, such that these are compatible under pullback along all simplex face inclusions δi and along all degenerate
simplex projections σi:

13The terminology “PL” or “P.L.” for this construction seems to have been silently introduced in [BG76], as shorthand for “piecewise
linear”, and has become widely adopted (e.g. [GM13, §9]). Our subscript “PkL” is for “piecewise k-linear”, in this sense. But beware
that this refers to the piecewise-linear structure that a choice of triangulation (Ex. A.42) induces on a topological space; while the actual
differential forms in the PL de Rham complex are piecewise polynomial with respect to this piecewise linear structure.
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Ω
•
PkLdR(S) =



...
...

S2

δ ∗0

��

OO

σ∗0 δ ∗1

��

OO

σ∗1 δ ∗2

��

ω
(2)
(−) // Ω•kpdR(∆

2)

δ ∗0

��

OO

σ∗0 δ ∗1

��

OO

σ∗1 δ ∗2

��
S1

ω
(1)
(−) //

δ ∗0

��

OO

σ∗0 δ ∗1

��

Ω•kpdR(∆
1)

δ ∗0

��

OO

σ∗0 δ ∗1

��
S0

ω
(0)
(−) // Ω•kpdR(∆

0)



.

(iii) For X ∈ TopSp, its PL de Rham complex is that of its singular simplicial set, according to (134):

Ω
•
PkLdR(X) := Ω

•
PkLdR

(
Sing(X)

)
. (135)

By pullback of differential forms, this extends to a functor of the form

Ω
•
PkLdR : ∆Sets //

(
dgcAlgs≥ 0

R

)op
. (136)

(iv) We write
H•PkLdR(−) := HΩ

•
PkLdR(−) (137)

for PL de Rham cohomology, the cochain cohomology of the PL de Rham complex.

Proposition 3.55 (PL de Rham theorem [BG76, Thm. 2.2][GM13, Thm. 9.1]). The evident operation of integrating differ-
ential forms over simplices induces a quasi-isomorphism

Ω•PkLdR(−)
∈qIso // C•(−; k)

from the PL de Rham complex (Def. 3.54) to the cochain complex of ordinary singular cohomology with coefficients in k.
Hence on cochain cohomology this induces an isomorphism

H•PkLdR(−)
' // H•(−; k)

between PL de Rham cohomology (137) and ordinary cohomology with coefficients in k.

Example 3.56 (PL de Rham complex of the interval). The PL de Rham complex (Def. 3.54) of the 1-simplex, hence the
polyonial differential forms (133) on ∆1, is isomorphic to the multivariate polynomial dgc-algebra (Ex. 3.30) of the form

Ω
•
PLkdR(∆

1) ' Ω
•
kpdR(∆

1) ' k
[
t0,θ1

]/(
d t0 = θ1

)
. (138)

For A ∈
(
dgcAlgs≥ 0

k

)
proj (Prop. A.61), its tensor product with (138)

A⊗k Ω
•
PLkdR(∆

1) ' A
[
t0, θ1

]/(
d t0 = θ1

)
is a path space object for A (Def. A.12), in that it fits into the following diagram

A A
[
t0, θ1

]
A⊕A A×A ,

a 7!a
∈W

∆A

a 7!
(

a(t0=0,θ1=0)+a(t0=1,θ1=0)
)

∈Fib
' (139)

where the morphism on the right is given by evaluation of polynomials as shown, and where the equivalence on the right is
by Ex. 3.22.

Here the morphism on the right is a degreewise surjection (a pre-image for (a0,a1) ∈ A⊕A is (1− t0)∧ a0 + t0 ∧ a1 ∈
A[t0,θ1]), hence a fibration according to Def. 3.37; while the morphism on the left is a quasi-isomorphism, in fact a chain
homotopy equivalence (with homotopy operator t0 · ∂

∂θ1
), hence a weak equivalence according to Def. 3.37.

The following type of argument will be greatly expanded on in §3.3:
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Lemma 3.57 (Homotopical formulation of ordinary cohomology).
(i) The cochain cohomology of any A ∈ dgcAlgs≥ 0

R (Def. 3.17) in positive degree is naturally and R-linearly identified,

H•+1(A) ' Ho
((

dgcAlgs≥ 0
R

)
proj

)(
CE(b•R), A

)
, (140)

with the hom-sets out of the CE-algebras (107) of the line Lie (•+ 1)-algebras (Ex. 3.27) in the homotopy category (Def.
A.16) of the projective model category (Prop. 3.38).

(ii) For X ∈ TopSp
Sing
−−! ∆Sets, its real cohomology in positive degree is naturally identified with these hom-sets into its PL

de Rham complex (Def. 3.54)

H•+1(X ; R) ' Ho
((

dgcAlgs≥ 0
R

)
proj

)(
CE(b•R), Ω

•
PRLdR(X)

)
. (141)

(iii) If the above X is equipped with a base-point ∗ x
−! X, then the real cohomology of X in positive degrees is equivalently

computed by the homotopy classes of morphisms of augmented dgc-algebras, hence with respect to the slice model structure
(Ex. A.11) over the initial dgc-algebra R (Ex. 3.20), as follows:

H•+1(X ; R) ' Ho
((

dgcAlgs≥ 0
R

)/R
proj

)(
CE(b•R), Ω

•
PRLdR(X) ×

Ω•PRLdR(∗)
R

)
. (142)

Proof. Observing that
(a) CE(bnR) is cofibrant, by Prop. 3.42;
(b) A is fibrant, by Rem. 3.40;
(c) A[t0,θ1]/(d t0 = θ1) is a path space object for A, by Expl. 3.56;

we may identify, by Prop. A.18, the morphisms in the homotopy category with equivalence classes of dgc-algebra morphisms
CE(bnR) c

−! A under the corresponding equivalence relation of right homotopy (Def. A.14):

c ∼r c′ ⇔

A

CE(bnR) A[t0,θ1]
(d t0 =θ1)

A .

∃

c

c′

(−)|t0=0,θ1=0

(−)|t0=1,θ1=0

Since CE(bnR) is free on a single generator θn in degree n, subject only to the differential relation d θn = 0, dgc-algebra
homomorphisms CE(bnR) −! A are in bijection to closed degree-n elements of A (see also Ex. 3.88). Hence, under this
identification it remains to see that existence of coboundaries is equivalent to existence of right homotopies:

∃
h∈A

c′ = c+dh ⇔ ∃
η∈ A[t0 ,θ1 ]

(d t0 =θ1)


dη = 0 ,

η(t0 = 0,θ1 = 0) = c ,

η(t0 = 1,θ1 = 0) = c′ .

Indeed: If h is given as on the left, then η := t0∧ c′ + (1− t0)∧ c + θ1∧ (c− c′) is as required on the right; while if any η is
given as on the right, then h :=

∫ 1
0 η dt0 is as required on the left (by Stokes, as in Lem. 3.94). This proves the first statement,

whence the second follows via Prop. 3.55.
To deduce from this the third statement, observe that:

(a) for A
εA−!R an augmented dgc-algebra, the canonical path object (139) for A yields a path space object in the slice over

R by equipping it with the induced augmentation A[t0,θ1]
(d t0=θ1)

a 7!a(t0=0,θ1=0)
−−−−−−−−−−! A

εA−! R ,

(b) the projection
Ω
•
PRLdR(X) ×

Ω•PRLdR(∗)
R ∈W
−−−−!Ω

•
PRLdR(X) (143)

is a quasi-isomorphism, by right-properness (Def. A.5) of the model structure (Prop. 3.38), since this is the pullback
of the quasi-isomorphism R ∈W

−−! Ω•PRLdR (by Prop. 3.55) along the morphism Ω•PRLdR(∗ −! X), which is a projective
fibration by the fact that ∗! X is an injection and hence a cofibration (Ex. A.8) and that Ω•PRLdR is a left Quillen
functor (Prop. 3.59) to the opposite model structure (Ex. A.10).

Therefore, since the generators CE(bnR) are in positive degree and hence unaffected by the augmentation slicing, the
right homotopy classes in the slice (142) are computed as in case (2) above and hence yield the cochain cohomology of
Ω•PRLdR(X)×Ω•PRLdR(∗)R, which by (143) equals the real cohomology of X .
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In fact, before passing to cochain cohomology, the PL de Rham complex captures the full rational homotopy type. This
is the Fundamental Theorem which we recall as Prop. 3.60:

Lemma 3.58 (Extension lemma for polynomial differential forms [GM13, Lemma 9.4]). For n∈N, the operation of pullback

of piecewise polynomial differential forms (Def. 3.99) along the boundary inclusion of the n-simplex ∂∆n in // ∆n is an
epimorphism:

Ω•PkLdR(∆
n) Ω•PkLdR(∂∆n) .

i∗n

Proposition 3.59 (PL de Rham Quillen adjunction [BG76, §8]). For all ground fields k of characteristic zero, the PL de Rham
complex functor (Def. 3.54) is the left adjoint in a Quillen adjunction (Def. A.20)(

dgcAlgs≥ 0
k

)op
proj

oo
Ω•PkLdR

⊥Qu

BexpPkL

// ∆SetsQu (144)

between the opposite (Def. A.10) of the model category of dgc-algebras (Prop. 3.38) and the classical model structure on
simplicial sets (Prop. A.8); where the right adjoint sends a dgc-algebra A to

BexpPkL(A) =
(

∆[n] 7−! dgcAlgs≥ 0
k

(
Ω
•
PkLdR(∆

n) , A
))

∈ ∆Sets . (145)

Proof. That the right adjoint exists and is given as in (145) follows by general nerve/realization theory [Kan58], or else by
direct inspection.

For the left adjoint to preserve cofibrations means to take injections of simplicial sets to degreewise surjections of dgc-
algebras. This follows from the extension lemma (Lemma 3.58). Moreover, the left adjoint preserves even all weak equiva-
lences, by the PL de Rham theorem (Prop. 3.55).

Proposition 3.60 (Fundamental theorem of dgc-algebraic rational homotopy theory). For k = Q, the derived adjunction
(Prop. A.25)

Ho
((

dgcAlgs≥ 0
Q

)op
proj

) oo DΩ•PQLdR

DBexpPQL

⊥ // Ho
(
∆SetsQu

)
(146)

of the Quillen adjunction (144) from Prop. 3.59 is such that:
(i) on connected, nilpotent, Q-finite homotopy types (Def. 3.50) the derived PLdR-adjunction unit (391) is equivalently the
unit (131) of rationalization (Def. 3.53):

X
Dη

PQLdR
X

derived unit of rational
PL de Rham adjunction

// RBexpPQL ◦ Ω•PQLdR(X)

'

X
η
Q
X

rationalization unit
// LQX

∈ Ho
(
TopSpQu

)finQ
≥1,nil . (147)

(ii) For X ,A nilpotent, connected, Q-finite homotopy types (Def. 3.50), the PL de Rham space functor (136) from Def. 3.54
induces natural bijections

Ho
(
TopSpQu

)(
X ,LQA

) '
Ω•PQLdR

// Ho
((

dgcAlgs≥ 0
Q

)
proj

)(
Ω•PQLdR(A) , Ω•PQLdR(X)

)
. (148)

Proof. (i) This is [BG76, Thm 11.2].
(ii) This follows via [BG76, Thm 9.4(i)], which says that the derived adjunction (146) restricts on connected, nilpotent,
Q-finite (Def. 3.50) rational homotopy types (Def. 3.53) to an equivalence of homotopy categories:

Ho
((

dgcAlgs≥ 0
Q

)op
proj

)≥1
fin

oo
DΩ•PQLdR

DBexpPQL

' // Ho
(
∆SetsQu

)Q,finQ
≥1,nil . (149)

In detail, this is witnessed by the following sequence of natural bijections of hom-sets:
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Ho
(
TopSpQu

)(
X , LQA

)
' Ho(∆SetsQu)

(
Sing(X) , LQSing(A)

)
' Ho(∆SetsQu)

(
LQSing(X) , LQSing(A)

)
' Ho(∆SetsQu)

(
RBexpPQL ◦ Ω

•
PQLdR(X) , RBexpPL ◦ Ω

•
PQLdR(A)

)
' Ho

((
dgcAlgs≥ 0

Q

)op
proj

)(
Ω
•
PQLdR ◦ RBexpPQL ◦ Ω

•
PQLdR(X) , Ω

•
PQLdR ◦ RBexpPQL ◦ Ω

•
PQLdR(A)

)
' Ho

((
dgcAlgs≥ 0

Q

)op
proj

)(
Ω
•
PQLdR(X) , Ω

•
PQLdR(A)

)
' Ho

((
dgcAlgs≥ 0

Q

)
proj

)(
Ω
•
PQLdR(A) , Ω

•
PQLdR(X)

)
.

(150)

Here the first step is (404); the second step uses that rationalization is a reflection (132); the third step uses (147); the fourth is
the equivalence (149) along DΩ•PQLdR (using, with Example A.26, that every simplicial set is already cofibrant (368), Example
A.8); the fifth step is the statement from (149) that RBexpPQL is the inverse equivalence. The last step is just the definition of
the opposite of a category. The composite of the bijections (150) is the desired bijection (148).

In view of (147) the following notation is convenient, keeping in mind that Lk is a localization in the sense of localization
of spaces only for k =Q:

Definition 3.61 (Rationalization over R). For k a field of characteristic zero, we write Lk := DBexpPkL ◦ DΩ•PkLdR for the
monad given by the derived functors (Prop. A.25) of the k-PL de Rham Quillen adjunction (Prop. 3.59). Our focus here is on
the case over the real numbers:

(−) ηR :=DηPLRdR

−−−−−−−−−! LR(−) := DBexpPRL ◦ DΩ
•
PRLdR(0) . (151)

We may refer to LR as rationalization over R. Because, while the derived PLdR-adjunction (Prop. 3.59) is a localization
of homotopy types only over k=Q, (Prop. 3.60, Rem. 3.74), for general k it is the suitable change of scalars of Q-localization:

Lemma 3.62 (Derived change of scalars [BG76, Lem. 11.6]). For k a field of characteristic zero, the extension/restriction of
scalars-adjunction along Q ↪−! k is a Quillen adjunction (Def. A.20) between the corresponding projective model categories
of dgc-algebras (from Prop. A.61): (

dgcAlgs≥ 0
k

)
proj

(
dgcAlgs≥ 0

Q

)
proj .

resQ

⊥Qu

(−)⊗Q k

Proof. Since restriction of scalars resQ is the identity on the underlying sets of a dgc-algebra, it manifestly preserves all
fibrations (since the are the surjections of underlying sets ) and all weak equivalences (since these are the bijections on
underlying cochain cohomology groups).

Proposition 3.63 (PkLdR-Adjunction factors through rationalization). The following diagram of derived functors (Prop.
A.25 – with the left derived functors from Prop. 3.59 and the right derived functor from Lem. 3.62) commutes up to natural
isomorphism:

Ho
((

dgcAlg≥0
Q
)op

proj

)
Ho
(
∆SetsQu

)finQ

Ho
((

dgcAlg≥0
R
)op

proj

)
Ho
(
∆SetsQu

)finQ

D
(
(−)⊗QR

)
DΩ•PQLdR

DΩ•PkLdR

(152)

Proof. Via the formula for derived functors in terms of (co)fibrant replacement (Ex. A.26) and using that Sullivan models are
cofibrant in

(
dgcAlgs≥ 0

k

)
proj (Prop. 3.42), hence fibrant in

(
dgcAlgs≥ 0

k

)op
proj, this follows by [BG76, Lem. 11.7].

Remark 3.64 (Rational homotopy theory over the real numbers). Below in Prop. 4.2 we recast Prop. 3.63 as the statement
that the real character map on non-abelian cohomology factors through the rational character map via extension of scalars.

This fact motivates and justifies the focus on rational homotopy theory over the real numbers (as in [DGMS75] [GM13])
in all of the following. Rational homotopy theory over the real numbers is the version that connects to differential geometry
(e.g. [FOT08]), since the smooth de Rham complex is not defined over Q but over R (see Lemma 3.99). The original account
[BG76] of rational homotopy theory is, for the most part, formulated over an arbitrary field k of characteristic zero; and
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[BG76, Lem. 11.7] (Prop. 3.63) makes explicit that the choice of this base field does not change the form of the classical
theorems. For example, the “real-ified” homotopy groups of a space X

π•(X)⊗Z R '
(
π•(X)⊗Z Q

)
⊗Q R

form a real vector space with real dimension equal to the rational dimension of the corresponding rationalized homotopy
groups

dimQ
(
π•(X)⊗Z Q

)
= dimR

(
π•(X)⊗Z R

)
,

and hence the rational Whitehead L∞-algebras (Prop. 3.68 below) have the same set of generators and their Chevalley-
Eilenberg algebras (Def. 3.25) have the same structure constants, irrespective of whether they come as algebras over Q or
over R. 14 Therefore, we regard the case k = R as our default and abbreviate the PL de Rham Quillen adjunction (Prop. 3.59)
in this case by:

Ω
•
PLdR aQu BexpPL := Ω

•
PRLdR aQu BexpPRL . (153)

Remark 3.65 (Real homotopy theory and schematic homotopy type). In contrast to the rational homotopy theory over R
that we are concerned with here (Rem. 3.64) is real homotopy theory in the sense of [BrSz95], given by localization of
the category of simplicial spaces at real cohomology-equivalences seen in continuous cohomology [BrSz89], making use of
the Euclidean topology on the real number coefficients. The “most convincing motivation” [BrSz95, p. 882-883] for this
construction was formal analogy, and the main application in [BrSz95, Thm. 8.2] is a re-derivation of the traditional result
[DGMS75, §6], originally derived in the R-rational homotopy theory of concern here.

With hindsight, one may observe that continuous R-cohomology of simplicial topological spaces is an approximation to
cohomology of topological stacks with coefficients in the higher topological stack BnR (as in footnote 4 to Ex. 2.4 above), to
which it reduces when the domain is fine enough (i.e. cofibrant as a simplicial presheaf on topological spaces). Understood in
this stacky refinement, real homotopy type is a topological version of schematic homotopy type in algebraic geometry [To06];
the general and smooth version of which is discussed in [Ste10].

These localizations of geometric stacks at the stacky ground field are interesting and closely related to the R-rational
homotopy theory of concern here, but further discussion of the relation is beyond the scope of this text.

PS de Rham theory. The point of using piecewise polynomial differential forms in the PL de Rham complex (Def. 3.54) is
that these, but not the piecewise smooth differential forms, can be defined over the field Q of rational numbers. But since we
may and do use the real numbers as the rational ground field (Remark 3.64), it is expedient to also consider piecewise smooth
de Rham complexes:

Definition 3.66 (PS de Rham complex [GM13, p. 91]). For n ∈ N, we write, in variation of (133),

Ω
•
dR
(
Rn×∆

(−)) : ∆op // dgcAlgs≥ 0
R

for the simplicial dgc-algebra of smooth differential forms on the product manifold of n-dimensional Cartesian space with
the standard simplices (i.e., of smooth differential forms on an ambient Cartesian space (Example 3.23), restricted to the
simplex and identified there if they agree on some open neighbourhood). As in Def. 3.54, this induces for each S ∈ ∆Sets the
corresponding piecewise smooth de Rham complexes

Ω
•
PSdR(Rn×S) :=

∫
[k]∈∆

∏
Sn

Ω
•
dR(Rn×∆

n) (154)

and by pullback of differential forms these extend to functors

∆Sets
Ω•PSdR(R

n×(−))
//
(
dgcAlgs≥ 0

R

)op
. (155)

14While rational homotopy theory has the same form over all ground fields of characteristic zero, there is, of course, a difference between
rational homotopy equivalences over different ground fields: Two minimal Sullivan models (Prop. 3.48) over the real numbers may be
isomorphic as real dgc-algebras but not as rational dgc-algebras. This happens when the isomorphism is given by an irrational linear
transformation between the generators. For example, for any b ∈ R, b≥ 0 there is a dgc-algebra isomorphism over the real numbers

R

[
ω3

α2,β2

]/(d ω3 = α2∧α2 +β2∧β2
d α2 = 0 , d β2 = 0

) ω3 7! ω3
α2 7! α2

β2 7!
√

bβ2

'
// R

[
ω3

α2,β2

]/(d ω3 = α2∧α2 +bβ2∧β2
d α2 = 0 , d β2 = 0

)
.

But over the rational numbers this exists only when the square root of b is rational.
Notice that the comparison between the homomotopy types over, in this order, the integers, the rational numbers and then the real

numbers is provided by the character map (Def. 4.36 below); and the theory which embodies the distinction between working over these
coefficients is that of homotopy fiber products of the character map, which is the theory of non-abelian differential cohomology (Def. 4.38
below), where for instance the homotopy fiber R/Q // BQ // BR is being detected (e.g. [GS19a][GS19c]).
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Proposition 3.67 (Fundamental theorem for piecewise smooth de Rham complexes). For all n ∈ N the piecewise smooth de
Rham complex functors (Def. 3.66) participate in a Quillen adjunction analogous to the PL de Rham adjunction (Prop. 3.59)
over the real numbers (

dgcAlgs≥ 0
R

)op
proj

oo
Ω•PSdR(R

n×(−))

⊥Qu

BexpPS,n

// ∆SetsQu (156)

with right adjoint given as in (145):

BexpPS,n(A) =
(

∆[k] 7−! dgcAlgs≥ 0
R

(
Ω
•
PLdR(Rn×∆

k) , A
))

∈ ∆Sets , (157)

whose derived functors (Prop. A.25) are naturally equivalent to those of the PL de Rham adjunction (146) over the real
numbers: DΩ

•
PSdR(Rn× (−)) ' DΩ

•
PSdR(−) ' DΩ

•
PRLdR(−) , (158)

DBexpPS,n ' DBexpPS ' DBexpPRL . (159)

Proof. (i) The proofs of the PL de Rham theorem (Prop. 3.55) as well as of the extension Lemma (Lemma 3.58) apply
essentially verbatim also to piecewise-smooth differential forms ([GM13, Prop. 9.8]) and hence so does the proof of the PL
de Rham Quillen adjunction in the form given in Prop. 3.59.
(ii) We have evident natural transformations

Ω•PRLdR(S) ∈W
// Ω•PSdR(S) ∈W

// Ω•PSdR(Rn×S) , for S ∈ ∆Sets ,

given by inclusion of polynomial differential forms into smooth differential forms, and then by pullback of differential forms
along the projections Rn×∆k // ∆k . The corresponding component morphisms are quasi-isomorphisms ([GM13, Cor. 9.9]),
hence are weak equivalences in

(
dgcAlgs≥ 0

R

)
proj (Def. 3.37). Under passage to homotopy categories (Def. A.16) and derived

functors (Example A.26), these natural weak equivalences become the natural isomorphisms (158) (by Prop. A.17). By
essential uniqueness of adjoint functors, this implies the natural isomorphisms (159).

Whitehead L∞-algebras.

Proposition 3.68 (Real Whitehead L∞-algebras). For X ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50), there exists a nilpotent L∞-algebra

(Def. 3.34)
lX ∈ L∞Algs≥ 0,nil

R,fin , (160)
unique up to isomorphism, whose Chevalley-Eilenberg algebra (Def. 3.25) is the minimal model (Def. 3.46) of the PL de
Rham complex of X (Def. 3.54):

CE(lX) :=
(
Ω•PLdR(X)

)
min ∈W

pmin
X // Ω•PLdR(X) . (161)

Proof. By the PL de Rham theorem (Prop. 3.55) and the assumption that X is connected, it follows that we have HΩ0
PLdR(X) =

R . Therefore Prop. 3.48 applies and says that
(
Ω•PLdR(X)

)
min ∈ SullModels≥ 1

R exists, and is unique up to isomorphism. With
this, the equivalence (120) says that lX exists and is unique up to isomorphism.

Proposition 3.69 (R-Rationalization as integration of Whitehead L∞-algebras). For X ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) its

rationalization over the real numbers (Def. 3.61) is equivalently the image under BexpPL (153) of the CE-algebra (161) of its
Whitehead L∞-algebra (181):

LR(X) ' BexpPL
(
CE(lX)

)
∈ Ho

(
∆SetsQu

)
. (162)

Proof. By Def. 3.61 and the characterization of derived functors (Ex. A.26), LR is equivalently the image under BexpPL of
any cofibrant replacement of Ω•PLdR(X) ∈

(
dgcAlgs≥ 0

R

)
proj (using that every X ∈ ∆SetsQu is already cofibrant (368)). This is

provided by CE(lX), according to (161) and by Prop. 3.42.

Proposition 3.70 (Rational homotopy groups in the rational Whitehead L∞ algebra).
Let X ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50).

(i) If X is simply connected, π1(X) = 1 (Example 3.52), then there is an isomorphism of graded vector spaces (Def. 3.2)
between the graded vector space underlying (98) the Whitehead L∞-algebra lX (Prop. 3.68) and the rationalized homotopy
groups of the based loop space ΩX:

Whitehead
L∞-algebra

lX '

rationalized
homotopy groups

π•(ΩX)⊗ZR ∈ GrdVectSp≥ 0
R .

(ii) If π1(X) is not necessarily trivial but abelian, then this statement still holds with lX replaced by its homology with respect
to the unary differential [−] (100).
(iii) If π1(X) is not abelian, then (ii) still holds in degrees ≥ 2.
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Proof. Under translation through Prop. 3.68 and Def. 3.25, and using π•(ΩX) ' π•+1(X), claim (i) is equivalent to the
existence of a dual isomorphism:

CE(lX)/
CE(lX)2 ' HomZ

(
π•(X), R

)
∈ GrdVectSp≥ 0

R , (163)

where the left hand side denotes the graded vector space of indecomposable elements in the Chevalley-Eilenberg algebra (the
α
(i)
ni in (115)). In this form, this is the statement of [BG76, Theorem 11.3 with Def. 6.12], in the special case when, with

π1(X) = 1, the unary differential [−] in lX vanishes (Example 3.47). The generalizations follow analogously.

Remark 3.71 (Equivalent L∞-structures on Whitehead products). The original discussion of the Whitehead algebra structure
on the homotopy groups of a space is in terms of differential-graded Lie algebras ([Hil55, Theorem B]), as are the Quillen
models of rational homotopy theory [Qu69].
(i) Notice that dg-Lie algebras (Example 3.26) and L∞-algebras with minimal CE-algebra (Def. 3.46) are two opposite classes
of L∞-algebras: The former has k-ary brackets (100) only for k≤ 2, the latter only for k≥ 2 (in the simply connected case, by
Example 3.47). Yet, quasi-isomorphisms connect algebras in one class to those in the other ([KM95, p. 28]), such as to make
their homotopy theories equivalent ([Pr10], see also Rem. 3.45). The transmutation of dg-Lie- into minimal L∞-algebras is
described in [BBMM16, Thm. 2.1]; that from L∞- to dg-Lie-algebras in [FRS13, §1.0.2].
(ii) The minimal L∞-algebra structure on lX that we obtained in Prop. 3.68, 3.70, has the property that its k-ary brackets are,
up to possibly a sign, equal to the order-k higher Whitehead products on X [BBMM16, Prop. 3.1].

Examples of rationalizations over the real numbers. The following fundamental examples of rationalizations serve to
illustrate the above notation and terminology and to highlight that rationalization over the real numbers (Def. 3.61), even
though it is not a localization (Rem. 3.74 below), still acts as real-ification on the homotopy groups of Eilenberg-MacLane
spaces (Ex. 3.73 below) and, more generally, of loop spaces (Ex. 3.76 below). This is the crucial fact that makes the
real character map on non-abelian cohomology in §4 reduce to the traditional Chern-Dold characters on abelian generalized
cohomology in §4.1.

Example 3.72 (R-Rationalization of n-spheres (e.g. [Me13, §1.2])). The Serre finiteness theorem (see [Ra86, Thm. 1.1.8])
says that the homotopy groups of n-spheres for n≥ 1 are of the form

πn+k
(
Sn) '


Z | k = 0

Z⊕fin | k = 2m and n = 2m−1

fin | otherwise

(164)

where “fin” stands for some finite group. Since finite groups are pure torsion, hence have trivial rationalization, this means
that the rational homotopy groups of spheres are:

πn+k
(
Sn)⊗Z R '


R | k = 0

R | k = 2m and n = 2m−1

0 | otherwise .

Moreover, the fact that ordinary cohomology is represented by Eilenberg-MacLane spaces (Example 2.2) means that

Hk(Sn; R
)
'

{
R | k ∈ {0,n}
0 | otherwise.

(165)

With this, Prop. 3.70 together with Prop. 3.55 implies that the Whitehead L∞-algebras of spheres (Prop. 3.68) are as follows:

CE
(
lSn) ' R

[
ωn
]/(

d ωn = 0.
)

if n is odd (166)

and

CE
(
lSn) ' R

[
ω2n−1

ωn

]/(d ω2n−1 =−ωn∧ωn
d ωn = 0

)
if n > 1 is even (167)

Example 3.73 (R-Rationalization of Eilenberg-MacLane spaces). Since the homotopy types of Eilenberg-MacLane-spaces
K(A,n+1) = Bn+1A (see (22)) are fully characterized by their homotopy groups (for discrete abelian groups A, e.g. [AGP02,
§6]))
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πk
(
Bn+1A

)
'

{
A | k = n+1

0 | k 6= n+1

we have, for n ∈ N:
(i) Their Whitehead L∞-algebra (Prop. 3.68) is, by Prop. 3.70, the direct sum of dim

(
A⊗Z R

)
copies of the line Lie n-algebra

(Def. 3.27):
l
(
Bn+1A

)
' bn(A⊗Z R

)
'

⊕
dim(A⊗ZR)

bnR . (168)

(ii) Their rationalization over R (Def. 3.61) is the Eilenberg-MacLane space on the realification of A:

LR
(
Bn+1A

)
' Bn+1(A⊗Z R

)
∈ Ho

(
TopSpQu

)
. (169)

Observe how this is implied via the machinery that we have set up above: For all k ∈ N+ we have:

πk

(
LR
(
Bn+1A

))
= Ho

(
TopSp∗/Qu

)(
Sk, LR

(
Bn+1A

))
by def. of πk(−)

= Ho
(
TopSp∗/Qu

)(
Sk, BexpPL

(
CE(bn(A⊗Z R))

))
by Prop. 3.69 with (168)

' Ho
((

dgcAlgs≥ 0
R

)/R
proj

)(
CE
(
bn(A⊗Z R)

)
, Ω•PLdR

(
Sk
)
×

Ω•PLdR(∗)
R
)

by Props. 3.59, A.23, A.25

' ∏
dim(A⊗ZR)

Ho
((

dgcAlgs≥ 0
R

)/R
proj

)(
CE
(
bnR

)
, Ω•PLdR

(
Sk
)
×

Ω•PLdR(∗)
R
)

by (108)

' ∏
dim(A⊗ZR)

Hn+1
(
Sk; R

)
by Lem. 3.57

'
{

A⊗Z R | k = n+1
0 | k 6= n+1 by (165) .

The same computation, but with Sk replaced by the point ∗ and without the slicing, shows that π0
(
LR
(
Bn+1A

))
= ∗.

Remark 3.74 (Failure of R-rationalization to be idempotent). Example 3.73 reveals how rationalization over R (or over any
field k strictly containg the rational numbers, Def. 3.61) is not idempotent, hence not a localization (see also [BG76, Rem.
9.7]): Applying (169) twice yields

LR ◦LR
(
Bn+1A

)
' Bn+1(A⊗ZR⊗ZR

)
, (170)

but R⊗Z R '/ R, in contrast to Q⊗Z Q ' Q (reflecting that Q is a solid ring [BK72a, §2.4], while R is not).

Example 3.75 (R-Rationalization of complex projective spaces). From the defining homotopy fiber sequence for complex
projective n-space CPn, n ∈ N (e.g. [BT82, Ex. 14.22])

S1 S2n+1 CPn

U(1) U(n+1)/U(n) SU(n+1)/U(n)
(171)

the corresponding long exact sequence of homotopy groups (e.g. [tD08, Thm. 6.1.2]) yields the following homotopy groups:

πk
(
CPn) =


∗ | k ∈ {0,1}
Z | k ∈ {2,2n+1}
πk
(
S2n+1

)
| k ≥ 2n+1

0 | otherwise .

, Hk(CPn; R
)
'

{
R | k ∈ {0,1,2, · · · ,2n}
0 | otherwise.

(172)

Since these homotopy groups (172) in degrees ≥ 2n+1 are finite, hence rationally trivial, by Ex. 3.72, it follows, with Prop.
3.70 and Prop. 3.55, that the Chevalley-Eilenberg algebra of the Whitehead L∞-algebra of CPn (Prop. 3.68) has exactly one
generator f2 in degree 2 and one generator h2k+1 in degree 2k+1. Moreover, since the cohomology groups are (e.g. [BT82,
Ex. 14.22.1]) as shown on the right of (172), the first of these must be the closed generator of the cohomology ring, and
the differential of the latter must exhibit the vanishing of its (n+1)st cup product in cohomology (see also, e.g., [FHT00, p.
203][Me13, §5.3]):

CE
(
lCPn) = R

[
h2n+1,
f2

]/( d h2n+1 =

n+1 factors︷ ︸︸ ︷
f2∧·· ·∧ f2

d f2 = 0

)
. (173)
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Example 3.76 (R-Rationalization of loop spaces). The minimal Sullivan model (Def. 3.46) of a loop space A ' ΩA′ of
Q-finite type (which exists by Ex. 3.52) has vanishing differential (e.g. [FHT00, p. 143]). Therefore, Prop. 3.70 implies that
the rational Whitehead L∞-algebra lA (Prop. 3.68) of A is the direct sum of line Lie n-algebras bnR (Example 3.27) and its
Chevalley-Eilenberg algebra (Def. 3.24) is the tensor product of those of the summands:

lA '
⊕
n∈N

bn(
πn+1(A)⊗Z R

)
∈ L∞Algs≥ 0,nil

R,fin , CE
(
lA
)
'
⊗
n∈N

CE
(
bn(

πn+1(A)⊗Z R
))

∈ dgcAlgs≥ 0
R .

Noticing that the tensor product of dgc-algebras is the coproduct in the category of dgcAlgs≥ 0
R (Ex. 3.22), and hence the

Cartesian product in the opposite category, the right adjoint functor BexpPL (144) preserves this, so that

BexpPL ◦ CE
(
lA
)
' ∏

n∈N

(
BexpPL ◦ CE

(
bn(πn+1(A)⊗Z R)

))
∈ Ho

(
TopSpQu

)
.

Finally, by Ex. 3.73, this means that the rationalization over R (Def. 3.61) of a loop space is a Cartesian product of Eilenberg-
MacLane spaces:

A ' ΩA′ ⇒ LR(A) ' ∏
n∈N

Bn+1(
πn+1(A)⊗Z R

)
. (174)

Example 3.77 (R-Rationalization of spectra). For E a spectrum (Ex. 2.13), Ex. 3.76 says that its degree-wise rationalization
(Def. 3.53) and R-rationalization (Def. 3.61) are both direct sums of the same form of rational Eilenberg-MacLane spectra:

LQ(E) ' ⊕
k∈Z

H
(
π•(E)⊗Z Q

)
LR(E) ' ⊕

k∈Z
H
(
π•(E)⊗Z R

)
,

(175)

But rationalization of spectra is also known (review in [La20, Ex. 8.12][Ba14, Ex. 1.7 (4)]) to be given by forming the smash
product of spectra (e.g. [EKMM97]) with the rational Eilenberg-MacLane spectrum:

LQ(En) '
(
E ∧HQ

)
n . (176)

Observing with(175) that
LR(E) '

(
LQ(E)

)
∧HQ HR . (177)

this implies that the componentwise R-rationalization (Def. 3.61) of spectra is analogously given by the smash product with
the real Eilenberg-MacLane:

LR(E) '
(
LQ(E)

)
∧HQ HR by (176)

' E ∧HQ∧HQ HR by (177)

' E ∧HR .

(178)

It is in this smashing form that R-rationalization of spectra traditionally appears in the construction of differential generalized
cohomology theories, see Ex. 4.39 below.

Non-abelian real cohomology. Using these R-rational models, we obtain the first key concept formation towards the char-
acter map:

Definition 3.78 (Non-abelian real cohomology). Let X ,A ∈ TopSp. Then the non-abelian real cohomology of X with co-
efficients in A is the non-abelian cohomology (Def. 2.1) of X with coefficients in the R-rationalization LRA (Def. 3.61)

H
(
X ; LRA

)
:= Ho

(
TopSpQu

)(
X , LRA

)
. (179)

Example 3.79 (Non-abelian real cohomology subsumes ordinary real cohomology). For n∈N, non-abelian real cohomology
(Def. 3.78) with coefficients in the R-rationalized classifying space LR

(
Bn+1Z

)
' Bn+1R (by Ex. 3.73) is naturally equivalent

(by Ex. 2.2) to ordinary real cohomology in degree n:

H
(
X ; LRBn+1Z

)
' H

(
X ; Bn+1R

)
' Hn+1(X ; R) .

More generally:

Proposition 3.80 (Non-abelian real cohomology with coefficients in loop spaces).
Let A ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) such that it admits loop space structure, hence such that there exists A′ with

A ' ΩA′ ∈ Ho
(
TopSpQu

)
.

Then the non-abelian real cohomology (Def. 3.78) with coefficients in LRA is naturally equivalent to ordinary real cohomology
with coefficients in the rationalized homotopy groups of A:

H
(
X ; LRA

)
'

⊕
n∈N

Hn+1(X ; πn+1(A)⊗Z R
)
. (180)
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Proof. This follows from the following sequence of natural bijections:

H
(
X ; LRA

)
' H

(
X ; ∏

n∈N
Bn+1

(
πn+1(A)⊗Z R

))
by Ex. 3.76

' ∏
n∈N

H
(

X ; Bn+1
(
πn+1(A)⊗Z R

))
by Def. 2.1 & Prop. A.19

= ∏
n∈N

Hn+1
(
X ; πn+1(A)⊗Z R

)
by Ex. 2.2

=
⊕

n∈N
Hn+1

(
X ; πn+1(A)⊗Z R

)
by finite type .

Relative rational Whitehead L∞-algebras. In parameterized generalization of Prop. 3.68, we have:

Proposition 3.81 (Relative real Whitehead L∞-algebras). For A,B,F ∈Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) and p a Serre fibration

(Example A.7) from A to B with fiber F
F

fib(p) // A
p ∈ Fib��
B

there exists a nilpotent L∞-algebra (Def. 3.34)
lBA ∈ L∞Algs≥ 0,nil

R,fin , (181)

unique up to isomorphism, whose Chevalley-Eilenberg algebra (Def. 3.25) is the relative minimal model (Def. 3.46, Prop.
3.49) of the PL de Rham complex of p (Def. 3.54), relative to CE(lB) (from Prop. 3.68):

CE(lBA) :=
(
Ω•PLdR(A)

)
minCE(lB) ∈W

pminB
A // Ω•PLdR(A)

CE(lB)
7 Wrelative minimal model CE(lp)

jj

∈W

pmin
B // Ω•PLdR(B) .

Ω•PLdR(p)
OO

(182)

Proof. By the PL de Rham theorem (Prop. 3.55) and the assumption that A and B are connected, it follows that we have
HΩ0

PLdR(A) = R and HΩ0
PLdR(B) = R . Moreover, by the assumption that p is a Serre fibration with connected fiber, it

follows that H1(Ω•PLdR(p)) is injective (e.g. [FHT00, p. 196]). Therefore, Prop. 3.49 applies and says that
(
Ω•PLdR(A)

)
minB
∈

SullModels≥ 1
R exists, and is unique up to isomorphism. With this, the equivalence (120) says that lBA exists and is unique up

to isomorphism.

In parameterized generalization of Prop. 3.69 we have:

Proposition 3.82 (Relative R-rationalization as integration of relative Whitehead L∞-algebras). For a Serre fibration A
p
−! B

as in Prop. 3.81, its rationalization over the real numbers (Def. 3.61) is equivalently the image under Bexp (144) of the image
under forming CE-algebras (161) of its relative Whitehead L∞-algebra (181):

LR

( A

B
p

)
'

BexpPLCE(lB A)

BexpPLCE(lB)
BexpPLCE(lp)

Proof. As in Prop. 3.69, now appealing to Prop. 3.81 for the (co)fibrant replacement.

Lemma 3.83 (Minimal relative Sullivan models preserve homotopy fibers [FHT00, §15 (a)][FHT15, Thm. 5.1]). Consider
F,A,B ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) and let p be a Serre fibration from A to B (Ex. A.7) such that the homology groups

H•(F,R) of the fiber are nilpotent as π1(B)-modules (for instance in that B is simply-connected or that the fibration is
principal). Then the cofiber of the minimal relative Sullivan model for p (182) is the minimal Sullivan model (161) for the
homotopy fiber F (Def. A.27):

F
fib(p) // A

p ∈Fib
��

CE(lF) oo
cofib(CE(lp))

CE
(
lBA
)

OO
CE(lp)
� ?

B CE(lB)
(183)
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Twisted non-abelian real cohomology.

Proposition 3.84 (R-Rationalization of local coefficients – the fiber lemma [BK72b, §II]). Let

A // A�G
ρ��

BG
be a local coefficient bundle (Def. 2.29) such that all spaces are connected, nilpotent and of Q-finite type: A, BG, A�G ∈
Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50), and such that the action of π1(BG) on H•(A,R) is nilpotent (for instance in that BG is simply

connected). Then: R-Rationalization (Def. 3.61) preserves the homotopy fiber:

BexpPLCE(lA) BexpPLCE
(
lBGA�G

)
LRA

(
LR
)
�
(
LRG

)
A A�G

BexpPLCE(lBG)

LR(BG)

BG

BexpPl

(
cof(CE(lp))

)

BexpPLCE(lp)

hofib(LRp)

LR(ρ)

hofib(ρ)

DηR
A

ρ

DηR
A�G

DηR
BG

∈ Ho
(
∆SetsQu

)
(184)

Proof. By Prop. 3.81, Prop. 3.82 and since BexpPL preserves fibrations, being a right adjoint, the homotopy fiber of LR(p)
is the image under BexpPL of the cofiber of CE(lp). That this is a claimed is the content of Lemma 3.83.

Due to Prop. 3.84, it makes sense to say, in generalization of Def. 3.78:

Definition 3.85 (Twisted non-abelian real cohomology). Let X ∈ TopSp and let A�G
ρ // BG be a local coefficient bundle

(Prop. 2.28, Def. 2.29) in Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50). Then the twisted non-abelian real cohomology of X with local co-

efficients ρ is the twisted non-abelian LRA-cohomology (Def. 2.29) of X with coefficients in the rationalized local coefficient
bundle LR(ρ) from Prop. 3.84:

Hτ
(
X ; LRA

)
:= Ho

((
∆SetsQu

)/LRBG
)(

τ , LR(ρ)
)
.

3.3 Non-abelian de Rham theorem
We establish non-abelian de Rham theory for differential forms with values in (nilpotent) L∞-algebras, following [SSS09a]
[FSSt10]. The main result is the non-abelian de Rham theorem, Theorem 3.96, and its generalization to the twisted non-
abelian de Rham theorem, Theorem 3.117.

L∞-Algebra valued differential forms.

Definition 3.86 (Flat L∞-algebra valued differential forms [SSS09a, §6.5][FSSt10, §4.1]).
(i) For X ∈ SmoothManifold and g ∈ L∞Algs≥ 0

R,fin (Def. 3.25), a flat g-valued differential form on X is a morphism of dgc-
algebras (Def. 3.17)

Ω•dR(X) oo
A CE(g) ∈ dgcAlgs≥ 0

R (185)

to the smooth de Rham dgc-algebra of X (Example 3.23) from the Chevalley-Eilenberg dgc-algebra of g (Def. 3.25).
(ii) We write

ΩdR(X ; g)flat := dgcAlgs≥ 0
R

(
CE(g) , Ω

•
dR(X)

)
(186)

for the set of all flat g-valued forms on X .
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Example 3.87 (Flat Lie algebra valued differential forms). Let g ∈ LieAlgebrasR,fin be a Lie algebra (105) with Lie bracket
[−,−]. Then a flat g-valued differential form in the sense of Def. 3.86 is the traditional concept: a g-valued 1-form satisfying
the Maurer-Cartan equation:

Ω
•
dR(X ; g)flat '

{
A ∈Ω

1
dR(X)⊗g

∣∣ dA+[A∧A] = 0
}
. (187)

One way to see this is to appeal to the classical fact that the Chevalley-Eilenberg algebra of a finite-dimensional Lie algebra
(Example 3.24) is isomorphic to the dgc-algebra of left invariant differential forms on the corresponding Lie group G, which
is generated from the Maurer-Cartan form θ ∈Ω1

dR(G)⊗g satisfying θ|TeG = idg and dθ = [θ ∧θ ]. More explicitly, for {va}
a linear basis for g (94) with structure constants { f c

ab} (95), we see from (96) that a dgc-algebra homomorphims (185) has the
following components (second line) and constraints (third line):

Ω•dR(X) oo
A

flat Lie algebra valued differential form

R
[
{θ (a)

1 }
]/(

d θ
(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

)
' CE(g) .

A(c) oo components �
_

d
��

θ
(c)
1_

d��

dA(c) constraints f c
ab A(b)∧A(a) oo � f c

ab θ
(a)
1 ∧θ

(b)
1

(188)

Example 3.88 (Ordinary closed forms are flat line L∞-algebra valued forms). For n ∈ N, consider g = bnR the line Lie
(n+ 1)-algebra (Example 3.27). Then the corresponding flat g-valued differential forms (Def. 3.86) are in natural bijection
to ordinary closed (n+1)-forms:

ΩdR(X ; bnR)flat ' Ω
n+1
dR (X)closed . (189)

That is, by (107), we see that the elements on the left of (189) have the following component (second line) subject to the
follows constraint (third line):

Ω•dR(X)

flat
line Lie (n+1)-algebra-valued

differential form // R[cn+1]
/
(d cn+1 = 0)' CE(bnR) .

Cn+1 oo
component

_
d ��

cn+1_
d��

dCn+1
constraint 0 oo � 0

(190)

Example 3.89 (Flat String Lie 2-algebra valued differential forms). Flat L∞-algebras valued forms (Def. 3.86) with values
in a String Lie 2-algebra stringg (Example 3.28) are pairs consisting of a flat g-valued 1-form A1 (Example 3.87) and a
coboundary 2-form B2 for its Chern-Simons form CS(A) := c

〈
A∧ [A∧A]

〉
:

ΩdR
(
X ; stringg

)
flat '

{
B2,

A1
∈Ω

•
dR(X)

∣∣∣∣∣ d B2 =
1
c CS(A) ,

d A1 =−[A1∧A1]

}
.

Namely, from (111) we see that in degree 1 the components of and constraints on such a differential form datum are exactly
as in (188), while in degree 2 they are as follows:

Ω•dR(X) oo
flat String Lie 2-algebra valued form

R

[
b2,

{θ (a)
1 }

]/( d b2 = µabc θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1

dθ
(c)
1 = f c

ab θ
(b)
1 ∧θ

(a)
1

)
' CE

(
stringg

)
.

B2 oo
component in degree 2 �

_
d
��

b2_
d��

dB2
constraint

µabc A(c)
1 ∧A(b)

1 ∧A(a)
1
oo �

µabc θ
(c)
1 ∧θ

(b)
1 ∧θ

(a)
1

(191)

Example 3.90 (Flat sphere-valued differential forms). Flat L∞-algebras valued forms (Def. 3.86) with values in the rational
Whitehead L∞-algebra (Prop. 3.68) of a sphere (Ex. 3.72) of positive even dimension 2k are pairs consisting of a closed
differential 2k-form and a (4k−1)-form whose differential equals minus the wedge square of the 2k-form:

ΩdR
(
−; lS2k) ' { G4k−1,

G2k
∈ Ω

•
dR(X)

∣∣∣∣d G4k−1 =−G2k ∧G2k,

d G2k = 0

}
.

Namely, from (167) one sees that the components of and the constraints on an lS2k-valued form are as follows:
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Ω•dR
(
X
)
oo flat lS2k-valued form R

[
ω4k−1,

ω2k

]/(d ω4k−1 =−ω2k ∧ω2k,

d ω2k = 0

)
= CE

(
lS2k
)

G2k

d ��

oo component in degree 2k �
ω2k_

d��
d G2k

constraint 0 oo � 0

G4k−1_
d ��

oo component in degree 4k−1 �
ω4k−1_
��

d G4k−1
constraint−G2k ∧G2k oo

� −ω4k ∧ω4k

(192)

For 2k = 4 this is the structure of the equations of motion of the C-field in 11-dimensional supergravity (modulo the Hodge
self-duality constraint G7 = ?G4) [Sa13, §2.5].

Example 3.91 (PL de Rham right adjoint via L∞-algebra valued forms). For n ∈ N, the right adjoint functor in the PS de
Rham adjunction (156) sends the Chevalley-Eilenberg algebra (Def. 3.25) of any g ∈ L∞Algs≥ 0,nil

R,fin (Def. 3.34) to a simplicial
set of flat g-valued differential forms (Def. 3.86):

[BexpPL(g)(Rn) := BexpPS,n
(
CE(g)

)
: [k] 7−! ΩdR

(
Rn×∆

k; g
)

flat ∈ ∆Sets

(by direct comparison of (157) with (186)). Regarded as a simplicial presheaf over CartSp (Def. 420), this construction is the
moduli ∞-stack of flat L∞-algebra valued differential forms (see §4.3 below).

Non-abelian de Rham cohomology.

Definition 3.92 (Coboundaries between flat L∞-algebra valued forms). Let X ∈SmthMfds and (from Def. 3.25) g∈L∞Algs≥ 0
R,fin.

For
A(0), A(1) ∈ ΩdR(X ; g)flat

a pair of flat g-valued differential forms on X (Def. 3.86), we say that a coboundary between them is a flat g-valued differential
form on the cylinder manifold over X (its Cartesian product manifold with the real line):

Ã ∈ Ω(X×R; g)flat (193)
such that its restrictions along

X ' X×{0} �
� iX

0 // X×R oo
iX
1 ? _ X×{1} ' X

are equal to A(0) and to A(1), respectively:

(iX
0 )
∗Ã = A(0) and (iX

1 )
∗Ã = A(1) . (194)

If such a coboundary exists, we say that A(0) and A(1) are cohomologous, to be denoted

A(0) ∼ A(1) .

Definition 3.93 (Non-abelian de Rham cohomology). Let X ∈ SmthMfds and g ∈ L∞Algs≥ 0
R,fin (Def. 3.25). Then the non-

abelian de Rham cohomology of X with coefficients in g is the set

HdR(X ; g) :=
(
ΩdR(X ; g)flat

)
/∼ (195)

of equivalence classes with respect to the coboundary relation from Def. 3.92 on the set of flat g-valued differential forms on
X (Def. 3.86).

We recall the following basic facts (e.g. [GT00, Rem 3.1]):

Lemma 3.94 (Fiberwise Stokes theorem and Projection formula). Let X be a smooth manifold and let F be a compact smooth
manifold with corners, e.g. F = ∆k a standard k-simplex, which for k = 1 is the interval F = [0,1].

Then fiberwise integration over F of differential forms on the Cartesian product manifold X×F

Ω•dR(X×F)

∫
F // Ω•−dim(F)

dR (X) e.g. Ω•dR(X×R)
∫
[0,1] // Ω•−1

dR (X)

satisfies, for all α ∈Ω•dR(X×F) and β ∈Ω•dR(X):
(i) The fiberwise Stokes formula:
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∫
F

dα = (−1)dim(F) d
∫

F
α +

∫
∂F

α e.g. d
∫
[0,1]

α = (iX1 )
∗
α − (iX0 )

∗
α −

∫
[0,1]

dα , (196)

where

X ' X×{0} �
� iX0 // X×R oo

iX1 ? _ X×{1} ' X
are the boundary inclusions.
(ii) The projection formula∫

F

(
pr∗X β

)
∧α = (−1)dim(F)deg(β )

β ∧
∫

F
α , e.g.

∫
[0,1]

(
pr∗X β

)
∧α = (−1)deg(β )

β ∧
∫
[0,1]

α , (197)

where
X×F

prX // X

is projection onto the first factor.

Proposition 3.95 (Non-abelian de Rham cohomology subsumes ordinary de Rham cohomology). For any n ∈N, let g= bnR
be the line Lie (n+1)-algebra (Example 3.27). Then the non-abelian de Rham cohomology with coefficients in g (Def. 3.93)
is naturally equivalent to ordinary de Rham cohomology in degree n+1:

HdR(−; bnR) ' Hn+1
dR (−) . (198)

Proof. From Example 3.88, we know that the canonical cocycle sets are in natural bijection

ΩdR(X ; bnR)flat ' Ω
n+1
dR (X)closed .

Therefore, it just remains to see that the coboundary relations in both cases coincide. By the explicit nature (190) of the above
natural bijection and by the Definition 3.92 of non-abelian coboundaries, we hence need to see that a pair of closed forms

C(0)
n+1, C(1)

n+1 ∈Ω
n+1
dR (X)closed

has a de Rham coboundary, i.e.,

∃ hn ∈ Ω
n
dR(X) , such that C(0)

n+1 +dhn = C(1)
n+1 , (199)

precisely if the pair extends to a closed (n+1)-form on the cylinder over X , as in (193) (194):

∃ C̃n+1 ∈ Ω
n+1
dR (X×R)closed , such that

(
iX
0
)∗C̃n+1 = C(0)

n+1 and
(
iX
1
)∗C̃n+1 = C(1)

n+1 . (200)

That (199)⇔ (200) is a standard argument: Let t denote the canonical coordinate function on R. In one direction, given hn
as in (199), the choice C̃n+1 := (1− t)pr∗X

(
C(0)

n+1

)
+ t pr∗X

(
C(1)

n+1

)
+dt ∧pr∗X

(
hn
)

clearly satisfies (200). In the other direction, given C̃n+1 as in (200), the choice

hn :=
∫
[0,1]

C̃n+1

satisfies (199), by the fiberwise Stokes theorem (Lemma 3.94).

The non-abelian de Rham theorem.

Theorem 3.96 (Non-abelian de Rham theorem). Let X ∈ Ho
(
∆SetsQu

)
and A ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50), and let X

admit the structure of a smooth manifold. Then the non-abelian de Rham cohomology (Def. 3.93) of X with coefficients in
the real Whitehead L∞-algebra lA (Prop. 3.68) is in natural bijection with the non-abelian real cohomology (Def. 3.78) of X
with coefficients in LRA (Def. 3.61):

H
(
X ; LRA

)
' HdR(X ; lA) . (201)

Proof. This follows by the following sequence of bijection:

H
(
X ; LRA

)
= Ho

(
∆SetsQu

)(
X , LRA

)
by Def. 3.78

' Ho
((

dgcAlgs≥ 0
R

)
proj

)(
Ω•PLdR(A) , Ω•PLdR(X)

)
by Def. 3.61 & Prop. 3.59

' Ho
((

dgcAlgs≥ 0
R

)
proj

)(
CE(lA) , Ω•dR(X)

)
by Prop. 3.68 & Lem. 3.99

' HdR(X ; lA) by Lem. 3.98.

(202)

The two lemmas invoked are proved next.
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Lemma 3.97 (De Rham complex over cylinder of manifold is path space object). For X ∈ SmthMfds, consider the following
morphisms of dgc-algebras (Def. 3.17)

Ω•dR(X)
(prX )

∗
// Ω•dR

(
X×R

) (i∗0, i
∗
1) // Ω•dR(X)⊕Ω•dR(X) (203)

(from the de Rham complex of X (Example 3.23) to that of its cylinder manifold X×R, to its Cartesian product with itself, by
Example 3.22), given by pullback of differential forms along these smooth functions:

X oo
prX X×R oo

(i0, i1) ? _
(
X×{0}

)
t
(
X×{1}

)
' X tX .

This is a path space object (Def. A.12) for Ω•dR(X) in
(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38).

Proof. (i) It is clear by construction that the composite morphism is the diagonal.
(ii) That (prX )

∗ is a weak equivalence, hence a quasi-isomorphism, follows from the de Rham theorem, using that ordinary
cohomology is homotopy invariant: H•(X×R;R)' H•(X ;R).
(iii) That (i∗0, i

∗
1) is a fibration, namely degreewise surjective, is seen from the fact that any pair of forms on the boundaries

X ×{0}, X ×{1} may be smoothly interpolated to zero along any small enough positive parameter length, and then glued to
a form on X×R.

Lemma 3.98 (Non-abelian de Rham cohomology via the dgc-homotopy category). Let X ∈ SmthMfds and g ∈ L∞Algs≥ 0,nil
R,fin

(Def. 3.34). Then the non-abelian de Rham cohomology of X with coefficients in g (Def. 3.93) is in natural bijection with the
hom-set in the homotopy category of

(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38) from CE(g) (Def. 3.25) to Ω•dR(X) (Example 3.23):

HdR
(
X ; g

)
' Ho

((
dgcAlgs≥ 0

R

)
proj

)(
CE(g) , Ω

•
dR(X)

)
. (204)

Proof. Consider a pair of dgc-algebra homomorphisms

A(0), A(1) ∈ dgcAlgs≥ 0
R

(
CE(g) , Ω

•
dR(X)

)
(205)

hence of flat g-valued differential forms, according to Def. 3.86. Observe that:
(i) CE(g) is cofibrant in

(
dgcAlgs≥ 0

R

)
proj (121). (by Prop. 3.42, and since g is assumed to be nilpotent (119));

(ii) Ω•dR(X) is fibrant in
(
dgcAlgs≥ 0

R

)
proj (121). (by Remark 3.40);

(iii) A right homotopy (Def. A.14) between the pair (205) of morphisms, with respect to the path space object Ω•dR(X×R)
from Lemma 3.97, namely a morphism Ã making the following diagram commute

Ω•dR(X)
OO

i∗0

jj
A(0)

Ω•dR(X×R)
i∗1 ��

oo Ã CE(g)

Ω•dR(X)
tt A(1)

(206)

is manifestly the same as a coboundary Ã between the corresponding flat g-valued forms according to Def. 3.92.
Therefore, Prop. A.18 says that the quotient set (195) defining the non-abelian de Rham cohomology is in natural bijection
to the hom-set in the homotopy category.

Lemma 3.99 (PL de Rham complex on smooth manifold is equivalent to smooth de Rham complex). Let X be a smooth
manifold. Then
(i) There exists a zig-zag of weak equivalences (Def. 3.37) in

(
dgcAlgs≥ 0

R

)
proj (121) between the smooth de Rham complex of

X (Example 3.23) and the PL de Rham complex of its underlying topological space (Def. 3.54).
(ii) In particular, both are isomorphic in the homotopy category:

X smooth manifold ⇒ Ω
•
dR(X) ' Ω

•
PLdR(X) ∈ Ho

((
dgcAlgs≥ 0

R

)
proj

)
.

Proof. Let Ω•PSdR(−) (for “piecewise smooth”) be defined as the PL de Rham complex in Def. 3.54, but with smooth
differential forms on each simplex. Notice that this comes with the canonical natural inclusion

Ω•PLdR(−)
� � ipoly // Ω•PSdR(−) .

Let then Tr(X) ∈ ∆Sets be any smooth triangulation of X (Ex. A.42). This means that we have a homeomorphism out of its
geometric realization (403) to X
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|Tr(X)|
p

homeo
// X , (207)

which restricts on the interior of each simplex to a diffeomorphism onto its image; and that we have an inclusion

Tr(X) �
� ηTr(X)

∈W
// Sing

(
|Tr(X)|

) Sing(p)

∈ Iso
// Sing(X) , (208)

which is a weak equivalence (by Example A.40). In summary, this gives us the following zig-zag of dgc-algebra homomor-
phisms:

Ω•PLdR
(
Tr(X)

)
ipoly

$$

Ω•dR(X)

p∗

}}
Ω•PLdR(X) = Ω•PLdR

(
Sing(X)

)
(ηS)

∗
99

Ω•PSdR
(
Tr(X)

)
Here the two morphisms on the right are quasi-isomorphisms by [GM13, Cor. 9.9] (as in Prop. 3.67). The morphism on the
left is a quasi-isomorphism because i is a weak homotopy equivalence (412) and since Ω•PLdR preserves weak equivalences
(by Lem. A.24), since it is a Quillen left adjoint (by Prop. 3.59) and since every simplicial set is cofibrant (Ex. A.8).

Flat twisted L∞-algebra valued differential forms. We generalize the above discussion to include twistings.

Definition 3.100 (Local L∞-algebraic coefficients). We say that a local L∞-algebraic coefficient bundle is a fibration

g // b̂
p��

b

(209)

in L∞Algs≥ 0
R,fin (Def. 3.25), hence a morphism such that under passage to Chevalley-Eilenberg algebras (104) we have a

cofibration
CE(g) oo

cofib(CE(p))
CE
(
b̂
)

OO
CE(p) ∈ Cof

CE(b)
(210)

in
(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38).

In generalization of Def. 3.86, we say:

Definition 3.101 (Flat twisted L∞-algebra valued differential forms).
(i) Let X ∈ SmthMfds and b̂ (209) a local L∞-algebraic coefficient bundle (Def. 3.100). For

τdR ∈ ΩdR(X ; b)flat (211)

a flat b-valued differential form on X (Def. 3.86), we say that a flat τ-twisted g-valued differential form on X is a morphism
of dgc-algebras (Def. 3.17) in the slice over CE(b)

Ω•dR(X) ii

twist

τdR

oo
flat τdR-twisted

g-valued differential form

A
CE
(
b̂
)

55
CE(p)

local
L∞-algebraic
coefficients

�'CE(b)

(212)

(ii) We write
Ω

τdR
dR (X ; g)flat :=

(
dgcAlgs≥ 0

R

)
/CE(b)(τdR , p)

for the set of all flat τdR-twisted g-valued differential forms on X .

Remark 3.102 (Underlying flat forms of flat twisted forms). Let X ∈ SmthMfds, let g // b̂
p // b be a local L∞-algebraic

coefficient bundle (Def. 3.100), and let τdR ∈ ΩdR
(
X ; b

)
. Then there is a canonical forgetful natural transformation

ΩτdR(X ; g)flat // Ω
(
X ; b̂

)
flat (213)

from flat τdR-twisted g-valued differential forms (Def. 3.101) to flat b̂-valued differential forms (Def. 3.86), given by remem-
bering only the top morphism in (212).
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Example 3.103 (L∞-coefficient bundle for H3-twisted differential forms [FSS16a, §4][FSS16b, §4][BMSS19, Lem. 2.31]).
Consider the local L∞-algebraic coefficient bundle (Def. 3.100) given by the following multivariate polynomial dgc-algebras
(Def. 3.30):

CE
(
lku1

)
= R


...

f5,

f3,

f1,

/


...
d f5 = 0
d f3 = 0
d f1 = 0

 oo ω2k+1 [ω2k+1 R


...

f5,

f3,

f1,

h3


/


...
d f5 = h3∧ f3,
d f3 = h3∧ f1,
d f1 = 0,
d h3 = 0

 = CE
(
l
(
ku1�BU(1)

))

OO
h3

7!

h3

R
[
h3
](

d h3 = 0
)
= CE

(
b2R

)
Here the rational model of the classifying space ku1 for complex topological K-theory in degree 1 and for its twisted version
is as in [FSS16a, §4][FSS16b, §4][BMSS19, Lem. 2.31]. In this case:
(i) A twist (211) is equivalently an ordinary closed 3-form form (by Example 3.88):

H3 ∈ ΩdR
(
X ; b2R

)
flat ' Ω

3
dR(X)closed . (214)

(ii) The flat τdR ∼H3-twisted lku1-valued differential forms according to Def. 3.101 are equivalently sequences of odd-degree
differential forms F2k+1 ∈Ω

2k+1
dR (X) satisfying the H3-twisted de Rham closure condition (see [RW86, (23)][GS19c]):

Ω
τdR
(
X ; lku1

)
flat '

{
F2•+1 ∈Ω

2•+1
dR

∣∣∣ d ∑
k

F2k+1 = H3∧∑
k

F2k−1

}
(215)

(where we set F2k−1 := 0 if 2k−1 < 0, for convenience of notation).

In direct generalization of Example 3.103, we have:

Example 3.104 (L∞-coefficient bundle for higher twisted differential forms [FSS18, Def. 2.14]). For r ∈ N, r ≥ 1, consider
the local L∞-algebraic coefficient bundle (Def. 3.100) given by the following multivariate polynomial dgc-algebras (Def.
3.30):

CE
(
⊕

k∈N
b2rkR

)
CE
((
⊕

k∈N
b2rkR

)
�B2r−1U(1)

)

R


...

f4r+1,

f2r+1,

f1,

/


...
d f4r+1 = 0
d f2r+1 = 0

d f1 = 0

 oo f2rk+1 [ f2rk+1 R



...
f4r+1,

f2r+1,

f1,

h2r+1


/


...
d f4r+1 = h2r+1∧ f2r+1,
d f2r+1 = h2r+1∧ f1,

d f1 = 0,
d h2r+1 = 0


OO

h2r+1

7!

h2r+1

R
[
h2r+1

](
d h2r+1 = 0

)
CE
(
b2rR

)

(216)

In this case:
(i) A twist (211) is equivalently an ordinary closed (2r+1)-form form (by Example 3.88):

H2r+1 ∈ ΩdR
(
X ; b2rR

)
flat ' Ω

2r+1
dR (X)closed . (217)

(ii) The flat τdR ∼ H2r+1-twisted ⊕
k∈N

b2rkR-valued differential forms according to Def. 3.101 are equivalently sequences of

differential forms F2r•+1 ∈Ω
2k•+1
dR (X) satisfying the H(2r+1)-twisted de Rham closure condition (228):

Ω
τdR
(
X ; ⊕

k∈N
b2rkR

)
flat '

{
F2r•+1 ∈Ω

2r•+1
dR

∣∣∣ d ∑
k

F2rk+1 = H2r+1∧∑
k

F2rk−1

}
(218)

(where we set F2rk−1 := 0 if 2rk−1 < 0, for convenience of notation).

In twisted generalization of Example 3.90, we have the following:
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Example 3.105 (Flat twisted differential forms with values in Whitehead L∞-algebras of spheres and twistor space). The
L∞-algebraic local coefficient bundles (Def. 3.100) given as the relative Whitehead L∞-algebras (Prop. 3.81) of the local
coefficient bundles (76) for twisted and twistorial Cohomotopy (Example 2.45) are as shown on the right of the following
diagram [FSS19b, Lem. 3.19][FSS20, Thm. 2.14]:

CE
(
lBSp(2)(CP3�Sp(2))

)
OO

(tH�Sp(2))∗

= CE(lBSp(2))


h3,

f2,

ω7,

ω4

/


d h3 = ω4− 1
4 p1− f2∧ f2

d f2 = 0
d ω7 =−ω4∧ω4 +( 1

4 p1)
2−χ8

d ω4 = 0


OO

� ?

Ω•dR(X) oo
(G4,2G7)

VV

τdR

zz

(G4,G7,F2,H3)

CE
(
lBSp(2)(S4�Sp(2))

)
BB

= CE(lBSp(2))

[
ω7,

ω4

]/(d ω7 =−ω4∧ω4 +( 1
4 p1)

2−χ8
d ω4 = 0

)
99

�+

CE
(
lBSp(2)

)
= R

[
χ8,

1
2 p1

]/(d χ8 = 0
d 1

2 p1 = 0

)
Therefore, given a smooth 8-dimensional spin-manifold X equipped with tangential Sp(2)-structure τ (74), the flat τdR-twisted
lS4- and lCP3-valued differential forms (Def. 3.101) are of the following form [FSS19b, Prop. 3.20][FSS20, Prop. 3.9]:

Ω
τdR
dR

(
X ; lS4)= {

2G7,

G4
∈Ω

•
dR(X)

∣∣∣∣d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

}

Ω
τ̃dR
dR

(
X ; lCP3)=


H3,

F2,

2G7,

G4

∈Ω
•
dR(X)

∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,
d F2 = 0,

d 2G7 =−
(
G4− 1

4

)
∧
(
G4 +

1
4

)
−χ8(∇),

d G4 = 0,


(219)

Notice:
(a) Here we are using (Example 4.31) that the de Rham image τdR of the rationalization LRτ of the twist τ is given by
evaluating characteristic forms (Def. 4.22) on any Sp(2)-connection ∇.
(b) In the second equation of (219) we are using the above minimal model for CP3�Sp(2) relative to S4�Sp(2) (instead of
relative to BSp(2)).

Twisted non-abelian de Rham cohomology. In generalization of Def. 3.92, we set:

Definition 3.106 (Coboundaries between flat twisted L∞-algebraic forms). Let X ∈ SmthMfds, let g // b̂
p // b be a local

L∞-algebraic coefficient bundle (Def. 3.100), and let τdR ∈ ΩdR(X ; b). Then for

A(0), A(1) ∈ Ω
τdR
dR (X ;g)

a pair of flat τdR-twisted g-valued differential forms on X (Def. 3.101) a coboundary between them is a coboundary

Ã ∈ ΩdR
(
X×R; b̂

)
(220)

in the sense of Def. 3.92 between the underlying flat b̂-valued forms (via Remark 3.102), such that the underling b-valued

form of H equals the pullback of the twist τdR along X×R
prX // X

p∗(H) = pr∗X (τdR) . (221)

If such a coboundary exists, we say that A(0) and A(1) are cohomologous, to be denoted

A(0) ∼ A(1) .

In generalization of Def. 3.93, we set:
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Definition 3.107 (Twisted non-abelian de Rham cohomology). Let X ∈ SmthMfds, let g // b̂
p // b be a local L∞-algebraic

coefficient bundle (Def. 3.100), and let τdR ∈ ΩdR
(
X ; b

)
. Then the τdR -twisted non-abelian de Rham cohomology of X with

coefficients in g is the set
HτdR

dR (X ; g) :=
(
Ω

τdR
dR (X ; g)flat

)
/∼ (222)

of equivalence classes with respect to the coboundary relation from Def. 3.106 on the set of flat τdR-twisted g-valued differ-
ential forms on X (Def. 3.101).

Remark 3.108 (Independence of the representative of the twist). The twisted non-abelian de Rham theorem below (Thm.
3.117) makes manifest that the twisted non-abelian de Rham cohomology in Def. 3.107 depends on the twist τdR only through
its class [τdR] ∈ HdR(X ; b) in (un-twisted) non-abelian de Rham cohomology (Def. 3.93).

The example of traditional twisted de Rham cohomology. Twisted de Rham cohomology is traditionally familiar in the
form of degree-3 twisted cohomology of even/odd degree differential forms [RW86, §III, Appendix][BCMMS02, §9.3][MaSt03,
§3][FrHT08, §2][Te04, Prop. 3.7][Cav05, §I.4][Sa10][MW11][GS19b] (which is the target of the twisted Chern character in
degree-3 twisted K-theory, see Prop. 5.6).

We discuss now how this archetypical example (Def. 3.109) and its higher-degree generalization (Def. 3.111) are sub-
sumed by our general Def. 3.107.

Definition 3.109 (Degree-3 twisted abelian de Rham cohomology). For X ∈ SmthMfds, and H3 ∈ Ω3
dR(X)closed a closed

differential 3-form, the H3-twisted de Rham cohomology of X is the cochain cohomology 15

H•+H3
dR (X) :=

ker•
(
d−H3∧ (−)

)
im•
(
d−H3∧ (−)

) (223)

of the following 2-periodic cochain complex:

· · · // ⊕
k

Ω
(n−1)+2k
dR (X)

(d−H3∧(−)) // ⊕
k

Ω
n+2k
dR (X)

(d−H3∧(−)) //⊕
k

Ω
(n+1)+2k
dR (X) // · · · . (224)

We show that this is a special case of twisted non-abelian de Rham cohomology according to Def. 3.107:

Proposition 3.110 (Twisted non-abelian de Rham cohomology subsumes H3-twisted abelian de Rham cohomology). Given
a twisting 3-form as in (214)

τdR oo //

∈ H3∈

Ω
(
X ; b2R

)
flat

' Ω3(X)closed

the τdR-twisted non-abelian de Rham cohomology (Def. 3.107) of flat twisted lku1-valued differential forms (Example 3.103)
is naturally equivalent to H3-twisted abelian de Rham cohomology (Def. 3.109) in odd degree16

b2R-twisted lku1-valued
non-abelian de Rham cohomology

HτdR
dR (X ; lku1) '

traditional H3-twisted
de Rham cohomology

H1+H3
dR (X)

Proof. By (215) in Example 3.103 the cocycle sets on both sides are in natural bijection. Hence it is sufficient to see that the
coboundary relations on the cocycle sets coincide, under this identification. In one direction, consider a coboundary in the
sense of twisted non-abelian de Rham cohomology (Def. 3.106) with coefficients as in Example 3.103:

F̃2•+1 ∈ ΩdR
(
X×R; lku1

)
.

We claim that
h2• :=

∫
[0,1]

F̃2•+1 (225)

satisfies the coboundary condition (223): (
d−H3∧

)
∑
k

h2k = ∑
k

(
F(1)

2k+1−F(0)
2k+1

)
. (226)

To see this, we may compute as follows:

15The notation “H3” for the twist (and of “H2r+1” for the higher twists later) originates in the physics literature and has made it as a
convention in differential geometry as well. Not to be confused with a third homology group, of course

16The discussion for even degrees is directly analogous and we omit it for brevity.
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d ∑
k

h2k = ∑
k

(
F(1)

2k+1−F(0)
2k+1−

∫
[0,1]

dF̃2k+1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1−

∫
[0,1]

(
pr∗X H3

)
∧ F̃2k−1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1 +H3∧

∫
[0,1]

F̃2k−1

)

= ∑
k

(
F(1)

2k+1−F(0)
2k+1 +H3∧h2k−2

)
,

where the first step is the fiberwise Stokes formula (196) together with the defining restrictions (194) of F̃2•+1; the second
step is the cocycle condition (215) on F̃2•+1 using the constraint (221); the third step is the projection formula (197); and the
last step uses again the definition (225).

Conversely, given h2• satisfying (226), we claim that

F̃2•+1 ;= (1− t)pr∗1
(
F(0)

2•+1

)
+ t pr∗1

(
F(1)

2•+1

)
+dt ∧pr∗X (h2•) (227)

is a coboundary of twisted non-abelian cocycles, in the sense of Def. 3.106: It is immediate that (227) has the required
restrictions (194). We check by direct computation that it satisfies the required differential equation:

d ∑
k

F̃2k+1 = ∑
k

(
−dt ∧pr∗X

(
F(0)

2k+1

)
+(1− t)pr∗X

(
H3
)
∧pr∗X

(
F(0)

2k−1

)
+dt ∧pr∗X

(
F(1)

2k+1

)
+ t pr∗X

(
H3
)
∧pr∗X

(
F(1)

2k−1

)
−dt ∧pr∗X

(
d h2k︸︷︷︸

=F(1)
2k+1−F(0)

2k+1+H3∧h2k

) )

= ∑
k

(
pr∗X (H3)∧ F̃2k−1

)
.

In generalization of Def. 3.109, there are twisted abelian Rham complexes with twist any odd-degree closed form [Te04,
§3][Sa09][MW11][Sa10][GS19b] (these serve as the targets for the Chern character [MMS20] on higher-twisted ordinary
K-theory [Te04][Go08][DP13][Pen16], see Example 5.8 below; and for the LSW-character on twisted higher K-theories
[LSW16, §2.1], see Prop. 5.11 below):

Definition 3.111 (Higher twisted abelian de Rham cohomology). For X ∈ SmthMfds, r ∈ N and H2r+1 ∈ Ω
2r+1
dR (X)closed a

closed differential (2r+1)-form, the H2r+1-twisted de Rham cohomology of X is the cochain cohomology

Ω
•+H2r+1
dR (X) :=

ker•
(
d−H2r+1∧ (−)

)
im•
(
d−H2r+1∧ (−)

) (228)

of the following 2r-periodic cochain complex:

· · · //⊕
k

Ω
(n−1)+2rk
dR (X)

(d−H2r+1∧(−)) //⊕
k

Ω
n+2rk
dR (X)

(d−H2r+1∧(−)) // ⊕
k

Ω
(n+1)+2rk
dR (X) // · · · .

In direct generalization of Prop. 3.110, we find:

Proposition 3.112 (Twisted non-abelian de Rham cohomology subsumes higher twisted abelian de Rham cohomology). For
r ∈ N, r ≥ 1, consider a twisting (2r+1)-form as in (217)

τdR oo //

∈ H2r+1∈

Ω
(
X ; b2rR

)
flat

' Ω2r+1
(
X
)

closed

The τdR-twisted non-abelian de Rham cohomology (Def. 3.107) of flat twisted lK2r−2(ku)1-valued differential forms (Example
3.104) is naturally equivalent to H2r+1-twisted abelian de Rham cohomology (Def. 3.111) in degree17 1 mod 2r.

twisted
non-abelian de Rham cohomology

HτdR
dR

(
X ; ⊕

k∈N
b2rkR

)
'

higher H2r+1-twisted
de Rham cohomology

H1+H2r+1
dR (X) .

17The discussion for other degrees is directly analogous, and we omit it for brevity.
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Proof. By Example 3.104, the cocycle sets on both sides are in natural bijection. Hence it remains to see that the coboundary
relations correspond to each other, under this identification. This proceeds verbatim, up to degree shifts, as in the proof of
Prop. 3.110 (which is the special case of r = 1).

Example 3.113 (Degree-1 twisted non-abelian de Rham cohomology). Def. 3.111 subsumes also the case of a twist in
(“lower”) degree 1, for k = 0. By classical theory of sheaf cohomology for local systems (see e.g. [CY18, Prop. 2.3]
following [Vo02, §II 5.1.1 ]) the degree-1 twisted de Rham cohomology in the sense of Def. 3.111 is equivalently classical
sheaf cohomology with coefficients in the flat local sections of a trivial line bundle with flat connection. Beware that for more
general local systems of lines (or even of vector spaces) some authors still speak of “twisted de Rham cohomology” (e.g.
[CY18, §2.1]), though the twist itself is then no longer in real/de Rham cohomology, whence this more general case is, in our
terminology, no longer an example of Def. 3.111, but is an example of (torsion-)twisted differential cohomology [GS18c].

Example 3.114 (Cohomology operation in (higher-) twisted de Rham cohomology). Degree-3 twisted de Rham cohomology
(Def. 3.109) supports the following twisted cohomology operations (Def. 2.42):
(i) wedge product with H3:

H•+H3
dR (X) // H•+3+H3

dR (X)

∑
k

Fk 7−! ∑
k

Fk ∧H3

(ii) wedge square: ⊕
r

H2r+H3
dR (X) // ⊕

r
H2r+2H3

dR (X)

∑
k

Fk 7−!

(
∑
k

Fk

)
∧
(

∑
k

Fk

)
(iii) compositions of these: ⊕

r
H2r+H3

dR (X) // ⊕
r

H2r+1+2H3
dR (X)

∑
k

Fk 7−!

(
∑
k

Fk

)
∧
(

∑
k

Fk

)
∧H3

It is noteworthy that terms of the form (iii) arise in type IIA string theory, together with terms of the form I8∪ [H3] (259), see
[GS19c].

This evidently generalizes to higher twisted de Rham cohomology (Def. 3.111) and higher twisted real cohomology in
the sense of [GS19b], with H3 replaced by H2r+1 for r ∈ N.

Homotopical formulation of twisted non-abelian de Rham cohomology. In preparation of the twisted non-abelian de
Rham theorem (Thm. 3.117) we give a homotopy-theoretic reformulation of twisted non-abelian de Rham cohomology (Def.
3.107):

Lemma 3.115 (Pullback to de Rham complex over cylinder of manifold is relative path space object).
Let X ∈ SmthMfds, let b ∈ L∞Algs≥ 0

R,fin (Example 3.24) with Chevalley-Eilenberg algebra CE(b) ∈ dgcAlgs≥ 0
R (103), and let{

Ω•dR(X) oo
τ∗dR CE(b)

} ∈ (dgcAlgs≥ 0
R

)CE(b)/
proj be a morphism of dgc-algebras to the de Rham complex of X (Example

3.23), regarded as an object in the coslice model category (Example A.11) of
(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38) under CE(b).

Then a path space object (Def. A.12) for τ∗dR is given by this diagram:

Ω•dR(X)
pr∗X∈W //jj

τ∗dR

Ω•dR(X×R)
(i∗0 , i

∗
1)∈Fib

//
OO

pr∗X ◦τ∗dR

Ω•dR(X) ⊕ Ω•dR(X)
33

(τ∗dR ,τ∗dR)

CE(b) ,

where the top morphisms are from (203).

Proof. It is clear that the diagram commutes, by construction. Moreover, the top morphisms are a weak equivalence followed
by a fibration in

(
dgcAlgs≥ 0

R

)
proj, by Lemma 3.97. Therefore, by the nature of the coslice model structure (Example A.11) the

total diagram constitutes a factorization of the diagonal on τ∗dR through a weak equivalence followed by a fibration, as required
(373). (To see that the composite really is still the diagonal morphism in the coslice, observe that Cartesian products in any
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coslice category are reflected in the underlying category.) It only remains to observe that τ∗dR is actually a fibrant object in the
coslice model category. But the terminal object in the coslice is clearly the unique morphism from CE(b) to the zero-algebra
(Example 3.21), so that in fact every object in the coslice is still fibrant

Ω•dR(X)
∈Fib //kk

τ∗dR

044

CE(b) (229)

as in Remark 3.40.

Proposition 3.116 (Twisted non-abelian de Rham cohomology via the coslice dgc-homotopy category). Consider X ∈
SmthMfds, let

g // b̂
p��

b

∈ L∞Algs≥ 0,nil
R,fin

be an L∞-algebraic local coefficient bundle (Def. 3.100) of nilpotent L∞-algebras (Def. 3.34) with Chevalley-Eilenberg
algebra CE(b̂), CE(b) ∈ dgcAlgs≥ 0

R (103), and let

Ω•dR(X) oo
τ∗dR CE(b) ∈

(
dgcAlgs≥ 0

R

)CE(b)/
proj (230)

be a morphism of dgc-algebras to the de Rham complex of X (Example 3.23), hence a flat b-valued differential form (Def.
3.86)

τdR ∈ ΩdR(X ; b) ,
equivalently regarded as an object in the coslice model category (Example A.11) of

(
dgcAlgs≥ 0

R

)
proj (Prop. 3.38) under CE(b).

Then the τdR-twisted non-abelian de Rham cohomology of X with coefficients in g (Def. 3.107) is in natural bijection with
the hom-set in the homotopy category (Def. A.16) of the coslice model category

(
dgcAlgs≥ 0

R

)CE(b)
proj (Example A.11) of the

projective model structure on dgc-algebras (Prop. 3.38) from CE(p) (210) to τ∗dR (230):

HτdR
dR

(
X ; g

)
' Ho

((
dgcAlgs≥ 0

R

)CE(b)/
proj

)(
CE(p) , τ

∗
dR
)
. (231)

Proof. Consider a pair of dgc-algebra homomorphisms in the coslice

Ω•dR
(
X
) rr A(0)

ll
A(1)hh

τ∗dR

CE(b̃)77

CE(p)
CE(b)

∈
(
dgcAlgs≥ 0

R

)CE(b)/
proj

(
CE(p) , τ

∗
dR
)
, (232)

hence of flat τdR-twisted g-valued differential forms, according to Def. 3.101. Observe that:

(i) CE(p) is cofibrant in
(
dgcAlgs≥ 0

R

)CE(p)/
proj , since:

(a) the initial object in the coslice is CE(b) oo id CE(b) ,
(b) the unique morphism from this object to CE(p) is

CE(b)
CE(p)∈Cof //

ii

id

CE
(
b̂
)
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CE(p)CE(b)

(233)

(c) CE(p) is a cofibration in
(
dgcAlgs≥ 0

R

)
proj, by (210), so that the diagram (233) is a cofibration in the coslice model

category, by Example A.11.
(ii) pr∗X ◦ τ∗dR is fibrant in

(
dgcAlgs≥ 0

R

)CE(b)/
proj , by (229);

(iii) A right homotopy (Def. A.14) between the pair (232) of coslice morphisms, with respect to the path space object from
Lemma 3.115, namely a Ã that makes the following diagram commute

Ω•dR(X)
OO

i∗0

jj

A(0)

Ω•dR(X×R)
ee

pr∗X ,τ
∗
dR

i∗1
��

oo Ã CE( b̂)
;;

CE(p)

Ω•dR(X)
tt

A(1)

CE( b̂)

(234)
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is manifestly the same as a coboundary Ã between the corresponding flat twisted g-valued forms according to Def.
3.106:
(a) The top part of (234) is, just as in (206), the flat twisted ĝ-valued form on the cylinder over X that is required by
(220);
(b) the bottom part of (234) is the condition (221) on the extension of the twist to the cylinder over X .

Therefore, Prop. A.18 says that the quotient set (222) defining the twisted non-abelian de Rham cohomology is in natural
bijection to the hom-set in the coslice homotopy category.

The twisted non-abelian de Rham theorem. With this in hand we may finally prove the main result in this section, gener-
alizing the non-abelian de Rham theorem (Thm. 3.96) to the twisted case:

Theorem 3.117 (Twisted non-abelian de Rham theorem). Let X ∈ Ho
(
∆SetsQu

)
equipped with the structure of a smooth

manifold, and let

A A�G

BG

local coefficient bundle ρ ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (235)

be a local coefficient bundle (43) of connected Q-finite nilpotent homotopy types (Def. 3.50) such that the action of π1(BG) =
π0(G) on the real homology groups of A is nilpotent. Consider, via Prop. 3.84, the rationalized coefficient bundle LR(ρ) with
corresponding L∞-algebraic coefficient bundle lρ (Def. 3.100) of the relative real Whitehead L∞-algebra (Prop. 3.81):

LRA //

rationalized
local coefficient bundle

(
LRA

)
�
(
LRG

)
LR(ρ)��

LRBG

a //

L∞-algebraic coefficient bundle
of Whitehead L∞-algebras

b̂ .

p
��
b

Then, for

X τ // LRBG ∈ Ho
(
∆SetsQu

)
a twist, the τ-twisted non-abelian real cohomology (Def. 3.85) of X with local coefficients in LR(ρ) (Prop. 3.84) is in natural
bijection with the τdR-twisted non-abelian de Rham cohomology (Def. 3.107) of X with local coefficients in p,

τ-twisted non-abelian
real cohomology

Hτ
(
X ; LRA

)
'

τdR-twisted non-abelian
de Rham cohomology

HτdR
dR (X ; a) , (236)

where the twists are related by the plain non-abelian de Rham theorem (Theorem 3.96):
[τ] oo //

∈ [τdR]∈

H
(
X ; LRBG

)
' HdR

(
X ; b

) (237)

Proof. This is established by the following sequence of natural bijections of hom-sets (where on the right we are illustrating
the structure of their elements):

Hτ
(
X ; LRA

)
= Ho

(
∆Sets/LRBG

Qu

)(
τ , LR(ρ)

)
=


X LR

(
A�G

)
LRBG

τ LR(ρ)


= Ho

(
∆Sets/BexpPLCE(b)

Qu

)(
τ , BexpPLCE(p)

)
=


X BexpPLCE(a)

BexpPLCE(b)
τ BexpPL(CE(p))


' Ho

(((
dgcAlgs≥ 0

R

)op
proj

)/CE(g)
)(

τ̃, CE(p)
)

=


Ω•PLdR(X) CE(b̂)

CE(b)
τ̃ CE(p)


' Ho

(((
dgcAlgs≥ 0

R

)op
proj

)/CE(g)
)(

τdR, CE(p)
)

=


Ω•dR(X) CE(b̂)

CE(b)
τ∗dR CE(p)


' HτdR

(
X ; lA

)
.
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Here the first line is the definition of twisted non-abelian real cohomology (Def. 3.85), while the second line inserts the
definition of LR (Def. 3.61), with CE(lρ) serving as the required (390) fibrant resolution (372) of Ω•PLdR(ρ).

The key step is the third line, which uses the hom-isomorphism (355) of the derived adjunction (388) of the sliced Quillen
adjunction (Ex. A.22) of the PLdR-adjunction (Prop. 3.59), using the form (385) of its left adjoint with the observation that
this is already derived (389) since τ is necessarily cofibrant, by (368) and (372).

The fourth step is composition with the slice morphism exhibiting (237)

Ω•dR(X) Ω•PLdR(X)

CE(b) ,

∈W

τ̃τ∗dR

which is an isomorphism in the homotopy category by Lemma 3.99 (as, in the untwisted case, in the last step of (202)). The
last step is Prop. 3.116,
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4 The (differential) non-abelian character map
We introduce the character map in non-abelian cohomology (Def. 4.3) and then discuss how it specializes to:

§4.1 – the Chern-Dold character on generalized cohomology;
§4.2 – the Chern-Weil homomorphism on degree-1 non-abelian cohomology;
§4.3 – the Cheeger-Simons differential characters on degree-1 non-abelian cohomology.

Definition 4.1 (Rationalization and realification in non-abelian cohomology). Let A ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50).

(i) We write

(ηQ
A )∗ :

non-abelian
cohomology

H(−; A)

non-abelian
rational cohomology

H
(
−; LQA

)H(−;η
Q
A )=H(−;Dη

PQL
A )

rationalization
(238)

for the cohomology operation (Def. 2.17) from non-abelian A-cohomology (Def. 2.1) to non-abelian rational cohomology
(Def. 3.78), which is induced (36) by the rationalization map η

Q
A (Def. 3.53), or equivalently, via the Fundamental Theorem

(Prop. 3.60), by the derived unit of the rational PL de Rham adjunction.
(ii) Analogously, we write

(ηR
A )∗ :

non-abelian
cohomology

H(−; A)

non-abelian
real cohomology

H
(
−; LRA

)H(−;DηPRL
A )

real-ification
(239)

for the cohomology operation to non-abelian real cohomology that is induced by the derived PL de Rham adjunction unit over
the real numbers into LR (151).
(iii) For, moreover, X ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50), we consider the cohomology operation shown by the dashed arrow

here:
(240)

H
(
X ; LQA

)
H
(
X ; LRA

)
Ho
((

dgcAlgs≥ 0
Q

)op
proj

)(
DΩ•PQLdR(X), DΩ•PQLdR(A)

)
Ho
((

dgcAlgs≥ 0
R

)op
proj

)(
DΩ•PRLdR(X), DΩ•PRLdR(A)

)
,

(̃−) ∼

(−)⊗QR

D
(
(−)⊗QR

) (̃−)∼

hence the composition of:
(i) the hom-isomorphisms (̃−) (355) of the derived (388) PL de Rham Quillen adjunction (Prop. 3.59) over the rational and
over the real numbers, respectively;
(ii) the corresponding hom-component of the right derived extension-of-scalars functor from Lem. 3.62 (the operation of
“tensoring a space with R” from [DGMS75, Footn. 5]);

While real-ification (239), in constrast to rationalization (238), is not directly induced by a localization of spaces, it is
equivalent to rationalization followed by derived extension of scalars:

Proposition 4.2 (Realification is rationalization followed by extension of scalars). The operation of real-ification (239) fac-
tors through rationalization (4.1) via extension of scalars (240) in that the following diagram commutes:

H(X ; LQA)

H(X ; A)

H(X ; LRA) .

(−)⊗QR

(ηR
A )∗

(ηQ
A )∗

(241)

Proof. Consider the following diagram:

nonabelian
cohomology H(X ; A)

nonabelian rational cohomology

H(X ;LQA) H(X ;LRA) nonabelian
real cohomology

H
(
DΩ•PQLdR(X), DΩ•PQLdR(A)

)
H
(
DΩ•PRLdR(X), DΩ•PRLdR(A)

)
H(X ;Dη

Q
A)

rational character map

DΩ•
PQLdR

real character map

H
(
X ; DηR

A

)

DΩ•PRLdR

(−)⊗QR

∼(̃−)

R
(
(−)⊗QR

)extension
of scalars

∼(̃−)
(242)
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Here the triangle on the left as well as the outer rectangle commute by general properties of adjunctions (the naturality of the
hom-isomorphism (355) combined with the definition (356) of the adjunction unit). The square on the right commutes by
definition (240), and the bottom part commutes by Prop. 3.63. Together this implies that the top rectangle commutes, which
is the statement to be shown.

Definition 4.3 (Non-abelian character map). Let X ,A ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) such that X admits the structure

of a smooth manifold. Then we say that the non-abelian character map in non-abelian A-cohomology (Def. 2.1) is the
cohomology operation (Def. 4.1)

non-abelian
character map chA :

non-abelian
cohomology

H(X ; A)
(ηR

A )∗

R-rationalization
//

non-abelian
real cohomology

H
(
X ; LRA

) '
non-abelian

de Rham theorem

//

non-abelian
de Rham cohomology

HdR(X ; lA) (243)

from non-abelian A-cohomology (Def. 2.1) to non-abelian de Rham cohomology (Def. 3.93) with coefficients in the rational
Whitehead L∞-algebra lA of A (Prop 3.68), which is the composite of

(i) the operation (239) of real rationalization of coefficients (Def. 4.1),
(ii) the equivalence (201) of the non-abelian de Rham theorem (Theorem 3.96).

Unwinding the definitions and theorems that go into Def. 4.3, shows that the non-abelian character map on a non-abelian
cohomology theory with classifying space a (connected, nilpotent and Q-finite) homotopy type A assigns flat non-abelian
differential form data (Def. 3.86) satisfying the differential relations of the CE-algebra of the Whitehead L∞-algebra of A
(Prop. 3.68):

Example 4.4 (Non-abelian character on Cohomotopy theory). The non-abelian character (Def. 4.3) of
(i) a class [c] ∈ πn(X) = H1

(
X ;ΩSn

)
in Cohomotopy (Ex. 2.10) is (by Ex. 3.72, Ex. 3.90) of this form:

chSn(c) =


[
Gn ∈ Ωn(X) |d Gn = 0

]
if n = 2k+1 is odd[

G2n−1 ∈ Ω
2n−1
dR (X) ,

Gn ∈ Ωn
dR(X)

∣∣∣∣ d G2n−1 = −Gn∧Gn ,
d Gn = 0

]
if n = 2k is even

(ii) a class [c] ∈ H1
(
X ;ΩCPn

)
in the non-abelian cohomology theory represented by complex projective n-space is (by Ex.

3.75) of this form:

chCPn(c) =

[
H2n+1 ∈ Ω

2n+1
dR (X) ,

F2 ∈ Ω2
dR(X)

∣∣∣∣∣ d H2k+1 =

n+1 factors︷ ︸︸ ︷
F2∧·· ·∧F2 ,

d F2 = 0

]

We come back to these new and deeply non-abelian examples in §5.3 below. First we now turn attention to verifying that
the non-abelian character map of Def. 4.3 correctly subsumes more classical structures of differential topology.

4.1 Chern-Dold character
We prove (Theorem 4.11) that the non-abelian character map reproduces the Chern-Dold character on generalized cohomol-
ogy theories (recalled as Def. 4.9) and in particular the Chern character on topological K-theory (Example 4.13).

Remark 4.5 (Chern-Dold character over the real numbers). In view of Prop. 4.2 and Ex. 3.77 we may and will regard Dold’s
equivalence (Prop. 4.6) and the Chern-Dold character (Def. 4.9) over the real numbers instead of over the rational numbers.
This does not affect the information contained in the character but serves to allow, over smooth manifolds, for composition
with the de Rham isomorphism.

Proposition 4.6 (Dold’s equivalence [Do65, Cor. 4][Hil71, Thm. 3.18][Ru98, §II.3.17]). Let E be a generalized coho-
mology theory (Example 2.13). Then its R-rationalization ER is equivalent to ordinary cohomology with coefficients in the
rationalized stable homotopy groups of E:

En
Q(X)

doE

'
// ⊕
k∈Z

Hn+k
(
X ; πk(E)⊗Z Q

)
.

Remark 4.7 (Rational stable homotopy theory). In modern stable homotopy theory, Dold’s equivalence (Prop. 4.6) is a direct
consequence of the fundamental theorem [SSh01, Thm. 5.1.6] that rational spectra are direct sums of Eilenberg-MacLane
spectra with coefficients in the rationalized stable homotopy groups [BMSS19, Prop. 2.17].

But we may explicitly re-derive Dold’s equivalence using the unstable rational homotopy theory from §3 and passing to
rationalization over the real numbers.
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Proposition 4.8 (Dold’s equivalence via non-abelian real cohomology). Let E be a generalized cohomology theory (Ex-
ample 2.13) and let n ∈ N such that the nth coefficient space (29) is of rational finite homotopy type (Def. 3.50) En ∈
Ho
(
∆SetsQu

)finQ . Then there is a natural equivalence between the non-abelian real cohomology (Def. 3.78) with coefficients
in En and ordinary cohomology with coefficients in the R-rationalized homotopy groups of E:

H
(
−; LREn

)
'

⊕
k∈N

Hn+k(−; πk(E)⊗Z R
)
. (244)

Proof. Since En is an infinite-loop space, it is nilpotent (Example 3.52). We may assume without restriction that it is also
connected, for otherwise we apply the following argument to each connected component (Remark 3.51). Hence En ∈
Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) and the discussion in §3.2 applies. Again, since En is a loop space (29), Prop. 3.80 gives

H(−; LREn) ' ⊕
k∈N

Hk(−; πk(En)⊗Z R) . The claim follows from the definition of stable homotopy groups as πk−n(E) =

πk(En) for k,n≥ 0, (as E is an “Ω-spectrum” (29)).

Definition 4.9 (Real Chern-Dold character [Bu70][Hil71, p. 50]). Let E be a generalized cohomology theory (Example 2.13).
The real Chern-Dold character in E-cohomology theory is the cohomology operation to ordinary cohomology which is the
composite of rationalization in E-cohomology with Dold’s equivalence (Prop. 4.6):

Chern-Dold
character

chE : E•(−)
R-rationalization
in E-cohomoloy

//

(30) '
��

E•R(−) '

Dold’s equivalence

doE //

(30)'
��

⊕
k

H•+k
(
−;πk(E)⊗Z R

)

H(−;E•)
(ηR

E•)∗
(239)

// H(−;LRE•)

'
(244)

33
. (245)

Here the bottom part serves to make the nature of the top maps fully explicit, using Example 2.13, Def. 4.1 and Prop. 4.8.

Remark 4.10 (Rationalization in the Chern-Dold character). That the first map in the Dold-Chern character (245) is the
rationalization localization (here shown exended to the real numbers) is stated somewhat indirectly in the original definition
[Bu70] (the concept of rationalization was fully formulated later in [BK72b]). The role of rationalization in the Chern-Dold
character is made fully explicit in [LSW16, §2.1]. The same rationalization construction of the generalized Chern character,
but without attribution to [Bu70] or [Do65], is considered in [HS05, §4.8] (see also [BN14, p. 17]).

We now come to the main result in this section:

Theorem 4.11 (Non-abelian character subsumes Chern-Dold character). Let E be a generalized cohomology theory (Example
2.13) and let n ∈ N such that the nth coefficient space (29) is of rational finite homotopy type (Def. 3.50). Let moreover X be
a smooth manifold.
Then the non-abelian character (Def. 4.3) coincides with the Chern-Dold character (Def. 4.9) on E-cohomology in degree n,
in that the following diagram commutes:

H
(
X ;En

)
chEn

//
OO

(30) '

HdR
(
lEn
)

' (201) (244)
��

En(X)
(chE )

n
// ⊕

k
Hn+k

(
X ; πk(E)⊗Z R

)
.

(246)

Here the equivalence on the left is from Example 2.13, while the equivalence on the right is the inverse non-abelian de Rham
theorem (Theorem 3.96) composed with that from Prop. 4.8.

Proof. Since En is an infinite-loop space, it is necessarily nilpotent (Example 3.52). We may assume without restriction that
it is also connected, for otherwise we apply the following argument to each connected component (Remark 3.51). Hence
En ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) and the discussion in §3.2 and §3.3 applies:

The non-abelian de Rham isomorphism (201) in the definition (243) of the non-abelian character cancels against its
inverse on the right of (246). Commutativity of the remaining diagram

H
(
X ; En

)
(ηR

En )∗

//
OO

(30) '

H
(
X ; LREn

)
' (244)
��

En(X)
chEn

//⊕
k

Hn+k
(
X ; πk(E)⊗Z R

)
is the very definition of the Chern-Dold character (Def. 4.9).
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Example 4.12 (de Rham homomorphism in ordinary cohomology). On ordinary integral cohomology (Example 2.2), the
non-abelian character (Def. 4.3) reduces to extension of scalars from the integers to the real numbers, followed by the de
Rham isomorphism, in that the following diagram commutes:

H
(
−; Bn+1Z

)
chBn+1Z

non-abelian character
on ordinary cohomology

//
OO

(21) '

HdR
(
−; lBn+1Z

)
' (168) (198)

��
Hn+1(−;Z)

extension
of scalars

// Hn+1(−;R) '
ordinary

de Rham isomorphism

// Hn+1
dR (−)

Example 4.13 (Chern character on complex K-theory). The spectrum (29) representing complex K-theory has 0th component
space KU0 ' Z×BU (31). Here the connected components BU, the classifying space of the infinite unitary group (32), are
clearly of finite rational type (since their rational cohomology is the ring of universal Chern classes, e.g. [Koc96, Thm. 2.3.1]).
Therefore, Theorem 4.11 applies and says that the non-abelian character map (Def. 4.3) for coefficients in Z×BU reduces
to the Chern-Dold character on complex K-theory. This, in turn, is equivalent (by [Hil71, Thm. 5.8]) to the original Chern
character ch on complex K-theory [Hi56, §12.1][BH58, §9.1][AH61, §1.10] (review in [Hil71, §V]):

non-abelian cohomology
with Z×BU-coefficients

H(X ; Z×BU)
chZ×BU

non-abelian character map
with Z×BU-coefficients //

non-abelian de Rham homology
with l(Z×BU)-coefficients

HdR
(
X ; l(Z×BU)

)
KU0(X)

ch
traditional Chern character

// ⊕
k∈Z

H2k
dR(X)

[∇] 7−!
[
tr◦ exp

(
iF∇

2π

)]
.

(247)

On the bottom we are showing the classical component-formula, which to the K-theory class of a complex vector bundle
with any choice of connection ∇ assigns the de Rham cohomology class of the trace of the exponential series of its curvature
2-form (257). (More on this Chern-Weil formalism in §4.2).

Example 4.14 (Pontrjagin character on real K-theory). The Pontrjagin character ph on real topological K-theory (see
[GHV73, §9.4][IK99][Ig08][GS18b, §2.1]) is defined to be the composite

KSpin•(−) KSO•(−) KO•(−)
⊕
k

H•+4k
(
−; R

)

KU•(−)
⊕
k

H•+2k
(
−; R

)

p̃h
•

cplx

ph•

ch•

of the complexification map (on representing virtual vector bundles) with the Chern character ch on complex K-theory (Ex-
ample 4.13).
(i) By naturality of the complexification map and since the complex Chern character is a Chern-Dold character (by [Hil71,
Thm. 5.8]), so is the Pontrjagin character, as well as its restriction p̃h to oriented real K-theory KSO and further to ph on
KO-theory and to Spin K-theory, etc.
(ii) The connected components BO of the classifying space KO0 for real topological K-theory are of finite R-type (since the
real cohomology is the ring of universal Pontrjagin classes). Therefore, Theorem 4.11 applies and says that the non-abelian
Chern character (Def. 4.3) for coefficients in Z×BSO coincides with the Pontrjagin character p̃h in KSO-theory:

Pontrjagin character
on oriented real K-theory

p̃h ' chZ×BSO .

(iii) By Remark 3.51, the construction extends to the Pontrjagin character ph on KO-theory.
(iv) The same applies to the further restriction of the Pontrjagin character to KSpin; see [LD91][Th62] for some subtleties
involved and [Sa08, §7] for interpretation and applications.

Example 4.15 (Chern-Dold character on Topological Modular Forms). The connective ring spectrum tmf of topological
modular forms [Ho94, §9][Ho02, §4] (see [DFHH14]) is, essentially by design, such that under rationalization it yields the
graded ring of rational modular forms (e.g [DH11, p. 2]):
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‘ topological
modular forms

π•(tmf)
(−)⊗ZR //

rational
modular forms

mfR• ' R
[ deg = 8︷︸︸︷

c4 ,

deg = 12︷︸︸︷
c6
]
. (248)

It follows that the Chern-Dold character (Def. 4.9) on tmf takes values in real cohomology with coefficients in modular forms

tmf•(−)
ch•tmf

Chern-Dold character
on topological modular forms // H•

(
−;mfR•

)
. (249)

(This is often considered over the rational numbers, sometimes over the complex numbers [BE13, Fig. 1]; we may just as
well stay over the real numbers, by Remark 3.64, to retain contact to the de Rham theorem.)

By Theorem 4.11, this is an instance of the non-abelian character map:
Chern-Dold character on
topological nodular forms

ch•tmf ' chtmf• .

Example 4.16 (The Hurewicz/Boardman homomorphism on topological modular forms). The spectrum tmf (Example 4.15)
carries the structure of an E∞-ring spectrum (Ex. 2.13) and hence receives an essentially unique homomorphism of ring
spectra from the sphere spectrum:

Σ∞S0 = S
etmf // tmf .

This is also known as the Hurewicz homomorphism or rather the Boardman homomorphism (e.g. [Ad75, §II.7][Koc96, §4.3])
for tmf. The Boardman homomorphism on tmf happens to be a stable weak equivalence in degrees ≤ 6, in that it is an
isomorphism on stable homotopy groups in these degrees [Ho02, Prop. 4.6][DFHH14, §13]:

πs
•≤6 = π•≤6(S)

π•≤6(etmf)

'
// π•≤6(tmf) .

Hence (by Prop. A.43) when X10 is a manifold of dimension dim(X) ≤ 6+ 4 = 10, then the Boardman homomorphism
identifies the stable Cohomotopy (Example 2.16) of X10 in degree 4 with tmf4(X10

)
:

stable
4-Cohomotopy

π4
s
(
X10
)
= S4(X10)

chS4 ))

Boardman homomorphism

e4
tmf

'
//

tmf-cohomology
in degree 4

tmf4(X10) .

chtmf4uu
H4

dR(X
10)

(250)

In this situation, the character map from Example 4.15 extracts exactly the datum of a real 4-class.

Remark 4.17 (Clarifying the role of tmf in string theory). Ever since the famous computation of [Wi87] (following [SW86]
[SW87]) showed that the partition function of a 2d super-conformal field theory lands in modular forms, and since the
theorem of [AHS01][AHR10] showed that, mathematically, this statement lifts through (what we call above) the tmf-Chern-
Dold character (249), there have been proposals about a possible role of tmf-cohomology theory in controlling elusive aspects
of string theory (see [KS05][Sa10][DH11][ST11][Sa14][GJF18][GPPV18][Sa19]). While good progress has been made, it
might be fair to say that the situation has remained inconclusive.
(i) Non-abelian enhancement of tmf4(X10). But with the non-abelian generalization (Def. 4.3) of the Chern-Dold character
in hand, we may ask for a non-abelian enhancement (Example 2.24) of tmf-theory on string background spacetimes. By
Example 4.16, this is, in degree 4, equivalent to asking for a non-abelian enhancement of stable Cohomotopy theory (Example
2.25). This exists (not uniquely but) canonically: given by actual Cohomotopy theory (Example 2.10). We work out the non-
abelian character map on twisted 4-Cohomotopy in Example 5.24 below. The concluding Prop. 5.25 shows that this does
capture crucial non-linear phenomena of non-perturbative string theory.
(ii) Non-Torsion classes in tmf•. Part of the statement (250) is that the higher non-torsion generators (248) of π•(tmf)
(hence the actual or “non-topological” modular forms) do not contribute to tmf4 on 10-manifolds: These start to contribute
only on manifolds of dimensionl 4+ deg(c4) = 12, where, in string theory language, one computes not fluxes of fields but
their (Green-Schwarz-)anomaly densities. Indeed, the original computation of what came to be known as the “Witten genus”
interprets it as the generating function for just these anomalies [SW86][SW87][LNSW88][Sa11]. While the character map
(249) still applies in these higher dimensions, the non-abelian enhancement by Cohomotopy is restricted exactly to dimension
10, and is what makes the character pick up just those non-linear relations, discussed in §5.3, that are expected to cancel the
anomalies [FSS19b][FSS20][SS20c].
(iii) Torsion classes in tmf•. Indeed, the deep motivation behind topological modular forms is the suggestion that these
capture mathematical aspects of 2d supersymmetric field theories even in their non-rational torsion elements – and the beauty
of (250) is to show that in the relevant degrees and dimensions these aspects are equivalently seen in Cohomotopy. Concretely,
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a famous conjecture orginating with [ST11][DH11] and cast in more pronounced form in [GJF18, §5] says that the elements
of tmf•(X) correspond bijectively to, roughly, the deformation classes of 2-dimensional supersymmetric field theories with
target space X . Specifically the torsion elements in π3(tmf) ' π3(S) ' Z/24, have, conjecturally, been identified, with
certain supersymmetric SU(2)-WZW models [GJTW21, p. 17][GJF19][JT20], whose “meaning”, however, has remained
somewhat elusive. But under the equivalence (250) with Cohomotopy, these same elements could be understood in [SS21] in
their role in non-perturbative string theory.

Example 4.18 (Chern-Dold character on integral Morava K-theory). We highlight that a particularly interesting example
of the Chern-Dold character, which is not widely known, is that on integral Morava K-theory, whose codomain in real
cohomology has a rich coefficient system. Morava K-theories K(n) [JW75] (reviewed in [Wu89][Ru98, §IX.7]) form
a sequence of spectra labeled by chromatic level n ∈ N and by a prime p (notationally left implicit). Their coefficient
ring is pure torsion, and hence vanishes upon rationalization. However, there is an integral version K̃(n), highlighted in
[KS03][Sa10][Buh11][SW15][GS17b], which has an integral p-adic coefficient ring:

K̃(n)∗ = Zp[vn,v−1
n ] , with deg(vn) = 2(pn−1). (251)

This theory more closely resembles complex K-theory than is the case for K(n); in fact, for n = 1, it coincides with the
p-completion of complex K-theory.

Therefore, the Chern-Dold character (Def. 4.9) on integral Morava K-theory [GS17b, p. 53] is of the form

chMor : K̃(n)(−) // H∗
(
−; Qp[vn,v−1

n ]⊗Q R
)
, (252)

where we used (251) in (245) together with the fact that the rationalization of the p-adic integers is the rational (here: real, by
Remark 3.64) p-adic numbers18 Zp⊗Z R ' Qp⊗Q R.

Now Qp is not finite-dimensional over Q, whence Qp⊗R is not finite-dimensional over R, so that the classifying space
for integral Morava K-theory is not of R-finite type (Def. 3.50). Therefore, our proof of the non-abelian de Rham theorem
(Theorem 3.96), being based on the fundamental theorem of dgc-algebraic rational homotopy theory (Prop. 3.60), does not
immediately apply to integral Morava K-theory coefficients; and hence the non-abelian character on integral Morava K-theory
with de Rham codomain, in the form defined in Def. 4.3, is not established here. While this is a purely technical issue, as
discussed in Remark 3.51, further discussion is beyond the scope of the present article.

4.2 Chern-Weil homomorphism
We prove (Theorem 4.30) that the non-abelian character subsumes the Chern-Weil homomorphism (recalled as Prop. 4.24,
review in [Ch51, §III][KN63, §XII][CS74, §2][MS74, §C][FSSt10, §2.1]) in degree-1 non-abelian cohomology.

Chern-Weil theory. For definiteness, we recall the statements of Chern-Weil theory that we need to prove Theorem 4.30
below.

Remark 4.19 (Attributions in Chern-Weil theory). (i) What came to be known as the Chern-Weil homomorphism (recalled
as Def. 4.24 below) seems to be first publicly described by H. Cartan (in May 1950), in his prominent Séminaire [Ca50,
§7], published as [Ca51]. Later that year at the ICM (in Aug.-Sep. 1950), Chern discusses this construction in a talk [Ch50,
(10)], including a brief reference to unpublished work by Weil (which remained unpublished until appearance in Weil’s
collected works [We49]) for the proof that the construction is independent of the choice of connection (which is stated with
an announcement of a proof in [Ca50, §7]).
(ii) The new result of Chern’s talk was the observation [Ch50, (15)] – later called the fundamental theorem in [Ch51, §III.6],
recalled as Prop. 4.26 below – that this differential-geometric construction coincides with the topological construction of
real characteristic classes (Example 2.21). This crucially uses the identification [Ch50, (11)] of the real cohomology of
classifying space BG with invariant polynomials, later expanded on by Bott [Bo73, p. 239]. (Various subsequent authors, e.g.
[Fr02, (1.14)], suggest to prove Chern’s equation (15) by making sense of a connection on the universal G-bundle – which
is possible though notoriously subtle, e.g. [Mo79] – but the proof in [Ch50] simply observes that for any fixed bound ≤ d
on the dimension of the domain space, the classifying space for G-principal bundles may be truncated to a d+1-dimensional
sub-complex (as follows by the cellular approximation theorem [Sp66, p. 404]), this carrying a smooth G-principal bundle
with ordinary connection, which is universal for G-principal bundles over ≤ d-manifolds. This argument was later worked
out in [NR61][NR63][Sc80]).
(iii) It is this fundamental theorem [Ch50, (15)][Ch51, §III.6] which allows to identify the Chern-Weil homomorphism as an
instance of the non-abelian character, in Theorem 4.30 below.

18Note, parenthetically, that the classical Chern character ch itself can be extended to cohomology theories with values in graded Q-
algebras; see, e.g., [Ma06].
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Notation 4.20 (Principal bundles with connection). For G ∈ LieGroups and X ∈ SmthMfds, we write
GConnections(X)/∼ // // GBundles(X)/∼ (253)

for the forgetful map from the set of isomorphism classes, over X , of G-principal bundles equipped with principal connections
(review in [Na03, §9][RS17, §1]) to the underlying bundles without connection, .

The function (253) is surjective and admits sections, corresponding to a choice of the class of a principal connection on
any class of G-principal bundles.

Definition 4.21 (Invariant polynomials [We49][Ca50, §7]). For g ∈ LieAlgebrasR,fin, we write

inv•(g) := Sym
(
b2g∗

)G ∈ gcAlgs≥ 0
R

for the graded sub-algebra (86) on those elements in the symmetric algebra (89) of the linear dual of g shifted up (Def. 3.7)
into degree 2, which are invariant under the adjoint action of G on g∗.

Definition 4.22 (Characteristic forms [Ca50, §7][Ch50, (10)]). Let G be a finite-dimensional Lie group with Lie algebra g,

and let P
p // X be G-principal bundle with connection ∇ (Def. 4.20). Then for ω ∈ inv2n(g) an invariant polynomial (Def.

4.21), its evaluation on the curvature 2-form F∇ ∈Ω2(P)⊗g of the connection yields a differential form

ω(F∇) ∈ Ω2n
dR(X)

p∗ // Ω2n
dR(P)

which, by the second condition on an Ehresmann connection, is basic, namely in the image of the pullback operation along
the bundle projection p, as shown. Regarded as a differential form on X , this is called the characteristic form corresponding
to ω .

Lemma 4.23 (Characteristic de Rham classes of characteristic forms [We49][Ch50, p. 401][Ch51, §III.4]). The class in de
Rham cohomology [

ω(F∇)
]
∈ H2n

dR(X)

of a characteristic form in Def. 4.22 is independent of the choice of connection ∇ and depends only on the isomorphism class
of the principal bundle P.

Definition 4.24 (Chern-Weil homomorphism [Ca50, §7][Ch50, (10)]). Let G be a finite-dimensional Lie group, with classi-
fying space denoted BG. The Chern-Weil homomorphism is the composite map

Chern-Weil
homomorphism cwG : GBundles(X)/∼ // GConnections(X)/∼ // Hom

(
inv•(g), H•dR(X)

)
principal bundle

[P] � //
with connection

[P,∇]
� //

( invariant
polynomial

ω 7!

de Rham class of
characteristic form[

ω(F∇)
] )

,

(254)

where the first map is any section of (253), given by choosing any connection on a given principal bundle; and the second
map is the construction of characteristic forms according to Def. 4.22. (The Hom on the right is that in gcAlgs≥ 0

R .) By Lemma
4.23 the second map is well-defined (and its composition with the first turns out to be independent of the choices made, by
Prop. 4.26 below).

That this construction is useful, in that it produces interesting real characteristic classes of G-principal bundles (Example
2.21), is the following statement:

Proposition 4.25 (Abstract Chern-Weil homomorphism [Ch50, (11)][Ch51, §III.5][Bo73, p. 239]). Let G be a finite-
dimensional, compact Lie group, with Lie algebra denoted g. Then the real cohomology algebra of its classifying space
BG is isomorphic to the algebra of invariant polynomials (Def. 4.21):

inv•(g) ' H•(BG; R) ∈ gcAlgs≥ 0
R . (255)

We can also obtain the following:

Proposition 4.26 (Fundamental theorem of Chern-Weil theory [Ch50, (15)][Ch51, §III.6] (Rem. 4.19)). Let G be a finite-
dimensional compact Lie group. Then the Chern-Weil homomorphism (Def. 4.24) coincides with the operation of pullback
of universal characteristic classes along the classifying maps of G-bundles (Example 2.21), in that the following diagram
commutes:

H(X ; BG)
c 7! c∗(−)

pullback of
universal characteristic classes

along classifying map (38) //
OO

(23) '

Hom
(
H•(BG; R) , H•(X ; R)

)
' (255)
��

GBundles(X)/∼
cwG

Chern-Weil homomorphism (254)
// Hom

(
inv•(g), H•dR(X)

) (256)

Here the isomorphism on the left is from Example 2.3, while that from the right is from Prop. 4.25 and using the de Rham
theorem.
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Example 4.27 (Characteristic forms of classical Lie groups (e.g. [Na03, Ex. 11.5-7])). Let G = SU(n) be the special unitary
group, for n ∈ N. Then the fundamental Chern-Weil theorem Prop. 4.26 identifies, for any connection ∇ (254), on a given
SU(n)-principal bundle, with associated curvature differential form

Ω2
(
X ; u(n)

)
Ω2
(
X ; Matn×n(C)

)
F∇ 7−!

(
(F∇)ab

)
1≤a,b≤n

(257)

the following (de Rham cohomology classes of) classical characteristic forms (Def. 4.22):
(i) Chern forms. The real-cohomology images of the first couple Chern classes ci ∈ H2i

(
BU(n); Z

)
are identified with the

de Rham cohomology classes cwSU(n)(ci) =
[
ci(∇)

]
∈ H2i

dR

(
X
)

of the polynomials in the curvature differential form (257)
which are the homogeneous components of the following total Chern form 19

c(∇) := ∑
k∈N

ck(∇)︸ ︷︷ ︸
deg=2k

:= det
(
1+ i

2π
F∇

)
.

(ii) Pontrjagin forms. When the structure group G is reduced along the canonical inclusion SO(n)
ι
↪−! SU(n) of the special

orthogonal group, then the real images of the first couple Pontrjagin classes pk ∈ H4k
(
BSO(n); Z

)
are identified with the de

Rham cohomology classes of the corresponding Chern forms (258), up to a signs:

cwSO(n)(pk) =
[
pk(∇)

]
= (−1)k[c2k(ι∗∇)

]
∈ H4k

dR
(
X
)
.

One finds
p1(∇) := − 1

8π2 tr
(
F∇∧F∇

)
,

p2(∇) = 1
128π4

(
tr(F∇∧F∇)∧ tr(F∇∧F∇)−2 · tr(F∇∧F∇∧F∇∧F∇)

)
.

(258)

The following rational combination of these forms plays a central role in §5.3:

I8(∇) := 1
48

(
p2(∇)− 1

4 p1(∇)∧ p1(∇)
)
. (259)

(iii) Euler form. If, moreover, n = 2k is even, then the real image of the Euler class χn ∈ Hn
(
BSO(n); Z

)
is identified with

the de Rham cohomology class
cwSO(n)(χn) =

[
χn(∇)

]
∈ Hn

dR
(
X
)

of the Pfaffian wedge-product polynomial of the matrix (257):

χ2k(∇) := (−1)n/2

(4π)n/2·(n/2)! ∑
σ∈Sym(n)

sgn(σ) · (F∇)σ(1)σ(2)∧ (F∇)σ(3)σ(4)∧·· ·∧ (F∇)σ(n−1)σ(n) . (260)

Chern-Weil homomorphism as a special case of the non-abelian character.

Lemma 4.28 (Sullivan model of classifying space). Let G be a finite-dimensional, compact and simply-connected Lie group,
with Lie algebra denoted g. Then the minimal Suillvan model (Def. 3.46) of its classifying space BG is the graded algebra of
invariant polynomials (Def. 4.21), regarded as a dgc-algebra with vanishing differential:(

inv(g), d = 0
)
' CE(lBG) ∈ dgcAlgs≥ 0

R . (261)

Proof. According to [FOT08, Example 2.42], we have

CE(lBG) '
(
H•(BG; R), d = 0

)
. (262)

The composition of (262) with the isomorphism (255) from Prop. 4.25 yields the desired (261).

Lemma 4.29 (Non-abelian de Rham cohomology with coefficients in a classifying space). Let G be a finite-dimensional,
compact and simply-connected Lie group, with Lie algebra denoted g. Then the non-abelian de Rham cohomology (Def. 3.93)
with coefficients in the rational Whitehead L∞-algebra lBG (Prop. 3.68) of the classifying space is canonically identified with
the codomain of the classical Chern-Weil construction (254):

nonabelian
de Rham cohomology

HdR
(
X ; lBG

)
'

traditional codomain of
Chern-Weil construction

Hom
(
inv•(g), H•dR(X)

)
. (263)

19The standard normalization factor i/2π appearing here results from identifying U(1) with R/hZ for the choice h = 2π .

64



Proof. Consider the following sequence of natural bijections:

HdR
(
X ; lBG

)
:= dgcAlgs≥ 0

R

(
CE
(
lBG

)
, Ω
•
dR(X)

)
/∼

' dgcAlgs≥ 0
R

((
inv•(g), d = 0

)
, Ω
•
dR(X)

)
/∼

' gcAlgs≥ 0
R

(
inv•(g) , Ω

•
dR(X)closed

)
/∼

' gcAlgs≥ 0
R

(
inv•(g) ,

(
Ω
•
dR(X)closed

)
/∼

)
' gcAlgs≥ 0

R

(
inv•(g) , H•dR(X)

)
=: Hom

(
inv•(g) , H•dR(X)

)
.

Here the first line is the definition (Def. 3.93). After that, the first step is Lemma 4.29. The second step unwinds what it
means to hom out of a dgc-algebra with vanishing differential (which is generator-wise as in Example 3.88), while the third
and fourth steps unwind what this means for the coboundary relations (which is generator-wise as in Prop. 3.95). The last
line just matches the result to the abbreviated notation used in (254).

Theorem 4.30 (Non-abelian character map subsumes Chern-Weil homomorphism). Let G be a finite-dimensional compact,
connected and simply-connected Lie group, with Lie algebra g. Let X ∈ Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) be equipped with the

structure of a smooth manifold. Then the non-abelian character chBG (Def 4.3) on non-abelian cohomology (Def. 2.1) of
X with coefficients in BG coincides with the Chern-Weil homomorphism cwG (Def. 4.24) with coefficients in G, in that the
following diagram (of cohomology sets) commutes:

H(X ; BG)
chBG

non-abelian character //
OO

(23) '

HdR(X ; lBG)

' (263)
��

GBundles(X)/∼
cwG

Chern-Weil homomorphism
// Hom

(
inv•(g), H•dR(X)

) (264)

Here the isomorphism on the left is from Example 2.3, while that on the right is from Lemma 4.29.

Proof. First, notice that BG is simply connected (hence nilpotent), by the assumption that G is connected, and that it is of
finite rational type by Prop. 4.25. Hence, with Def. 3.50,

BG ∈ Ho
(
∆SetsQu

)finQ
≥1,nil . (265)

Now, by Definition 4.3, the non-abelian character map on the top of (264)

chBG : H(X ; BG)
(ηR

BG) // H
(
X ; LRBG

) ' // HdR
(
X ; LRBG

)
sends a classifying map

X c // BG ∈ H(X ; BG) = Ho
(
∆SetsQu

)
(X , BG)

first to its composite with the rationalization map (Def. 3.53). By the fundamental theorem (Theorem 3.60 (i), using (265)),
this is given by the derived adjunction unit DηBG of DBexpPL a Ω•PLdR (146):

X c // BG
DRBG' DηBG // DBexpPL ◦ Ω•PLdR(BG) ∈ Ho

(
∆SetsQu

)(
X , LRBG

)
= H

(
X ; LRBG

)
.

Moreover, by part (ii) of the fundamental theorem, the adjunct of the morphism DηBG ◦ c under (146) is

Ω•PLdR(X) oo
c∗

Ω•PLdR(BG) ∈ Ho
((

dgcAlgs≥ 0
R

)
proj

)
(using that Ω•PLdR(DηR) is an equivalence, by reflectivity of rationalization (132)). Hence it is the pullback operation of
rational cocycles on BG along the classifying map c. Sending this further along the isomorphism to the bottom right in (264)
(via Theorem 3.96 and Lemma 4.29) gives, by (202):

chBG : c 7! Ω•dR(X) oo
c∗

Ω•PLdR(BG) oo
' inv•(g) ∈ Ho

((
dgcAlgs≥ 0

R

)
proj

)
. (266)

In conclusion, we have found that the commutativity of (264) is equivalent to the statement that the characteristic forms
obtained by the Chern-Weil construction (254) represent the pullback (266) of the universal real characteristic classes on BG
along the classifying map c of the underlying principal bundle (Example 2.21). This is the case by the fundamental theorem
of Chern-Weil theory, Prop. 4.26.
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Example 4.31 (de Rham representative of tangential Sp(2)-twist). For X a smooth 8-dimensional spin manifold equipped
with tangential Sp(2)-structure τ (74), Thm. 4.30 says that there exists a smooth Sp(2)-principal bundle on X equipped with
an Ehresmann connection ∇ such that the R-rationalization (Def. 3.61) of the twist τ corresponds, under the non-abelian de
Rham theorem (Theorem 3.96) to a flat lBSp(2)-valued differential form whose components are the characteristic forms of
the Sp(2)-principal connection ∇:

H
(
X ; BSp(2)

) (ηR
BG)∗−−−−! H

(
X ; LRBSp(2)

)
' HdR

(
X ; lBSp(2)

)
τ 7−! LRτ  ! Ω•dR(X) oo

τdR R
[

χ8,
1
2 p1

]/(d 1
2 p1 = 0

d χ8 = 0

)
= CE

(
lBSp(2)

)
1
2 p1(∇) oo � 1

2 p1

χ8(∇) oo � χ8

Here on the right we are using [CV98, Thm . 8.1], see [FSS20, Lemma 2.12] to identify generating universal characteristic
classes on BSp(2): 1

2 p1 is the first Pontrjagin class (see Ex. 4.27) and χ8 =
(

1
2 p2−

( 1
2 p1
)2
)

is the Euler 8-class, which here
on BSp(2) happens to be proportional to I8 (259), see [FSS19b, Prop. 3.7].

4.3 Cheeger-Simons homomorphism
We show (Theorem 4.54) that the non-abelian character map induces secondary non-abelian cohomology operations (Def.
4.50) which subsume the Cheeger-Simons homomorphism, recalled around (307) below, with values in ordinary differential
cohomology, recalled around (293) below. We follow [FSSt10] [SSS12][Sch13] where the Cheeger-Simons homomorphism,
generalized to higher principal bundles, is called the ∞-Chern-Weil homomorphism. Underlying this is a differential enhance-
ment of the non-abelian character map (Def. 4.36), and an induced notion of differential non-abelian cohomology (Def. 4.38)
on smooth ∞-stacks (recalled as Def. A.57).

The differential non-abelian character map. We introduce (in Def. 4.36 below) the differential refinement of the non-
abelian character map; given as before by rationalization, but now followed not by a map to non-abelian de Rham cohomology,
but to its refinement by the full cocycle space of flat non-abelian differential forms (Def. 4.32 below). It is this refinement
of the codomain of the character map that allows it to be fibered over the smooth space (Ex. A.58) of actual flat non-abelian
differential forms (instead of just their non-abelian de Rham classes), thus producing differential non-abelian cohomology
(Def. 4.38 below).

Definition 4.32 (Moduli ∞-stack of flat L∞-algebra valued forms [Sch13, 4.4.14.2]). Let A∈ ∆Sets be of connected, nilpotent,
R-finite homotopy type (Def. 3.50). By means of the system of sets (Def. 3.86)

X 7−! ΩdR
(
X ; lA

)
∈ Sets

of flat non-abelian differential forms with coefficient in the Whitehead L∞-algebra lA of A (Prop. 3.68), which are contravari-
antly assigned to smooth manifolds X , we consider in Ho(SmthStacks∞) (Def. A.57):
(i) the smooth space (Ex. A.58) of flat lA-valued differential forms

ΩdR
(
−; lA

)
flat :=

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn; lA

)
flat

))
, (267)

regarded as a simplicially constant simplicial presheaf (422);
(ii) the smooth ∞-stack of flat lA-valued differential forms (Example 3.91)

[Bexp(lA) :=
(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆

k; lA
)

flat

))
(268)

which to any Cartesian space assigns the simplicial set that in degree k is the set of flat lA-valued differential forms on the
product manifold of the Cartesian space with the standard smooth k-simplex ∆k ⊂ Rk;
(iii) the canonical inclusion

smooth space of
flat lA-valued forms

Ω(−; lA)flat
atlas //

smooth ∞-stack of
flat lA-valued forms

[Bexp(lA)

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn; lA

)
flat

))
� � //

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆k; lA

)
flat

))
(269)

exhibiting Ω(−; lA) (267) as the presheaf of 0-simplices in the simplicial presheaf [Bexp(lA) (268) (more abstractly: this is
the canonical atlas of the smooth moduli ∞-stack, see [SS20b, Prop. 2.70]).
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Lemma 4.33 (Moduli ∞-stack of flat forms is equivalent to discrete rational ∞-stack). For A∈Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50),

the evident inclusion (by inclusion of polynomial forms into smooth differential forms followed by pullback along pr
∆k )

Disc
(
LRA

)
' Disc ◦ DBexpPL ◦ CE

(
lA
) ∈W // [Bexp

(
lA
)

(
Rn 7!

(
∆[k] 7!ΩPLdR

(
∆k; lA

)
flat

))
� � //

(
Rn 7!

(
∆[k] 7!ΩdR

(
Rn×∆k; lA

)
flat

))
(270)

of the image under Disc (438) of the dg-algebraic model (147) for the rationalization of A (Def. 3.53), given by the funda-
mental theorem (Prop. 3.60), into the moduli ∞-stack of flat lA-valued differential forms (Def. 4.32) is an equivalence in
Ho(SmthStacks∞) (Def. A.57).

Proof. By Prop. 3.67, the inclusion is for each Rn a weak equivalence (158) in ∆SetsQu (Example A.8), hence is a weak
equivalence already in the global projective model structure on simplicial presheaves, and therefore also in the local projective
model structure (Example A.49).

Lemma 4.34 (Moduli ∞-stack of closed differential forms is shifted de Rham complex). For n ∈ N,

(i) we have an equivalence in Ho(SmthStacks∞) (Def.
A.57) from the moduli ∞-stack [Bexp

(
bnR

)
of flat dif-

ferential forms (Def. 4.32) with values in the line Lie
(n+ 1)-algebra bnR (Example 3.27) to the image under
the Dold-Kan construction (Def. A.66) of the smooth de
Rham complex Ω•dR(−) (Example 3.23).
(ii) This is naturally regarded as a presheaf on CartSp
(419) with values in connective chain complexes (Exam-
ple A.61) (i.e., with de Rham differential lowering the
chain degree) shifted up in degree by n+ 1 and then ho-
mologically truncated in degree 0, as shown on the right.

[Bexp
(
bnR

) ' // DK



...
#
0
#
0
#

Ω0
dR(−)
# d

Ω1
dR(−)
# d
...
# d

Ω
n+1
dR (−)clsd



∈ Ho(SmthStacks∞)

Proof. This follows by an enhancement of the proof of Prop. 3.95. First observe, with Example 3.88, that the simplicial
presheaf

[Bexp
(
bnR

)
(−) =

(
∆[k] 7! Ω

n+1
dR

(
(−)×∆

k)
clsd

)
(271)

naturally carries the structure of a presheaf of simplicial abelian groups, given by addition of differential forms. Therefore,
by the Dold-Kan Quillen equivalence (Prop A.65), it is sufficient to prove that we have a quasi-isomorphism of presheaves
of chain complexes from the corresponding normalized chain complex (439) of (271) to the shifted and truncated de Rham
complex itself:

N
(

∆[k] 7! Ω
n+1
dR

(
(−)×∆k

)
clsd

)
'

∫
∆• //

(
· · ·! 0! 0!Ω0

dR(−)
d
!Ω1

dR(−)
d
! · · · d

!Ω
n+1
dR (−)clsd

)
. (272)

We claim that such is given by fiber integration of differential forms over the simplices ∆k:
First, to see that fiber integration does constitute a chain map, we compute for ω ∈Ω•dR

(
(−)×∆k

)
clsd on the left of (272):∫

∆k
∂ω = (−1)k

∫
∂∆k

ω = d
∫

∆k
ω , (273)

where the first step is the definition of the differential in the normalized chain complex (439) and the second step is the
fiberwise Stokes formula (196).

Finally, to see that
∫

∆• is a quasi-isomorphism, notice that the chain homology groups on both sides are

Hk(−) =

{
R | k = n+1

0 | otherwise

over each Cartesian space: For the left hand side this follows via the weak equivalence (158) from the fundamental theorem
(Prop. 3.60) via Example 3.73, while for the right hand side this follows from the Poincaré lemma.

Hence it is sufficient to see that fiber integration over ∆n+1 is an isomorphism on the (n+ 1)st chain homology groups.
But a generator of this group on the left is clearly given by the pullback pr∗

∆n+1ω of any ω ∈ Ω
n+1
dR (∆n+1) of unit weight and

supported in the interior of the simplex. That this is sent under
∫

∆n+1 to a generator ±1 ∈R'Ω0
dR(−)clsd on the right follows

by the projection formula (197).
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Remark 4.35 (Moduli of closed forms via stable Dold-Kan correspondence). Expressed in terms of the stable Dold-Kan
construction DKst (Prop. A.68) via the derived stabilization adjunction (Example A.47), Lemma 4.34 says, equivalently, that:

[Bexp
(
bnR

)
' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗R b

n+1R
))

∈ Ho(SmthStacks∞) , (274)

where now Ω•dR(−)∈ PSh
(
CartSp , ChainComplexesR

)
is in non-positive degrees, with Ω0

dR(−) in degree 0, and where bn+1R
(Def. 3.7) is concentrated on R in degree n+1.

Definition 4.36 (Differential non-abelian character map [FSS15b, §4]). Given A ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50), the differ-

ential non-abelian character map in A-cohomology theory, to be denoted chA, is the morphism in Ho(SmthStacks∞) (436)
from Disc(A) (438) to the moduli ∞-stack of flat lA-valued forms [Bexp(lA) (268) given by the composite

coefficient space as
geometrically discrete

moduli ∞-stack
Disc(A) Disc◦BexpPS ◦Ω•PLdR(A) Disc◦BexpPL ◦CE(lA) [Bexp(lA)

moduli ∞-stack of
flat lA-valued

differential forms

Disc(ηPSdR
A )

Disc
(
DηPSdR

A

)
R-rationalization (151)

differential non-abelian character map
chA

Disc◦BexpPL(pmin)

(161)

∈W

(270)
(275)

of
(a) the image under Disc (438) of the derived adjunction unit DηPLdR

A (391) of the PS de Rham adjunction (156), specif-
ically with (co-)fibrant replacement pmin being the minimal Sullivan model replacement (128); (recalling that BexpPL is a
contravariant functor), with
(b) the weak equivalence from Lemma 4.33.

Remark 4.37 (Differential non-abelian character map is independent of choices). The differential non-abelian character map
(Def. 4.36) is independent, up to equivalence, of the choice of comparison morphism pmin to a minimal model for the
coefficients, since, by (129) in Prop. 3.48, any two choices factor through each other by an isomorphism of dgc-algebras.

It is this uniqueness which makes minimal models provide canonical form coefficients for non-abelian differential coho-
mology, see also the second item of Ex. 4.39 below.

Differential non-abelian cohomology.

Definition 4.38 (Differential non-abelian cohomology [FSS15b, §4]). For A ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) we say that:

(i) the moduli ∞-stack of ΩA-connections is the object Adiff ∈ Ho(SmthStacks∞) in the homotopy category of smooth ∞-
stacks (Def. A.57), which is given by the homotopy pullback (Def. A.28) of the smooth space of flat non-abelian differential
forms ΩdR(−; lA)flat (269) along the differential non-abelian character map chA (Def. 4.36):

moduli ∞-stack
of ΩA-connections

Adiff

cA
universal characteristic class
in non-abelian A-cohomology

��

FA

lA-valued
curvature forms

//

(hpb)

smooth space of
flat lA-valued forms

ΩdR(−; lA)flat

atlas

��
Disc(A)

chA

differential non-abelian
character map

// [Bexp(lA)
moduli ∞-stack of

flat lA-valued forms

∈ Ho(SmthStacks∞) ; (276)

(ii) the differential non-abelian cohomology of a smooth ∞-stack X ∈ Ho(SmthStacks∞) (436) with coefficients in A is the
structured non-abelian cohomology (Remark 2.27) with coefficients in the moduli ∞-stack Adiff of ΩA-connections (276),
hence the hom-set in the homotopy category of ∞-stacks (Def. A.57) from X to Adiff

Ĥ
(
X ; A

)
:= H

(
X ; Adiff

)
:= Ho(SmthStacks∞)

(
X , Adiff

)
. (277)

(iii) We call the non-abelian cohomology operations induced from the maps in (276) as follows (see (16)):

(a) characteristic class: Ĥ
(
X ; A

) (cA)∗ // H
(
Shp(X ); A

)
(Def. 2.1) (278)

(b) curvature: Ĥ
(
X ; A

) (FA)∗ // ΩdR
(
X ; lA

)
flat (Def. 3.86) (279)

(c) differential character: Ĥ
(
X ; A

) (chA◦cA)∗ // HdR
(
X ; lA

)
(Def. 3.93) (280)
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In differential enhancement of Example 2.13, we have the following.

Differential generalized cohomology.

Example 4.39 (Differential Whitehead-generalized cohomology). Let E• be a generalized cohomology theory (Example
2.13) with representing spectrum E (29) which is connective and whose component spaces En are of finite R-type, so that
their connected components are, by Example 3.52, in Ho

(
∆SetsQu

)finQ
≥1,nil (Def. 3.50).

(i) Then differential non-abelian cohomology, in the sense of Def. 4.38, with coefficients in the component spaces E•, coin-
cides with canonical differential generalized E-cohomology in the traditional sense of [HS05, §4.1][Bun12, Def. 4.53][BG13,
§2.2][BNV13, §4.4]: generalized

differential cohomology

Ên(−) ' Ĥ(−;En) . (281)

(ii) Here “canonical”, in the sense of [Bun12, Def. 4.46], refers to choosing the curvature differential form coefficients to be
π•(E)⊗R (instead of some chain complex quasi-isomorphic to this). By Example 3.76, this choice corresponds in our Def.
4.38 to the minimality (Def. 3.46) of the minimal Sullivan model CE(lEn) for En (Prop. 3.68) that controls the flat L∞-algebra
valued differential forms ΩdR(−; lEn)flat (Def. 3.86) in the top right of (298).
(iii) Hence for canonical/minimal curvature coefficients, we have from Ex. 3.76, Lem. 4.34 and Rem. 4.35 that

[Bexp
(
lEn
)
' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗Z π•(En)

))
∈ Ho(SmthStacks∞) (282)

ΩdR
(
−; lEn

)
flat ' RΩ

∞

(
DKst

(
Ω
•
dR(−)⊗Z π•(En)

)
≤0

)
∈ Ho(SmthStacks∞) . (283)

(iv) With this, the equivalence 281 follows by Ex. 3.77 and observing that the defining homotopy pullback diagram (276)
for differential non-abelian cohomology with coefficients in A := En (418) is the image under RΩ∞ (417) of the defining ho-
motopy pullback diagram for canonical differential E-cohomology according to [HS05, (4.12)] [Bun12, Def. 4.51][BNV13,
(24)], and using that right adjoints preserve homotopy pullbacks:

(E0)diff

cE0
��

FE0 //

(hpb)

ΩdR(−; lE0)flat

atlas
��

Disc(E0) chE0

// [Bexp(lE0)

moduli ∞-stack
of ΩE0-connections

' RΩ
∞


Diff(E,can)

��

//

(hpb)

(
Ω•dR(−)⊗Z π•(E)

)
≤0

��
Disc(E)

HR∧(−)
// Ω•dR(−)⊗Z π•(E)


“differential function spectrum”

of differential generalized E-cohomology

(284)

The same applies to (En)diff, by replacing E with DΣnE (417) on the right of (284).

Remark 4.40 (The canonical atlas for the moduli stack of connections). The operation (−)≤0 in (283) is the naive truncation
functor on the category of chain complexes

ChainComplexesZ

(−)≤0 // ChainComplexes≤ 0
Z(

· · · ∂1−!V1
∂0−!V0

∂−1
−!V−1

∂−2
−!V−1! · · ·

)
7−!

(
V0

∂−1
−!V−1

∂−2
−!V−1! · · ·

)
.

In contrast to the homological truncation involved in Ω∞ (446), this naive truncation is not homotopy-invariant and does not
have a derived functor. Instead, as seen from (283) and (269), once regarded in differential non-abelian cohomology, this op-
eration serves to construct the canonical atlas [SS20b, Prop. 2.70] of the moduli ∞-stack of flat lEn-valued differential forms.
Via the defining homotopy pullback (276), (284) this becomes hallmark of differential cohomology: Differential cohomology
is the universal solution to lifting the values of the character map from cohomology classes to cochain representatives, namely
to curvature forms.

In differential enhancement of Example 2.14 and Example 4.13, we have:

Example 4.41 (Differential complex K-theory). With the coefficient space A := KU0 = Z×BU (31) for topological complex
K-theory (Example 2.14), the corresponding differential non-abelian cohomology theory (Def. 4.38) is, by Example 4.39,
differential K-theory, whose diagram (16) of cohomology operations is of this form (see [HS05][BS09][BS12][GS17b])

Ĥ
(
X ; KU0

)
' K̂U

0
(X )

FKU0 //

cKU0 ��

{ {
F2k ∈ Ω2k

dR(X )
}

k∈N
∣∣ d F2k = 0

}
��

KU0(X )
ch // ⊕

k∈N
H2k

dR

(
X
)
,

(285)

where the bottom map is the ordinary Chern character from Example 4.13, and the curvature differential forms are identified
as in Example 3.103.
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Remark 4.42 (Differential K-theory via equivalence classes of principal connections). In our context of non-abelian cohomol-
ogy it is worth highlighting the well-known fact that differential K-theory classes (Ex. 4.41) may equivalently be expressed
([Ka87][Lo94][SiSu08b][BNV13, §6], brief review in [BS12, §4.1]) in terms of equivalence classes of vector bundles with
connection, hence equipped with principal connections (Nota. 4.20) on the underlying U(n)-principal bundles.

Examples of differential non-abelian cohomology. In differential enhancement of Example 2.3, we have:

Proposition 4.43 (Differential non-abelian cohomology of principal connections). Let G be a compact Lie group with classi-
fying space BG (24). Then there is a natural map over smooth manifolds X, shown dashed in (286), from equivalence classes
of G-principal connections (Notation 4.20) to differential non-abelian cohomology with coefficients in BG (Def. 4.38) which
covers the classification of G-principal bundles by plain non-abelian cohomology with coefficients in BG (Example 2.3), in
that the following diagram commutes:

GConnections(X)/∼ //

forget
connection

��

differential
non-abelian cohomology

Ĥ(X ;BG)

cBG

��
GBundles(X)/∼ '

// H(X ; BG)
non-abelian cohomology

(286)

Proof. By Lemma 4.29, the differential form coefficient in the given case is

ΩdR(−; lBG)flat ' HomR

(
inv•(g) , Ω

•
dR(−)clsd

)
.

Therefore, with Example 3.73, we find that(
∆[k] 7! HomR

(
inv•(g) , Ω

•
dR(∆

k)clsd
))
' ∏

k
K
(
invn(g),n

)
∈ Ho

(
∆SetsQu

)
is a product of Eilenberg-MacLane spaces (22) for real coefficient groups spanned by the invariant polynomials, and so the
defining homotopy pullback (276) is here of the following form:

BGdiff //

��
(hpb)

HomR
(
inv•(g) , Ω•dR(−)clsd

)
��

Disc(BG)
(ck)k∈N

// Disc
(

∏
k∈N

K
(
invn(g),n

))
,

(287)

where the bottom map classifies the real characteristic classes of BG via Example 2.2. It follows by Example A.31 that maps
into BGdiff are equivalence classes of triples

Ĥ(X ; BG) '


(

f ,φ ,(αk)
)
∣∣∣∣∣∣∣∣∣∣∣∣

X
(αk) //

f
��

HomR
(
inv•(g) , Ω•dR(−)clsd

)
��

BG // Disc
(

∏
k∈N

K
(
invn(g),n

))φqy


(288)

consisting of (a) a classifying map f for a G-principal bundle (Example 2.3), (b) a set of closed differential forms α labeled
by the invariant polynomials, and (c) a set of coboundaries φ in real cohomology between these differential forms and the
pullbacks f ∗ck.

Now, given a G-connection ∇ on a G-principal bundle f ∗EG over X , we obtain such a triple by (a) taking f to be the
classifying map of the underlying G-principal bundle, (b) taking αk := ωk(F∇) to be the characteristic forms (Def. 4.22) of
the connection, and (c) taking φ to be given by the relative Chern-Simons forms [CS74] between the given connection and the
pullback along f of the universal connection (see Remark 4.19). This construction is an invariant of the isomorphism class of
the connection (see [HS05, p. 28]) and hence defines the desired map (286):

GConnections(X)/∼ // Ĥ(X ; BG)[
f ∗EG,∇

]
7−!

[
f ,
(
csk(∇, f ∗∇univ)

)
,
(
ωk(F∇)

)] (289)
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Remark 4.44 (The role of principal connections in non-abelian differential cohomology).
(i) It seems unlikely that the map (286) in Prop. 4.43 would not be a bijection, but we do not have a proof that it is, in general.
A notable case where it is known to be a bijection is the abelian case of the circle group G = U(1); this case is Prop. 4.47
below.
(ii) However, Thm. 4.54 below shows that the image of G-principal connections in differential non-abelian cohomology
Ĥ
(
X ;BG

)
, under this map (286), supports the construction of all the secondary characteristic classes of G-principal bundles,

hence retains all the relevant information extractable from G-principal connections.
(iii) On the other hand, for each Lie group G with Lie algebra denoted g, there exists a smooth stack (Prop. A.57)

BGconn ' Ω
1(−;g)�G ∈ Ho(SmthStacks∞) (290)

which is the moduli stack of smooth G-principal connections ([FSSt10, Def. 3.2.4][FH13], exposition in [FSS13a, §2.4]) in
that it not only makes the analogue of the map (286) provably a bijection

GConnections(X)/∼ H
(
X ; ,BGconn

)∼ ∈ Sets

but even such that the full mapping space (432) into it is equivalent ([FSSt10, Prop. 3.2.5]) to the groupoid (via Ex. A.9) of
gauge transformations between G-principal connections:

GConnections(X) Maps
(
X ; ,BGconn

)∼ ∈ Ho
(
∆SetsQu

)
.

(iv) But, while BGconn can explicitly be defined as in (290), it seems to lack (unless G is abelian, see Prop. 4.47) a more
general abstract characterization of the kind that defines BGdiff in (287), via the systematic Def. 4.38. In particular, it is the
construction principle of BGdiff – but apparently not that of BGconn – which properly generalizes from ordinary non-abelian
Lie groups to higher non-abelian groups [FSSt10, §4.3] such as the String 2-group (Ex. 2.5), again for the fact that BGdiff
canonically supports the secondary characteristic classes: see [FSS12a, §3-4].

In differential enhancement of Example 2.10, we have:

Example 4.45 (Differential Cohomotopy [FSS15b]). The canonical differential enhancement of (unstable) Cohomotopy the-
ory (Example 2.10) in degree n is differential non-abelian cohomology (Def. 4.38) with coefficients in Sn:

differential
Cohomotopy

π̂
n(−) := Ĥ

(
−;Sn) .

(i) By Example 3.90, a cocycle Ĉ3 ∈ π̂ 4(X) in differential 4-Cohomotopy has as curvature (276) a pair consisting of a
differential 4-form G4 and a differential 7-form G7, satisfying the Cohomotopical Bianchi identity shown here:

differential
4-Cohomotopy

π̂ 4(X)

cohomotopical curvature
FS4 // Ω

(
X ; lS4

)
flat

Ĉ3
cohomotopically
charge-quantized

C3-field

7−!

{
G7(Ĉ3),

G4(Ĉ3)
∈Ω•dR(X)

∣∣∣∣∣d G7(Ĉ3) =−G4(Ĉ3)∧G4(Ĉ3)

d G4(Ĉ3) = 0

}
. (291)

Such differential form data is exactly what characterizes the flux densities of the C3-field in 11-dimensional supergravity (up to
the self-duality constraint G7 = ?G4). By comparison with Dirac’s charge quantization (2), we thus see that a natural candidate
for charge quantization of the supergravity C3-field is (nonabelian/unstable) 4-Cohomotopy theory π4 [Sa13, §2.5][FSS16a,
§2][BMSS19, §3] (review in [FSS19a, §7]) or rather: differential 4-Cohomotopy theory π̂ 4 [FSS15b, p. 9][GS20, §3.1].
(ii) The consequence of this Cohomotopical charge quantization is readily seen from the Hurewicz operation on Cohomotopy
theory (Example 2.26): The de Rham class of the 4-flux density is constrained to be integral, hence to be in the image of the
de Rham homomorphism (Example 4.12) and its cup square is forced to vanish[

G4(Ĉ3)
]
∈ H4

(
X ; Z

)
// H4

dR
(
X
)
,

[
G4(Ĉ3)

]
∪
[
G4(Ĉ3)

]
= 0 . (292)

This innocent-looking but non-linear cup-square relation is the source of the “quadratic functions in M-theory” [HS05],
revealed here as originating from a deep phenomenon in unstable, hence “non-abelian”, homotopy theory, revolving around
Hopf maps and Massey products [KS05, §4.4][SS21] (see [GS17a] for differential refinement).
(iii) Passing from 11-dimensional supergravity to M-theory, the curvature data in (291) is expected (see [FSS19b, Table 1])
to be subjected to more refined topological constraints, forcing the class of G4 to be integral up to a fractional shift by the
first Pontrjagin class of the tangent bundle, and deforming its cup square to a quadratic function with non-trivial “background
charge”. We see, in Prop. 5.25 below, that these more subtle M-theoretic constraints on the C3-field flux densities are, once
more, imposed by charge quantization in – hence lifting through the non-abelian character map of – the corresponding twisted
non-abelian cohomology theory, namely: J-twisted 4-Cohomotopy [FSS19b][FSS20] (Example 5.24 below).
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Ordinary differential cohomology. The ordinary differential cohomology Ĥ•(X) [SiSu08a] of a smooth manifold X com-
bines ordinary integral cohomology classes (Example 2.2) with closed differential forms that represent the same class in real
cohomology, in that it makes a diagram of the following form commute:

ordinary
differential cohomology

Ĥ•(X)

underlying
integral class ��

curvature // Ω•dR(X)clsd

via
de Rham theorem��

H•(X ; Z) rationalization // H•(X ; R)

(293)

In fact, differential cohomology is universal with this property, but not at the coarse level of cohomology sets shown above
(where the universal property is shallow) but at the fine level of complexes of sheaves of coefficients (i.e. of moduli ∞-stacks),
as made precise in Prop. 4.47 below (see Rem. 4.48).

In degree 2, ordinary differential cohomology classifies ordinary U(1)-principal bundles (equivalently: complex line
bundles) with connection [Bry93, §II], and the curvature map in (293) assigns their traditional curvature 2-form. In degree
3, ordinary differential cohomology classifies bundle gerbes with connection [Mu96][SWa07] with their curvature 3-form. In
general degree, it classifies higher bundle gerbes with connection [Ga97], or equivalently higher U(1)-principal bundles with
connection [FSS12b, 2.6].

One construction of ordinary differential cohomology over smooth manifolds is given in [CS85, §1], now known as
Cheeger-Simons characters. An earlier construction over schemes, now known as Deligne cohomology (Example 4.46),
due independently to [De71, §2.2][MM74, §3.1.7][AM77, §III.1] and brought to seminal application in [Bei85] (review in
[EV88]), is readily adapted to smooth manifolds [Bry93, §I.5][Ga97]. The advantage of Deligne cohomology over Cheeger-
Simons characters is that is immediately generalizes from smooth manifolds to smooth ∞-stacks, [FSSt10, §3.2.3][FSS12b,
§2.5], such as to orbifolds [SS20a] and to moduli ∞-stacks of higher principal connections where it yields higher Chern-
Simons functionals [SSS12][FSS12a][FSS13a][FSS15a], as well as allowing for twists in a systematic manner [GS18c][GS19b].

In differential enhancement of Example 2.12, we have:

Example 4.46 (Ordinary differential cohomology on smooth ∞-stacks [FSSt10, §3.2.3][FSS12b, §2.5]). Let n ∈ N.
(i) The smooth Deligne-Beilinson complex in degree n+ 1 is the presheaf of connective chain complexes (Example A.61)
over CartSp (419) given by the truncated and shifted smooth de Rham complex (Example 3.23) with a copy of the integers
included in degree n+1 (as integer valued 0-forms, hence as smooth real-valued functions constant on an integer):

DBn+1
• :=

(
· · · // 0 // 0 // Z �

� // Ω0
dR(−)

d // Ω1
dR(−)

d // · · · d // Ωn
dR(−)

)
. (294)

(ii) The de Rham differential in degree 0 gives a morphism of presheaves of complexes

DBn+1
•

(0,0,··· ,0,d) // Ωn+1
dR (−)clsd (295)

from the Deligne-Beilinson complex (294) to the presheaf of closed (n+1)-forms, regarded as a presheaf of chain complexes
in degree 0.
(iii) Ordinary differential cohomology is sheaf hypercohomology with coefficients in the Deligne complex. This means that if
we look at the Deligne-Beilinson complex (294) as a smooth ∞-stack (Def. A.57) by first applying the Dold-Kan construction
from Example A.66 and then ∞-stackifying the resulting simplicial presheaf, then ordinary differential cohomology is stacky
non-abelian cohomology (Remark 2.27) with coefficients in the Deligne-Beilinson complex:

ordinary
differential cohomology

Ĥn+1(X )
:= Ho(SmthStacks∞)

(
X ,

Dold-Kan
correspondence

Lloc ◦ DK
(Deligne-Beilinson

complex

DBn+1
•
))

. (296)
(iv) The curvature map on ordinary differential cohomology is the cohomology operation induced by (295):

ordinary
differential cohomology

Ĥn+1
(
X
)

F
curvature // Ωn+1

dR

(
X
)

clsd

Ho(SmthStacks∞)
(
X ,Lloc ◦DK

(
DBn+1
•
)) Ho(SmthStacks∞)(X ,Lloc ◦DK(d)) // Ho(SmthStacks∞)

(
X ,Lloc ◦DK

(
Ω

n+1
dR (−)clsd

))
.

(297)

Proposition 4.47 (Differential non-abelian cohomology subsumes differential ordinary cohomology [FSSt10, Prop. 3.2.26]).
Let n ∈ N and consider A = BnU(1)' K(Z,n+1) (Example 2.12). Then:
(i) Differential non-abelian A-cohomology (Def. 4.38) coincides with ordinary differential cohomology (Def. 4.46):

ordinary
differential cohomology

Ĥn+1(X )
' Ĥ

(
X ; BnU(1)

)
. (298)

(ii) The abstract curvature map in differential A-cohomology (276) reproduces the ordinary curvature map (297).
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Proof. In order to compute the defining homotopy pullback (276), we use the Dold-Kan correspondence (Prop. A.63) to
obtain a convenient presentation of the differential character map along which to pull back:

(a) Since the Dold-Kan construction DK (Def. A.66) realizes homotopy groups from homology groups (441), and since
Eilenberg-MacLane spaces are characterized by their homotopy groups (22), we have the vertical identifications on the left of
the following diagram:

Disc
(
Bn+1Z

) chBnU(1)

,,

ηR
Bn+1Z

// Disc
(
Bn+1R

)
'

// [Bexp(bnR)
'

∫
∆• ��

DK



Z
#
0
#
...
#
0


� � //DK



R
#
0
#
...
#
0


� � // DK



Ω0
dR(−)
# d

Ω1
dR(−)
# d
...
# d

Ω
n+1
dR (−)clsd



(299)

Under this identification, it is clear that the rationalization map ηR
Bn+1Z (Def. 3.53) is presented by the canonical inclusion of

the integers into the real numbers, as on the bottom left of (299).
Moreover, the right vertical equivalence in (299) is that from Lemma 4.34.
(b) Since the differential character (275) in the present case evidently comes from a morphism of (presheaves of) simpli-

cial abelian groups, with group structure given by addition of ordinary differential forms (Example 3.88), we may, using the
Dold-Kan correspondence (Prop. A.63), analyze the remainder of the diagram on normalized chain complexes N(−) (440).

Using this, it follows by inspection of the bottom map in (275) that the bottom right square in (299) commutes, with the
bottom morphism on the right being the canonical inclusion of (presheaves of) chain complexes.

Now to use this presentation for identifying the resulting homotopy fiber product (276):
(i) Since the DK-construction (Def. A.66), applied objectwise over CartSp, is a right Quillen functor into the global model
structure from Example A.49, and since ∞-stackification preserves homotopy pullbacks (Lemma A.59), it is now sufficient to
show, by definition (296), that the homotopy pullback (Def. A.28) along the bottom map in (299), formed in presheaves of
chain complexes is the Deligne-Beilinson complex DBn+1

• (294).
For this it is sufficient, by (395), to
find a fibration replacement of the
bottom map in (299) whose ordinary
fiber product with Ω

n+1
dR (−)clsd is the

Deligne-Beilinson complex. This is
provided by a mapping cylinder con-
struction (e.g. [Wei94, §1.5.5]) shown
here:

DBn+1
• =



Z
#i

Ω0
dR(−)
#d

Ω1
dR(−)
#d

...

#d

Ω
n−1
dR (−)
#d

Ωn
dR(−)


i1
��



0

0
...

0

d


//

(pb)



0

#

0

#

0

#

...

#

0

#

Ω
n+1
dR (−)clsd


i
��

Z
#

0

#

0

#

...

#

0

#

0



n 7!(n,n)

∈W
//



Z ⊕ Ω0
dR(−)

#i ↙−id #d

Ω0
dR(−) ⊕ Ω1

dR(−)
#d ↙+id #d

Ω1
dR(−) ⊕ Ω2

dR(−)
#d ↙−id #d

...
...

...

#d ↙ #d

Ω
n−1
dR (−) ⊕ Ωn

dR(−)
#d ↙

Ωn
dR(−)





pr2

pr2
...

pr2

d


∈ Fib

//



Ω0
dR(−)
#d

Ω1
dR(−)
#d

Ω2
dR(−)
#d

...

#d

Ωn
dR(−)
#d

Ω
n+1
dR (−)clsd



(300)
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By direct inspection, we see in this diagram that:

• the total bottom morphism is the total bottom morphism from (299), factored as a weak equivalence (quasi-isomorphism)
followed by a fibration (positive degreewise surjection);

• the ordinary pullback of this fibration is the Deligne-Beilinson complex DBn+1
• (294), as shown, which therefore

represents the homotopy pullback (since all chain complexes are projectively fibrant), by Def. A.28.
• the top morphism out of this (homotopy-)pullback coincides with the curvature map (295) on the Deligne complex –

which, under the following implication of claim (i), implies claim (ii).

(ii) The image of this homotopy pullback (300) under Lloc ◦DK is still a homotopy pullback (because DK is a right Quillen
functor by construction (444) and using Lem. A.59) and hence exhibits the Deligne coefficients (296) for ordinary differential
cohomology as a model for the differential Bn+1Z-cohomology according to Def. 4.38:

Deligne complex as smooth ∞-stack

Lloc ◦DK
(
DBn+1
•
)

ΩdR
(
−; lBn+1Z

)
flat

Disc
(
Bn+1Z

)
[Bexp

(
lBn+1Z

)
FBn+1Z

cBn+1Z (hpb)

chBn+1Z

(301)

This implies claim (i), by the definitions.

Remark 4.48 (The commuting square of ordinary (differential) cohomology groups). The image of the homotopy-pullback
square (301) under the hom-functor Ho(SmthStacks∞)(X ,−) out of a smooth manifold X gives the commuting square of
ordinary (differential) cohomology groups shown in (293). Since the hom-functor of a homotopy category does not preserve
homotopy pullbacks, in general (only the mapping space functor (432) does), the square (293) in cohomology is not itself a
pullback, in general.

Secondary non-abelian cohomology operations. We define secondary non-abelian cohomology operations (Def. 4.50
below) which generalize the classical notion of secondary characteristic classes (Theorem 4.54, see Remark 4.55 for the
terminology) to higher non-abelian cohomology. To formulate the concept in this generality, we need a technical condition
(Def. 4.49) which happens to be trivially satisfied in the classical case (Lemma 4.52 below):

Definition 4.49 (Absolute minimal model). For A1,A2 ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) we say that an absolute minimal

model for a morphism A1 c // A2 in ∆Sets is a morphism lA1 c // lA2 between the respective Whitehead L∞-algebras
(Prop. 3.68) which makes the square on the left and hence the square on the far right of the following diagram commute:

Ω•dRPL(A1) oo
pmin

A1

OO
CE
(
lA1
)

OO
c

Ω•dRPL(A2) oo
pmin

A2

CE
(
lA2
)
,

∈ dgcAlgs≥ 0
R

A1

c

��

ηPLdR
A1

//

DηPLdR
A1

,,
BexpPL ◦ Ω•PLdR(A1)

BexpPL ◦ Ω•PLdR(c)

��

BexpPL(pmin
A1

) // BexpPL ◦ CE(lA1)

BexpPL ◦ CE(c)

��
A2 ηPLdR

A2
//

DηPLdR
A2

22
BexpPL ◦ Ω•PLdR(A2) BexpPL(pmin

A2
) // BexpPL ◦ CE(lA2) ,

∈ ∆Sets

(302)

hence a morphism that yields a transformation between exactly those derived adjunction units DηPLdR (391) of the PL-de
Rham adjunction (144) that are given by minimal fibrant replacement.20 In this case, the commuting diagram (302) evidently
extends to a strict transformation between the differential non-abelian characters (275) on the Ai (Def. 4.36), in that the
following diagram of simplicial presheaves (Def. 420) commutes:

Disc(A1)

Disc(c)
��

chA1 // [Bexp(lA1)

[Bexp(c)
��

Disc(A2)
chA2 // [Bexp(lA2)

∈ PSh
(
CartSp , ∆Sets

)
. (303)

20Notice that the existence of morphisms c making this diagram commute is not guaranteed; it is only the existence of the relative
minimal morphism lA2(c) from Prop. 3.81 which is guaranteed to make the square (182) commute.
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In differential enhacement of Def. 2.17, we have:

Definition 4.50 (Secondary non-abelian cohomology operation). Let A1
c // A2 in ∆Sets, with induced cohomology opera-

tion (Def. 2.17)
H(−;A1)

c∗ // H(−;A2) ,

have an absolute minimal model c (Def 4.49). Then the corresponding secondary non-abelian cohomology operation is the
structured cohomology operation (Remark 2.27)

Ĥ(−; A1)
(cdiff)∗

secondary
non-abelian character

// Ĥ(−; A2) (304)

on differential non-abelian cohomology (Def. 4.38) which is induced, as in (41), by the dashed morphism cdiff in the following
diagram, which in turn is induced from c and c (303) by the universal property of the defining homotopy pullback operation
(275):

secondary/differential
cohomology operation (A1)diff

cdiff //

cA1

��

FA1 ((

(A2)diff

cA2

��

FA2

((
ΩdR

(
−; lA1

)
flat

��

c∗ // ΩdR
(
−; lA2

)
flat

��

plain/primary
cohomology operation Disc(A1)

Disc(c) //

transformation of
differential characters chA1

((

Disc(A2)
chA2

((
[Bexp(lA1)

c∗ // [Bexp(lA2) .

(305)

The left and right squares are the homotopy pullback squares defining differential non-abelian cohomology (Def. 4.38) while
the bottom square is the transformation of differential non-abelian characters (Def. 4.36) from (303).

In differential enhancement of Examples 2.26, 4.16 we have:

Example 4.51 (Secondary non-abelian Hurewicz/Boardman homomorphism to differential K-theory). Consider the map

S4
e4

BU // BU ∈ Ho
(
∆SetsQu

)
from the 4-sphere to the classifying space of the infinite unitary group (32) which classifies a generator in π4

(
BU
)
' Z. By

Example 3.72 and Examples 3.76, 3.103 the corresponding Whitehead L∞-algebras (Prop. 3.68) are as shown here:

CE
(
lS4
)
oo CE

(
lBU

)
'
⊗
k∈N

CE
(
lK(Z,2k)

)

R

[
ω7,

ω4

]/(d ω7 =−ω4∧ω4
d ω4 = 0

)
oo

ω4 | 2k = 4
0 | else

}
 [ f2k

? _ R


...

f4,

f2,

 /
 ...

d f4 = 0
d f2 = 0

 (306)

The morphism shown in (306) evidently restricts to the relative rational Whitehead L∞-algebra inclusion (Prop. 3.81) on the
factor K(R,4) ⊂ LRBU and is zero elsewhere, hence fits into the required diagram (302) exhibiting it as an absolute minimal
model (Def. 4.49) for e4

BU (by the commuting diagram in Prop. 3.49).

Cheeger-Simons homomorphism. Where the construction of the Chern-Weil homomorphism (Def. 4.24) invokes connec-
tions on principal bundles without actually being sensitive to this choice (by Prop. 4.26), the Cheeger-Simons homomorphism
[CS85, §2][HS05, §3.3] (based on [CS74]) is a refinement of the Chern-Weil homomorphism, now taking values in differential
ordinary cohomology (Example 4.46), that does detect connection data (hence “differential” data):

GConnections(X)/∼

forget
connection

��

csG

Cheeger-Simons
homomorphism // HomZ

(
H•(BG; Z) ,

differential
cohomology

Ĥ•(X)
)

curvature map
��

GBundles(X)/∼
cwG

Chern-Weil
homomorphism

// HomR

(
inv•(g) , H•dR(X)

de Rham
cohomology

) (307)
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We discuss how the general notion of secondary non-abelian cohomology operations (Def. 4.50) specializes on ordinary
principal bundles to the Cheeger-Simons homomorphism, and hence generalizes it to higher non-abelian cohomology:

Lemma 4.52 (Characteristic classes of G-principal bundles have absolute minimal models). Let G be a connected compact
Lie group with classifying space BG (24). For n ∈ N, let [c] ∈ Hn+1(BG; Z) be an indecomposable universal integral

characteristic class for G-principal bundles (Example 2.4). Then every representative classifying map BG c // Bn+1Z has an
absolute minimal model in the sense of Def. 4.49.

Proof. By Lemma 4.28, the minimal Sullivan model for BG has vanishing differential, while the minimal Sullivan model of
Bn+1Z is a polynomial algebra on a single degree n+1 generator (by Example 3.73), whose inclusion is already the relative
minimal Sullivan model lBn+1Z(c) (Prop. 3.81) of c. Therefore, setting

CE(c) := CE
(
lBn+1Z(c)

)
: R[c]

/
(d c = 0) �

� // inv•(g) (308)

gives the required morphism of minimal models that makes makes the square (302) commute, by (182).

In differential enhancement of Example 2.18 we have:

Definition 4.53 (Secondary characteristic classes of differential non-abelian G-cohomology). Let G be a connected compact
Lie group with classifying space BG (24). By Lemma 4.52), the construction of secondary characteristic classes (Def. 4.50,
on differential non-abelian G-cohomology (Example 4.43) yields a Z-linear map of the form

H•
(
BG, ;Z

)
' H

(
BG; B•Z

) (−)diff // Ĥ
(
BGdiff; B•Z

)
= H

(
BGdiff; B•Zdiff

)
,

where on the right we have the ordinary differential non-abelian cohomology (Prop. 4.47) of the moduli ∞-stack BGdiff (276).
Combined with the composition operation in Ho(SmthStacks∞) (A.57) this gives a map

Ĥ
(
X ; BG

)
×H

(
BG; B•Z

) id×(−)diff // H
(
X ; BGdiff

)
×H

(
BGdiff; B•Zdiff

) ◦ // H
(
X ; B•Zdiff

)
= Ĥ

(
X ; B•Z

)
which is Z-linear in its second argument, and whose hom-adjunct is

Ĥ(X ; BG)
∇ 7!(c 7!cdiff(∇)) // HomZ

(
H(BG; B•Z) , Ĥ(X ; B•Z)

)
. (309)

Theorem 4.54 (Secondary non-abelian cohomology operations subsume Cheeger-Simons homomorphism). Let G be a con-
nected compact Lie group, with classifying space denoted BG (24). Then the canonical construction (309) of secondary
characteristic classes on differential non-abelian G-cohomology (Def. 4.53) coincides with the Cheeger-Simons homomor-
phim (307), in that the following diagram commutes:

GConnections(X)/∼

(286)

��

csG

Cheeger-Simons
homomorphism // HomZ

(
H•(BG; Z) ,

differential
ordinary

cohomology

Ĥ•(X)
)

OO
' (298)

Ĥ(X ; BG)
differential non-abelian

cohomology

∇ 7!(c 7!cdiff(∇))

secondary
non-abelian cohomology operations

// HomZ

(
H(BG; B•Z) , Ĥ(X ; B•Z)

)
,

(310)

where on the left we have the map from G-connections to differential non-abelian G-cohomology from Prop. 4.43, and on the
right the identification of ordinary differential cohomology from Prop. 4.47.

Proof. Let c∈H
(
BG; B•Z

)
be a characteristic class, and let ( f ∗EG,∇) be a G-principal bundle equipped with a G-connection.

By Prop. 4.43, its image in differential non-abelian cohomology is given by the first map in the following diagram

GConnections(X)/∼ // Ĥ(X ; BG)
(cdiff)∗ // Ĥ

(
X ; Bn+1Z

) ' // Ĥn+1(X)[
f ∗EG,∇

]
7−!

[
f ,
(
csk(∇, f ∗∇univ)

)(
ωk(F∇)

)]
7−!

[
f ∗c, csc(∇, f ∗∇univ), c(F∇)

] (311)

Here the triple of data are the three components (Example A.31) of a map into the defining homotopy pullback of differential
non-abelian cohomology (288). Therefore, the secondary operation induced by the transformation (305) of these homotopy
pullbacks, which in the present case is of this form:
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BGdiff cdiff

secondary
characteristic class //

&&
cBG

��

Bn+1Zdiff

''
cBn+1Z

��

ΩdR(−; lBG)flat

��

// ΩdR(−; lBn+1Z)flat

��

BG c
characteristic class //

chBG &&

Bn+1Z
chBn+1Z

((
[Bexp(lBG)

c∗
// [Bexp(lBn+1Z) ,

(312)

acts (a) on the first component in the triple by postcomposition with c, hence as

f 7! f ∗c := c ◦ f

and (b) on the other two components by composition with c, which by (308) corresponds to projecting out the Chern-Simons
form and characteristic form corresponding to c, respectively. This is shown as the second map in (311). Hence we are
reduced to showing that the total map in (311) gives the Cheeger-Simons homomorphism. This statement is the content of
[HS05, §3.3].

Remark 4.55 (Secondary characteristic classes of G-connections). The traditional reason for referring to the Cheeger-Simons
homomorphism (310) as producing secondary invariants is that Cheeger-Simons classes csG(P,∇)∈ Ĥ(X) may be non-trivial
even if the underlying characteristic class cwG(P) (the “primary” class) vanishes. In this case the csG(P,∇) are also called
Chern-Simons invariants.
(i) This happens, in particular, when the G-connection ∇ is flat, F(∇) = 0 (by Def. 4.22). Such secondary Chern-Simons
invariants exhibit some subtle phenomena ([Rzn95][Rzn96][IS07][Es09]).
(ii) In fact, the proof of Theorem 310, via the triples (288) of homotopy data, shows that, in this case, csG(P,∇) measures how
(or “why”) cwG(P) vanishes, namely by which class of homotopies.
(iii) Here we may understand secondary classes more abstractly, and explicitly related to the non-abelian character map:
Where a (primary) non-abelian cohomology operation, according to Def. 2.17, is induced by a morphism of coefficient
spaces (36), a secondary non-abelian cohomology operation, according to Def. 4.50, is induced (304) by a morphism of
non-abelian character maps (303) – hence by a morphism of morphisms – on these coefficient spaces.
(iv) Note that classical secondary cohomology operations themselves admit differential refinements. For instance, for the case
of Massey products as secondary operations for the cup product this is worked out in [GS17a]. While these can also fit into
our context on general grounds, we will not demonstrate that explicitly here.
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5 The twisted (differential) non-abelian character map
We introduce the character map in twisted non-abelian cohomology (Def. 5.4) and then discuss how it specializes to:

§5.1 – the twisted Chern character on (higher) K-theory;
§5.3 – the twisted character on Cohomotopy theory.

Rationalization in twisted non-abelian cohomology. In generalization of Def. 4.1 we now define rationalization of local
coefficient bundles (43). This operation is transparent in the language of ∞-category theory (Rem. A.35), where it simply
amounts to forming the pasting composite with the homotopy-coherent naturality square of the R-rationalization unit ηR

(from Def. 3.61):

X

τ   

τ-twisted cocycle with
local coefficients ρ

c // A�G

ρ||
BG

'qy
rationalization
7−!

X

τ
��

τ-twisted cocycle with rationalized local coefficients LR(ρ)

c // A�G

ρ
||

ηR
A�G // LR

(
A�G

)

LR(ρ)

��

BG

ηR
BG ##

LRBG

'px

'

u}

(313)

Slightly less directly but equivalently, this is the composite of (a) derived base change (Ex. A.21) along ηR
BG from the slice

over BG to the slice over LRBG, (b) followed by the composition with its derived naturality square, now regarded as a
morphism in the slice over LRBG:

X

τ   

τ-twisted cocycle with
local coefficients ρ

c // A�G
ρ

||
BG

'qy
base change
7−!

X

τ ""

c // A�G

ρ
{{

BG

ηR
BG
��

LRBG

'ow composition
in slice
7−!

X

τ ""

τ-twisted cocycle with
local coefficients ρ

c // A�G

ρ
{{

ηR
A�G // LR(A�G)

LR(ρ)

zz

BG

ηR
BG
��

LRBG

'ow

'

s{

It is in this second form that the operation lends itself to formulation in model category theory (Def. 5.2 below). For that we
just need to produce a rectified (strictly commuting) model of the ηR-naturality square:

Definition 5.1 (Rectified rationalization unit on coefficient bundle). Consider a local coefficient bundle (43) in Ho
(
∆SetsQu

)finQ
≥1,nil

(Def. 3.50) with its minimal relative Sullivan model (182), (given by Prop. 3.81)

A //

local coefficient bundle

A�G

ρ

��
BG ,

Ω•PLdR
(
A�G

)
OO

Ω•PLdR(ρ)

oo
p

minBG
A�G

∈W
CE
(
lBG(A�G)

)
OO

CE(lp)

Ω•PLdR
(
BG
)
oo

pmin
BG

∈W
CE
(
l(BG)

)
(314)

Then the composite of the image of (314) under BexpPL with the Ω•PLdR a BexpPL-adjunction unit (from Prop. 3.59):

Dη
PLdR
ρ :=

A�G ηPLdR
A�G

//

ρ

��

DηPLdR
A�G ' ηR

A�G

,,
BexpPL ◦ Ω•PLdR

(
A�G

)
BexpPL ◦ Ω•PLdR(ρ) ��

BexpPL
(

pminBG
A�G

) // BexpPL ◦ CE
(
lBG(A�G)

)
BexpPL ◦ CE(lp)

��
BG ηPLdR

BG
//

DηPLdR
BG ' ηR

BG

22
BexpPL ◦ Ω•PLdR

(
BG
)

BexpPL
(

pmin
BG

) // BexpPL ◦ CE
(
l(BG)

) (315)

is, after passage (377) to the classical homotopy category (Example A.39), the naturality square of the rationalization unit on
ρ (131), namely of the derived adjunction unit (391) ηR = DPLRdR (using, with Prop. 3.42, that the right part of (315) is the
image under BexpPL of a fibrant replacement morphism.)
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Definition 5.2 (Rationalization in twisted non-abelian cohomology). Given a local coefficient bundle ρ and its rectified
rationalization unit DηPLdR

ρ (Def. 5.1) we say that rationalization in twisted non-abelian cohomology with local coefficients
ρ (Def. 2.29) is the twisted non-abelian cohomology operation (Def. 2.42)(

η
R
ρ

)
∗ : Hτ(X ; A)

(
DηPLdR

ρ ◦ (−)
)
◦ D
(
ηR

BG

)
! // HLRτ

(
X ; LRA

)
(316)

given by the composite of
(a) derived left base change D(ηR

BG)! (Ex. A.21) along the rationalization unit (131) on the classifying space of twists,
(b) with the rectified rationalization unit (315) on the coefficient bundle, regarded as a morphism in the homotopy category
(377) of the slice model category (Example A.11) of ∆SetsQu (Example A.8) over BexpPL ◦ CE(lBG)).

Remark 5.3 (Rationalization of coefficients and/or of twists). Def. 5.2 rationalizes both the coefficients as well as their twist.
This is of interest because:
(a) the joint rationalization is defined canonically, in fact functorically, as highlighted around (313);
(b) the rationalized twisting appears in the archetypical examples (such as the twisted Chern character on degree-3 twisted
K-theory, §5.1) and gives the Bianchi identities on higher form field/flux data relevant in applications to physics (see §5.3).

One may also consider rationalization of just the coefficients, keeping non-rationalized twists; but, in general, this requires
making a choice, namely a choice of dashed morphisms in the following transformation diagram of local coefficient bundles:

local coefficient
bundle
A LR(A) R-rationalized

local coefficients

A�G
(
LRA

)
�G

BG BG non-rationalized
twist

hofib(ρ)

ηR
A

hofib(ρR)

ρ ρR

∈ Ho
(
∆SetsQu

)
. (317)

The homotopy-commutativity of the bottom square expresses that and how rationalization commutes with twisting.
Given such a choice, then using the bottom square (317) in place of the rationalization unit’s naturality square on the

right of (313) produces a definition, directly analogous to Def. 5.2, of rationalization of just the A-coefficients in twisted
A-cohomology. This is also of interest (see for instance the case of twisted KO-theory in [GS19d, Prop. 4]), but currently we
do not further expand on this generalization here.

Twisted non-abelian character map. In generalization of Def. 4.3, we set:

Definition 5.4 (Twisted non-abelian character map). Let X ∈ Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50) equipped with the structure of a

smooth manifold, and
A //

local coefficient bundle

A�G
ρ
��

BG

(318)

be a local coefficient bundle (43) in Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50). Then the twisted non-abelian character map in twisted

non-abelian cohomology is the twisted cohomology operation

twisted
non-abelian

character map
chρ :

twisted non-abelian
cohomology

Hτ(X ; A)
(ηR

ρ )∗

rationalization
//

twisted non-abelian
real cohomology

HLRτ
(
X ; LRA

) '
twisted non-abelian
de Rham theorem

//

twisted non-abelian
de Rham cohomology

HτdR
dR (X ; lA) (319)

from twisted non-abelian A-cohomology (Def. 2.29) to twisted non-abelian de Rham cohomology (Def. 3.107) with local
coefficients in the rational relative Whitehead L∞-algebra lρ of ρ (Prop. 3.84) which is the composite of

(i) the operation (316) of rationalization of local coefficients (Def. 5.2),
(ii) the equivalence (236) of the twisted non-abelian de Rham theorem (Theorem 3.117).

5.1 Twisted Chern character on higher K-theory
We discuss (Prop. 5.6) how the twisted non-abelian character map reproduces the twisted Chern character in twisted topo-
logical K-theory [BCMMS02, §6.3][MaSt03][AS06, §7] – see also [TX06][MaSt06, §6][FrHT08, §2][BGNT08] [GT10,
§4][Ka12, §8.3][GS19a, §3.2][GS19c]. Then we also consider (Prop. 5.11) the twisted character on twisted iterated K-theory
[LSW16, §2.2].
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Character maps on higher-twisted ordinary K-theories.

Remark 5.5 (Twisted Chern character via twisted characteristic forms). The twisted Chern character on twisted K-theory
was first proposed in [BCMMS02] via a natural twisted generalization of the component-wise construction (247) of the
ordinary Chern character in terms of characteristic curvature forms. Briefly, given a degree-3 twist τ3 ∈ H3(X ; Z) on a
(compact) smooth manifold, then every class [(V1,V2)] ∈ KUτ3(X) in τ3-twisted KU-theory (Ex. 2.36) may be represented
by a pair (V1,V2) of τ3-twisted complex vector bundles ([LuUr04, §7.2]), generally of infinite rank (“bundle gerbe mod-
ules” [BCMMS02, §4]). Now given a choice of lift of τ3 through the characteristic class map (293) to a Deligne cocycle
[h0,A1,B2,H3] (Ex. 4.46) with respect to some open cover p : (tiUi)� X (Ex. A.54), hence in particular including a choice
of “local B-field” B2, then one may further choose B2-twisted connections ∇i [Mac03] on the twisted vector bundles, inducing
curvature 2-forms Fi: B2 ∈ Ω

2(U) , Fi ∈ Ω
2(U ; End(Vi)

)
. (320)

Now it turns out [BCMMS02, Prop. 9.1] that
• the following trace (321) of differences of wedge-product exponentials of these 2-forms (320) is well defined (i.e., the

trace exists, which is non-trivial since the twisted vector bundles are in general have infinite rank)
exp(B2)∧ tr

(
exp(F1)− exp(F2)

)
= p∗chB2(∇1,∇2) ∈ Ω

2•(U) (321)

and equals the pullback p∗(−) to the given cover of an even-degree differential form on the base space X ,
• which is closed in the H3-twisted de Rham complex (224)

(d−H3∧)chB2(∇1,∇2) = 0, .

• and whose resulting twisted de Rham cohomology class (Def. 3.109) is independent of the choices made:
chτ3(V1,V2) :=

[
chB2(∇1,∇2)

]
∈ H3+H3

dR (X) . (322)
This class (322) was proposed [BCMMS02, p. 26] to be the twisted Chern character of the twisted K-theory class [(V1,V2)].

A more intrinsic characterization of the twisted Chern character was later found in [FrHT08, §2]. This is the form in
which one recognizes the twisted Chern character as an example of the twisted non-abelian character map (Def. 5.4), in
twisted enhancement of Example 4.13:

Proposition 5.6 (Twisted Chern character in twisted topological K-theory). Consider twisted complex topological K-theory
KUτ(−) (Example 2.36), for degree-3 twists given (via Example 2.11) by

τ ∈ H
(
−; B2U(1)

)
' H3(−; ,Z) ,

and regarded, via (58), as twisted non-abelian cohomology with local coefficients in Z×BU�B2U(1) (57). Then the twisted
non-abelian character map (Def. 5.4) chτ

Z×BU is equivalent to the traditional twisted Chern character chτ on twisted K-theory
with values in H3-twisted de Rham cohomology (Def. 3.109):

twisted non-abelian
character map

chτ
Z×BU '

twisted
Chern character

chτ .

Proof. That the codomain of the twisted non-abelian character map chτ
Z×BU is indeed H3-twisted de Rham cohomology is

the content of Prop. 3.110. With this, and due to the twisted non-abelian de Rham theorem (Theorem 3.117), it is sufficient
to see that the general rationalization map of local non-abelian coefficients from Def. 5.2 reproduces the rationalization map
underlying the twisted Chern character. This is manifest from comparing the rationalization operation (313), that is made
formally precise by Def. 5.2, to the description of the twisted Chern character as given in [FrHT08, (2.8)-(2.9)].

Remark 5.7 (Twisted Pontrjagin character in twisted KO-theory). Similarly, an analogous statement holds for the twisted
Pontrjagin character (as in Example 4.14) on twisted real K-theory [GS19d, Prop. 2].

Example 5.8 (Twisted Chern character on higher Cohomotopy-twisted K-theory). For k ∈N+, consider the cohomotopically-
twisted complex K-theory from Ex. 2.39.
(i) For λ ∈ π2k+1(X) a Cohomotopy class (Ex. 2.10) regarded now as a twist, the corresponding twisted non-abelian character
map (Def. 5.4) lands, by Theorems 3.96, 3.107 and Examples 3.73, 3.72, in λdR =: H2k+1-twisted de Rham cohomology
(Example 3.104, Prop. 3.112):

twist in Cohomotopy

λ ∈ π
2k+1(X) `

higher Cohomotopy-twisted K-theory

KUλ (X) = Hλ
(
X ; KU0

) higher twisted de Rham cohomology

HλdR
dR

(
X ; lKU0

)
' H•+H2k+1(X) .

chλ
KU0

twisted character map
(323)

(ii) A map of this form has been defined in [MMS20, §2.2], by direct construction on form representatives. However,
[MMS20, Thm. 4.19] implies that this component construction coincides with the rationalization map (Def. 5.2) on the local
coefficient bundle (66), up to application of the de Rham theorem. Therefore, the twisted character map (323) obtained as a
special case of Def. 5.4, reproduces the MMS-Character [MMS20, §2.2] on higher Cohomotopy-twisted K-theory.
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Remark 5.9 (Charge quantization of spherical T-duality in M-theory). For k = 3, the character map (323) on 7-Cohomotopy-
twisted K-theory is a candidate for charge quantization (2) of the super-rational M-theory fields participating in 3-spherical
T-duality over 11-dimensional super-spacetime, as derived in [FSS18, Prop. 4.17, Rem. 4.18] (review in [SS18, (8), (19)]).
However, the 7-Cohomotopy-twisted K-theory character has some spurious fields of 2-periodic degree in its image, which
are not seen in the physics application, where the field degrees are 6-periodic [Sa09, §3][FSS18, (65)]. Another candidate
for charge-quantization of the super-rational M-theory fields participating in 3-spherical T-duality, possibly more accurately
reflecting the physics, is the character map on twisted higher K-theory [LSW16], which we turn to next (Prop. 5.11).

Character map on twisted higher K-theory.

Remark 5.10 (Higher twisted de Rham coefficients inside rational twisted iterated K-theory). There is a non-trivial twisted
cohomology operation (Def. 2.42) from (a) twisted non-abelian de Rham cohomology (Def. 3.107) with coefficients in the
relative rational Whitehead L∞-algebra (Prop. 3.81) of the coefficient bundle (68) of twisted iterated K-theory (Ex. 2.40)
to (b) higher twisted de Rham cohomology (Def. 3.111) regarded as twisted non-abelian de Rham cohomology via Prop.
3.112):

HτdR
dR

(
−; lK◦2r−2(ku)1

)
φ∗ // HτdR

dR

(
−;
⊕
k∈N

b2rkR
)
, (324)

given, under the twisted non-abelian de Rham theorem (Theorem 3.117) by the LSW-character from [LSW16, §2.2] applied
to rational coefficients.

Proposition 5.11 (Twisted Chern character in twisted iterated K-theory). For r ∈N, r≥ 1, consider twisted iterated K-theory(
K◦2r−2(ku)

)τ (Example 2.40), for degree-(2r+1) twists given (via Example 2.12) by

τ ∈ H
(
−; B2rU(1)

)
' H2r+1(−; ,Z) ,

and regarded, via Example 2.40, as twisted non-abelian cohomology with local coefficients in
(
K◦2r−2(ku)

)
0. Then the twisted

non-abelian character map (Def. 5.4) chτ

K◦2r−2 (ku)0
composed with the projection operation (324) onto higher twisted de Rham

cohomology, (Def. 3.111) from Lemma 5.10, is equivalent to the LSW character map ch2r−1 [LSW16, Def. 2.20] restricted
along the connective inclusion

twisted
LSW character

chτ
2r−1 ' φ∗

projection onto
higher twisted

de Rham cohomology

◦

twisted non-abelian
character map

chτ

K◦2r−2 (ku)0
.

Proof. After unwinding the definitions, the statement reduces to the commutativity of the square diagram in [LSW16, p. 15]:
The top morphism there is the plain rationalization map (Def. 5.2), the right vertical morphism is φ∗ from Lemma 5.10 before
passing from real to de Rham cohomology, the left morphism is restriction to the connective part and the bottom morphism is
the LSW character.

5.2 Twisted differential non-abelian character
We introduce twisted differential non-abelian cohomology (Def. 5.14 below) and discuss how the corresponding twisted
differential non-abelian character subsumes existing constructions on twisted differential K-theory (Examples 5.20 and 5.23
below).

Twisted differential non-abelian cohomology. From the perspective of structured non-abelian cohomology (Remark 2.27)
that we have developed, it is now evident how to canonically combine

(a) twisted non-abelian cohomology (Def. 2.29) with
(b) differential non-abelian cohomology (Def. 4.38) to get

twisted differential non-abelian cohomology:

Definition 5.12 (Differential non-abelian local coefficient bundles). Let

A //

local coefficient bundle

A�G
ρ
��

BG

be a local coefficient bundle (43) in Ho
(
∆SetsQu

)finQ
≥1,nil (Def. 3.50).
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(i) By Lemma 3.83, with Def. 5.1, and using that BexpPL preserves fibrations (Prop. 3.67), this induces a homotopy fibering
(Def. A.27) in Ho(SmthStacks∞) (Def. A.57) of differential non-abelian character maps (Def. 4.36) of this form:

Disc(A)
chA

differential non-abelian character map
with coefficients in fiber space //

hofib(Disc(ρ)) ''

[Bexp(lA) oo atlas

hofib((lρ)∗)
((

ΩdR(−; lA)flat

hofib((lρ)∗)

))
Disc

(
A�G

) chBG
A�G

twisted differential non-abelian character map
//

Disc(ρ)

��

[Bexp
(
l(A�G)

)
oo

atlas

(lρ)∗

��

ΩdR
(
−; lBG(A�G)

)
flat

(lρ)∗

��
Disc(BG)

chBG

differential non-abelian character map
with coefficients in space of twists

// [Bexp(lBG) oo
atlas

ΩdR(−; lBG)flat

(325)

(ii) Here the twisted differential non-abelian character map chBG
A�G is defined just as in Def. 4.36, but with coefficients the

relative Whitehead L∞-algebra lBG(A�G) (Prop. 3.81), as opposed to the absolute Whitehead L∞-algebra l(A�G) (Prop. 3.68).

Remark 5.13 (Differential local coefficient bundles). Since homotopy limits commute over each other, passage to the homo-
topy fiber products (Def. A.28) formed from the horizontal stages of (325) yields a homotopy fibering (Def. A.27) of moduli
∞-stacks of ∞-connections (276) of this form:

ΩdR
(
−; lBG(A�BG)

)
flat

atlas
**(lρ)∗

��

Adiff
moduli ∞-stack of
ΩA-connections

hofib(ρdiff) //
(
A�G

)
diffBG

ρdiff
differential non-abelian
local coefficient bundle

��

cBG
A�G

))

FBG
A�G

22

[Bexp
(
lBG(A�G)

)
(lρ)∗

��

Disc
(
A�G

) chBG
A�G

11

Disc(ρ)

��

ΩdR
(
−; lBG

)
flat

atlas
**

BGdiff
moduli ∞-stack of

G-connections

FBG

22

cBG

))

[Bexp
(
lBG

)
Disc

(
BG
) chBG

11

(326)

Definition 5.14 (Twisted differential non-abelian cohomology). Given a differential non-abelian local coefficient bundle ρdiff
(326) according to Def. 5.12, we say that:
(i) A differential twist on a X ∈Ho(SmthStacks∞) (Def. A.57) is a cocycle τdiff in differential non-abelian cohomology with
coefficients in BG (Def. 4.38) [

τdiff
]
∈ Ĥ

(
X ; BG

)
. (327)

(ii) The τdiff-twisted differential non-abelian cohomology with local coefficients in ρdiff is the structured (Remark 2.27) τdiff-
twisted non-abelian cohomology (Def. 2.29) with coefficients in ρdiff, hence the hom-set in the homotopy category (Def.
A.16) of the slice model structure (Def. A.11) of the local projective model structure SmoothStacks∞ on simplicial presheaves
over CartSp (Example A.49) from τdiff (327) to ρdiff (326):

twisted differential
non-abelian cohomology

Ĥτdiff
(
X ; A

)
:= Ho

(
SmthStacks/BGdiff

∞

)
(τdiff , ρdiff) =


X

differential cocycle
cdiff //

τdiff
differential

twist
""

(A�G)diffBG

ρdiff
differential local

coefficients
yy

BGdiff

'px

/
homotopy

relative BGdiff

(328)

(iii) The twisted non-abelian cohomology operations induced from the maps in (326) we call (see (16)):
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(a) characteristic class: Ĥτdiff
(
X ; A

) cτ
A :=
(

cBG
A�G

)
∗ // Hτ

(
Shp(X ); A

)
(Def. 2.29) (329)

(b) curvature: Ĥτdiff
(
X ; A

) F
τdR
A :=

(
FBG

A�G

)
∗ // ΩτdR

dR

(
X ; lA

)
flat (Def. 3.101) (330)

(c) differential character: Ĥτdiff
(
X ; A

) chτ
A :=
(

chBG
A�G ◦cBG

A�G

)
∗ // HτdR

dR

(
X ; lA

)
(Def. 3.107) (331)

Twisted differential non-abelian cohomology as non-abelian ∞-sheaf hypercohomology. While the formulation of twisted
differential non-abelian cohomology as hom-sets in a slice of SmoothStacks∞ (Def. 5.14) is natural and useful, we indicate
how this is equivalently incarnated as a non-abelian sheaf hypercohomology over X . This serves to make the connection to
existing literature (in Example 5.19 below), but is not otherwise needed for the development here. We shall be brief, referring
to [SS20b] for some technical background that is beyond the scope of our presentation here.

Proposition 5.15 (Étale ∞-topos over ∞-stacks [SS20b, Prop. 3.33, Rem. 3.34]). For X ∈Ho(SmthStacks∞) (Def. A.57) let

Ho
(
ÉtX

) � � DiX // Ho
(
SmthStacks/X∞

)
be the full subcategory of the homotopy category (Def. A.16) of the slice model structure over X (Example A.11) of the
local projective model structure on simplicial presheaves (Example A.49) on those E !X which are local diffeomorphisms
([SS20b, Def. 3.26]).
(i) The inclusion DiX is a left-exact homotopy co-reflection, in that it preserves finite homotopy limits and has a derived right
adjoint REt (sending ∞-bundles to their ∞-sheaves of ∞-sections).
(ii) There is a global section functor RΓX from Ho

(
ÉtX

)
to Ho

(
∆SetsQu

)
(Example A.39) which also admits a left exact left

adjoint:
∞-bundles over X

Ho
(
SmthStacks/X∞

) oo DiX ? _

REt
∞-sheaf of local sections

⊥ //

∞-sheaves over X

Ho
(
ÉtX

) oo ∆
X

RΓ
X

global sections

⊥ // Ho
(
∆SetsQu

)
. (332)

Definition 5.16 (Non-abelian ∞-sheaf hypercohomology over ∞-stacks). Given X ∈ Ho(SmthStacks∞) (Def. A.57) and
A ∈ Ho

(
ÉtX

)
(Prop. 5.15) we say that the set of connected components of the derived global sections (332) of A over X

H
(
X , A

)
:= π0

(
RΓ

X
(A )

)
is the non-abelian ∞-sheaf hypercohomology of X with coefficients in A .

Lemma 5.17 (Twisted differential non-abelian cohomology as non-abelian ∞-sheaf hyper-cohomology). Given a differential
twist τdiff (327) on some X ∈ Ho(SmthStacks∞) (436) consider the object

Aτdiff
:= RLcllCnstntX

(
Rτ
∗
diff(A�G)diff

)
∈ Ho

(
ÉtX

)
(333)

in the étale ∞-topos over X Prop. 5.15. The non-abelian ∞-sheaf hypercohomology (Def. 5.16) of Aτdiff
over X coincides

with the τdiff-twisted differential non-abelian cohomology of X (Def. 5.14):
non-abelian

∞-sheaf hypercohomology

π0RΓ
X

(
Aτdiff

)
'

twisted differential
non-abelian cohomology

Ĥτdiff
(
X , A

)
. (334)

Proof. As in [SS20b, Remark 3.34].

It is useful to decompose this construction of twisted differential cohomology via ∞-sheaf hypercohomology again as a
homotopy pullback of corresponding ∞-sheaves representing plain twisted cohomology and plain twisted differential forms:

Remark 5.18 (Homotopy pullback of ∞-sheaves representing twisted differential cohomology). Given a differential twist
τdiff (327) on some X ∈ Ho(SmthStacks∞) (436) with components (τ,τdR,LRτ) (Example A.31),
(i) Consider the pullback of stacks over X in the following diagram
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Dτ∗Disc(A�G) Disc(A�G)

D(LRτ)∗[Bexp
(
lBGA�G

)
[exp

(
lBG(A�G)

)
X Disc(BG)

Dτ∗dRΩdR
(
−; lBG(A�G)

)
flat ΩdR

(
−; lBG(A�G)

)
flat

X [Bexp(lBG)

X ΩdR
(
−; lBG

)

τ

LR τ

τdR

Here the right hand side is (325) and all front-facing squares are homotopy pullbacks (Def. A.28).
(ii) By commutativity of homotopy limits over each other, these form a homotopy pullback square as on the right of the
following diagram, which gives, under the derived right adjoint RLcllCnstnt (332) a homotopy pullback diagram of ∞-sheaves
of sections as shown on the left:

Aτdiff

��

//

(hpb)

Ω
(
−; lA

)
flat τdR

��
Aτ

// [Bexp
(
lA
)

LRτ

:= RLcllCnstst


Rτ∗diff(A�G)diff

��

//

(hpb)

Rτ∗dRΩdR
(
−; lBG(A�G)

)
��

Rτ∗(A�G) // R(LRτ)∗[Bexp
(
l(A�G)

)
 ∈ Ho

(
ÉtX

)
. (335)

Here the top left item Aτdiff
from (333) is the ∞-sheaf whose global sections give the τdiff-twisted differential cohomology, by

Lemma 5.17.

In differential enhancement of Prop. 2.38 and in twisted enhancement of Example 4.39, we have:

Example 5.19 (Twisted differential generalized cohomology). Let X = X be a smooth manifold (Ex. A.50), R an E∞-ring
spectrum (Ex. 2.13), and let

E0

(hpb)

//

Rτ∗ρR

��

(R0)�GL(1,R)

ρR

��
X

τ
// BGL(1,R)

be a twist for twisted generalized R-cohomology over X (62), as in Lemma 2.38.
(i) Then the corresponding homotopy pullback diagram (335), which exhibits, by Lemma 5.17, twisted differential non-
abelian cohomology (Def. 5.14) with coefficients in E0 as ∞-sheaf hypercohomology (Def. 5.16), is the image under RΩ∞

X
of the homotopy pullback diagram of sheaves of spectra considered in [BN14, Def. 4.11], shown on the right below, for
canonical/minimal differential refinement as in Example 4.39:

R0 τdiff

��

//

(hpb)

Ω
(
−; lR0

)
flat τdR

��
R0 τ

// [Bexp
(
lR0
)

LRτ

' RΩX ∞


Diff

(
E
)

(hpb)

��

// HM≤0

��
Disc(E) // HM


This is the twisted/parametrized analog of the relation (284).
(ii) Accordingly, the twisted differential generalized R-cohomology according to [BN14, Def. 4.13] is subsumed by twisted
differential non-abelian cohomology, via Lemma 5.17.

In differential enhancement of Prop. 5.6 and in twisted generalization of Example 4.41, we have:
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Example 5.20 (Twisted Chern character in twisted differential K-theory). Consider again the local coefficient bundle

KU0 // KU0�BU(1)
ρ��

B2U(1)

for complex topological K-theory (Example 2.36). By Example 5.19, the twisted differential non-abelian cohomology theory
(Def. 5.14) induced from these local coefficients is twisted differential K-theory, as discussed in [CMW09] for torsion twists
(review in [BS12, §7]). By the diagram (16) of cohomology operations on twisted differential cohomology, one may regard
the corresponding twisted curvature map (330)

K̂τdiff
(
X
) (

F
τdR
KU0

)
∗ // ΩτdR

dR

(
X ; lKU0

)
flat

(with values in flat τdR ' H3-twisted differential forms, by Example 3.103) as an incarnation of the Chern character map on
twisted differential K-theory. Unwinding this abstract construction produces the perspective taken in [CMW09, p. 2][Pa18]
for torsion twists, and in [BN14, p. 6] for general twists.

However, in the spirit of the Cheeger-Simons homomorphism (4.3), any lift of a cohomology operation (here: rationaliza-
tion) to differential cohomology should be enhanced all the way to a secondary cohomology operation (Def. 4.50, now to be
generalized to a twisted secondary cohomology operation, Def. 5.22 below) whose codomain is itself a (twisted) differential
cohomology theory. The twisted Chern character enhanced to a secondary cohomology operation this way is Example 5.23
below, following the perspective taken in [GS19a, §3.2][GS19c, §2.3].

Secondary twisted non-abelian cohomology operations. We introduce the twisted generalization of secondary non-abelian
cohomology operations (Def. 5.22 below). This requires the following twisted analog of the technical condition in Def. 4.49:

Definition 5.21 (Twisted absolute minimal model). For

A1�G1

ρ1

��

ct // A2�G2

ρ2

��
BG1 cb

// BG2

∈ ∆Sets

a transformation (70) between local coefficient bundles (43), and for cb an absolute minimal model (Def. 4.49) of the map cb
between spaces of twists, hence with induced transformation (303)

Disc
(
BG1

) Disc(cb) //

chBG1

##

Disc
(
BG2

)
chBG2

##
[Bexp

(
lBG1

)
(cb)∗

// [Bexp
(
lBG1

)
between the differential character maps (Def. 4.36) on the spaces of twists, we say that a corresponding twisted absolute
minimal model is a lift of cb to a morphism

lBG1(A1�G1)
ct // lBG1(A1�G1) (336)

between the relative rational Whitehead L∞-algebras of the local coefficient bundles (Prop. 3.81) which
(i) yields a transformation

Disc
(
A1�G1

) Disc(ct ) //

chBG1
A1�G1

%%

Disc
(
A2�G2

)
chBG2

A2�G2

%%
[Bexp

(
lBG1(A1�G1)

)
(ct )∗

// [Bexp
(
lBG2(A2�G2)

)
of the twisted differential characters (325) (thus being an “absolute minimal model for ct relative to cb”),
(ii) is compatible with the transformation of the differential characters on the twisting space, in that the following cube
commutes:
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Disc(A1�G1) Disc(A2�G2)

[exp
(
lBG1

(A1�G1)
)

[exp
(
lBG2

(A2�G2)
)

Disc(BG1) Disc(BG2)

Ω
(
−; lBG1

(A1�G1)
)

flat Ω
(
−; lBG2

(A2�G2)
)

flat

[exp(lBG1) [exp(lBG2)

Ω(−; lBG1)flat Ω(−; lBG2)flat

Disc(ct )

ρ1

chBG1
A1�G1 ρ2

chBG2
A2�G2

(ct )∗

(lBG2
p2)∗

atlas
Disc(cb)

chBG1

chBG2

atlas

(ct )∗

(lBG2
p2)∗

(lBG1
p1)∗

(cb)∗

atlas atlas

(lBG1
p1)∗

(cb)∗

(337)

At the level of dgc-algebras, the condition that ct (336) is a twisted absolute minimal model for the transformation of
local coefficient bundles means equivalently that it makes the following cube commute:

Ω•PLdR
(
A1�G1

)
oo Ω•PLdR(ct )

ff

p
minBG1
A1�G1

OO

Ω•PLdR(ρ1)

Ω•PLdR
(
A2�G2

)
ff

p
minBG2
A2�G2

OO

Ω•PLdR(ρ2)

CE
(
lBG1

(A1�G1)
)
oo CE(ct )

CE(lρ1)

��

CE
(
lBG2

(A2�G2)
)

CE(lρ2)

��

Ω•PLdR(BG1)ff

pmin
BG1

oo Ω•PLdR(ct ) Ω•PLdR(BG2)ff

pmin
BG2

CE(lBG1) oo cb CE(lBG2)

(338)

In differential enhancement of Def. 2.42 and in twisted generalization of Def. 4.50, we set:

Definition 5.22 (Twisted secondary non-abelian cohomology operations). Let

A1�G1

ρ1

��

ct // A2�G2

ρ2

��
BG1

cb // BG2

∈ ∆Sets

be a transformation (70) between local coefficient bundles (43), together with an absolute minimal model cb (Def. 4.49) for
the base map, and a compatible twisted absolute minimal model ct (Def. 5.21) for the total map. Then forming stage-wise
homotopy pullbacks (Def. A.28) in the required commuting cube (337) yields a transformation of corresponding differential
coefficient bundles (326):

(A1�G1)diff
(ct )diff //

(ρ1)diff
��

(A2�G2)diff

(ρ2)diff
��

(BG1)diff
(cb)diff

// (BG2)diff

∈ PSh
(
CartSp , ∆Sets

)
. (339)
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This yields, in turn, a natural transformation of twisted differential non-abelian cohomology sets (Def. 5.14), hence a twisted
secondary non-abelian cohomology operation, by pasting composition, hence by right derived base change (Ex. A.21) along
(ρ1)diff followed by composition with (ct)diff regarded as a morphism in the slice (Example A.11) over (BG1)diff:

Ĥτdiff
(
X ; A1

) ((ct )diff ◦(−))◦((ρ1)diff)∗ // Ĥ(cb)diff ◦τdiff
(
X ; A2

)
.

In differential enhancement of Prop. 5.6, we have:

Example 5.23 (Twisted differential character on twisted differential K-theory). Consider the rationalization (Def. 3.53) over
the actual rational numbers (see Remark 3.64) of the local coefficient bundle (57) for degree-3 twisted complex topological
K-theory (Example 2.36).
(i) This is captured by the diagram

KU0�BU(1)

ρ

��

η
Q
KU0�BU(1) // LQ

(
KU0�BU(1)

)
LRρ

��
B2U(1)

η
Q
B2U(1) // LQ

(
B2U(1)

) (340)

regarded as a transformation of local coefficient bundles from twisted K-theory to twisted even-periodic rational cohomology:

LQKU0 ' Ω
∞

(⊕
k

Σ
2kHQ︸ ︷︷ ︸

=:HperQ

)
.

(ii) Since rationalization is idempotent (132), which here means that LR ◦ LQ ' LR , in this situation an absolute minimal
model (Def. 4.49) of the base map cb = ηR

B2U(1) and a twisted absolute minimal model (Def. 5.21) of the total map ct =

ηR
K0�BU(1) exist and are given, respectively, simply by the identity morphisms

cb := idlB2U(1) and ct := idlB2U(1)(K0�BU(1)).

(iii) Therefore, the induced twisted secondary cohomology operation Def. 5.22 exists, and is for each differential twist τdiff a
transformation

K̂τdiff
(
X
) ch

τdiff
diff :=

(
ηR

K0�BU(1)

)
diff // ĤperQ

LQτdiff(
X
)

(341)

from twisted differential K-theory to twisted differential periodic rational cohomology theory.
(iv) This is the twisted differential Chern character map on twisted differential complex K-theory as conceived in [GS19a,
§3.2][GS19c, Prop. 4]. The analogous statement holds for the twisted differential Pontrjagin character (as in Example 4.14)
on twisted differential real K-theory [GS19d, Thm. 12].
(v) Notice that this construction is close to but more structured than the plain curvature map on twisted differential K-theory
(Example 5.20): If we considered the transformation of local coefficients as in (340) but for rationalization LR over the
real numbers (Remark 3.64), then the induced twisted secondary cohomology operation would be equivalent to the twisted
curvature map. Instead, (341) refines the plain curvature map to a twisted secondary operation that retains information about
rational periods.

5.3 Twisted character on twisted differential Cohomotopy
We discuss here (Example 5.24 below) the twisted non-abelian character map on J-twisted Cohomotopy (Example 2.41) in
degree 4, and on Twistorial Cohomotopy (Example 2.45). We highlight the induced charge quantization (Prop. 5.25 below)
and comment on the relevance to high energy physics (Remark 5.30).

These twisted non-abelian cohomotopical character maps have been introduced and analyzed in [FSS19b] and [FSS20].
The general theory of non-abelian characters developed here shows how these cohomotopical characters are cousins both of
generalized abelian characters such as the Chern character on twisted higher K-theory (§5.1), notably of the character on
topological modular forms (by Example 4.16, and Remark 4.17) as well as of non-abelian characters such as the Chern-Weil
homomorphism (§4.2) and the Cheeger-Simons homomorphism (§4.3).
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Cohomotopical character maps.

Example 5.24 (Character map on J-twisted Cohomotopy and on Twistorial Cohomotopy [FSS19b, Prop. 3.20] [FSS20, Prop.
3.9]). Let X be an 8-dimensional smooth spin manifold equipped with tangential Sp(2)-structure τ (74). Then the twisted
non-abelian character maps (Def. 5.4) on J-twisted Cohomotopy (Example 2.41) in degree 4, and on Twistorial Cohomotopy
(Example 2.45) are of the following form (with p1, p2, I8 from Ex. 4.27):

CP3�Sp(2)

Borel-equivariantized
twistor fibration

tH�Sp(2)

��

Twistorial
Cohomotopy

T τ(X) :=Hτ
(
X ; CP3

)character map on
Twistorial Cohomotopy

chτ

CP3 //

cohomology operation
along twistor fibration

(tH)∗

��

HτdR
dR

(
X ; lCP3

)

(ltH)∗

��

=


H3,

F2,

2G7,

G4

∣∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,

d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

/
∼

H3 F2 2G7 G4

7! 7! 7! 7!

0 0 2G7 G4

��

S4�Sp(2) πτ
(
X
)

J-twisted
4-Cohomotopy

:= Hτ
(
X ; S4

)
chτ

S4
character map in

J-twisted Cohomotopy

// HτdR
dR

(
X ; lS4

)
=

{
2G7,

G4

∣∣∣∣∣ d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0,

}
/
∼

Here:
(i) The twisted non-abelian de Rham cohomology targets on the right are as shown, by Example 3.105. (In particular the

twisted curvature forms in the first line are relative to lS4.)
(ii) The vertical twisted non-abelian cohomology operation (Def. 2.42) on the left is induced from the Borel-equivariantized

twistor fibration (76), and that on the right from its associated morphism of rational Whitehead L∞-algebras (Prop.
3.81).

Proposition 5.25 (Charge-quantization in J-twisted Cohomotopy [FSS19b, Prop. 3.13][FSS20, Cor. 3.11]). Consider the
twisted non-abelian character maps (Def. 5.4) in J-twisted Cohomotopy and in Twistorial Cohomotopy from Example 5.24.
(i) A necessary condition for a flat Sp(2)-twisted lS4-valued differential form datum (G4,G7) to lift through the J-twisted
cohomotopical character map (i.e. to be in its image) is that the de Rham class of G4, when shifted by the fourth fraction of
the Pontrjagin form (Ex. 4.27), is in the image, under the de Rham homomorphism (Example 4.12), of an integral class:[

G4− 1
4 p1(∇)

]
∈ H4(X ; Z) // H4

dR(X) . (342)

(ii) A necessary condition for a flat Sp(2)-twisted lCP3-valued differential form datum (G4,G7,F2,H3) to lift through the
character map in Twistorial Cohomotopy is that the de Rham class of G4 shifted by the fourth fraction of the Pontrjagin form
(Ex. 4.27) is in the image, under the de Rham homomorphism (Example 4.12), of an integral class, and as such equal to the
[F2] cup-square: [

G4− 1
4 p1(∇)

]
=
[
F2∧F2

]
∈ H4

dR(X) . (343)

Twisted differential Cohomotopy theory.

Definition 5.26 (Differential twists for twistorial Cohomotopy). Let X8 be an 8-dimensional smooth spin manifold equipped
with tangential Sp(2)-structure τ (74). By (53) in Example 2.33, by (72) in Example 2.43, and by (23) in Example 2.3, we
have

[τ] ∈ Hτfr
(
X ; O(n)/Sp(2)

) (Bi)∗ // H
(
X8; BSp(2)

)
' Sp(2)Bundles(X)/∼ . (344)

This gives, in particular, the class of a smooth principal Sp(2)-bundle P! X to which the tangent bundle T X is associated.
With (253), we may choose an Sp(2)-connection ∇ on P, and, by Prop. 4.43, this connection has a class [τdiff] in differential
non-abelian cohomology (Def. 4.38) with coefficients in BSp(2):

H
(
X8; BSp(2)

)
' Sp(2)Bundles(X8)/∼ oooo Sp(2)Connections(X8)/∼ // Ĥ

(
X8; BSp(2)

)
[τ] oo // [P] oo �

[∇]
� // [τdiff] .

Any such τdiff serves as a differential twist (327) for twistorial Cohomotopy in the following.

In twisted generalization of Example 4.45, we have:
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Example 5.27 (Differential twistorial Cohomotopy). Let X8 be a spin 8-manifold equipped with tangential Sp(2)-structure τ

(74), and with a corresponding differential twist τdiff (Def. 5.26).

(i) Consider the local coefficient bundle (69), S4! S4�Sp(2)
JCP3
−! BSp(2), for J-twisted 4-Cohomotopy (Example 2.41) pulled

back along BSp(2) '
−!BSpin(5)!BO(5). This induces, via Def. 5.14, a twisted differential non-abelian cohomology theory

T̂ τdiff(−), which we call J-twisted differential 4-Cohomotopy, whose value on manifolds X = X8×Rk sits in a cohomology
operation diagram (16) of this form:

differential
J-twisted

4-Cohomotopy

π̂
τ4

diff(X )

��

F
τ4
dR

S4

J-twisted
cohomotopical

curvature
//

J-twisted cohomotopical Bianchi identities (Example 3.105){
2G7,

G4
∈Ω•dR(X )

∣∣∣∣∣ d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0

}

��

πτ4
(X )

J-twisted
4-Cohomotopy
(Example 2.41)

chτ4

S4

character map
on J-twisted Cohomotopy

(Example 5.24)

// H
τ4

dR
dR

(
X ; lS4

)
.

J-twisted
de Rham cohomology

(Def 3.107)

(345)

(ii) Consider the local coefficient bundle (76) CP3! CP3�Sp(2)
JCP3
−! BSp(2) for twistorial Cohomotopy (Def. 2.45). This

induces, via Def. 5.14, a twisted differential non-abelian cohomology theory T̂ τdiff(−), which we call differential twistorial
Cohomotopy, whose value on manifolds X = X8×Rk sits in a cohomology operation diagram (16) of this form:

differential
twistorial

Cohomotopy

T̂ τdiff(X )

��

F
τdR
CP3

twistorial
curvature

//

twistorial Bianchi identities (Example 3.105)
H3,

F2,

2G7,

G4

∈Ω•dR(X )

∣∣∣∣∣∣∣∣∣
d H3 = G4− 1

4 p1(∇)−F2∧F2,

d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(∇)
)
∧
(
G4 +

1
4 p1(∇)

)
−χ8(∇),

d G4 = 0



��
T τ(X )

twistorial
Cohomotopy

(Example 2.45)

chτ

CP3

character map
on twistorial Cohomotopy

(Example 5.24)

// HτdR
dR

(
X ; lCP3

)
.

twistorial
de Rham cohomology

(Def 3.107)

(346)

Proposition 5.28 (Twisted secondary cohomology operation induced by twistor fibration). The defining twisted non-abelian
cohomology operation (77) from twistorial Cohomotopy (Example 2.45) to J-twisted 4-Cohomotopy (Example 2.41), induced
by the Sp(2)-equivariantized twistor fibration tH�Sp(2) (76) refines to a twisted secondary cohomology operation (Def. 5.22)
from differential twistorial Cohomotopy to differential J-twisted Cohomotopy (Example 5.27):

differential
twistorial

Cohomotopy
T̂ τdiff

(
X
)

twisted secondary
cohomology operation ((tH�Sp(2))diff)∗

along
Sp(2)-equivariantized

twistor fibration

��

cτ

CP3 // T τ
(
X
)

(tH�Sp(2))∗
twisted primary

cohomology operation

��
differential
J-twisted

4-Cohomotopy
π̂

τ4
diff
(
X
) cτ4

S4 // πτ4(
X
)

Proof. By Def. 5.22 we need to show that we have a twisted absolute minimal model (Def. 5.21) for the Sp(2)-equivariantized
twistor fibration (76). By (338) this means that we can find a morphism

lBSp(2)

(
CP3�Sp(2)

) tH�lSp(2) // lBSp(2)

(
S4�Sp(2)

)
(347)

between the relative Whitehead L∞-algebras (Prop. 3.81) of the two local coefficient bundles, which makes the following
cube of transformations of derived PL-de Rham adjunction units commute:
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BexpPL ◦Ω•PLdR
(
CP3�Sp(2)

)
BexpPL ◦Ω•PLdR

(
S4�Sp(2)

)

BexpPL ◦CE
(
lBSp(2)

(
CP3�Sp(2)

))
BexpPL ◦CE

(
lBSp(2)

(
S4�Sp(2)

))

BexpPL ◦Ω•PLdR
(
Sp(2)

)
BexpPL ◦Ω•PLdR

(
Sp(2)

)

BexpPL ◦CE
(
lSp(2)

)
BexpPL ◦CE

(
lSp(2)

)

BexpPL◦Ω•PLdR

(
tH�Sp(2)

)

BexpPL◦Ω•PLdR

(
J
CP3

)

BexpPL

(
p

minBSp(2)
CP3�Sp(2)

)
BexpPL

(
p

minBSp(2)
S4�Sp(2)

)

BexpPL◦CE(tH�lSp(2))

BexpPL

(
pmin

BSp(2)

)
BexpPL

(
pmin

BSp(2)

)

But, from Example 3.105, we see that the total object of the relative Whitehead L∞-algebra of CP3 � Sp(2), relative to
lBSp(2), coincides with that relative to lBSp(2)

(
S4�Sp(2)

)
. Therefore, we may take the twisted absolute minimal model (347)

to be equal to top arrow in Example 3.105. This makes the front square commute by construction, and it being a relative
minimal model for tH�Sp(2) implies by Prop. 3.49 that there is an essentially unique top left morphism such that the top
square commutes.

Remark 5.29 (Lifting against the twisted differential twistor fibration).

In terms of differential moduli ∞-stacks (325), the result of Prop. 5.28
with Example 5.27 says that lifting a twisted differential Cohomotopy co-
cycle Ĉ3 with 4-flux density G4 against the twisted differential refinement
(339) of the equivariantized twistor fibration (76) to a differential twisto-
rial Cohomotopy cocycle (Ĉ3,Ĉ2,Ĉ1) involves, on twisted curvature forms
(330) the appearance of a 2-flux density F2 and of a 3-form H3 such that
dH3 = G4− 1

4 p1(∇)−F2∧F2.

R1,1×X8

(Ĉ3, B̂2, Â1)

lift of C-field through
twistor fibration //

� _

��

(
CP3�Sp(2)

)
diff

(tH�Sp(2))diff
twisted differential

twistor fibration

��
R2,1×X8 Ĉ3

C-field
//
(
S4�Sp(2)

)
diff

Remark 5.30 (M-theory fields and Hypothesis H). In summary, we have found:
(i) A cocycle Ĉ3 in J-twisted differential 4-Cohomotopy (Example 5.27) has as curvature/character forms (330):

(a) a closed 4-form G4, hence a 4-flux density,
(b) a non-closed 7-form G7,

satisfying the following Bianchi identities (Example 5.24) and integrality conditions (Prop. 5.25):

differential
J-twisted 4-Cohomotopy

π̂
τ4

diff(X )

curvature
(non-abelian character form representative) //

flat twisted cohomotopical
differential forms

Ω
τdR
dR

(
X ; lS4

)
flat

(
Ĉ3
)

7−!

 G4,

2G7

∣∣∣∣∣∣∣∣∣∣

shifted C-field flux quantization[
G4− 1

4 p1(ω)
]

∈ H4(X ; Z)
d G4 = 0

d 2G7 =−
(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
−24 I8(ω)

C-field tadpole cancellation & M5 Hopf WZ term level quantization

 ,

(348)

where the characteristic forms p1, p2 and I8 are from Ex. 4.27.
(ii) Lifting this cocycle through the twisted differential twistor fibration (Prop. 5.28) to a cocycle

(
Ĉ3, B̂2, Â1

)
in differential

twistorial Cohomotopy (Example 5.27) involves (Remark 5.29) adjoining to the 4-flux density G4:
(c) a closed 2-form curvature F2, hence a 2-flux density,
(d) a non-closed 3-form H3,

such that these curvature/character forms satisfy the following Bianchi identities (Example 5.24) and integrality conditions
(Prop. 5.25):
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differential
twistorial Cohomotopy

T̂ τdiff(X )

curvature
(non-abelian character form representative) //

flat twistorial
differential forms

Ω
τdR
dR

(
X ; lCP3

)
flat

(
Ĉ3 , B̂2 , Â1

)
7−!


H3,

G4,F2,

2G7

∣∣∣∣∣∣∣∣∣∣∣∣

d H3 = G4− 1
4 p1(ω)−F2∧F2,

Hořava-Witten Green-Schwarz mechanism[
G4− 1

4 p1(ω)
]
=
[
F2∧F2

]
∈ H4(X ; Z)

d G4 = 0 , d F2 = 0,

d 2G7 =−
(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
−24 I8(ω)

C-field tadpole cancellation & M5 Hopf WZ term level quantization



(349)

(iii) With these cohomotopical curvature/character forms interpreted as flux densities, this is the Bianchi identities and charge
quantization expected in M-theory on the supergravity C-field (Ĉ3), the heterotic B-field (B̂2) and the heterotic S

(
U(1)2

)
⊂ E8

gauge field (Â1), with the following prominent features:
(a) The charge quantization:

(1)
[
G4− 1

4 p1(∇)
]

∈ H4(X ; Z) is expected for the C-field in the M-theory bulk
([Wi97a, (1.2)][Wi97b, (1.2)])

(2)
[
G4− 1

4 p1(∇)
]
= [F2∧F2] ∈ H4(X ; Z) is expected on heterotic boundaries

([HW96, (1.13)], review in [FSS20, §1])

(350)

(b) The quadratic functions:
(1) G4 7! (G4− 1

4 p1(ω))∧ (G4 +
1
4 p1(ω))

+24I8(ω)

constitute the Hopf Wess-Zumino term
([Ah96, p. 11][In00], see [FSS19c][SS20a])

(2) F2 7! F2∧F2

constitute the 2nd Chern class of a
U(1) ⊂ SU(2) ⊂ E8-bundle
[AGLP11][AGLP12][FSS20, (7)]

(351)

(iv) These are necessary, not yet sufficient constraints on cohomotopical lifts. Further constraints follow by Postnikov tower
analysis [GS20] and coincide with further expected conditions in M-theory (see [FSS19b, Table 1]).

All this suggests the Hypothesis H [FSS19b][FSS19c][SS19a][SS19b][BMSS19][SS20a][FSS20][FSS21b][SS21], following
[Sa13, §2.5], that the elusive cohomology theory which controls M-theory in analogy to how K-theory controls string theory
is: (twisted, equivariant, differential) non-abelian Cohomotopy theory.

Cohomotopical character into K-theory. We may regard the secondary non-abelian Hurewicz/Boardman homomorphism
(Example 4.51) from differential 4-Cohomotopy (Example 4.45) to differential K-theory (Example 4.41), as a non-abelian
but K-theory valued character, lifting the target of the cohomotopical character (Example 5.24) from rational cohomology to
K-theory (compare [BSS19, Fig. 1]):

differential
Cohomotopy

τ̂ 4
(
X
) (eKU)

4
diff

differential non-abelian
Boardman homomorphism

(Example 4.51)

//

differential
K-theory

K̂U
0(

X
) chdiff

differential
Chern character
(Example (5.23))

//

differential
rational cohomology

ĤperQ
0(

X
)

oo charge-quantization
in M-theory

oo charge-quantization
in string theory

(352)

(i) Lifting through this differential Boardman homomorphism induces secondary charge quantization conditions on K-theory,
analogous to (2) but invisible even in generalized cohomology, instead now coming from non-abelian cohomology theory.
(ii) In the plain version (352) (i.e. disregarding twisting and equivariant enhancement) the effect of (eKU)

4
diff on curvature

forms (279) is (by Example 4.51) to forget the quadratic function (351) on G4 and to inject what remains as the 4-form
curvature component F4 in differential K-theory:

differential
Cohomotopy

τ̂ 4
(
X
)

(
FS4

)
∗

��

(eKU)
4
diff

secondary non-abelian
Boardman homomorphism

//

curvatures/flux densities

differential
K-theory

K̂U
0(

X
)

(
FKU0

)
∗

��{
2G7,

G4

∣∣∣∣ d 2G7 =−G4∧G4
d G4 = 0

}
G4 7! F4
G7 7! 0

//
{(

F2k
)
| d F2k = 0

}
.

(353)
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This is a ‘cohomotopical enhancement’ of the reduction in [DMW02] of E8 bundles in M-theory to the K-theory of type IIA
string theory, now characterized by higher Postnikov stages of the Boardman homomorphism [GS20]. The remaining RR-flux
components in {F2k} are also found in the cohomotopical character, through cohomological double dimensional reduction
formulated in parametrized homotopy theory: this is discussed in detail in [BMSS19].
(iii) The twisted generalization of the non-abelian Boardman homomorphism in (352) and (353) is more subtle, since the
degree-3 twist of K-theory does not arise from the J-twist of Cohomotopy, but arises, together with the further RR-flux
components, from S1-equivariantization/double dimensional reduction of Cohomotopy [FSS16a][BMSS19], reproducing the
reduction of E8 bundles from M-theory to type IIA in [MaSa04].

Outlook: Equivariant enhancement. The twisted non-abelian character theory presented here enhances further to proper
(i.e. Bredon-style not Borel-style) equivariant non-abelian cohomology on orbi-orientifolds, by combining it with the tech-
niques developed in [HSS18][SS20b] (essentially: parametrizing the construction here over the orbit category of the equivari-
ance group). The resulting character map in equivariant non-abelian cohomology is discussed in [SS20c, §2,3]. For example,
the equivariant enhancement of the cohomotopical character into K-theory (352), lifting the RR-fields in equivariant K-theory
through the equivariantized enhancement of the Boardman homomorphism on the left of (352), enforces [SS19a][BSS19]
“tadpole cancellation” conditions expected in string theory at orbifold singularities.
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A Model category theory
For ease of reference and to highlight some less widely used aspects needed in the main text, we record basics of homotopy
theory via model category theory [Qu67] (review in [Hov99][Hir02][Lu09, A.2]) and of homotopy topos theory [Re10] via
model categories of simplicial presheaves [Bro73][Ja87][Du01] (review in [Du98][Lu09, §A.3.3][Ja15]).

Topology. By
TopSp ∈ Cats (354)

we denote a convenient [St67] (in particular: cartesian closed) category of topological spaces such as compactly-generated
spaces [Stri09] or ∆-generated spaces [Du03], equivalently known as: numerically-generated spaces [SYH10] or D-topological
spaces [SS20b, Prop. 2.4].

Categories. Let C be a category.
(i) For X ,A ∈ C a pair of objects, we write

C (X ,A) := HomC (X ,A)
for the set of morphisms from X to A.
(ii) For C ,D two categories, we denote a pair of adjoint functors between them by

D
oo L

R
⊥ // C ⇔ D(L(−) ,−) C (− , R(−)) ,(̃−)

∼ (355)

and the corresponding adjunction unit and adjunction counit transformations by, respectively:

η
RL
C : C

ĩdLX−−! R◦L(C) , ε
LR
D : L◦R(D)

˜idRD−−! D (356)

Notice/recall that this means that adjunct morphisms f ↔ f̃ (355) and (co-)units (356) are related as follows:

L(c) d ↔ c R◦L(c) R(d) ,
f ηc

f̃

R( f )
(357)

L(c) L◦R(d) d ↔ c R(d) .
L( f̃ )

f

εd f̃

(iii) A Cartesian square in C we indicate by pullback notation f ∗(−) and/or by the symbol “(pb)”:
f ∗A

f ∗p ���� (pb)

// A
p
��

B1 f
// B2 .

(358)

Dually, a co-Cartesian square in C we indicate by pushout notation f∗(−) and/or by the symbol “(po)”:

A1
f //

q ��
(po)

A2
f∗q��

B // f∗B .
(359)

Model categories.

Definition A.1 (Weak equivalences). A category with weak equivalences is a category C equipped with a sub-class W ⊂
Mor(C ) of its morphisms, to be called the class of weak equivalences, such that

(i) W contains the class of isomorphisms;
(ii) W satisfies the cancellation property (“2-out-of-3”): if in any commuting triangle in C

Y g
''X

f 77

g◦ f
// Z

(360)

two morphisms are in W, then so is the third.

Definition A.2 (Weak factorization system). A weak factorization system in a category C is a pair of sub-classes of morphisms
Proj, Inj ⊂ Mor(C ) such that

(i) every morphisms X
f // Y in C may be factored through a morphism in Proj followed by one in Inj:

f : X
∈ Proj // Z

∈ Inj // Y (361)
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(ii) For every commuting square in C with left morphism in Proj and right morphism in Inj, there exists a lift, namely a
dashed morphism

X //

∈Proj
��

A
∈ Inj
��

Y
∃

77

// B

(362)

making the resulting triangles commute.
(iii) Given Inj (resp. Proj), the class Proj (resp. Inj) is the largest class for which (362) holds.

Definition A.3 (Model category [Jo08a, Def. E.1.2][Rie09]). A model category is a category C that has all small limits and
colimits, equipped with three sub-classes of its class of morphisms, to be denoted

W – weak equivalences
Fib – fibrations
Cof – cofibrations

such that
(i) The class W makes C a category with weak equivalences (Def. A.1);
(ii) The pairs

(
Fib , Cof∩W

)
and

(
Fib∩W , Cof

)
are weak factorization systems (Def. A.2).

Remark A.4 (Minimal assumptions). By item (iii) in Def. A.2 a model category structure is specified already by the classes
W and Fib, or alternatively by the classes W and Cof. Moreover, it follows from Def. A.3 that also the class W is stable under
retracts [Jo08a, Prop. E.1.3][Rie09, Lemma 2.4]: Given a commuting diagram in the model category C of the form on the
left here

X //

f
��

Y
∈W
��

// X

f
��

A // B // A

⇒ f ∈ W (363)

with the middle morphism a weak equivalence, then also f is a weak equivalence.

Definition A.5 (Proper model category). A model category C Def. A.3 is called
(i) right proper, if pullback along fibrations preserves weak equivalences:

X

��

p∗ f //

(pb)

A
p ∈ Fib��

Y
f∈W

// B
⇒ p∗ f ∈ W (364)

(ii) left proper, if pushout along cofibrations preserves weak equivalences, hence if the opposite model category (Example
A.10) is right proper.

Notation A.6 (Fibrant and cofibrant objects). Let C be a model category (Def. A.3)
(i) We write ∗ ∈ C for the terminal object and ∅ ∈ C for the initial object.
(ii) An object X ∈ C is called:

(a) fibrant if the unique morphism to the terminal object is a fibration, X ∈ Fib // ∗ ;

(b) cofibrant if the unique morphism from the initial object is a cofibration, ∅ ∈ Cof // X .
We write Cfib,Ccof,Ccof

fib ⊂ C for the full subcategories on, respectively, fibrant objects, or cofibrant objects or objects that
are both fibrant and cofibrant.
(iii) Given an object X ∈ C

(a) A fibrant replacement is a factorization (361) of the terminal morphism as

X
jX

∈ Cof∩W
// PX

qX

∈ Fib
// ∗ . (365)

(b) A cofibrant replacement is a factorization (361) of the initial morphism as

∅
iX

∈ Cof
// QX

pX

∈ Fib∩W
// X . (366)
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Recall that a continuous function f between topological spaces X ,Y induces homomorphism on all homotopy groups
πk( f ,x) : πk(X ,x)! πk

(
Y, f (x)

)
and is called (e.g. [tD08, p. 144])

f is

 an n-equivalence if π•<n( f ,x) is an isomorphism and
πn( f ,x) is an epimorphism

a weak homotopy equivalence if π•( f ,x) is an isomorphism
(367)

for all x ∈ X .

Example A.7 (Classical model structure on topological spaces [Qu67, §II.3][Hir15]). The category TopSp (354) carries a
model category structure whose

(i) W – weak equivalences are the weak homotopy equivalences (367);
(ii) Fib – fibrations are the Serre fibrations (e.g. [tD08, §5.5, 6.3]).

We denote this model category by TopSpQu ∈ ModelCategories .

Example A.8 (Classical model structure on simplicial sets [Qu67, §II.3][GM96, §V.1-2][GJ99, §I.11]). The category of
∆Sets of simplicial sets (e.g. [May67][Cu71] exposition in [Fr12]) carries a model category structure whose

(i) W – weak equivalences are those whose geometric realization is a weak homotopy equivalence;
(ii) Cof – cofibrations are the monomorphisms (degreewise injections).
(iii) Fib – fibrations are the Kan fibrations.

We denote this model category by ∆SetsQu ∈ ModelCategories .

Every simplicial set is cofibrant in the classical model structure (Nota. A.6):(
∆SetsQu

)
cof = ∆Sets . (368)

while the fibrant simplicial sets are exactly the Kan complexes (e.g. [GJ99, §I.3], exposition in [Fr12, §7])(
∆SetsQu

)fib
= KanComplexes . (369)

which we may think of as ∞-groupoids [Lu09, §1.1.2].

Example A.9 (Simplicial nerves of groupoids). (i) Let

G =
(

G1 t×s G1 G1 G0
◦ s

t

)
be a groupoid (exposition in [We96]) then its nerve N(G ) ∈ ∆Setsfib ([Seg68, §2]) is the Kan complex (369) whose k-cells
are the sequences of k composable morphisms in G .

N(G ) : [k] 7! G1 t×s G1 t×s · · · t×s G1 . (370)

(ii) For S ∈ Sets any set, consider its pair groupoid Pair(S) :=
(
S×S⇒ S

)
whose objects are the elements of S and which has

exactly one morphism s0
∃!
−! s1 between any pair of elements. Its nerve (370) is contractible, in that it is weakly equivalent in

the classical model category (Def. A.8) to the point (the terminal simplicial set, which is constant on the singleton set):

N
(
Pair(S)

)
∗ .∈W∩Fib (371)

Example A.10 (Opposite model category [Hir02, §7.1.8]). If C is a model category (Def. A.3) then the opposite under-
lying category becomes a model category Cop with the same weak equivalences (up to reversal) and with fibrations (resp.
cofibrations) the cofibrations (resp. fibrations) of C, up to reversal.

Example A.11 (Slice model categories [Hir02, §7.6.4][MP12, Thm. 165.3.6]). Let C be a model category (Def. A.3)
(i) For X ∈ C any object, the slice category C/X , whose objects are morphisms to X and whose morphisms are commuting
triangles in C over X

C/X(a , b
)

:=

A
a ''

f // B
bwwX


becomes itself a model category, whose weak equivalence, fibrations and cofibrations are those morphims whose underlying
morphisms f are such in C. This means in particular that:

a ∈
(
C/X)cof ⇔ A ∈ Ccof and b ∈

(
C/X)

fib ⇔ b ∈ Cfib . (372)

(ii) Dually there is the coslice model category CX/ :=
(
(Cop)/X

)op, being the opposite model category (Example A.10) of
the slice category of the opposite of C:

CX/(a , b) :=


X

A ww
a

f
// B''

b

 .

95



Homotopy categories.

Definition A.12 (Cylinder objects and Path space objects [Qu67, Def. I.4]). Let C be a model category (Def. A.3).
(a) With A ∈ Cfib a fibrant object (Notation A.6), a path space object for A is a factorization of the diagonal morphism ∆A
through a weak equivalence followed by a fibration:

A

∆A

44
∈W // Paths(A)

(p0,p1)∈Fib // A×A . (373)

(b) With X ∈Ccof a cofibrant object (Notation A.6), a cylinder object for X is a factorization of the co-diagonal morphism ∇A
through cofibration followed by a weak equivalence:

X tX
(i0,i1)∈Cof //

∇X

55Cyl(X)
∈W // X . (374)

Example A.13 (Standard cylinder object in simplicial sets). For X ∈ ∆SetsQ (Example A.8) a cylinder object (Def. A.12) is
evidently given by Cartesian product X×∆[1] with the 1-simplex, with (i0, i1) being the two endpoint inclusions.

Definition A.14 (Homotopy). Let C be a model category (Def. A.3), X ∈ Ccof a cofibrant object, A ∈ Cfib a fibrant object
(Notation A.6). Then a homotopy between a pair of morphisms f ,g ∈ C(X ,A), to be denoted

φ : f ⇒ g or X

f

%%

g

99 Aφ
��

is a morphism φl ∈ C
(
Cyl(X),A

)
out of a cylinder object for X or a morphism φr ∈ C

(
X ,Paths(A)

)
to a path space object

for A Paths(A) (Def. A.12) which make either of these diagrams commute:

X
f

**
i0 ��

Cyl(X) φl // A ,

X
g

44
i1
OO

A

X φr //

f
44

g **

Paths(A)

p0

OO

p1��
A

Proposition A.15 (Homotopy classes). Let C be a model category, X ∈ Ccof and A ∈ Cfib (Notation A.6). Then homotopy
(Def. A.14) is an equivalence relation ∼ on the hom-set C(X ,A). We write

C(X ,A)/∼ ∈ Sets (375)

for the corresponding set of homotopy classes of morphisms from X to A.

Definition A.16 (Homotopy category of a model category). For C a model category (Def. A.3),
(i) we write

Ho(C) :=
(
Ccof

fib
)
/∼r
∈ Cats (376)

for the category whose objects are those objects of C that are both fibrant and cofibrant (Notation A.6), and whose morphisms
are the right homotopy classes of morphisms in C (Def. 375):

X ,A ∈ Ccof
fib ⇒ Ho(C)(X , A) := C(X ,A)/∼r

and composition of morphisms is induced from composition of representatives in C.
(ii) Given a choice of fibrant replacement P and of cofibrant replacement Q for each object of C (Notation A.6) we obtain a
functor

C
γC // Ho(C) , (377)

which (a) sends any object X ∈C to PQX and sends (b) any morphism X
f // A to the right homotopy class (375) of any lift

(362) PQ f obtained from any lift Q f in the following diagrams:

∅ //

iX ��

QY
pY��

QX

Q f

55

f ◦ px

// Y
 

QX
jQY ◦Q f

//

jQX ��

PQY
qQY
��

PQX //
PQ f

55

∗
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Proposition A.17 (Homotopy category is localization). For a model category C (Def. A.3) the functor C
γC // Ho

(
C
)

(377)
from Def. A.16 exhibits the homotopy category as the localization of the model category at its class of weak equivalences: γC
sends all weak equivalences in C to isomorphisms, and is the universal functor with this property.

The restriction to fibrant-and-cofibrant objects in Def. A.16 is convenient for defining composition of morphisms, but for
computing hom-sets in the homotopy category it is sufficient that the domain object is cofibrant, and the codomain fibrant:

Proposition A.18 ([Qu67, §I.1 Cor. 7]). Let C be a model category (Def. A.3). For X ∈ C cof a cofibrant object and A ∈ Cfib
a fibrant object, any choice of fibrant replacement PX and cofibrant replacement QA (Notation A.6). induces a bijection
between the set of homotopy classes (Def. A.14) and the hom-set in the homotopy category (Def. A.16) between X and A:

C (X ,A)/∼r

C ( jX ,pA)

'
// Ho(C)(X ,A) .

While the hom-functor of a homotopy category preserves almost no homotopy (co)limits, we do have:

Proposition A.19 (Hom-functor of homotopy category respects (co)products). The hom-functor of a homotopy category (Def.
A.16) respects coproducts in the first argument and products in its second argument, in that there are natural bijections of the
following form:

Ho(C)
(∏

i∈I
Xi, ∏

j∈J
A j
)
' ∏

i∈I
j∈J

Ho(C)
(
Xi, A j

)
Proof. Noticing that coprodcts preserve cofibrancy and products preserve fibrancy, evidently, this follows from Prop. A.18.

Quillen adjunctions.

Definition A.20 (Quillen adjunction). Let D,C be model categories (Def. A.3). Then a pair of adjoint functors (L a R) (355)
between their underlying categories is called a Quillen adjunction, to be denoted

D
oo L

R

⊥Qu // C (378)

if the following equivalent conditions hold:
• L preserves Cof, and R preserves Fib;
• L preserves Cof and Cof∩W (“left Quillen functor”);
• R preserves Fib and Fib∩W (“right Quillen functor”).

Example A.21 (Base change Quillen adjunction). Let C be a model category (Def. A.3), B1,B2 ∈ Cfib a pair of fibrant
objects (Notation A.6) and

B1
f // B2 ∈ C (379)

a morphism. Then we have a Quillen adjunction (Def. A.20)

C/B2
oo f!

f ∗

⊥Qu // C
/B1 (380)

between the slice model categories (Example A.11), where:
(i) The left adjoint functor f! is given by postcomposition in C with f (379):

f∗ :
X

τ ((

c // A
pvvB1

7−!
X

τ ((

c // A
pvvB1

f��
B2

(381)

(ii) The right adjoint functor f ∗ is given by pullback (358) along f (379).
That these functors indeed form an adjunction f! a f ∗ follows from the defining universal property of the pullback (358):

C/B2
(

f∗τ , ρ
)

' C/B1
(
τ , f ∗ρ

)
X c //

τ ""

A

ρ

��
B1

f ** B2

↔

X c̃ //

τ
##

f ∗A

f ∗ρ
��

//

(pb)

A

ρ

��
B1

f ** B2

(382)

That this adjunction is a Quillen adjunction (Def. A.20) follows since f! (381) evidently preserves each of W and Cof (even
Fib) separately, by Example A.11.
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Example A.22 (Sliced Quillen adjunction). Given a Quillen adjunction L aQu R (Def. A.20) and an object of either of the
two model categories, there is an induced sliced Quillen adjunctions (Def. A.20) between slice model categories (Ex. A.11)
as follows:

D C
R

⊥Qu

L

⇒

 ∀
c∈C

D/L(c) C/c

R/c

⊥Qu

L/c
 and

 ∀
d∈D

D/d C/R(d)

R/d

⊥Qu

L/d
 , (383)

where:
(i) L/c and R/d are given directly by applying L or R, respectively, to the triangular diagram that defines a morphism in

the slice;
(ii) R/c and L/d are given by this direct application followed by right/left base change (A.21) along the adjunction

unit/counit (356), respectively:

R/c : D/L(c) C/R◦L(c) D/c ,R (ηc)
∗

D/d C/L◦R(d) D/R(d) : L/d(εd)! L (384)

In particular, this means that L/d sends a slicing morphism τ to its adjunct τ̃ (357), in that:

L/d


c

R(d)

τ

 =


L(c)

d

τ̃

 ∈ D/d . (385)

Aspects of this statement appear in [Lu09, Prop. 5.2.5.1][Li16, Prop. 2.5(2)]. Since it is key to the proof of the twisted
non-abelian de Rham theorem (Th. 3.117) we spell it out:

Proof. It is clear that if we have adjunctions as claimed in (383), then L/c /R/d are left/right Quillen functors, respectively,
since these two act as the left/right Quillen functors L/R on underlying morphisms (by item (i) above), where the classes of
slice morphisms are created, by Ex. A.11.

To see that we have adjunctions as claimed, we may check their hom-isomorphisms (355) (for readability we now denote
the object being sliced over by “b”, in both cases, with “c” and “d” now being the variables in the hom-isomorphism):
(1) For the first case, consider the following transformations of slice hom-sets:

L(c) d

L(b)

f

p 7−!
c R◦L(c) R(d)

b R◦L(b)

ηc

f̃

R( f )

R(p)
ηb

↕ ↕

L(c) L◦R(d) d

L(b) L◦R◦L(b) L(b)

L( f̃ )

f

εd

p

L(ηb)

id

εL(b)

7−!

c η∗b
(
R(d)

)
R(d)

b R◦L(b) .

f̃

(pb)
R(p)

ηb

Here the horizontal transformations are given by applying the functors and then (post-)composing with (co-)units, while the
left vertical bijection is the formula (357) for adjuncts and the right vertical bijection is the universal property of the pullback.
Evidently these operations commute in both possible ways, showing that also the horizontal operations are bijections (and
they are natural by the naturality of the underlying hom-isomorphism).

(2) The second case follows analogously, but more directly as no pullback is involved here:

c R(d)

R(b)

f

τ 7!
L(c) L◦R(d) d

L◦R(b) b

L( f )

f̃

εd

εb

7!
c R◦L(c) R(d)

R(b) R◦L◦R(b) R(b)

ηc

f

R( f̃ )

ηR(b)

id

R(εb)
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Example A.23 (Induced Quillen adjunction on pointed objects). Given a Quillen adjunction L aQu R (Def. A.20) there is an
induced Quillen adjunction of model categories of pointed objects, hence of coslice model structures (Ex. A.11) under the
terminal object

D C
R

⊥Qu

L

⇒

 D∗/ C∗/

R∗/

⊥Qu

L∗/
 =

 (
Dop
/∗
)op (

Cop
/R(∗)

)op

(
Rop
/∗

)op

⊥Qu

(
Lop
/∗

)op  , (386)

where
(i) R∗/ is given directly by applying R to the underling triangular diagrams in D;

(ii) L∗/ is given by that direct application of L followed (using that the right adjoint R preserves the terminal object) by
pushout along the adjunction counit L(∗)' L◦R(∗) ε∗−−! ∗:

L∗/ : C∗/ L
−−! DL(∗)/ ' DL(∗)/

(−) t
L◦R(∗)

∗

−−−−−−−! D∗/ . (387)

This may be checked directly (e.g. [Hov99, Prop. 1.3.5]), but it is also a special case of Ex. A.22, as shown on the right
of (386), observing that pullbacks are pushouts in the opposite category.

Lemma A.24 (Ken Brown’s lemma [Hov99, Lemma 1.1.12][Bro73]). Given a Quillen adjunction L a R (Def. A.20),
(i) the right Quillen functor R preserves all weak equivalences between fibrant objects.
(ii) the left Quillen functor L preserves all weak equivalences between cofibrant objects.

Proposition A.25 (Derived functors). Given a Quillen adjunction (L aQu R) (Def. A.20), there are adjoint functors DL a
DR21 (355) between the homotopy categories (Def. A.16)

Ho(D)
oo DL

DR

⊥ // Ho(C) (388)

whose composites with the localization functors (377) make the following squares commute up to natural isomorphism:

D R //
γD ��

⇓
'

C
γC��

Ho(D)
DR

// Ho(C)

D oo L

γD �� ' ⇓
C

γC��
Ho(D) oo

DL
Ho(C) .

These are unique up to natural isomorphism, and are called the left and right derived functors of L and R, respectively.

Example A.26 (Derived functors via (co-)fibrant replacement). It is convenient to leave the localization functors γ (377)
notationally implicit, and understand objects of C as objects of Ho(C), via γ . Then:

(i) The value of a left derived functor DL (Prop. A.25) on an object c ∈ C is equivalently the value of L on a cofibrant
replacement Qc (366):

DL(c) ' L(Qc) ∈ Ho(D) . (389)

(ii) The value of a right derived functor DR (Prop. A.25) on an object d ∈ D is equivalently the value of R on a fibrant
replacement Pd (365):

DR(d) ' R(Pd) ∈ Ho(C) . (390)

(iii) The derived unit Dη (356) of the derived adjunction (388) is, on any cofibrant object c ∈ Ccof, given by

Dηc : c
ηc // R

(
L(c)

) R( jL(c)) // R
(
PL(c)

)
∈ Ho(C) (391)

where L(c)
jL(c) // PL(c) is any fibrant replacement (365).

(iv) The derived co-unit Dε (356) of the derived adjunction (388), is, on any fibrant object d ∈ Dfib, given by

Dεd : L
(
QR(d)

) L(pR(d)) // L
(
R(d)

) εd // d ∈ Ho(D) (392)

where QR(d)
pR(d) // R(d) is any cofibrant replacement (366).

21We avoid the common notation LL a RR for derived functors, since this clashes with the prominent role that “R” plays as notation for
the field of real numbers in the main text.
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Homotopy fibers and homotopy pullback.

Definition A.27 (Homotopy fiber). Let C be a model category (Def. A.3).

(i) For A
p // B a morphism in C with B ∈ Cfib ⊂ C a fibrant object (Notation A.6), and for ∗ b // B a morphism from the

terminal object (a “point in B”), the homotopy fiber of p over b is the image in the homotopy category (377) of the ordinary
fiber over b, i.e. the pullback (358) along b in C, of any fibration p̃ weakly equivalent to p:

hofibb(ρ) // A

ρ

��
B

:= γC


fibb(p̃) //

��
(pb)

Ã

ρ̃ ∈ Fib

��

oo ∈W A

ρ

xx∗
b

// B

 ∈ Ho(C) . (393)

This is well-defined in that hofibb(p) ∈ Ho(C) depends on the choice of fibration replacement p̃ only up to isomorphism in
the homotopy category.
(ii) Dually, homotopy co-fibers are homotopy fibers in the opposite model category (Def. A.10).

More generally:

Definition A.28 (Homotopy pullback). Given a model category C (Def. A.3) and a pair of coincident morphisms

A
ρ��

X
τ
// B

between fibrant objects, the homotopy pullback of ρ along τ (or homotopy fiber product of ρ with τ) is the image of ρ ,
regarded as an object in the homotopy category (Def. A.16) of the slice model category (Example A.11) under the right
derived functor (Prop. A.25) of the right base change functor along τ (Ex. A.21):

Ho
(
C/B) 3 A

ρ
��

B

homotopy
pullback
7−!

Dτ∗A
Dτ∗ρ
��

X
:= Ho

(
C/X) , (394)

By (382), the derived adjunction counit (392) on (394) gives a commuting square in (377) the homotopy category of C

Dτ∗A //

Dτ∗ρ
��

(hpb)

A

ρ

��
X

τ
// B

:= γC


τ∗Ã //

��
(pb)

Ã

ρ̃ ∈ Fib

��

oo ∈W A

ρ

wwX
τ

// B

 ∈ Ho(C) . (395)

This square in the homotopy category, together with its pre-image pullback square in the model category, is the homotopy
pullback square of ρ along τ .

Example A.29 (Homotopy fiber is homotopy pullback to the point). Homotopy fibers (Def. A.27) are the homotopy pullbacks
(Def. A.28) to the terminal object, by (390).

Lemma A.30 (Factorization lemma [Bro73, p. 431]). Let C be a model category (Def. A.3) and A
ρ // B ∈Cfib a morphism

between fibrant objects. Then for Paths(B) a path space object for B (Def. A.12) the vertical composite in the following
diagram

A ∈W //

ρ

!!

p∗1A

��

∈W //

(pb)

A

ρ

��
Paths(B) p1

//

p0
��

B

B

(396)

is a fibration, and in fact a fibration resolution of ρ , in that it factors ρ through a weak equivalence.
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Example A.31 (Homotopy pullback via triples). Given a model category C (Def. A.3) and a pair of coincident morphisms

A
ρ��

X τ // B

between fibrant objects, Lemma A.30 says that the corresponding homotopy pullback (Def. A.28) is computed by the follow-
ing diagram

Dτ∗A

��

//

φ

%%

A

ρ

��
Paths(B)

p1

��

p0
// B

X τ // B

=

τ∗
(

p0 ◦ p∗1ρ
)

��

//

(pb)

p∗1A //

��
(pb)

A

ρ

��
Paths(B)

p1

��

p0
// B

X τ // B
Here the right hand side exhibits the left hand side as a limit cone. This means that the homotopy pullback Dτ∗A is universally
characterized by the fact that morphisms into it are triples ( f ,g,φ) , consisting of a pair of morphisms f , g to A, X , respectively,
and a right homotopy φ (Def. A.14) between their composites with ρ and τ , respectively:

C
(
−; Dτ

∗A
)
'

( f ,g,φ)

∣∣∣∣∣∣∣∣∣
f //

g

��

A

ρ

��
X τ // B

φs{

 . (397)

Quillen equivalences.

Lemma A.32 (Conditions characterizing Quillen equivalences). Given a Quillen adjunction L aQu R (Def. A.20), the follow-
ing conditions are equivalent:

• The left derived functor (Prop. A.25) is an equivalence of homotopy categories (Def. A.16) Ho(D) oo
DL
' Ho(C ) .

• The right derived functor (Prop. A.25) is an equivalence of homotopy categories (Def. A.16) Ho(D)
DR
'
// Ho(C ) .

• Both of the following two conditions hold:
(i) The derived adjunction unit Dη (391) is a natural isomorphism, hence (391) is a weak equivalence in C;

(ii) The derived adjunction counit Dε (392) is a natural isomorphism, hence (392) is a weak equivalence in D.
• For c ∈ Ccof and d ∈ Dfib, a morphism out of L(c) is a weak equivalence precisely if its adjunct into R(d) is:

L(c)
f

∈W
// d ⇔ c

f̃

∈W
// R(d) . (398)

Definition A.33 (Quillen equivalence). If the equivalent conditions from Lemma A.32 are met, a Quillen adjunction L aQu R
(Def. A.20) is called a Quillen equivalence, which we denote as follows:

D
oo L

R

'Qu // C .

Hence:

Proposition A.34 (Derived equivalence of homotopy categories). The derived adjunction (Prop. A.25) of a Quillen equiva-
lence (Def. A.33) is an adjoint equivalence of homotopy categories (Def. A.16):

Ho(D)
oo DL

DR

' // Ho(C) . (399)

Remark A.35 (∞-Category theory). As each model category (Def. A.3) provides a context of homotopy theory (with
its own notion of homotopy-coherent universal constructions such as homotopy pullbacks, Def. A.28, etc.), Prop. A.34
is a first indication that Quillen equivalent (Def. A.33) model categories represent the same context of homotopy the-
ory, for a suitably homotopy-theoretic notion of sameness. This suggests that model categories regarded up to Quillen
equivalence are but coordinate presentations of a more intrinsic notion of homotopy theories, now known as ∞-categories
[Jo08a][Joy08b][Joy08c][Lu09][Ci19][RV21].
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Lemma A.36 (Quillen equivalence when left adjoint creates weak equivalences [EI19, Lemma 3.3]). Let L aQu R be a Quillen
adjunction (Def. A.20) such that the left adjoint functor L creates weak equivalences, in that for all morphisms f in C we
have

f ∈ WC ⇔ L( f ) ∈ WD . (400)
Then L aQu R is a Quillen equivalence (Def. A.33) precisely if the adjunction co-unit εd is a weak equivalence on all fibrant
objects d ∈ Cfib.

Proof. By Lemma A.32, it is sufficient to check that the (i) derived unit and (ii) derived counit of the adjunction are weak
equivalences precisely if the ordinary counit is a weak equivalence.
(ii) For the derived counit (392)

Dεc : L
(
QR(d)

) L(pR(d))

∈W
// L
(
R(d)

) εd // d

we have that pR(d) is a weak equivalence (366), and since L preserves this, by assumption, so is L
(

pR(d)
)
. Therefore Dεd is a

weak equivalence precisely if εd is, by 2-out-of-3 (360).
(i) For the derived unit (391)

c
ηc // R

(
L(c)

) R( jL(c)) // R
(
PL(c)

)
consider the composite of its image under L with the adjunction counit, as shown in the middle row of the following diagram:

L(c) L(ηc) //

jL(c)∈W

11

L(Dηc)

,,
L◦R

(
L(c)

)
L◦R( jL(c)) // L◦R

(
PL(c)

) εPL(c) // PL(c) .

By the formula (357) for adjuncts, this composite equals the adjunct of the derived adjunction unit, hence jL(c), as shown by
the bottom morphism, which is a weak equivalence (365). Now, since L creates weak equivalences by assumption, L(Dηc)
is a weak equivalence precisely if Dηc is a weak equivalence. Therefore it follows, again by 2-out-of-3 (360), that this is the
case precisely if the adjunction counit ε is a weak equivalence on the fibrant object PL(c).

Proposition A.37 (Base change along weak equivalence in right proper model category). Let C be a right proper model
category (Def. A.5). Then its base change Quillen adjunction (Ex. A.21) along any weak equivalence

B1
f

∈W
// B2 ∈ C

is a Quillen equivalence (Def. A.33):

C/B2
oo f!

f ∗

'Qu // C
/B1 .

Proof. Observe that B2
id // B2 is the terminal object of C/B2 , so that the fibrant objects of C/B2 correspond to the fibrations

in C over B2. Therefore, the condition (398) says that for f! a f ∗ to be a Quillen equivalence it is sufficient that in (382) c is
a weak equivalence precisely if c̃ is, assuming that ρ is a fibration:

X c //

τ
%%

A

ρ∈ Fib

��
B1

f∈W ++ B2

↔

X c̃ //

τ

&&

f ∗A

f ∗ρ
��

ρ∗ f∈W //

(pb)

A

ρ∈ Fib

��
B1

f∈W ,, B2

(401)

But under this assumption, right-properness implies that ρ∗ f is a weak equivalence (364), so that the statement follows by
2-out-of-3 (360).

Alternative Proof. The conclusion also follows with Lemma A.36: The left adjoint functor L = f! clearly creates weak
equivalences (400) (by the nature of the slice model structure, Example A.11), so that Lemma A.36 asserts that we have a
Quillen equivalence as soon as the ordinary adjunction counit is a weak equivalence on all fibrant objects. By (382), the
adjunction counit on a fibration ρ ∈ Fib is the dashed morphism ρ∗ f in the following diagram on the right:

f ∗A id //

f ∗ρ ''

f ∗A

f ∗ρ
��

ρ∗ f∈W //

(pb)

A

ρ∈ Fib

��
B1

f∈W ,, B2

↔

f ∗A
ρ∗ f∈W //

f ∗ρ %%

A

ρ∈ Fib

��
B1

f∈W ++ B2

(402)

And hence this is a weak equivalence, again by right-properness.

102



Example A.38 (Quillen equivalence between topological spaces and simplicial sets [Qu67]). Forming simplicial sets consti-
tutes a Quillen equivalence (Def. A.33)

TopSpQu

oo

geometric realization

|−|

Sing
singular simplicial complex

'Qu // ∆SetsQu (403)

between the classical model structure on topological spaces (Example A.7) and the classical model structure on simplicial
sets (Example A.8).

Example A.39 (Classical homotopy category). The derived adjunction (Prop. A.25) of the |−| a Sing-adjunction (Example
A.38) is an equivalence between the homotopy categories (Def. A.16) of the classical model category of topological spaces
(Example A.7) and the classical model category of simplicial sets (Example A.8):

Ho
(
TopSpQu

) oo D|−|

DSing

' // Ho
(
∆SetsQu

)
. (404)

Either of these is the classical homotopy category. We refer to its objects as homotopy types, to be distinguished from the
actual topological spaces or simplicial sets that represent them.

Example A.40 (Simplicial sets are weakly equivalent to singular simplicial sets of their realization). The characterization of
Quillen equivalences (Lemma A.32) implies, with Example A.38, that for each S ∈ ∆Sets the composite

S
ηS // Sing(|S|)

Sing(| j|S||) // Sing(P |S|)

is a weak equivalence, where j|S| is a fibrant replacement for |S|. But since all topological spaces are fibrant (Example A.7),
it follows that the ordinary unit of the adjunction (403) is already a weak equivalence:

S
ηS

∈W
// Sing(|S|) . (405)

Cell complexes.

Proposition A.41 (Skeleta and truncation [May67, §II.8][DK84, §1.2 (vi)] ). For each n∈N there is a pair of adjoint functors

∆Sets
oo sk

cosk
⊥ // ∆Sets , (406)

where skn(S) is the simplicial sub-set generated by the simplices in S of dimension ≤ n (hence including only all their
degenerate higher simplices), and where

coskn(S) : [k] 7! ∆Sets
(
skn(∆[k]) , S

)
.

One says that S is n-coskeletal if the comparison morphism S−! coskn(S) is an isomorphism.
Here coskn+1 preserves ([DK84, p. 141], for proofs see [Lo13][Def19, Lem. 10.12 ]) fibrant objects of the classical model
structure (Example A.8), hence preserves Kan complexes (369), and models n-truncation, in that:

πk
∣∣coskn+1(S)

∣∣ = 0 for k ≥ n+1

and there are natural morphisms

S
pn // coskn(S) (407)

such that
πk
∣∣S∣∣ πk|pn|

'
// πk
∣∣coskn+1(S)

∣∣ for k ≤ n .

For A ∈ Ho
(
∆SetsQu

)
we write

A(n) :=
∣∣coskn+1

(
Sing(A)

)∣∣ (408)

We say that A is n-truncated if it is equivalent to its n-truncation (408):

A is n-truncated ⇔ A ' A(n) . (409)
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Example A.42 (Homotopy types of manifolds via triangulations). For X ∈ TopSp equipped with the structure of a smooth
n-manifold, there exists a triangulation of X (e.g. [Wh57, §IV.B][Mun66, Thm. 10.6], see also [Man14]), namely a simplicial
set (in fact a simplicial complex) which is n-sleletal (Prop. A.41)

Tr(X) ∈ ∆Sets , skn
(
Tr(X)

)
= Tr(X) (410)

equipped with a homeomorphism to X out of its geometric realization (403)
|Tr(X)|

p

homeo
// X (411)

which restricts in the interior of each simplex to a diffeomorphism onto its image. Since the inclusion

Tr(X)
� �

ηTr(X)

∈W
// Sing

(
|Tr(X)|

) Sing(p)

∈ Iso
// Sing(X) , (412)

is a weak equivalence (by Example A.40), the triangulation represents the homotopy type (404) of the manifold.

Proposition A.43 (Homotopy classes of maps out of n-manifolds). Let X ∈ TopSp admit the structure of an n-manifold. Then
for any A ∈ Ho

(
∆SetsQu

)
(Example A.39) the homotopy classes of maps X // A are in natural bijection to the homotopy

classes into the n-truncation (408) of A:

Ho
(
∆SetsQu

)(
X , A

)
' Ho

(
∆SetsQu

)(
X , A(n)

)
(413)

Proof. Consider the following sequence of natural isomorphisms

Ho
(
∆SetsQu

)(
X , A

)
' Ho

(
∆SetsQu

)(
Sing(X) , Sing(A)

)
' Ho

(
∆SetsQu

)(
Tr(X) , Sing(A)

)
' ∆Sets

(
Tr(X) , Sing(A)

)/
∆Sets

(
Tr(X)×∆[1] , Sing(A)

)
' ∆Sets

(
skn+1

(
Tr(X)

)
, Sing(A)

)/
∆Sets

(
skn+1

(
Tr(X)×∆[1]

)
, Sing(A)

)
' ∆Sets

(
Tr(X) , coskn+1

(
Sing(A)

))/
∆Sets

(
Tr(X)×∆[1] , coskn+1

(
Sing(A)

))
' Ho

(
∆SetsQu

)(
Tr(X) , coskn+1

(
Sing(A)

))
' Ho

(
∆SetsQu

)(∣∣Tr(X)
∣∣ , ∣∣coskn+1

(
Sing(A)

)∣∣)
' Ho

(
∆SetsQu

)(
X , A(n)

)
.

Here the first step is (A.39), using, with Example A.26, that all topological spaces are fibrant and all simplicial sets cofibrant.
The second step uses (412). The third step uses Example A.13 with Prop. A.18 (observing that Sing(A) is fibrant as A is and
Sing is right Quillen) to express the morphisms in the homotopy category as equivalence classes of simplicial maps under
the relation that identifies those pairs of maps that extend to a map on the cylinder Tr(X)×∆[1]. The fourth step observes
that with Tr(X) being n-skeletal (410), its cylinder is (n+ 1)-skeletal. The fifth step is thus the skn+1 a coskn+1-adjunction
isomorphism (406). The sixth step applies again Prop. A.18, using that coskn+1 preserves fibrancy (Prop. A.41). The seventh
step is the reverse of the first step, with the same argument on (co-)fibrancy. The last step uses (411) in the first argument and
(408) in the second. The composite of these isomorphisms is the desired (413).

Proposition A.44 (Postnikov tower [GJ99, Cor. 3.7]). Let X ∈ Ho
(
∆SetsQu

)
(Example A.39). If X is connected, then its

sequence of n-truncations (408) forms a system of maps with homotopy fibers (Def. A.27) the Eilenberg-MacLane spaces (22)
of the homotopy group in the given degree: ...

��
K(π3(X),3)

hfib(pX
3 ) // X(3)

pX
3��

K(π2(X),2)
hfib(pX

2 ) // X(2)
pX

2��
K(π1(X),1)

hfib(pX
1 ) // X(1)

pX
1��

X(0) .
If X is not connected then this applies to each of its connected components.
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Stable model categories.

Example A.45 (Looping/suspension-adjunction). On the category of pointed topological spaces, equipped with the coslice
model structure under the point (Example A.11) of the classical model structure (Example A.7), the operation of forming
based loop spaces ΩX := Maps∗/(S1,X) is the right adjoint in a Quillen adjunction (Def. A.20)

TopSp∗/Qu

oo Σ

Ω

⊥Qu // TopSp∗/Qu (414)

whose left adjoint is the reduced suspension operation ΣX := S1∧X :=
(
S1×X

)
/
(
S1×{∗X } t {∗S1}×X

)
.

Example A.46 (Stable model category of sequential spectra [BF78][GJ99, §X.4]). There exists a model category (Def. A.3)
SequentialSpectraBF whose objects are sequences

E :=
{

En ∈ TopSp, ΣEn
σn // En+1

}
n∈N

of topological spaces En and continuous function σn from their suspension ΣEn (Example A.45) to the next space in the se-

quences; and whose morphisms E
f // F are sequences of component maps En

fn // Fn that commute with the σs. Moreover:
W – weak equivalences are the morphisms that induce isomorphisms on all stable homotopy groups π•(X) := lim

−!
n

π•+k(Xk)

(where the colimit is formed using the σ ’s);

Cof – cofibrations are those morphisms E
f // F such that the maps

E0
f0

∈ Cof
// F0 and ∀

n∈N
En+1 t

ΣEn
ΣFn

( fn+1,σ
F
n )

∈ Cof
// Fn+1

are cofibrations in the classical model structure on topological spaces (Example A.7).
Fib – Fibrant objects are the Ω-spectra, namely those sequences of spaces {En} for which the Σ a Ω-adjunct (414) of each

σn is a weak equivalence: {
En ∈ TopSp∗/Qu , En

σ̃n

∈W
// ΩEn+1

}
n∈N

(415)

Example A.47 (Derived stabilization adjunction). The suspension/looping Quillen adjunction on pointed spaces (Example
A.45) extends to a commuting diagram of Quillen adjunctions (Def. A.20) to and on the stable model category of spectra
(Example A.46)

TopSp∗/Qu

oo Σ

Ω

⊥Qu //

Σ∞ aQu
��

OO
Ω∞

TopSp∗/Qu

Σ∞ aQu
��

OO
Ω∞

SequentialSpectraBF
oo Σ

Ω

⊥Qu // SequentialSpectraBF .

(416)

such that the bottom adjunction is a Quillen equivalence (Def. A.33), hence such that under passage to derived adjunctions
(Prop. A.25)

Ho
(

TopSp∗/Qu

) oo DΣ

DΩ

⊥ //

DΣ∞ a
��

OO
DΩ∞

Ho
(

TopSp∗/Qu

)
DΣ∞ a
��

OO
DΩ∞

Ho
(

SequentialSpectraBF
) oo DΣ

DΩ

' // Ho
(

SequentialSpectraBF
) (417)

the bottom adjunction is an equivalence, thus exhibiting the homotopy category of spectra as being stable under loop-
ing/suspension.
We say that
(i) Ho

(
SequentialSpectraBF

)
is the stable homotopy category of spectra;

(ii) the vertical adjunction (DΣ∞ a DΩ∞) is the stabilization adjunction between homotopy types (404) and spectra.
(iii) the images of Σ∞ are the suspension spectra.
(iv) For E ∈ Ho

(
SequentialSpectraBF

)
and n ∈ N we write (for brevity and in view of (415))

En := DΩ
∞
(
(DΣ)nE

)
∈ Ho

(
∆Sets∗/Qu

)
(418)

for the homotopy type of the nth component space of the spectrum.

Smooth ∞-stacks. We briefly highlight some basics of smooth ∞-stack theory, for more details and more exposition see
[FSS12b, §2][FSS13a][Sch13][SS20a, §1].
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Definition A.48 (Simplicial presheaves over Cartesian spaces). We write
(i)

CartSp :=
{
Rn1 smooth // Rn2

}
ni∈N

↪−! SmthMfds (419)

for the category whose objects are the Cartesian spaces Rn, for n∈N, and whose morphisms are the smooth functions between
these (hence the full subcategory of SmthMfds on the Cartesian spaces).
(ii)

PSh
(
CartSp,∆Sets

)
:= Functors

(
CartSpop,∆Sets

)
(420)

for the category of functors from the opposite of CartSp (419) to ∆Sets (Ex. A.8).

Example A.49 (Model structure on simplicial presheaves over Cartesian spaces [Du98][Du01][FSSt10, §A]). The category
of simplicial presheaves over Cartesian spaces (Prop. 420) carries the following model category structures (Def. A.3):
(i) The global projective model structure

PSh
(
CartSp, ∆SetsQu

)
proj ∈ ModelCategories (421)

whose
W – weak equivalences are the morphisms which over each Rn are weak equivalence in ∆SetsQu (Example A.8),

Fib – fibrations are the morphisms which over each Rn are fibrations in ∆SetsQu (Example A.8),

(ii) The local projective model structure

PSh
(
CartSp, ∆SetsQu

)
proj
loc
∈ ModelCategories (422)

whose:
W – weak equivalences are the morphisms whose stalk at 0 ∈ Rn is a weak equivalence in ∆SetsQu (Example A.8), for all

n ∈ N;
Cof – cofibrations are the morphisms with the left lifting property (362) against the class of morphisms which over each Rn

are in Fib∩W of ∆SetsQu.

Example A.50 (Smooth manifolds as simplicial presheaves). Consider a smooth manifold. X ∈ SmthMfds.
(i) The manifold is incarnated as a simplicial presheaf (Def. A.49) by the rule which assigns to a Cartesian space the set
of smooth functions Rn smooth

−−−−! X , regarded as a simplicially constant simplicial set. This construction constitutes a full
subcategory inclusion:

SmthMfds PSh
(
CartSp, ∆Sets

)
X 7−!

(
Rn 7!

(
[k] 7! SmthMfds(Rn , X)

))
.

(423)

(ii) For pn ∈ Rn any point, the stalk of this presheaf is the set of germs of smooth functions from an open neighbourhood of
pn to X . This set depends, in general, on n ∈ N, but does not depend on the choice of pn.

Example A.51 (Lie groupoids as simplicial presheaves). Consider a Lie groupoid G =
(
G1⇒G0

)
(review in [Mac87][MoMr03]

[Mac05]) hence a groupoid internal to smooth manifolds G ∈ Grpds(SmthMfds). Notice that for each Rn ∈ CartSp there is
an induced bare groupoid of smooth functions into the component manifolds:

Rn 7−! G (Rn) :=
(
SmthMfds(Rn, G1)⇒ SmthMfds(Rn, G0)

)
∈ Grpds(Sets) .

The simplicial nerves (Ex. A.9) of these mapping groupoids arrange into a simplicial presheaf (Ex. A.49) and this construction
is the inclusion of a full subcategory, extending the full inclusion of smooth manifolds (423):

Grpds
(
SmthMfds

)
PSh

(
CartSp, ∆Sets

)
G 7−!

(
Rn 7! N

(
G (Rn)

))
Example A.52 (Čech groupoids of open covers as simplicial presheaves). Let X be a smooth manifold equipped with a cover
by a set of open subsets

{
Ui

open
↪−−! X

}
i∈I .

(i) The Čech nerve of the open cover is the simplicial presheaf (Def. A.49)

N
(
{Ui}i∈I

)
∈ PSh

(
CartSp, ∆Sets

)
(424)

whose k-cells over any Rn are the smooth functions

N
(
{Ui}i∈I

)
:
(
Rn, [k]

)
7−! SmthMfds

(
Rn,

(
ti Ui

)×(k+1)
X

)
(425)

into the (k+1)-fold intersections of the patches Ui in X :
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(
ti Ui

)×k+1
X :=

(
ti Ui

)
×X · · ·×X

(
ti Ui

)︸ ︷︷ ︸
k+1 factors

ιk+1
↪−−−! X . (426)

This is, for each Rn, a Kan complex (369) and as such is the nerve of the Lie groupoid (Ex. A.51) which is smooth Čech-
groupoid of the open cover:

N
(
{Ui}i∈I

)
= N

((
ti Ui

)
×X
(
ti Ui

)
⇒
(
ti Ui

))
. (427)

(ii) For any point pn ∈ Rn, the stalk of the Čech nerve (424) at pn is the disjoint union over the germs of smooth functions

Rn φ
−! X of the nerves of the pair groupoids on the subset Iφ(pn) ⊂ X of patches Ui that contain φ(pn).

(iii) Postcomposition with the inclusions (426) yields a canonical morphism of simplicial presheaves from the cover’s Čech
nerve (425) to the presheaf incarnation (423) of the underlying manifold:

N
(
{Ui}i∈I

)
X(

Rn φ
−!
(
ti Ui

)×k+1
X
)

7−!
(
Rn φ
−!
(
ti Ui

)×k+1
X

ιk+1
−−! X

)
.

∈W

∈ PSh
(
CartSp, ∆SetsQu

)
proj
loc

(428)

On stalks, this map takes the nerve of the pair groupoid on the set of factorizations through the patches Ui of a the germ of

a given smooth Rn φ
−! X to that germ itself. Since nerves of pair groupoids are contractible (371), this means that (428) is a

weak equivalence in the local model structure of Ex. A.49.

This says that (Čech nerves of) open covers serve as resolutions of smooth manifolds in the local model structure Ex.
A.49; in fact as cofibrant resolutions if the cover is “good”:

Proposition A.53 (Dugger’s cofibrancy recognition [Du01, Cor . 9.4]). A sufficient condition for X ∈ PSh(CartSp,∆Sets) proj
loc

(Ex. A.49) to be cofibrant (Nota. A.6) is that in each simplicial degree k, the component presheaf Xk is
(i) a coproduct (as presheaves, using Ex. A.50) of Cartesian spaces: Xk '

∏

ik
Rnik ;

(ii) whose degenerate cells split off as a disjoint summand.

Example A.54 (Good open covers are projectively cofibrant resolutions of smooth manifolds). Prop. A.53 applied to Ex.
A.52 says that the Čech nerve of an open cover is a cofibrant resolution of the underlying manifold if the open cover is good,
or rather: differentiably good, in that each non-empty intersection of a finite number of its patches is diffeomorphic to an open
ball (namely, equivalently: to a Cartesian space):{

Ui
open
↪−−! X

}
i∈I is good ⇒ ∅ N

(
{Ui}i∈I

)
X∈Cof ∈W

p{Ui}i ∈ PSh
(
CartSp, ∆Sets

)
proj
loc

. (429)

Notice that every smooth manifold admits a differentiably good open cover [FSSt10, Prop. A.1].

Example A.55 (Hom-complexes of simplicial presheaves).
(i) For X ∈ PSh

(
CartSp, ∆Sets

)
and (Def. 420) S ∈ ∆Sets (Ex. A.7) there is the tensored simplicial presheaf

X ×S ∈ PSh
(
CartSp, ∆Sets

)
given by value-wise Cartesian product of simplicial sets:

X ×S : Rn 7! X (Rn)×S . (430)

(ii) For X ,A ∈ PSh
(
CartSp, ∆Sets

)
the simplicial hom-complex from X to A is the simplicial set of morphisms of sim-

plicial presheaves
simplicial mapping complex

Maps
(
X , A

)
:= PSh

(
CartSp, ∆Sets

)(
X ×∆[•], A

)
∈ ∆Sets . (431)

into A out of the tensoring (430) of X with the simplicial simplices ∆[n] ∈ ∆Sets, n∈N. Its image in the classical homotopy
category (Ex. A.39) is the mapping space

Maps
(
X , A

)
∈ Ho

(
∆SetsQu

)
. (432)

(iii) The (simplicially enriched) Yoneda lemma says that simplicial hom-complexes (431) out of a Cartesian space (419)
regarded as a simplicial presheaf via Ex. A.50:

X
(
Rn) ' Maps

(
Rn, X

)
. (433)
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Proposition A.56 (Smooth ∞-Stacks). The fibrant objects (Nota. A.6) in the local projective model structure (422), are to be
called the smooth ∞-stacks (or smooth ∞-groupoids)

SmoothStacks∞ :=
(

PSh
(
CartSp, ∆SetsQu

)
proj
loc

)fib
, (434)

are precisely those simplicial presheaves which:
(i) are presheaves of ∞-groupoids in that they take values in Kan complexes (369);
(ii) respect gluing of patches of good open covers of Cartesian spaces (“satisfy descent”) in that for each n∈N and each good
open cover

{
Ui ↪−!Rn

}
i∈I (Ex. A.54) the following map (435) of simplicial hom-complexes (431) – induced by precomposition

with the comparison morphism (429) from the Čech nerve (428) – is a weak equivalence of simplicial sets (Ex. A.8):

X (Rn)'Maps
(
Rn, X

)
Maps

(
N
(
{Ui}i∈I

)
, X

)Maps(p{Ui}i ,X )

∈W
∈ ∆SetsQu . (435)

Proof. By the discussion in [Du01, §5.1] the claimed condition characterizes the fibrant objects in the left Bousfield local-
ization of the global projective model category (421) at the Čech nerve projections (428) By [Du98, Prop. 3.4.8] this left
Bousfield localization is the local model structure (422).

Definition A.57 (Homotopy category of smooth ∞-stacks). In view of Prop. A.57, we write

Ho(SmthStacks∞) := Ho
(

PSh
(
CartSp,∆Sets

)
proj
loc

)
(436)

for the homotopy category (Def. A.16) of the local projective model category of simplicial presheaves over CartSp (Example
A.49). We say that the objects of Ho(SmthStacks∞) (436) are smooth ∞-stacks.

Example A.58 (Truncated smooth ∞-stacks [SS20b, Ex. 3.18]).
(i) Those smooth ∞-stacks (Def. A.57) which take values in 2-coskeletal, hence 1-truncated, Kan complexes (Prop. A.41) are
1-groupoid valued, hence are smooth 1-stacks or just smooth stacks [Ja01][Hol08].
(ii) Those smooth ∞-stacks which are 0-truncated take values in sets and hence are sheaves on CartSp. We call these smooth
spaces. The concrete sheavees among these are the diffeological spaces ([So80][So84][IZ85], see [BH08][IZ13]).

diffeological spaces

PSh(CartSp, Sets)fib
conc

smooth sets
(smooth spaces)

PSh(CartSp, Sets)fib

smooth groupoids
(smooth stacks)

PSh(CartSp,∆Setscosk2)
fib

smooth ∞-groupoids
(smooth ∞-stacks)

PSh(CartSp,∆Sets)fib

Lemma A.59 (∞-Stackification preserves finite homotopy limits). The identity functors constitute a Quillen adjunction (Def.
A.20) between the local and the global projective model categories of Example A.49:

PSh
(
CartSp,∆Sets

)
proj
loc

oo id

id

⊥Qu // PSh
(
CartSp,∆Sets

)
proj .

Moreover, this is such that the derived left adjoint functor (Prop. A.25)

Lloc : Ho
(

PSh
(
CartSp,∆Sets

)
proj

)
D id // Ho(SmthStacks∞) (437)

(the ∞-stackification functor) preserves homotopy pullbacks (Def. A.28).

Proposition A.60 (Shape Quillen adjunction [Sch13, Prop. 4.4.8][SS20a, Example 3.18]). We have a Quillen adjunction
(Def. A.20)

PSh
(
CartSp,∆Sets

)
proj
loc

Shp //

oo
Disc

⊥Qu ∆SetsQu

between the projective local model structure on simplicial presheaves over CartSp (Example A.49) and the classical model
structure on simplicial sets (Example A.8), hence a derived adjunction (Prop. A.25) between homotopy category of ∞-stacks
(Def. A.57) and the classical homotopy category (Example A.39)

Ho(SmthStacks∞)

DShp //

oo
DDisc

⊥Qu Ho
(
∆SetsQu

)
whose (underived) right adjoint sends a simplicial set to the presheaf which is constant on that simplicial set:

Disc(S) := const(S) :
(
Rn 7! S

)
. (438)
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Homological algebra.

Example A.61 (Projective model structure on connective chain complexes [Qu67, §II.4 (5.)]). The category ChainComplexes≥ 0
Z

of connective chain complexes of abelian groups (i.e. concentrated in non-negative degrees with differential of degree -1)
carries a model category structure (Def. A.3) whose
W – weak equivalences are the quasi-isomorphisms (those inducing isomorphisms on all chain homology groups)

Fib – fibrations are the morphisms that are surjections in each positive degree
Cof – cofibrations are the morphisms with degreewise injective kernels.
We write

(
ChainComplexes≥ 0

Z

)
proj for this model category.

More generally:
Example A.62 (Projective model structure on presheaves of connective chain complexes [Ja03, p. 7]). The category of
presheaves of connective chain complexes over CartSp (419) carries the structure of a model category whose weak equiva-
lences and fibrations are objectwise those of

(
ChainComplexes≥ 0

Z

)
proj (Ex. A.61). We write PSh

(
CartSp , ChainComplexes≥ 0

Z

)
proj

for this model category.

Proposition A.63 (Dold-Kan correspondence [Do58, Thm 1.9][Kan58][GJ99, §III.2][SSh03a, §2.1]). Given A• ∈ ∆AbGrps,
its normalized chain complex is the connective chain complex of abelian groups (Example A.61) which in degree n ∈ N is the
quotient of An by the degenerate cells and whose differential is the alternating sum of the face maps:

N(A)• :=
{

N(A)n := An/σ(An+1) , ∂n :=
n

∑
i=0

(−1)idi : N(A)n // N(A)n−1

}
n∈N
∈ ChainComplexes≥ 0

Z . (439)

(i) This construction constitutes an adjoint equivalence of categories

ChainComplexes≥ 0
Z

oo N
' // ∆AbGrps (440)

(ii) such that simplicial homotopy groups of A ∈ ∆AbGrps! SimplicialSet are identified with chain homology groups of the
normalized chain complex ([GJ99, Cor. III.2.5]):

π•(A) ' H•(NA) . (441)

Example A.64 (Model structure on simplicial abelian groups [Qu69, §III.2][SSh03a, §4.1]). The category ∆AbGrps carries
a model category structure (Def. A.3) whose
W – weak equivalences are the morphisms which are weak equivaleces as morphisms in ∆SetsQu (Example A.8)

Fib – fibrations are the morphisms which are fibrations as morphisms in ∆SetsQu (Example A.8)
In other words, this is the transferred model structure along the free/forgetful adjunction, which thus becomes a Quillen
adjunction (Def. A.20):

∆AbGrpsproj

oo Z[−]

⊥Qu // ∆SetsQu . (442)

Proposition A.65 (Dold-Kan Quillen equivalence [SSh03a, §4.1][Ja03, Lemma 1.5]). With respect to the projective model
structure on connective chain complexes (Example A.61) and the projective model structure on simplicial abelian groups
(Example A.64) the Dold-Kan correspondence (Prop. A.63) is a Quillen equivalence (Def. A.33):(

ChainComplexes≥ 0
Z

)
proj

oo N

'Qu // ∆AbGrpsproj , (443)

where both functors preserve all three classes of morphims, Fib, Cof and W, separately.

Example A.66 (Dold-Kan construction [FSSt10, §3.2.3][FSS12b, §2.4]). i) We write DK for the total right adjoint in the
composite of the free Quillen adjunction (442) and the Dold-Kan equivalence (443):(

ChainComplexes≥ 0
Z

)
proj

oo N

'Qu //

DK

33∆AbGrpsproj

oo Z[−]

⊥Qu // ∆SetsQu . (444)

ii) This extends to a right Quillen functor on global projective model categories of presheaves (Example A.49, Example A.62).
whose right derived functor (Prop. A.25) DDK composed with the ∞-stackification functor (437) is thus of the form

Ho
(

PSh
(
CartSp , ChainComplexes≥ 0

Z

)
proj

) derived
Dold-Kan construction

DDK //

∞-stackified
Dold-Kan construction ,,

Ho
(

PSh
(
CartSp , ∆Sets

)
proj

)
Lloc

∞-stackification
��

Ho(SmthStacks∞)

and preserves homotopy pullbacks (by Lemma A.59).
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Example A.67 (Projective model structure on unbounded chain complexes [Hov99, Thm. 2.3.11]). The category ChainComplexesZ

of unbounded chain complexes of abelian groups carries a model category structure (Def. A.3) whose:
W – weak equivalences are the quasi-isomorphisms;

Fib – fibrations are the degreewise surjections.
We write

(
ChainComplexesZ

)
proj for this model category.

Proposition A.68 (Stable Dold-Kan construction). The Dold-Kan construction (Def. A.66) lifts along the stabilization ad-
junction (Example A.47) from connective to unbounded chain complexes (Example A.67), such as to make the following
diagram commute:

Ho
((

ChainComplexes≥ 0
Z

)
proj

)
Dold-Kan correspondence

DDK

,,' //
_�

a
��

OO

DΩ∞

Ho
(
∆AbGrpsproj

)
// Ho
(
∆SetsQu

)
DΣ∞ a
��

OO

DΩ∞

Ho
((

ChainComplexesZ

)
proj

)
DDKst

stable Dold-Kan construction

22
' // Ho

(
(HZ)ModuleSpectra

)
// Ho
(
SequentialSpectraBF

)
.

(445)

Here the right adjoint on chain complexes is the homological truncation from below:

DΩ
∞

(
· · · ∂2−!V2

∂1−!V1
∂0−!V0

∂−1
−!V−1

∂−2
−! · · ·

)
=

(
· · · ∂2−!V2

∂1−!V1
∂0−! ker(∂−1)

)
. (446)

Proof. (i) It is clear from inspection that the assignment (446) is right adjoint to the inclusion of connective chain complexes,
so that we have a pair of adjoint functors(

ChainComplexesZ

)
proj

oo ? _

Ω∞

⊥Qu //
(
ChainComplexes≥ 0

Z

)
proj . (447)

Moreover, it is immediate that this is a Quillen adjunction (Def. A.20) between the projective model structure on connective
chain complexes (Example A.61) and that on unbounded chain complexes (Example A.67): Ω∞ clearly preserves fibrations
(using that those between connective chain complexes need to be surjective only in positive degrees!) and clearly preserves
all weak equivalences. Finally, since all chain complexes in the projective model structure are fibrant, we have that with Ω∞

also DΩ∞ is given by (446), via Example A.26.
(ii) A Quillen adjunction of the form(

ChainComplexesZ

)
proj

oo

H

⊥' //

DKst

22
(HZ)ModuleSpectra

oo
⊥Qu // SequentialSpectraBF (448)

is established in [SSh01, §B.1], where

(a) the first step is a Quillen equivalence (Def. A.33) between the projective model structure on unbounded chain complexes
(Example A.67) and a model category of module spectra over the Eilenberg-MacLane spectrum HZ [SSh01, §B.1.11];

(b) the second step is a Quillen adjunction [SSh01, p. 37, item ii)] to the Bousfield-Friedlander model structure (Example
A.46) whose right adjoint assigns underlying sequential spectra; such that

(c) the composite right adjoint DKst (448) further composed with Ω∞ on spectra (416) equals the composite of Ω∞ on chain
complexes (447) with the unstable Dold-Kan construction (444):

Ω
∞ ◦ DKst ' DK ◦ Ω

∞

(by immediate inspection of the construction in [SSh01, p. 38-39]).

(iii) By uniqueness of adjoints, this implies that the Quillen adjunction of the stable Dold-Kan construction (448) is intertwined
by the Quillen adjunctions involving Ω∞ with the Quillen adjunction of the unstable Dold-Kan construction (444), and hence
the commuting diagram of derived functors (A.68) follows (Prop. A.25).
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