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The intricacies of realistic — namely: of classically controlled and (topologically) error-protected
— quantum algorithms arguably make computer-assisted verification a practical necessity; and yet a
satisfactory theory of dependent quantum data types had been missing, certainly one that would be
aware of topological error-protection.

To solve this problem we present Linear Homotopy Type Theory (LHoTT) as a programming
and certification language for universal quantum computers with classical control and topologically
protected quantum gates, focusing on (1.) its categorical semantics, which is a homotopy-theoretic
extension of that of Proto-Quipper and a parameterized extension of Abramsky et al.’s quantum
protocols, (2.) its expression of quantum measurement as a computational effect induced from de-
pendent linear type formation and reminiscent of Lee et al.’s dynamic lifting monad but recovering
the interacting systems of Coecke et al.’s classical structures monads as now used in the ZX-calculus.

Namely, we have recently shown [19] that classical dependent type theory in its novel but mature
full-blown form of Homotopy Type Theory (HoTT) is naturally a certification language for realis-
tic topological logic gates. But given that categorical semantics of HoTT is famously provided by
parameterized homotopy theory, we had argued earlier [31] for a quantum enhancement LHoTT of
classical HoTT, now with semantics in parameterized stable homotopy theory. This linear homo-
topy type theory LHoTT has meanwhile been formally described [25][26]; here we explain it as the
previously missing certified quantum language with monadic dynamic lifting, as announced in [32].

Concretely, we observe that besides its support, inherited from HoTT, for topological logic gates,
LHoTT intrinsically provides a system of monadic computational effects which realize what in alge-
braic topology is known as the ambidextrous form of Grothendieck’s “Motivic Yoga”; and we show
how this naturally serves to code quantum circuits subject to classical control implemented via com-
putational effects. Logically this emerges as a linearly-typed quantum version of epistemic modal
logic inside LHoTT, which besides providing a philosophically satisfactory formulation of quantum
measurement, makes the language validate the quantum programming language axioms proposed by
Staton [34]; notably the deferred measurement principle is verified by LHoTT.

Finally we indicate the syntax of a domain-specific programming language QS (an abbreviation
both for “Quantum Systems“ and for “QS0-modules” aka spectra) which sugars LHoTT to a practical
quantum programming language with all these features; and we showcase QS-pseudocode for simple
forms of key algorithm classes, such as teleportation, error-correction and repeat-until-success gates.
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2 Quantum Certification via LHoTT

1 Introduction

The classical computational trilogy. There is a famous conceptual relation, suggestively called the
“computational trilogy” (for references see [29, p. 4]) between:
(TT) intuitionistic logic/type theory, (CT) category/topos-theory, (PT) computation/programming theory,
which is so tight that we ought to understand these as three equivalent perspectives on a unique underly-
ing subject. A culmination of the understanding of TT↔CT was achieved more recently (for references
see [19]) with the proof that intuitionistic type theory in its fully-fledged form as univalent Homotopy
Type Theory (HoTT) is “the internal language” of homotopy toposes.

Completing the computational trilogy. In view of this homotopy-theoretic completion of a quest that
started (somewhat coincidentally) just around the time that classical electronic computers became a prac-
tical reality, it is interesting to ask:
1. What becomes of the “computational trilogy” in view of quantum computation (e.g. [20]), now that

quantum computers are becoming a practical reality?
2. What is homotopy-theoretic about the relation between type theory and computation (TT↔PT)?1

In [19] we offered a first answer to both questions at once: Homotopy computation corresponds to re-
versible computation by fiber transport (of state spaces) along — hence path lifting of — continuous
parameter paths (the homotopy-programs), an example being the notion of “anyon braid gates” envi-
sioned in topological quantum computation — the latter a famous strategy for hardware-level quantum
error-protection (arguably the only way that useful quantum computation can become a practical reality).

Topological/Homotopical. Notice here (cf. [19, §2]) that the term “topological” in “topological quan-
tum computation” serves as a synonym for what the pedantic homotopy theorist would call “homotopi-
cal” — but less-pedantic homotopy theorists are also happy to conflate “homotopical” with “topological”,
for instance in naming “topological Hochschild homology”, following the historical origin of homotopy
theory in the field of algebraic topology. Therefore, if not for historical quirks we would be speaking of
“homotopical quantum computation” instead of “topological quantum computation” and the broad result
of [19] would appear an almost self-evident entry in the computational trilogy:

⟨Homotopy Type Theory⟩↔⟨Homotopy Quantum Computation⟩≡⟨Topological Quantum Computation⟩

The remaining defect of HoTT — while it readily produces the fiber transport on state spaces given
by topological anyon braid gates [19, Thm. 6.8] — is that it has no native means to express, hence not to
verify (namely: type-check), that the resulting logic gates are really quantum gates:

Nature of quantum data types. The hallmark of quantum processes (such as logic gates) is twofold:
1. The constraint of no-cloning / no-deletion together with the phenomenon of superposition and entan-

glement means that coherent quantum processes are described by linear logic and linear type theory.
2. De-cohering state collapse in quantum measurement, but also quantum adiabatic transport, mean that

classically controlled quantum processes must be described by classically-dependent linear types.
We had argued earlier [31, 30] that where HoTT is the internal language of general ∞-toposes H, there
ought to be a linear/quantum enhancement LHoTT that is the internal language of “tangent ∞-toposes” T H
of parameterized spectrum spectrum objects in H, or more generally of ∞-toposes of module spectra in
H, these being the evident semantics of dependent linear homotopy types. This expectation has recently
been formally brought out by [25].

1The traditional suggestion for impact of HoTT on actual computing/programming theory says that the structure-identity-
principle (cf. [19, p. 54]) allows for practical and secure code re-use. This is a neat convenience and may eventually have
practical impact, but it is hardly the answer to the question “What is homotopical computation?”
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Necessity of quantum program verification. While the practical benefit of formal program verification
in classical computation is often felt to be outweighed by the extra programming effort, it can be argued
[24, p. 3-4][37] that realistic quantum programming makes formal verification a practical necessity; be-
cause: (1.) Real-world quantum circuits are much more complex and logically less transparent – notably
when topological error-protection constrains the available machine-level gates and makes movement of
qubits in the circuit topology expensive. (2.) There is no ability to inspect the state of a program to debug
a quantum computer’s operation, due to the non-invertible nature of quantum measurement.

Intricacy of quantum program verification. At the same time, a theoretical foundation for realistic
quantum program verification had remained elusive: The problem is that plain linear types (as envisioned
in [23][8][2] and implemented in languages like QML or QWIRE) only serve for basic checks of plain
quantum circuits, while general quantum data specification and including the necessary classical control
of quantum circuits requires a theory of classically-dependent linear types which conservatively extends
classical dependent type theory. This was achieved only recently in [25] (see p. vii there for critique of a
number of previous proposals) with the construction of (what we shall call, following [31][19]): LHoTT.

LHoTT as a quantum verification language. Here we explain LHoTT as a quantum language, and hence
as a satisfactory quantum program verification language, entirely by “domain-specific sugaring” of its
syntax to reveal the presence of language constructs which would traditionally have to be obtained by
“domain-specific embedding” [11] into a host language (such as Quipper [9] is inside Haskell).

To have a name for it, we shall refer to this sugared quantum language inside LHoTT as “QS”, which
we suggest to read as shorthand both for:
• Quantum Systems Language, since even beyond quantum programming it captures key aspects of

general quantum theory, such as the notion of quantization (whence the title of [31]);
• QS-Module Language, since even beyond dependent linear types it is a language of dependent linear

homotopy types which in their categorical semantics in algebraic topology are (parameterized) spectra
equivalently known as S-modules, where the sphere spectrum S, in turn, is historically denoted “QS0”
(the suspension spectrum of the 0-sphere).

Quantum language structures emergent in LHoTT. We explain emergence of the following features:

Features of QS emergent inside LHoTT much as known from...

An adjoint system of classical and of linear (quantum) types QWIRE [21]

embedded in systems of classically-dependent linear types, Proto-Quipper [9][28]

equipped with closed monoidal tensor category structure Abramsky quantum protocols [1][2]

subject to (co-)monadic type forming operations for
• quantum measurement as a monadic computational effect
• state preparation as comonadic computational context,

monadic dynamic lifting [13], but
reproducing Coecke et al.’s
classical structures (co-)monad [6][5]
now of ZX-calculus fame [4]

verifying the measurement principles; Staton’s QP axioms [34]

all enhanced to handle verifiable

density matrix types (mixed state), Selinger’s original outline [33]

topological quantum gates. our companion article [19]

Most of these features come from LHoTT’s verification [25, §2.4] of an axiom scheme expressing what in
algebraic topology/geometry is known as the motivic yoga of functors (cf. [31, p. 18], and p. 5 below).
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2 Semantics

For sake of space and exposition, we will here not dwell on the syntactic rules of LHoTT (which are
laid out in [25] and surveyed in the companion article [26] with brief indications below in §A.1) but
speak entirely category-theoretically about its type system, with the tacit understanding that all following
constructions have straightforward syntactic incarnations in LHoTT, which we will discuss elsewhere, but
which the expert can readily deduce.

The type system. A powerful aspect of LHoTT is that not only does it provide classically-dependent
linear types, but that indeed every type in LHoTT is in itself a bundle of linear types. In full homotopy-
theoretic beauty this is what makes LHoTT the internal language of tangent ∞-toposes of parameterized
module spectra, but for the present purpose of quantum programming it is expedient to focus on the
sub-category of types of set-indexed complex vector spaces (essentially the Quipper-semantics of [28],
which is a very special case of parameterized HC-module spectra, cf. [31, Ex. 3.14]).

Category of LHoTT-Types Fragment relevant for plain quantum computation[
E
↓
B

]
: Type

objects are tuples E :=
(
Eb

)
b : B of complex vector spaces Eb : LinType in-

dexed by any set B : ClType, hence equivalently complex vector bundles over
discrete topological spaces B[

E
↓
B

] [
E ′
↓
B′

]
.

φ

f

morphisms ( f ,φ) from E to E ′ are tuples of linear maps
(
Eb

φb−→ E ′f (v)
)

b : B

covering maps B
f−→ B′ of index sets (of base spaces), hence equivalently are

morphisms of vector bundles over arbitrary base maps
ClType Type

B 7→

[
0B
↓
B′

] full inclusion of the category of sets by regarding a set B as the zero-vector
bundle 0B over it (whose fiber over any b : B is the zero-vector space (0B)b = 0).

LinType Type

V 7→

[
V
↓
∗

] Full inclusion of the category of plain vector spaces by regarding them as vector
bundles over the singleton set.

The purely classical
and the purely quantum
types are in fact modal
types for computational
effects ♮ and △, respec-
tively, which arise from
the Motivic Yoga (p.
5) and whose presence
on the total type sys-
tem gives neat formal
meaning to Bohr’s
infamous notion of the
classical/quantum divide
(see p. 6).

Quantum/Classical Data Types Quantum/Classical Maps

general
bundles of

linear types

Type[E
↓
B

] △♮ E E ′[E
↓
B

] [
f ∗E ′
↓
B

] [E ′
↓
B′

]φ

f

purely
classical types

(bundles of zeros)

ClType ≡ Type♮[B×{0}
↓
B

] B B′[ 0B
↓
B

] [ 0B′
↓
B′

]0

f

purely
linear types

(bundles over point)

LinType ≡ Type△[H
↓
∗

] H H ′[H
↓
∗

] H ′
↓
∗

φ

p∗
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Motivic Yoga. We say that a yoga of operations or Motivic Yoga (Grothendieck-Wirthmüller-style) is:

A locally cart. closed category with coproducts Type (1)

an ambidextrously reflected subcategory
ClType (“of classical base types”), hence a
functor ♮ onto a full subcategory, both left and
right adjoint to the inclusion functor

ClType Type

♮

♮

⊥

⊥
♮ (2)

for B : ClType a symmetric closed monoidal
structure (TypeB,⊗B,1B) wth coproducts on
the iso-comma categories (“bundles over B”)

TypeB :≡ ♮/B ≡


[

E
↓
B

] [
E ′
↓
B

]φ

 (3)

for each morphism f : B→ B′ in ClType an ad-
joint triple of (“base change”) functors:

TypeB TypeB′

f!

f ∗

f∗

⊥

⊥ (4)

such that the following conditions hold, where FinClType ↪→ ClType is the coproduct-closure of ∗:
(0) linearity: the base change (4) along finite types B

pB−→ ∗ is ambidextrous:

for B : FinClType we have (pB)! ≃ (pB)∗ (5)

(i) functoriality: for composable morphisms f ,g of base objects we have

( f ∗ ◦g∗) ≃ g∗ ◦ f ∗ and id∗ = id (6)

(ii) monoidalness: the pullback functors are strong monoidal in that there are natural equivalences:

f ∗
(
E ⊗B′ E ′

)
≃ f ∗

(
E
)
⊗B′ f ∗

(
E ′

)
(7)

(iii) Beck-Chevalley condition: For a pullback square in ClType the “pull-push operations” across one
tip are naturally equivalent to those across the other:

For

B×B0 B′

B B′

B0

prB prB′

(pb)

pB pB′

we have

TypeB×B0 B′

TypeB TypeB′

TypeB0

(prB)! (prB′ )
∗

(pB′ )!(pB)
∗

and

TypeB×B0 B′

TypeB TypeB′

TypeB0

(prB)∗ (prB′ )
∗

(pB′ )∗(pB)
∗

(8)

(iv) Frobenius reciprocity / projection formula: The left pushforward of a tensor with a pullback is
naturally equivalent to the tensor with the left pushforward (equivalently: f ∗ is strong closed):

f!
(
E ⊗B f ∗(E ′)

)
≃ f!(E)⊗B′ E ′ . (9)

The category of indexed vector spaces, for example, satisfies the motivic yoga wrt the usual fiberwise
tensor product:

((
Eb

)
b : B

)
⊗B

((
E ′b

)
b : B

)
=

(
Eb⊗E ′b

)
b : B′ . and with left/right base change along

finite types given by the direct sum of vector spaces: B ∈ FinClType ⊢ p!
(
(Eb)b : B

)
≃

⊕
b : B

Eb ≃

p∗
(
(Eb)b : B

)
. This is the category that also provides semantics for Proto-Quipper, see [9][28][13].
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Such a motivic category Type has a rich structure of globally cartesian- and linear-monoidal closure:

Product Types Function Types

classical

[V
↓
B

]
×

[V ′
↓
B′

]
=

 (prB)
∗V ⊕ (prB)

∗V ′
↓

B×B′

 [V
↓
B

]
→

[V ′
↓
B′

]
=

{
f
}
×
{

φ
}
×
〈
σ : 1B→ f ∗V ′

〉
↓{
f : B→ B′

}
×
{

φ : V → f ∗V ′
}


quantum

[V
↓
B

]
⊗

[V ′
↓
B′

]
=

 (prB)
∗V ⊗ (prB)

∗V ′
↓

B×B′

 [V
↓
B

]
⊸

[V ′
↓
B′

]
=

{
f : B→ B′

}
×
〈
φ : V → f ∗V ′

〉
↓{
f : B→ B′

}


The Motivic Yoga induces various (co-)monadic effects on subcategories of types (background in §A.2):

First, we have these three monadic effects, capturing the quantum/classical divide inside Type:

The Quantum/Classical Divide

modality idempotent monad pure effect

classical ♮ : Type ↠ ClType ↪→ Type

return♮E : E ♮EE
↓
B

 B×{0}
↓
B

 {0}↓
∗

0

id

0

pB

(strong wrt ×)

quantum △ : Type ↠ LinType ↪→ Type

△ ≡ E 7→
(

p♮E
)

!E

return△E
◦
◦ E △EE
↓
B

  (pB)!E
↓
∗

η
♢B
E

pB

(strong wrt ⊗)

quantized
Q : ClType→ LinType ↪→ Type
Q ≡ B 7→ △

(
B×1

)
returnQ

E
◦
◦ B QBB×1
↓
B

  (pB)!(B×1)
↓
∗

η
♢B
E

pB

(relative monad)

Notice that the quantization monad Q (a relative monad [3]) ex-
presses exactly the way in which “qbits” are the quantization of bits:

Bit ≡ {0,1} : ClType
QBit ≡ Q(Bit) : LinType

Moreover, for any B : FinClType the Motivic Yoga induces a quadruple of (co-)monadic computa-
tional effects/contexts which realize a form of epistemic modal logic and which in QS serve to exhibit
1. quantum measurement as a monadic computational effect;
2. state preparation as a comonadic computational context.
We briefly indicate now how this comes about (more details in §A.3):
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Via the Motivic Yoga, we find QS inside LHoTT by re-casting dependent type formers of LHoTT as monadic
computational effects (and comonadic computational contexts, see §A.2) on sub-categories of types:

Classical epistemic logic from dependent types. Namely, we observe now a logical understanding of
measurement (first classical then quantum) as a natural notion in the realm of what is traditionally known
as “epistemic modal logic of possible worlds”, but realized2 here as the modal logic (cf. §A.2) induced
by the standard dependent type formers in classical dependent type theory (more details in §A.3):
Given B : ClType of possible
measurement outcomes (“possi-
ble worlds”) the monadic effects
induced by B-dependent classi-
cal data type formers constitute
modalities of actual and potential
B-measurements. →

In LHoTT the analogous construction
is available for B-dependent linear
types and yields a notion of quantum
measurement which captures ex-
actly the infamous non-deterministic
branching into quantum states col-
lapsed onto the classical measure-
ment basis B (cf. p. 8). ↓

actual data TypeB Type potential data

♢B

possibly

⊥

□
B

necessarily

dependent pair formation
∏

B

×B

∏B
dependent function form.

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

Given...
b : B ⊢

possible world
∏

b′:B
Pb′ Pb

∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P
⃝BP

∏
b:B P P ∏b:B P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′ )b′:B 7→ pb

measurement outcome

pb 7→ (b, pb)

ε
9B
P

entails

η
⃝B
P

entails

(b, p) 7→ p p 7→ (b:B, p)

Quantum epistemic modal logic from dependent linear types.

(LinTypeB)♢B
(LinTypeB)

♢B

actual data LinTypeB LinType⃝B LinType⃝B
LinType potential data

(LinTypeB)□B
(LinTypeB)

□B

∼

≃♢B

possibly

⊥

□
B

necessarily

lin. dependent pair form.
⊕B

⊕B
lin. dependent funct. form.

≃
⊥

⊥
1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •
□B H •

actually H •
H •

possibly H •
♢B H •

necessarily H •
□B H •

Given...

b : B
possible world
(classical)

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H
⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails
η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7→ |ψb⟩

quantum state collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7→⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7→ ∑b |ψb⟩
quantum superposition

|ψ⟩ 7→ ⊕b|ψ⟩b
quantum parallelization

2This fact was first observed in [ncatlab.org/nlab/revision/necessity+and+possibility/1] (2014) and highlighted in [7].

https://ncatlab.org/nlab/revision/necessity+and+possibility/1
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Quantum measurement as a computational effect. By the above quantum-epistemic logic, quantum
B-measurement is equivalently (1.) the □B-counit transformation (2.) ⃝B-effect binding (more in §A.4):

quantum circuit H
B(

e.g.
≡ Bit)

K
measurement in B-basis

QB(
e.g
≡ QBit)

≡ □B1B

0 1

φ

⃝B-modal linear types

LinType⃝B
⃝BH ⃝B⃝BK ⃝BK

LinTypeB
B-dependent linear types

1B⊗H □B1B⊗K 1B⊗K

b : B
measurement

result

⊢ H QB⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B su
bj

ec
tio

n
to

⃝
B
-e

ffe
ct

s

⃝B

( quantum gate

H
φ−→QB⊗K ≃⃝BK

) ⃝B
hndl
⃝B
⃝BK

⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B
⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7→ |ψb⟩

quantum state collapse

The deferred measurement principle (known in examples [20, §4.4] and proposed as an axiom [34, p.
6]) is now simply an instance of the Kleisli equivalence for □B, as indicated in the following diagram:

Kl
(
□B

)
□B-Kleisli morphisms

LinTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F−→□BH •

ε
□B

H •−−→H •
G•−→H •

measurement-controlled quantum gate
7→ □BH •

diagB(G•)◦F−−−−−−−→□BH •
quantum-controlled quantum gate...

7→ □BH •
diagB(G•)◦F−−−−−−−→□BH •

ε
□B

H •−−→H •
...followed by measurement

B0 1

F
G•

Deferred Measurement Principle←−−−−−−−−−−−−−−−−−−→
B0 1

F
G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′

Certifying the ZX-calculus (cf. §A.3): The canonical quantum measurement monad⃝B is reminiscent
of the proposal [13, §3.3], but reproduces Coecke et al.’s “classical structures” Frobenius monad [6][5]:

indefiniteness modality
⃝B ≃ B-Reader ≃ 1

B-Writer ≃
quantum compulsion

Coecke’s classical structures
1

B-FrobWriter ≃
quantum compulsion

1
B-CoWriter ≃ B-CoReader ≃

randomness modality

9B

Monad FrobMonad CoMonad

With varying bases QB≃QB′ we obtain interacting systems of such monads as used in ZX-calculus [4].
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3 Pseudocode
We have seen that inside formal
LHoTT the intuitionistic logic of types
and the modal logic of effects apply to
quantum data and processes in a nat-
ural, expressive and satisfactory way.

To make this manifest, in the boxes
on this page we indicate an incremen-
tal sugaring of LHoTT syntax which
results in a programming pseudo-
language for quantum protocols with
resemblance to natural language.

data declaration semantics

classical
⊢ B : ClType
⊢ b : B

[
{0}
↓
∗

] [
B×{0}
↓
B

]
0

b

quantum

⊢ H : LinType
⊢ |ψ⟩ ◦

◦ H

≡

1 ⊢ |ψ⟩ : H

[
1

↓
∗

] [
H
↓
∗

]
|ψ⟩

∗

quantized

⊢ B : ClType
⊢ H : LinType
⊢ |−⟩ ◦

◦ B→H

≡

1 ⊢ |−⟩ : B→H

[
1

↓
∗

] [〈
1B→ p∗BH

〉
↓
∗

]
|−⟩

∗

First, by the above discussion we
may give nicely suggestive names
to all the return-operations of the
various monads, and the extract-
(i.e.: coreturn-)operations of the
comonads. →
Since declaration of ⃝B-data is
exactly conditioning on runtime
measurement results (“dynamic
lifting” [9, p. 5]) we denote it by
an if measured-clause: ↓

sugared syntax for⃝B-data:(
b 7→ |ψb⟩

)
◦
◦

(
B→H

)

7→ ≃

if measured b then |ψb⟩ ◦
◦ ⃝BH

Finally, we use for...do...-
clauses to express bind opera-
tions essentially as usual, but
slightly adjusted to bring out how
this encodes operations on data-
generators, e.g. quantum gates
encoded on qbit basis elements
|b⟩ ≡ returnQ

B (b). ↓

sugared syntax for the (co)pure (co)monadic (co)effects

qu
an

tiz
at

io
n

|−⟩ ◦
◦ B→ QB

qu
an

tu
m

m
ea

su
re

m
en

t

|b⟩ ≡ returnQ
B (b) pure linearity

always ◦
◦ H ⊸⃝BH

always |ψ⟩ ≡ return⃝B

H
(
|ψ⟩

)
pure indefiniteness

measure ◦
◦ ⃝BQB ⊸

B
⃝B1

measure |ψ⟩b ≡ extract□B
1B

(
|ψ⟩b

)
pure necessity

measure ◦
◦ QB ⊸⃝B1

measure |ψ⟩ ≡ measure always |ψ⟩ returns collapsed state &
puts outcome into context

superpose ◦
◦ 9BH ⊸ H

qu
an

tu
m

st
at

e
pr

ep
ar

at
io

n

superpose |ψ⟩b ≡ extract9B

H
(
|ψ⟩b

)
pure randomness

prepare ◦
◦ 9B1⊸9BQB

prepareqb ≡ return♢B
1B

(
qb
)

pure possibility

prepare : 9B1⊸ QB

prepareqb ≡ superpose prepare qb
prepares states in context

& returns superposed state

“for...do...” programming syntax for declaring effect-bound programs

prog : D→ E D′

bindE prog : E D→ E D′

bindE prog ≡

 for returnE
D(d)

do prog(d)

Φ : E D, prog : D→ E D′

φ > bindE prog : E D′

φ > bindE prog ≡

 for returnE
D(b) in Φ

do prog(b)
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Bit flip error correction as QS-pseudocode, is a simple but instructive example (cf. [20, §10.1.1]):

LgclQBit : LinType

LgclQBit ≡ QBit⊗QBit⊗QBit

Syndrome : FinClType

Syndrome ≡ Bit×Bit

encode ◦
◦ QBit ⊸ LgclQBit

encode ≡

 for |b⟩

do |b,b,b⟩

|0⟩

|0⟩

L
gclQ

B
it

︷
︸︸

︷

Q
B

it ︷︸︸︷
verify_circuit_encoding : encode = (−)⊗|0,0⟩ > CNOT⊗ id > id⊗CNOT

BitFlip ◦
◦ Syndrome→

(
LgclQBit ⊸ LgclQBit

)

BitFlip ≡


if (0,0) then id⊗ id⊗ id

if (1,0) then X⊗ id⊗ id

if (1,1) then id⊗X⊗ id

if (0,1) then id⊗ id⊗X

compute_syndrome ◦
◦ QSyndrome⊗LgclQBit ⊸ QSyndrome⊗LgclQBit

compute_syndrome ≡

 for |s1,s2⟩⊗ |b1,b2,b3⟩

do |s1 +b1 +b2, s2 +b2 +b3⟩⊗ |b1,b2,b2⟩

L
gc

lQ
B

it
︷

︸︸
︷ L

gclQ
B

it
︷

︸︸
︷

Q
Sy

nd
ro

m
e

︷︸︸
︷ Q

Syndrom
e

︷︸︸︷

measure_syndrome ◦
◦ LgclQBit ⊸⃝SyndromeLgclQBit

measure_syndrome ≡


for |b1,b2,b3⟩

do

 |0,0⟩⊗ |b1,b2,b3⟩
> compute_syndrome
> measureSyndrome

|0⟩

|0⟩
0 1

0 1

L
gc

lQ
B

it
︷

︸︸
︷ L

gclQ
B

it
︷

︸︸
︷

Syndrom
e

︷︸︸︷

|0⟩

|0⟩
0 1

0 1

L
gc

lQ
B

it
︷

︸︸
︷

classical
error correction

logic

L
gclQ

B
it

︷
︸︸

︷
Syndrom

e
︷︸︸︷

compute
error syndrome

measure
error syndrome

correct
inferred error

correct_error ◦
◦ LgclQBit ⊸⃝SyndromeLgclQBit

correct_error ≡


for |b1,b2,b3⟩

do

 for |ψ⟩ in measure_syndrome
(
|b1,b2,b3⟩

)
do if measured (s1,s2) then BitFlip(s1,s2)

|ψ⟩

verify_error_correction :
(
s1,s2 : Syndrome

)
→

(
encode > BitFlips1,s2

> correct_error = always encode
)

The last line asserts a term of identification type which formally certifies that any single bit flip on
a logically encoded qbit is always corrected by the code (i.e.: no matter the measurement outcome).
The construction of such certificates in LHoTT (not shown here, but straightforward in the present case)
provides the desired formal verification of classically controlled quantum algorithms and protocols.
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A Appendix

In this appendix we collect some background material for reference:
§A.1 — Linear Homotopy Type Theory and Motivic Yoga
§A.2 — Computational Effects and Logical Modalities
§A.3 — Quantum Reader/Writer Monads from Dependent Linear Types
§A.4 — The Quantum Measurement Modales

Beyond this, there is certainly room for an account of more details than we provide in this short note. We
will give a more extensive discussion elsewhere.

A.1 Linear Homotopy Type Theory and Motivic Yoga

An exposition of classical Homotopy Type Theory (HoTT) with an eye towards (topological) quantum
computation may be found in [19, §5.1]. Where the types of HoTT may be interpreted as parameterized
homotopy types in homotopy theory, the idea [31] of Linear Homotopy Type Theory LHoTT is to enhance
HoTT with language structures which exhibit each type as a parameterized stable (∼ “linear”) homotopy
type, namely a bundle of spectra in the sense of algebraic topology.

For the present purpose the key point is that LHoTT has categorical semantics in parameterized sta-
ble homotopy theory (bundles of module spectra), as foreseen in [31] and further discussed in [27].
The upshot is that LHoTT naturally provides, in particular, a fully dependently-typed formal verification
language for reasoning about HC-module spectra such as the indexed complex vector spaces in §2.

As a formal language, LHoTT has been constructed and laid out in [25] and exposition of the basic
principles of LHoTT as a general quantum verification language is given in the companion article [26]. We
now briefly indicate how LHoTT verifies the Motivic Yoga (p. 5) that is central to the present discussion
of certifying also effectful quantum computation, i.e. including the quantum measurement process and
classical control:

Since every type in LHoTT has both a linear and non-linear aspect “♮” (p. 4), the linear homotopy
type theory gives us access to the non-linear (classical) data present in a variable even when its linear
data has been used elsewhere in a derivation. This is done by allowing a second, ‘marked’ way to use
every variable x, which we write x. We think of this as a syntactic version of the functoriality of ♮ on the
map represented by x. The rules for the ♮ operation on types then interact with this new notion of variable
usage, and in [27] it is shown that this is enough to give ♮ all of the semantic properties we expect from
(2).

To demonstrate, the ♮-FORM/INTRO rules

♮-FORM
t | Γ ⊢ A type

t≺Φ | Γ ⊢ ♮A type
♮-INTRO

t | Γ ⊢ a : A

t≺Φ | Γ ⊢ a♮ : ♮A

are the syntactic manifestation of the self-adjointness of ♮ as a functor Type→ Type, i.e. the ambidex-
terity demanded in (2): First, the marking Γ in the assumptions of the above rules forces all uses of
variables in Γ to be used via marked usages, which semantically means that the map a : Γ→ A in the
assumptions factors through a map ♮Γ→ A. From this, the conclusions of the above rules interpret as the
corresponding adjunct (13) map Γ→ ♮A.

Accordingly, the universes of classical types ClType and linear types LinType (p. 4) are constructed
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internally as the ♮-modal3 and ♮-connected types respectively:

ClType :≡ (A : Type)× (♮A = A)

LinType :≡ (A : Type)× (♮A = ∗) .

(On the right, “=” denotes LHoTT’s Martin-Löf identity type formation famous from classical HoTT.)
Given a B : ClType, one thinks of a bundle E : TypeB as an object that associates, to every point b : B,

a linear type Eb : LinType. In LHoTT this holds literally, namely syntactically, in that:

TypeB :≡ B→ LinType ,

whence Eb is given simply by evaluating (the fiber-assigning function that is) E at b.
With this understood, the base change operations (4) are almost trivial to describe type-theoretically:

Given a map of classical types f : B→ B′, the pullback f ∗E ′ is simply the precomposition E ′ ◦ f . And
the pushforward f∗E is defined over a point b′ as the space of sections of the bundle E over the fibre:

f∗E(b′) :≡ ((x, p) : fib f (b′))→ E(x) .

Last not least, LHoTT provides a rule for the formation of tensor products of linear types

⊗-FORM
t | Γ ⊢ A type t | Γ, xt : A ⊢ B type

t≺Φ | Γ ⊢ (x : A)⊗B type

which permits the use of marked variables from the context: This means that the type former is computing
a fibrewise tensor product over the parameter space of the context and makes ⊗ interact smoothly with ♮.
For example, the ⊗B operation (3) on TypeB is defined simply as

(E1⊗B E2)(b) :≡ E1(b)⊗E1(b)

That these definitions have the properties claimed in §2 is fairly easy to check, for the full details see [25,
§2.4].

A.2 Computational effects and Logical modalities.

We give a lightning survey4 of computational effects (and computational contexts) understood as (co)monads
on the type system, and of the Eilenberg-Moore-Kleisli theory of the corresponding effect handlers (con-
text providers) understood as (co)modules, in fact as (co)modal types.

Computational effects and monads on the type system. The idea is that a computation which nomi-
nally produces data of some type D while however causing some computational side-effect must de facto
produce data of some adjusted type E (D) which is such that the effect-part of the adjusted data can be
carried alongside followup programs (whence “side effect”):

3Since ♮ is an idempotent monad, its modal types, in the sense recalled in (A.2), are those types which are fixed by ♮.
4The seminal idea of monadic computational effects originates with [17][18]. For a commented list of the classical but

scattered literature on the topic of see: ncatlab.org/nlab/show/monad+in+computer+science.

https://ncatlab.org/nlab/show/monad+in+computer+science
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D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

first program

output data
of nominal type D2

causing effects of type E (−)

prog23

second program

input data
of type D2

causing effects of type E (−) bind previous effects
into second program

returnE
D

return plain data with trivial E (−)-effect

prog12 bindE prog23

carry any previous
E (−)-effects along

compose

bindE returnE
D

= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects

Such E -effect structure on the type system is equivalently [15, p. 32][18, Prop. 1.6] a functor on the
category of types

E : Type Type(
D1

f−→ D2
)
7→ bindE

(
D1

f−→ D2
returnE

D−−−−→ E (D2)
)

functor underlying monad

(10)

which carries the structure of a monad, namely natural transformations

D E (D)

monad unit

ηD≡ returnE
D E

(
E (D)

)
E (D)

monad multiplication

µD≡bindE idE (D)
(11)

satisfying the axioms of a unital monoid, in that they make the following natural squares commute

E (D) E
(
E (D)

)
E
(
E (D)

)
E (D)

unitality
ηE (D)

E (ηD) idE (D) µD

µD

E
(
E
(
E (D)

))
E
(
E (D)

)

E
(
E (D)

)
E (D)

unitality

E (µD)

µE (D)

µD

µD

Monads induced by adjunctions. Such monads arise from (and give rise to, see (14) below) adjunc-
tions, namely pairs of back-and-forth functors on the category of types

Type′ Type

left adjoint
L

R
right adjoint

⊥ R◦L=:E induced monad (12)

equipped with a natural isomorphism (forming “adjuncts”)

HomType′
(
L(−),−

) (̃−)←−−−−→ HomType
(
−, R(−)

)
(13)
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and (equivalently), with natural transformations

adjunction unit

ηD ≡ ĩdLD : D−−→ R◦L(D)

adjunction co-unit

εD′ ≡ ĩdRD′ : L◦R(D′)−−→ D′

satisfying the zig-zag identities

εL(D) ◦L(ηD) = idD R(εD′)◦ηR(D′) = idD′ ,

from which the monad structure on E := R◦L is obtained as:

D E (D)≡ ≡

D R◦L(D)

ηD

ηD

E
(
E (D)

)
E (D)≡ ≡

R◦L◦R︸︷︷︸◦L(D) R◦L .

µD

R
(

εL(D)

)

Typing of effects via Strong monads. Beware that in describing monad structure this way we are so far
only looking externally at the category of types. In contrast, when encoding monadic side effects as a
computational structure inside the programming language, then the above bind-operation will be typed
not externally as

HomType
(
D1, E (D2)

)
→ HomType

(
E (D1), E (D2)

)
but internally as

bindE
D1,D2

:
(
D1→ E (D2)

)
→

(
E (D1)→ E (D2)

)
≃ E (D1)×

(
D1→ E (D2)

)
→ E (D2)

≃ E (D1)→
((

D1→ E (D2)
)
→ E (D2)

)
.

where (−)→ (−) denotes the formation of function types interpreted as the internal hom objects in the
closed category of types.

With the above monad axioms phrased internally this way they are actually a little stronger, whence
one speaks of strong monads (review in [16]), namely enriched monads with respect to the self-enrichment
of the closed monoidal category of types. When the category of types is closed symmetric monoidal,
which is the case we consider throughout, then strong monads are equivalently those which are suitably
symmetric lax monoidal [12, Thm. 2.3]. For monads on completely classical types (in the sense of
forming the category of sets) this is actually automatic (e.g. [16, Exp. 3.7]), while the monads on linear
types which we consider (see appendix A.3) are actually strong symmetric monoidal.

Examples of effect monads. A couple of key examples of effect monads on type systems are considered
in appendix A.3 below.

One example not central to our discussion here but illustrative of the general notion of side effects is
the throwing of exceptions: Assuming that the category Type has coproducts and with Msg : Type some
type of error messages, the exception monad is

ExcMsg : Type Type

D 7→ D∏Msg

whose monad unit is the coprojection of the coproduct and whose monad multiplication is given by the
co-diagonal on Msg:
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An ExcMsg-effectful program with nominal output type D2 is a morphism D1 −→ D2
∏Msg which

may return output of type D2 but might instead produce an (error-message) term of type Msg, in which
case all subsequently ExcMsg-bound programs will not execute but just hand this error message along.
(Hence for Msg≡ ∗ the singleton type, this is also known as the maybe monad.)

In this example it is clear that one will wish for programs which can handle the exception, and hence
in general programs which can handle a given type of side-effect.

Effect handling and modal types. Given a type of computational side effect E as above, a program of
nominal input type D1 which can handle the effect will have actual input type E (D1), and handle the
effect-part of E (D) in a way compatible with the incremental binding of effects:

D1 D2

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program incorporate handling
of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

returnE
D1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−→ E (D1)
hndlED2

prog12−−−−−−−→ D2)
handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Such E -effect handling structure on a type D is equivalent to E -modale-structure on D (also known
as an E -module or E -algebra structure), namely a morphism

E (D) D

monad action
ρ≡hndlEDidD

satisfying the axioms of a monoid action, in that it makes the following squares commute:

D

E (D) D

unitality

id
ηD utlE (ρ)

ρ

E
(
E (D)

)
E (D)

E (D) D

action property

E (ρ)

µD actE (ρ) ρ

ρ

Categories of effect-handling types A homomorphism (D1,ρ1)→ (D2,ρ2) of E -effect handlers, hence
of E -modales, is a map of the underlying data types f : D1 −−→ D2 which respects the E -action in that
the following diagram commutes

E (D1) E (D2)

D1 D2

E ( f )

ρ1 ρ2

f
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This makes a category of E -modales (traditionally known as the Eilenberg-Moore category of E
and) denoted TypeE .

For example, for any B : Type, the type E (B) carries E -modale structure, with ρ ≡ µB. These are
called the free E -modales and the full sub-category they form is traditionally denoted TypeE :

Type

free E -modales in Type
(“Kleisli category”)

TypeE

E -modales in Type
(“Eilenberg-Moore category”)

TypeE

{
B : Type

} {
E (B), ρB :≡ µB : E

(
E (B)

)
→ E (B)

} {
D : Type, ρ : E (D)→ D

∣∣∣ untlE (ρ),actE (ρ)
}

free construction

FE

FE

total comparison functor

KUE FE

This free construction is readily checked to be left adjoint to evident forgetful functors

TypeE TypeE Type(
D,ρ : E (D)→ D

)
7→ D

KUE FE

UE

UE

forgetful functor

and evidently both adjunctions FE ⊣UE and FE ⊣UE re-induce (12) the original monad. In fact, every
adjunction which induces E is “in between” these two adjunctions, in that it fits into a commuting
diagram of the following form (e.g. [14, §VI.3]):

TypeE
free E -modales in Type

(“Kleisli category”)

induced monad Type Type′ any adjunction for E

TypeE E -modales in Type
(“EM-category”)

KUF

initial
com

parison
functor

FE
B 7→

(
E (B

),ρ≡
µB

)

UE
⊥

E

KUF

term
inal

com
parison

functor

F

U
⊥

F E

U Emonadic adjunction

⊥

(14)

Computational contexts and co-monads on the type system. By formal duality (reversal of all arrows
in the above diagrams), we have a dual notion of co-monads on the type system, which some authors
refer to as “computational co-effect” but which may naturally be understood as expressing computational
contexts [36][22] .

The idea now is that a program which nominally reads in data of some type D while however de-
pending on some context must de facto read in data of some adjusted type C (D) which is such that the
context-part of the adjusted data is being transferred to followup programs:
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C (D1) D2 C (D2) D3 C (D) D

C (D1) C (D2) C (D2) D3 E (D) E (D)

C (D1) D3

prog12

first program

output data
of type D2

obtained in context of type C (−)

prog23

second program

input data
of nominal type D2

having context of type C (−) bind previous context
into second program

extractCD

extract plain data from C (−)-effect

prog12 bindE prog23

carry any previous
C (−)-context along

compose

bindC extractCD
= idE (D)

bindC prog23 ◦ prog12

C -composite program

subject to cumulative C (−)-contexts

By formal duality, all the above discussion for monadic effects and their modal types gives rise to
analogous phenomena of comonadic contexts and their (co)modal types. In particular, comonad are
induced on the other sides of an adjunction (12):

Type′ Type
R

right adjoint

right adjoint
L

⊥ L◦R=:C induced co-monad (15)

A.3 Quantum Reader/Writer (co)Monads from Dependent Linear Types

The notions of (co)reader and (co)writer monads are well-known, in fact they are the first examples
of (co)monads typically considered in computer science, as acting on cartesian monoidal categories of
classical data types. We recall their definitions in streamlined form and then highlight that:
1. the (co)reader monads arise from the base change adjunctions in classical dependent type theory;
2. in their dependent-linear version over a finite classical base type B, the B-reader and B-coreader as

well as the 1B-writer and 1B-cowriter both fuse to Frobenius monads, and as such are equivalent to
each other as well as to Coecke’s et al.’s “classical structures” Frobenius monad.

This is all elementary and straightforward, but the resulting picture is somewhat profound (p. 8) and
seems not to have previously been appreciated much.

Some remarks and notation before we start:
• Notice that every object B : ClType of a cartesian monoidal category carries a unique comonoid

structure whose coproduct is the cartesian diagonal map:

S : ClType ⊢
(
S, ε : B→∗, diag : B→ B×V

)
: CoMon

(
ClType, ∗,×

)
(16)

• For B : ClType we may denote the objects and morphisms of the slice category ClTypeB by the
sequent calculus notation whose categorical semantics they are, for instance

b : B ⊢ Xb
fb−−→ Yb stands for

(
Xb
)

b:B
( fb)b:B−−−→

(
Yb
)

b:B .

In particular, a context-extended B-independent type appears as:

b : B ⊢ X : Type stands for B×X =
(
X
)

b:B
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• For review of Frobenius algebras in the present context see [10, §5]. For discussion of Frobenius
monads see [35].

The classical reader monad. Classically, for B : ClType, the B-reader monad is the cartesian internal
hom-functor Map(S,−) with monad structure contravariantly induced from the canonical co-monoid
structure on B (16):

B-Reader : ClType ClType

S 7→ Map(B, S)
(17)

id(S) B-Reader(S)≡ ≡

S Map(B, S)

s 7→
(
b 7→ s

)
ε B-Reader

(
B-Reader(S)

)
B-Reader(S)≡ ≡

Map
(
B, Map(B, S)

)
Map(B, S)(

b′ 7→ (b′′ 7→ sb′,b′′)
)

7→
(
b 7→ sb,b

)
µ

(18)

Proposition A.1. The B-reader monad (17) is equivalently the monad ⃝B induced from the right base
change adjunction

ClTypeB ClType
B×(−)

∏B

⊥ ⃝B (19)

via the natural isomorphism

∏B S Map(B, S)

(sb)b:B 7→ (b 7→ sb) .

∼
(20)

Proof. The
(
B× (−) ⊣∏B

)
-adjointness relation

⊢ X
( fb)b:B−−−→∏BYb

b : B ⊢ X
fb−−−−−−→ Yb

gives the adjunction (co)unit η (ε) as

b : B ⊢ X id−−−−−−−−→ X

⊢ X
η≡(id)b:B−−−−−→∏B X

⊢ ∏b:B Xb
id≡ (prb)b:B−−−−−−−→∏b:B Xb

b : B ⊢ ∏b′:B Xb′
εb ≡ prb−−−−−−−−−−→ Xb

and thus under the the monad structure comes out as:

S ∏b:B S

s 7→ (s)b:B

η
∏b:B

(
∏b′:B S S

)
(
b 7→ (b′ 7→ sb,b′)

)
7→

(
b 7→ sb,b

)
εb

Under the isomorphism (20) this is accordance with (18).
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The classical coreader comonad. Dually, the classical B-coreader is the functor B× (−) with comonad
structure induced from the comonoid structure (16) of B

B-CoReader : ClType ClType

S 7→ B×S
(21)

B-CoReader(S) S(
b, s

)
7→ s

η
B-CoReader(S) B-CoReader

(
B-CoReader(S)

)
(
b, s

)
7→

(
b, (b, s)

)ν

(22)

Proposition A.2. The B-co-reader (21) is equivalent to the comonad induced from the left base change
adjunction

ClTypeB ClType

∏
B

B×(−)
⊥ 9B

via the natural isomorphism
∏

BS B×S

(b, s) 7→ (b, s) .

∼

Proof. The adjointness relation

⊢ ∏
b:B Xb

( fb)b:B−−−→ Y

b : B ⊢ Xb
fb−−−→ Y

gives the adjunction (co)unit η (ε) as

b : B ⊢ X id−−−−−→ X

⊢ ∏
B X

ε≡(id)b:B−−−−−→ X

⊢ ∏
b:B Xb

id≡(cprb)b:B−−−−−−−→∏
b:B Xb

b : B ⊢ Xb
ηb≡cprb−−−−−−−−→∏

b:B Xb

from which the comonad structure is

∏
b:B S S

(b, s) 7→ s

ε ∏
b:B

(
S ∏

b′:B S
)

(b, s) 7→
(
b, (b, s)

)
ηb

in accordance with (22).

The classical writer monad. Now consider a monoid structure on a classical type(
A,e , ·

)
: Mon

(
ClType(∗,×)

)
, (23)

which, in contrast to the cartesian co-monoid structure (16) requires making a choice. (In computing
practice the canonical choice for A is the free monoid on some alphabet, which will make the following
writer monad have the side-effect of concatenating characters in this alphabet, hence of “writing strings”,
whence its name).
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Then the classical A-writer monad is the functor A× (−) with monad structure induced from this
monoid structure (23):

A-Writer : ClType ClType

S 7→ A×S
(24)

id(S) A-Writer(S)≡ ≡

S A×S

s 7→ (e, s)

ε A-Writer
(
A-Writer(S)

)
A-Writer(S)≡ ≡

A×A×S A×S(
a, a′, s

)
7→

(
a ·a′, s

)
µ

(25)

The linear writer monad. These constructions of the classical (co-)monads above use only the closed
monoidal structure

(
ClType, ∗,×

)
and not that this is cartesian. Therefore analogous constructions are

obtained on the non-cartesian symmetric monoidal category of linear types
(
LinType, 1,⊗

)
.

Notably, for (
A, e, ·

)
: Mon

(
LinType, 1,⊗

)
(26)

a monoid structure among linear types, hence an algebra structure, the corresponding linear writer monad
is

A-Writer : LinType LinType

H 7→ A⊗H
(27)

id(H ) A-Writer(H )≡ ≡
H A⊗H
|ψ⟩ 7→ e⊗|ψ⟩

ε A-Writer
(
A-Writer(H )

)
A-Writer(H )≡ ≡

A⊗A⊗H A⊗H
a⊗a′⊗ s 7→ (a ·a′)⊗|ψ⟩

µ

(28)

The example of interest here is the linear writer monad induced from finite direct sums of the unit algebra:

B : FinClType ⊢ 1
B ≡ (pB)!1B ≃ ⊕

b:B
1 ≃

{
∑
b:B

cb|b⟩
∣∣∣ cb:B ∈ 1

}
: Mon

(
LinType, 1B,⊗

)
(29)

1 1
B

1 7→ ∑b:B |b⟩

e
1

B⊗1B
1

|b⟩⊗ |b′⟩ 7→ δb,b′ |b′⟩

(−)·(−)
(30)

Here, pB : B→∗ is the terminal morphism of the classical type B, and (pB)! is as in (4).
Proposition A.3. The linear writer monad (27) for the direct B-sum algebra (29) is equivalent to the
linear B-reader monad, and hence also to the linear indefiniteness modality⃝B:

⃝B ≃ B-Reader ≃ 1
B-Writer : LinType→ LinType.

Proof. Consider the following natural isomorphisms between the underlying functors:

⃝BH B-Reader(H ) 1
B-Writer(H )

≡ ≡ ≡

∏
b:B

H ≃ Map(B, H ) ≃ 1
B⊗H(

|ψb⟩
)

b:B 7→
(
b 7→ ψb

)
7→ ∑

b :B
|b⟩⊗ |ψb⟩
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Using the above formulas, we check, straightforwardly, that these respect the monad structure:

⃝B⃝B H ⃝BH

≡ ≡

∏
b′:B

∏
b′′:B

H ∏
b:B

H(
|ψb′,b′′⟩

)
b′,b′′:B 7→

(
|ψb,b⟩

)
b:B

µ

↔

1
B-Writer

(
1

B-Writer(H )
)

1
B-Writer(H )

)

≡ ≡

1
B⊗1B⊗H 1

B⊗H

∑
b′,b′′:B

|b′⟩⊗ |b′′⟩⊗ |ψb′,b′′⟩ 7→ ∑
b′,b′′:B

|b⟩⊗ |ψb,b⟩

µ

id(H ) ⃝BH≡ ≡

H 7→ ∏BH

|ψ⟩ 7→
(
|ψ⟩

)
b:B

ε

↔

id(H ) 1
B-Writer(H )≡ ≡

H 1
B⊗H

|ψ⟩ 7→ e⊗|ψ⟩= ∑b:B |b⟩⊗ |ψ⟩

ε

Frobenius structure on the quantum reader. The ambidexterity clause (4) implies that over finite
classical types the linear version of the reader monad (19) carries the structure of a Frobenius monad, by
[35, Prop. 1.5]:

B : FinClType ⊢ LinTypeB LinType

⊕B

(pB)
∗

⊕B

⊥

⊥

⃝B

9B
(31)

By dualizing the proof of Prop. A.3 we find that this Frobenius monad corresponds to the Frobenius
algebra structure on (29) whose co-algebra structure is

1
B

1

∑b:B cb|b⟩ 7→ ∑b:B cb

e
1 1

B⊗1B

|b⟩ 7→ |b⟩⊗ |b⟩

∇(−)
(32)

Proposition A.4. For B : FinClType the comonad 9B (31) is equivalent to the 1
B co-writer monad

induced from the co-algebra structure (32):

9B ≃ 1
B-CoWriter .

Proof.

9B(H ) id(H )≡ ≡

∏
BH H(

b, |ψ⟩
)

7→ |ψ⟩

hence ∑b:B
(
b, |ψb⟩

)
7→ ∑b:B |ψb⟩

↔

1
B-CoReader id(H )≡ ≡

1
B⊗H H

∑b:B |b⟩⊗ |ψb⟩ 7→ ∑b:B |ψb⟩



24 Quantum Certification via LHoTT

9BH 9B9BH≡ ≡

∏
B H ∏

B
∏

B H(
b, |ψb⟩

)
7→

(
b,
(
b, |ψb⟩

)) ↔

1
B-CoWriter(H ) 1

B-CoWriter
(
1

B-CoWriter(H )
)

≡ ≡

1
B⊗H 1

B⊗1B⊗H

∑b:B |b⟩⊗ |ψb⟩ 7→ ∑b:B |b⟩⊗ |b⟩⊗ |ψb⟩

In conclusion: By the ambidexterity clause (4) of the Motivic Yoga verified by LHoTT, the quantum
measurement monad ⃝B (p. 8) is Frobenius and as such equivalent to the 1B-Writer monad, which is
just Coecke et al’s “classical structures”-monad [6][5].

A.4 The quantum measurement modales

The classical modales (p. 18) over the classical reader monad (17) may be somewhat exotic (cf. MO:868317)
but their linear (quantum) analog is nicely behaved (as claimed on p. 7):

Proposition A.5. The Eilenberg-Moore category of modal types for the quantum reader monad (31)

B : FinClType ⊢ ⃝B : LinType→ LinType

is equivalently that of B-dependent linear types. Moreover on the free B-modales this equivalence re-
stricts to the comparison functor indicated on p. 8:

free⃝B-modal
linear types

LinType⃝B

⃝B-modal
linear types

LinType⃝B

B-dependent
linear types

LinTypeB

⃝BH 7−→ 1B⊗H

∼

This is straightforward to verify but its implications may previously not have found due attention.
We have spelled out detailed proofs at ncatlab.org/nlab/show/quantum+reader+monad and will
elsewhere expand on this and other aspects touched on here.

https://math.stackexchange.com/a/868317/58526
https://ncatlab.org/nlab/show/quantum+reader+monad
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