Quantum Data Types via Linear HoTT presentation at:

Workshop on Quantum Software @ QTML 2022

Urs Schreiber (NYU Abu Dhabi)
on joint work at CQTS with
D. J. Myers, M. Riley, and Hisham Sati

The Problem

Pure quantum circuits are easy...

Linear operator composed \& tensored from given quantum logic gates

Hilbert space of possible input quantum states
linear transformation upon execution

Hilbert space of possible output quantum states

Pure quantum circuits are easy...

Linear operator composed \& tensored from given quantum logic gates

Hilbert space of possible input quantum states
linear transformation upon execution

Hilbert space of possible output quantum states

but real quantum circuits have classical control \& effects

full reality is a loop: Classical $\leftarrow_{\text {prepare }}^{\text {measure }} \rightarrow$ Quantum

full reality is a loop: Classical $\Sigma_{\text {preare }}^{\text {measure }}>$ Quantum

full reality is a loop: Classical $\Sigma_{\text {prepare }}^{\text {measure }}>$ Quantum

full reality is a loop: Classical $\Sigma_{\text {preare }}^{\text {measure }} \rightarrow$ Quantum

Existing quantum typed circuit languages

are embedded inside classical type theories:

Existing quantum typed circuit languages

are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

Existing quantum typed circuit languages

are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation
unverified linear type universe

Existing quantum typed circuit languages

are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...) for universal classical computation
unverified linear type universe

Quantum Circuit Language

e.g. QML, Quipper, QWIRE, ...

Existing quantum typed circuit languages

are embedded inside classical type theories:

for lack of a universal linear type theory.

Existing quantum typed circuit languages

are embedded inside classical type theories:

for lack of a universal linear type theory.
Until now...

Our Solution

Dependent Linear Homotopy Type Theory (dLHoTT)
Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)
dLHoTT is like a quantum microscope for Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Linear Data Types fibered over
Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Linear Data Types fibered over
Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Linear Data Types

 fibered overClassical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Linear Data Types

fibered over
Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

> Linear Data Types fibered over
> Classical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

The categorical semantics of dLHoTT
is in "infinitesimally cohesive" ∞-toposes

$$
\begin{gathered}
\text { Linear Data Types } \\
\text { fibered over } \\
\text { Classical Data Types }
\end{gathered}
$$

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

The categorical semantics of dLHoTT
is in "infinitesimally cohesive" ∞-toposes of module spectra parameterized over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster \& Licata (2021)].

Linear Data Types

 fibered overClassical Data Types

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

The categorical semantics of dLHoTT is in "infinitesimally cohesive" ∞-toposes of module spectra parameterized over classical homotopy types. [S. (2013), §4.1.2] [S. (2014), §3.2, IHP] [Riley, Finster \& Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment

Linear Data Types

 fibered over Classical Data Types
Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

The categorical semantics of dLHoTT is in "infinitesimally cohesive" ∞-toposes of module spectra parameterized over classical homotopy types. [S. (2013), §4.1.2] [S. (2014), §3.2, IHP] [Riley, Finster \& Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment of complex vector bundles over finite sets.

Linear Data Types

 fibered over Classical Data Types
Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

More technically:

The categorical semantics of dLHoTT is in "infinitesimally cohesive" ∞-toposes of module spectra parameterized over classical homotopy types. [S. (2013), §4.1.2] [S. (2014), §3.2, IHP] [Riley, Finster \& Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment of complex vector bundles over finite sets.

Linear Data Types

 fibered over Classical Data Types
Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:
quantum measurement
is handling of linear indefiniteness effects

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:
quantum measurement quantum state preparation
is handling of linear indefiniteness effects
is handling of linear randomness co-effects

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:
quantum measurement quantum state preparation quantum+classical circuits
is handling of linear indefiniteness effects
is handling of linear randomness co-effects are the effectful string diagrams

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:
quantum measurement quantum state preparation quantum+classical circuits quantum dynamic lifting is
is handling of linear indefiniteness effects
is comparison functor of monadicity theorem

Dependent Linear Homotopy Type Theory (dLHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
\exists universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT) and
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]
(i.e. Grothendieck's six operations à la Wirthmüller - more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:
quantum measurement quantum state preparation quantum+classical circuits quantum dynamic lifting is
is handling of linear indefiniteness effects
is comparison functor of monadicity theorem

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT

Dependent Linear Homotopy Type Theory (dLHoTT)

for universal algorithmic quantum computation

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT

Dependent Linear Homotopy Type Theory (dLHoTT)

for universal algorithmic quantum computation

Quantum Systems Language (QS)
for quantum logic circuits

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT
Dependent Linear Homotopy Type Theory (dLHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT) for topological logic gates

Quantum Systems Language (QS)
for quantum logic circuits

$$
\begin{aligned}
& \text { discussed in } \\
& \text { the following }
\end{aligned}
$$

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT
Dependent Linear Homotopy Type Theory (dLHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT) for topological logic gates

Quantum Systems Language (QS)
for quantum logic circuits

Topological Quantum Gate Circuits
for realistic quantum computation

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT

Dependent Linear Homotopy Type Theory (dLHoTT)

for universal algorithmic quantum computation

Homotopy Type Theory (HoTT) for topological logic gates

Quantum Systems Language (QS)

for quantum logic circuits

Topological Quantum Gate Circuits

for realistic quantum computation
ambient dLHoTT ambient HoTT ambient dTT
verifies provides provides
classically dependent quantum linear types specification of topological quantum gates full verified classical control

Quantum Data Types

Linear/Quantum Data Types

Characteristic Property			
Symbol			
Formula (for $B:$ FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:		
Symbol			
Formula (for $B:$ FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:		
Symbol	\oplus direct sum		
Formula (for $B:$ FinType)			
AlgTop Jargon			
Physics Meaning			
Linear Logic			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	
Symbol	\oplus direct sum		
Formula (for $B:$ FinType)			
AlgTop Jargon			
Physics Meaning			
Linear Logic			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	
Symbol	\oplus direct sum	\otimes tensor product	
Formula (for $B:$ FinType)			
AlgTop Jargon			
Physics Meaning			
Linear Logic			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	\otimes tensor product	
Formula (for $B:$ FinType)			
AlgTop Jargon			
Physics Meaning			
Linear Logic			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears $\&$ distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	\otimes tensor product	linear function type
Formula (for $B:$ FinType)			
AlgTop Jargon			
Physics Meaning			
Linear Logic			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	$\oplus \quad$ direct sum	Q tensor product	\bigcirc linear function type
Formula (for B : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	\otimes tensor product	- linear function type
Formula (for B : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\underset{b: B}{\bigoplus_{b}} \mathcal{H}_{b}\right) \simeq \underset{b: B}{\bigoplus}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	\otimes tensor product	\bigcirc linear function type
Formula (for B : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\underset{b: B}{\bigoplus} \mathcal{H}_{b}\right) \simeq \underset{b: B}{\bigoplus}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	- linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \amalg_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\underset{b: B}{\bigoplus} \mathcal{H}_{b}\right) \simeq \underset{b: B}{\bigoplus}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
	biproduct,	Frobenius reciprocity	mapping spectrum
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	- linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \amalg_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\underset{b: B}{\bigoplus} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
AlgTop Jargon	biproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
		Grothendieck's Motivic Yoga of 6 oper. (Wirthmüller form)	
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	- linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \amalg_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\underset{b: B}{\bigoplus} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
AlgTop Jargon	biproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
		Grothendieck's Motivic Yoga of 6 oper. (Wirthmüller form)	
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	$\oplus \quad$ direct sum	\otimes tensor product	- linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \amalg_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
AlgTop Jargon	biproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
		Grothendieck's Motivic Yoga of 6 oper. (Wirthmüller form)	
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning	superselection sectors / quantum parallelism	compound quantum systems / quantum entanglement	QRAM systems

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	$\oplus \quad$ direct sum	\otimes tensor product	\bigcirc linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \amalg_{B} \mathcal{H}_{b}, ~}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
AlgTop Jargon	biproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
		Grothendieck's Motivic Yoga of 6 oper. (Wirthmüller form)	
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning	superselection sectors / quantum parallelism	compound quantum systems / quantum entanglement	QRAM systems

Linear/Quantum Data Types

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor pro \& distributes	ppears rect sum		inear function type ars adjoint to tensor
Symbol	\oplus direct sum	\otimes tenso	duct	\bigcirc	linear function type
$\begin{gathered} \text { Formula } \\ \text { (for } B \text { : FinType) } \end{gathered}$	$\begin{aligned} & \text { cart. product } \\ & \prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{ } \bigoplus_{b} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \end{aligned}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right)=$	$\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$		$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers					

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	$\multimap \quad$ linear function type
Formula (for B : FinType)	cart. product co-product $\Pi_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{\oplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers			
classical type dependent on			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor pro \& distributes	appears irect sum	3. a linear function type appears adjoint to tensor	
Symbol	\oplus direct sum	Q tensor	duct	\bigcirc	linear function type
$\begin{gathered} \text { Formula } \\ \text { (for } B \text { : FinType) } \end{gathered}$	$\begin{aligned} & \text { cart. product } \\ & \prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{ } \bigoplus_{b} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \end{aligned}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right)$	$\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$		$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers					

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	$\multimap \quad$ linear function type
$\begin{gathered} \text { Formula } \\ \text { (for } B: \text { FinType) } \end{gathered}$	$\begin{aligned} & \text { cart. product } \\ & \prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{ } \bigoplus_{b} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \end{aligned}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers			classical base change / classical quantification

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	- linear function type
Formula (for $B:$ FinType)	$\begin{aligned} & \text { cart. product } \\ & \prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{ } \bigoplus_{b} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \end{aligned}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers			

Linear/Quantum Data Types

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears \& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	\oplus direct sum	Q tensor product	- linear function type
$\begin{gathered} \text { Formula } \\ \text { (for } B \text { : FinType) } \end{gathered}$	$\begin{aligned} & \text { cart. product } \\ & \prod_{B} \mathcal{H}_{b} \simeq \underset{\text { direct sum }}{ } \bigoplus_{b} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \end{aligned}$	$\mathcal{V} \otimes\left(\bigoplus_{b: B} \mathcal{H}_{b}\right) \simeq \bigoplus_{b: B}\left(\mathcal{V} \otimes \mathcal{H}_{b}\right)$	$\begin{aligned} & (\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \\ \simeq \quad & \mathcal{V} \multimap(\mathcal{H} \multimap \mathcal{K}) \end{aligned}$
Dependent linear Type Formers			classical base change / classical quantification
classical type dependent on linear type in classical			

Linear/Quantum Data Types

Linear/Quantum Data Types

Linear/Quantum Data Types

Linear/Quantum Data Types

Quantum Effects

Recall: Monadic computational effects.

A monad $\mathscr{E}(-)$ on a data type system encodes computational effects:
effectful program

$$
D_{1} \xrightarrow{\operatorname{prog}_{12}} \mathscr{E}\left(D_{2}\right)
$$

output data of nominal type D_{2} causing effects of type $\mathscr{E}(-)$

Recall: Monadic computational effects.

A monad $\mathscr{E}(-)$ on a data type system encodes computational effects:
first program

$$
D_{1} \xrightarrow{\operatorname{prog}_{12}} \mathscr{E}\left(D_{2}\right)
$$

second program
output data of nominal type D_{2} causing effects of type $\mathscr{E}(-)$

$$
\begin{aligned}
& D_{2} \xrightarrow{\operatorname{prog}_{23}} \mathscr{E}\left(D_{3}\right) \\
& \text { causing data of typects of type } D_{2}(-)
\end{aligned}
$$

Recall: Monadic computational effects.

A monad $\mathscr{E}(-)$ on a data type system encodes computational effects:

$$
\begin{gathered}
\underset{\substack{\text { first program } \\
D_{1} \xrightarrow{\operatorname{prog}_{12}} \\
\text { output data of nominal type } D_{2} \\
\text { causing effects of type } \mathscr{E}(-)}}{\mathscr{E}\left(D_{2}\right)} \\
D_{1} \xrightarrow{\operatorname{prog}_{12}} \mathscr{E}\left(D_{2}\right)
\end{gathered}
$$

Recall: Monadic computational effects.

A monad $\mathscr{E}(-)$ on a data type system encodes computational effects:

Recall: Monadic effect handlers.

$D_{1} \xrightarrow{\operatorname{prog}_{12}} D_{2} \quad$ data type to absorb \mathscr{E}-effects
in-effectful program

Recall: Monadic effect handlers.

Recall: Monadic effect handlers.

Recall: Monadic effect handlers.

Recall: Data type system of Monadic effect handlers.

Monadicity:

Recall: Data type system of Monadic effect handlers.

Monadicity:

Recall: Data type system of Monadic effect handlers.

Monadicity:

Recall: Data type system of Monadic effect handlers.

Monadicity:

Recall: Data type system of Monadic effect handlers.

Monadicity:

Recall: Data type system of Monadic effect handlers.

$$
D_{1} \xrightarrow[\text { in-effectful program }]{\operatorname{prog}_{12}} D_{2}
$$

" \mathscr{E}-modal data type"
in-effectful program handling effects of type $\mathscr{E}(-)$

Monadicity:

Given B :Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

Given B :Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

necessarily P_{\bullet}
$\square_{B} P$

$$
b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}}
$$

Given B :Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

necessarily P_{\bullet} entails actually P_{\bullet}
$\square_{B} P_{\bullet}-\varepsilon_{P_{\bullet}}^{\square_{B}} \longrightarrow P \bullet$

$$
b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}} \xrightarrow{\left(p_{b^{\prime}}\right)_{b^{\prime}: B} \mapsto p_{b}} P_{b}
$$

Given B :Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

$$
\begin{aligned}
& \text { necessarily } P_{\bullet} \text { entails actually } P_{\bullet} \text { entails possibly } P_{\bullet} \\
& \square_{B} P_{\bullet}-\varepsilon_{P_{\bullet}}^{\square_{B}} \longrightarrow P_{\bullet}-\eta_{P_{\bullet}}^{\diamond_{B}} \longrightarrow \diamond_{B} P_{\bullet} \\
& b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}} \xrightarrow{\left(p_{b^{\prime}}\right)_{b^{\prime}: B} \mapsto p_{b}} P_{b} \xrightarrow{p_{b} \mapsto\left(p_{b}\right)_{b}} \coprod_{b^{\prime}: B} P_{b^{\prime}}
\end{aligned}
$$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

$$
\begin{aligned}
& \text { necessarily } P_{\bullet} \text { entails actually } P_{\bullet} \text { entails possibly } P_{\bullet} \\
& \square_{B} P_{\bullet}-\varepsilon_{P_{\bullet}}^{\square_{B}} \longrightarrow P_{\bullet}-\eta_{P_{\bullet}}^{\diamond_{B}} \longrightarrow \diamond_{B} P_{\bullet} \\
& b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}} \xrightarrow{\left(p_{b^{\prime}}\right)_{b^{\prime}: B} \mapsto p_{b}} P_{b} \xrightarrow{p_{b} \mapsto\left(p_{b}\right)_{b}} \coprod_{b^{\prime}: B} P_{b^{\prime}}
\end{aligned}
$$

randomly P

$$
\hat{z}_{B} P
$$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

$$
\begin{aligned}
& \text { necessarily } P_{\bullet} \text { entails actually } P_{\bullet} \text { entails possibly } P_{\bullet} \\
& \square_{B} P_{\bullet}-\varepsilon_{P_{\bullet}}^{\square_{B}} \longrightarrow P_{\bullet}-\eta_{P_{\bullet}}^{\diamond_{B}} \longrightarrow \diamond_{B} P_{\bullet} \\
& b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}} \xrightarrow{\left(p_{b^{\prime}}\right)_{b^{\prime}: B} \mapsto p_{b}} P_{b} \xrightarrow{p_{b} \mapsto\left(p_{b}\right)_{b}} \coprod_{b^{\prime}: B} P_{b^{\prime}}
\end{aligned}
$$

randomly P entails potentially P

$$
\begin{aligned}
& {\underset{\sim}{B}} P-{\underset{\varepsilon}{P}}_{{ }_{2} \widehat{\star}_{B} \longrightarrow P} \\
& \coprod_{b: B} P \xrightarrow[(p)_{b} \mapsto p]{ } P
\end{aligned}
$$

Given $B:$ Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent data type formers constitute modalities of actual and potential B-measurements:

$$
\begin{aligned}
& \text { necessarily } P_{\bullet} \text { entails actually } P_{\bullet} \text { entails possibly } P_{\bullet} \\
& \square_{B} P_{\bullet}-\varepsilon_{P_{\bullet}}^{\square_{B}} \longrightarrow P_{\bullet}-\eta_{P_{\bullet}}^{\diamond_{B}} \longrightarrow \diamond_{B} P_{\bullet} \\
& b: B \vdash \prod_{b^{\prime}: B} P_{b^{\prime}} \xrightarrow{\left(p_{b^{\prime}}\right)_{b^{\prime}: B} \mapsto p_{b}} P_{b} \xrightarrow{p_{b} \mapsto\left(p_{b}\right)_{b}} \coprod_{b^{\prime}: B} P_{b^{\prime}}
\end{aligned}
$$

randomly P entails potentially P entails indefinitely P

$$
\begin{aligned}
& \hat{\star}_{B} P \longrightarrow \varepsilon_{P} \hat{\star}_{B} \longrightarrow P \longrightarrow \bigcirc_{B} P \\
& \coprod_{b: B} P \xrightarrow{(p)_{b} \mapsto p} P \xrightarrow{p \mapsto(p)_{b: B}} \prod_{b: B} P
\end{aligned}
$$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

necessarily \mathcal{H}_{\bullet}
$\square_{B} \mathcal{H}$

Given... obtain...
$b: B \quad \vdash \quad \mathcal{H}$
measurement
where $\mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}$
result

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

$$
\begin{gathered}
\text { necessarily } \mathcal{H}_{\bullet} \quad \text { entails } \quad \text { actually } \mathcal{H}_{\bullet} \\
\quad \square_{B} \mathcal{H}_{\bullet} \longrightarrow \varepsilon_{\mathcal{H}_{\bullet}}^{\square_{B}} \longrightarrow \mathcal{H}_{\bullet}
\end{gathered}
$$

Given... obtain...
$b: B \quad \vdash$ measurement result

$$
\text { where } \mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}
$$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

$$
\begin{array}{ccccc}
\text { necessarily } \mathcal{H}_{\bullet} & \text { entails } & \text { actually } \mathcal{H}_{\bullet} & \text { entails } & \text { possibly } \mathcal{H}_{\bullet} \\
\square_{B} \mathcal{H}_{\bullet} \longrightarrow \varepsilon_{\mathcal{H}_{\bullet}}^{\square_{B}} \longrightarrow \mathcal{H}_{\bullet} \longrightarrow \nabla_{B} \mathcal{H}_{\bullet}
\end{array}
$$

Given... obtain...
$b: B \quad \vdash$ measurement result
where $\mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

principle of quantum compulsion:

$$
\begin{array}{ccccc}
\text { necessarily } \mathcal{H}_{\bullet} & \text { entails } & \text { actually } \mathcal{H}_{\bullet} & \text { entails } & \text { possibly } \mathcal{H}_{\bullet} \quad \text { is } \\
\square_{B} \mathcal{H}_{\bullet} \longrightarrow \varepsilon_{B} & \nabla_{\mathcal{H}_{\bullet}}^{\diamond_{B}} \longrightarrow \mathcal{H}_{\bullet} \longrightarrow \diamond_{B} \mathcal{H}_{\bullet} \underset{\text { ambidexterity }}{\sim} \square_{B} \mathcal{H}_{\bullet}
\end{array}
$$

Given... obtain...
$b: B \quad \vdash$ measurement result

$$
\underbrace{\mathcal{H}}_{\text {measurement collapse }} \underset{\sum_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle}{\text { state preparation }} \mathcal{H}_{b} \xrightarrow{\left|\psi_{b}\right\rangle \mapsto \oplus_{b^{\prime}}\left\{\begin{array}{c}
\left|\psi_{b}\right\rangle \text { if } b^{\prime}=b \\
0 \text { else }
\end{array}\right.} \mathcal{H},
$$

where $\mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

principle of quantum compulsion:

Given... obtain...
$b: B \quad \vdash$ measurement result

$$
\underbrace{\mathcal{H}}_{\text {measurement collapse }} \underset{\sum_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle}{\text { state preparation }} \mathcal{H}_{b} \xrightarrow{\left|\psi_{b}\right\rangle \mapsto \oplus_{b^{\prime}}\left\{\begin{array}{c}
\left|\psi_{b}\right\rangle \text { if } b^{\prime}=b \\
0 \text { else }
\end{array}\right.} \mathcal{H},
$$

where $\mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}$
randomly \mathcal{H}

$$
\hat{\Sigma}_{B} \mathcal{H}
$$

Given B : Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

principle of quantum compulsion:

Given... obtain...
$b: B \quad \vdash$ measurement result

$$
\underbrace{\mathcal{H}}_{\text {measurement collapse }} \underset{\sum_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle}{\text { state preparation }} \mathcal{H}_{b} \xrightarrow{\left|\psi_{b}\right\rangle \mapsto \oplus_{b^{\prime}}\left\{\begin{array}{c}
\left|\psi_{b}\right\rangle \text { if } b^{\prime}=b \\
0 \text { else }
\end{array}\right.} \mathcal{H},
$$

where $\mathcal{H}:=\bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}$
randomly \mathcal{H} entails potentially \mathcal{H}

$$
\begin{aligned}
& {\underset{\sim}{B}}_{B} \mathcal{H} \longrightarrow \varepsilon_{\mathcal{H}}^{\hat{\sim}_{B}} \mathcal{H} \\
& \underset{b: B}{ } \mathcal{H} \underset{\text { quantum superposition }}{\oplus_{b}\left|\psi_{b}\right\rangle \mapsto \Sigma_{b}\left|\psi_{b}\right\rangle} \mathcal{H}
\end{aligned}
$$

Given B :Type of possible measurement outcomes ("possible worlds") the monadic effects of B-dependent linear data type formers constitute modalities of actual and potential quantum B-measurements.

principle of quantum compulsion:

$$
\begin{array}{ccccc}
\text { necessarily } \mathcal{H}_{\bullet} & \text { entails } & \text { actually } \mathcal{H}_{\bullet} & \text { entails possibly } \mathcal{H}_{\bullet} & \text { is } \\
\square_{B} \mathcal{H}_{\bullet} \longrightarrow \varepsilon_{B} & \left.\square_{\mathcal{H}_{\bullet}}^{\diamond_{B}} \longrightarrow \mathcal{H}_{\bullet} \longrightarrow\right\rangle_{B} \mathcal{H}_{\bullet} \underset{\text { ambidexterity }}{\simeq} \square_{B} \mathcal{H}_{\bullet}
\end{array}
$$

Given... obtain...
$b: B \quad \vdash$ measurement result

$$
\underbrace{\mathcal{H} \frac{\sum_{b^{\prime}} \mid \psi_{b^{\prime}}}{\text { measurem }}}_{\text {il }}
$$

linear projector onto sub-Hilbert space \mathscr{H}_{b}

$$
\begin{aligned}
& \text { randomly } \mathcal{H} \text { entails potentially } \mathcal{H} \text { entails indefinitely } \mathcal{H} \\
& {\underset{\star}{B}}^{\mathcal{H}} \varepsilon_{\mathcal{H}}^{{\underset{\sim}{\aleph}}_{B}} \longrightarrow \mathcal{H} \longrightarrow \bigcirc_{B} \mathcal{H} \\
& \underset{b: B}{\bigoplus} \mathcal{H} \underset{\text { quantum superposition }}{\oplus_{b}\left|\psi_{b}\right\rangle \mapsto \Sigma_{b}\left|\psi_{b}\right\rangle} \mathcal{H} \xrightarrow[\text { quantum parallelization }]{|\psi\rangle \mapsto \oplus_{b}|\psi\rangle_{b}} \underset{b: B}{\bigoplus} \mathcal{H}
\end{aligned}
$$

The pure effects of these modalities of dependent linear data type formation

 are remarkable in their sheer quantum information-theoretic content.To repeat:
adjoints

The pure effects of these modalities of dependent linear data type formation

 are remarkable in their sheer quantum information-theoretic content.To repeat:

$b: B \vdash \bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}} \xrightarrow[\text { quantum measurement }]{\oplus_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle} \mathcal{H}_{b}$

The pure effects of these modalities of dependent linear data type formation

 are remarkable in their sheer quantum information-theoretic content.To repeat:

$$
b: B \vdash \bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}} \frac{\oplus_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle}{\text { quantum measurement }} \mathcal{H}_{b}
$$

$$
\begin{gathered}
\mathcal{H}_{\bullet} \xrightarrow[\text { possibility unit }]{\eta_{\mathcal{H}_{\bullet}}^{\diamond_{B}}} \overbrace{\left(p_{B}\right)^{*}\left(p_{B}\right)!}^{\diamond_{B}} \mathcal{H}_{\bullet} \\
b: B \vdash \mathcal{H}_{b} \xrightarrow[\text { quantum state preparation }]{\left|\psi_{b}\right\rangle \mapsto \oplus_{b^{\prime}}\left\{\begin{array}{c}
\left|\psi_{b}\right\rangle \text { if } b^{\prime}=b \\
0 \text { else }
\end{array}\right.} \bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}
\end{gathered}
$$

The pure effects of these modalities of dependent linear data type formation

 are remarkable in their sheer quantum information-theoretic content.To repeat:

$b: B \vdash \bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}} \xrightarrow[\text { quantum measurement }]{\oplus_{b^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle} \mathcal{H}_{b}$
"the necessary becomes actual "
" the random becomes potential "

$\bigoplus_{b: B} \mathcal{H} \xrightarrow[\text { quantum superposition }]{\oplus_{b}\left|\psi_{b}\right\rangle \mapsto \sum_{b}\left|\psi_{b}\right\rangle} \mathcal{H}$

The pure effects of these modalities of dependent linear data type formation

 are remarkable in their sheer quantum information-theoretic content.To repeat:

$$
b: B \vdash \underset{b^{\prime}: B}{\oplus} \mathcal{H}_{b^{\prime}} \xrightarrow[\text { quantum measurrement }]{\oplus_{\theta^{\prime}}\left|\psi_{b^{\prime}}\right\rangle \mapsto\left|\psi_{b}\right\rangle} \mathcal{H}_{b}
$$

"the necessary becomes actual "

$$
b: B \vdash \mathcal{H}_{b} \xrightarrow[\text { quantum state preparation }]{\left|\psi_{b}\right\rangle \mapsto \oplus_{b^{\prime}}\left\{\begin{array}{c}
\left|\psi_{b}\right\rangle \text { if } b^{\prime}=b \\
0 \\
\text { else }
\end{array}\right.} \bigoplus_{b^{\prime}: B} \mathcal{H}_{b^{\prime}}
$$

"the actual is possible"
"the random becomes potential"

$\bigoplus_{b: B} \mathcal{H} \xrightarrow[\text { quantum superposition }]{\oplus_{b}\left|\psi_{b}\right\rangle \mapsto \sum_{b}\left|\psi_{b}\right\rangle} \mathcal{H}$

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Quantum gate with q-bit output:

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Quantum gate with q-bit output:

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Quantum gate with q-bit output:

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Quantum gate with q-bit output:

De-cohered (measured) q-bits:

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Quantum gate with q-bit output:

De-cohered (measured) q-bits:

$$
\begin{gathered}
\overline{\mathbb{1}_{\text {Bool }}}: \text { LType }_{\text {Bool }} \xrightarrow[\sim]{\oplus_{\text {Bool }}} \text { LType }^{\text {O Bool }} \\
b: \text { Bool } \quad \vdash \mathbb{C} \cdot|b\rangle: \text { LType }
\end{gathered}
$$

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

De-cohered (measured) q-bits:
$=\mathbb{1}_{\text {Bool }}:$ LType $_{\text {Bool }} \xrightarrow[\sim]{\oplus_{\text {Bool }}}$ LType $^{\bigcirc_{\text {Bool }}}$

$$
b: \text { Bool } \quad \vdash \quad \mathbb{C} \cdot|b\rangle: \text { LType }
$$

$=\mathbb{1}_{\text {Bool }}$
b : Bool $\quad \vdash \mathcal{H} \otimes|b\rangle$: LType
\mathcal{H}

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Coherent q-bits:

$$
\begin{array}{ll}
\text { LBit } \\
& { }^{\text {Q }} \\
& \mathcal{H} \\
& \bigcirc_{\text {Boоі }} \mathcal{H}=\oplus_{\{0,1\}} \mathcal{H}=\mathcal{H} \otimes|0\rangle \oplus \mathcal{H} \otimes|0\rangle
\end{array}
$$

De-cohered (measured) q-bits:
$=\mathbb{1}_{\text {Bool }}:$ LType $_{\text {Bool }} \xrightarrow[\sim]{\oplus_{\text {Bool }}}$ LType $^{\bigcirc_{\text {Bool }}}$

$$
b: \text { Bool } \quad \vdash \quad \mathbb{C} \cdot|b\rangle: \text { LType }
$$

$$
=\mathbb{1}_{\text {Bool }}
$$

$$
b: \text { Bool } \quad \vdash \mathcal{H} \otimes|b\rangle: \text { LType }
$$

$$
\mathcal{H}
$$

Quantum gate with q-bit output:
A quantum gate which may handle $\bigcirc_{\text {Bool }}$-effects is one with a QBit-output:

$\mathcal{H} \xrightarrow{\phi} \mathrm{QBit} \otimes \mathcal{K} \simeq \bigcirc_{\text {Bool }} \mathcal{K}$

Q-bits are the free linear indeterminacy-effect handlers over Bool $=\{0,1\}$

Coherent q-bits:
$\begin{aligned} & \text { — QBit: LType } \xrightarrow[\text { ii }]{\stackrel{\mathbb{1}_{\text {Bool }}^{\otimes}}{\longrightarrow}} \text { LType }_{\text {Bool }} \xrightarrow[\sim]{\oplus_{\text {Bool }}} \text { LType }^{\mathrm{O}_{B}} \\ & \bigcirc_{\text {Bool }} \mathbb{1}=\oplus_{\{0,1\}} \mathbb{C}=\mathbb{C} \cdot\|0\rangle \oplus \mathbb{C} \cdot\|1\rangle \end{aligned}$
QBit \otimes \mathcal{H} ${ }^{\\|}$ $\bigcirc_{\text {Bool }} \mathcal{H}=\oplus_{\{0,1\}} \mathcal{H}=\mathcal{H} \otimes\|0\rangle \oplus \mathcal{H} \otimes\|0\rangle$

Quantum gate with q-bit output:
A quantum gate which may handle $\bigcirc_{\text {Bool }}$-effects is one with a QBit-output:

$\mathcal{H} \xrightarrow{\phi} \mathrm{QBit} \otimes \mathcal{K} \simeq \bigcirc_{\text {Bool }} \mathcal{K}$

De-cohered (measured) q-bits:

$=\mathbb{1}_{\text {Bool }}:$ LType $_{\text {Bool }} \xrightarrow[\sim]{\oplus_{\text {Bool }}}$ LType $^{\bigcirc_{\text {Bool }}}$

$$
b: \text { Bool } \quad \vdash \quad \mathbb{C} \cdot|b\rangle: \text { LType }
$$

b : Bool $\quad \vdash \mathcal{H} \otimes|b\rangle$: LType
\mathcal{H}

Quantum measurement is Linear indefiniteness-effect handling.

quantum gate
$\mathcal{H} \xrightarrow{\phi} \mathrm{QBit} \otimes \mathcal{K} \simeq \bigcirc_{B} \mathcal{K}$
\bigcirc_{B}-effect handling

Quantum measurement is Linear indefiniteness-effect handling.

LType $_{\mathrm{O}_{B}}$

$$
\mathcal{H} \xrightarrow{\phi} \stackrel{\text { quantum gate }}{\mathrm{QBit}} \otimes \mathcal{K} \simeq \bigcirc_{B} \mathcal{K}
$$

Quantum measurement is Linear indefiniteness-effect handling.

Quantum measurement is Linear indefiniteness-effect handling.

LType $_{B}$
B-dependent linear types

Quantum measurement is Linear indefiniteness-effect handling.

LType $_{B}$
B-dependent linear types

E.g.: Deferred measurement principle - Proven by monadic effect logic.

$\stackrel{\text { Deferred Measurement Principle }}{\longleftrightarrow}$

E.g.: Deferred measurement principle - Proven by monadic effect logic.

$\stackrel{\text { Deferred Measurement Principle }}{\longleftrightarrow}$

classically controlled gate	quantumly controlled gate

E.g.: Deferred measurement principle - Proven by monadic effect logic.

classically controlled gate	quantumly controlled gate

Also the Exponential modality

traditionally postulated in linear logic
is an emergent effect in dLHoTT

Also the Exponential modality

traditionally postulated in linear logic
is an emergent effect in dLHoTT
linear randomization
aka: stabilization/motivization

In summary, we see that:
The Motive or Linear Randomization of $B:$ FinType is the quantum data type spanned by eigenstates $|b\rangle, b: B$ equipped with the structure of a free effect handler for quantum measurement logic in the B-basis.

$$
\hat{z}_{\text {Bool }} \mathbb{I} \simeq \bigcirc_{\text {Bool }} \mathbb{I} \simeq \mathrm{QBit}
$$

Quantum Circuits

Quantum effects are compatible with tensor product.

Linear Randomness and Indefiniteness are "very strong" effects, in that:

$$
\bigcirc_{B}\left(D \otimes D^{\prime}\right) \simeq\left(\bigcirc_{B} D\right) \otimes D^{\prime}, \quad \hat{\star}_{B}\left(D \otimes D^{\prime}\right) \simeq\left(\star_{B} D\right) \otimes D^{\prime}
$$

There is a whole system of them:

$$
\bigcirc_{B} \bigcirc_{B^{\prime}} \simeq \bigcirc_{B \times B^{\prime}}, \quad \text { NB: } \bigcirc_{B} \bigcirc_{B}^{\prime} \simeq \bigcirc_{B} \mathbb{1} \otimes \bigcirc_{B}^{\prime}
$$

which under dynamic lifting (monadicity comparison functor) gives the external tensor product of dependent linear types:

free O_{B}-effect handlers in linear data types	LType $_{\mathrm{O}_{B}}$ 	$\bigcirc_{B \times B^{\prime}}^{\bigcirc_{B \times B^{\prime}} \bigcirc_{B \times B^{\prime}} \mathcal{H}}$
B-dependent linear data types	LType $_{B}$	$\left(\square_{B} \mathbb{1}_{B}\right) \boxtimes\left(\square_{B^{\prime}} \mathbb{1}_{B^{\prime}}\right) \otimes \mathcal{H}$

Quantum circuits with classical control \& effects

are the effectful string diagrams in the linear type system
E.g.

The dependent linear type of a measurement on a pair of qbits:

type of collapsed qbits dependent on

$$
\begin{aligned}
& \text { measured bits } b, b^{\prime} \\
& \left.\square_{\text {Bool }}(\text { QBit. } \boxtimes \text { QBit })_{\bullet}\right) \xrightarrow{\varepsilon_{\text {Bool }}\left(\text { QBit } \bullet \boxtimes \text { QBit }_{\bullet}\right)} \xrightarrow{\text { measured bits } b, b^{\prime}} \text { QBit. } \boxtimes \text { QBit }_{\bullet}
\end{aligned}
$$

measured bits
$\left(b, b^{\prime}\right):$ Bool $^{2} \vdash \square_{\text {Bool }}\left(\text { QBit } \bullet \boxtimes \mathrm{QBit}_{\bullet}\right)_{\left(b, b^{\prime}\right)} \simeq \mathbb{C}^{2} \otimes \mathbb{C}^{2} \xrightarrow[\text { collapse of the quantum state }]{\left.\sum_{d, d^{\prime}} q_{d d^{\prime}}|d| \otimes\left|d^{\prime}\right\rangle \mapsto q_{b b^{\prime}}|b\rangle \otimes\left|b^{\prime}\right\rangle\right\rangle} \mathbb{C}$.

Example: Bell states of q-bits are typed as follows (regarded in LType $_{\text {Bool } \times \text { Bool }}$):

QBit. \boxtimes QBit $_{\bullet} \rightarrow(\rangle_{\text {Bool }}$ QBit $\left._{\bullet}\right) \boxtimes(\rangle_{\text {Bool }}$ QBit $\left._{\bullet}\right) \simeq \square_{\text {Bool }}\left(\right.$ QBit $_{\bullet} \boxtimes$ QBit $\left._{\bullet}\right) \rightarrow \square_{\text {Bool }}\left(\right.$ QBit,\boxtimes QBit $\left._{\bullet}\right)$
$b, b^{\prime}:$ Bool $\vdash \mathbb{C} \xrightarrow{1} \mapsto|0\rangle \otimes|0\rangle \quad \mapsto \quad \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle \quad \mapsto \quad \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle) \xrightarrow[C]{ } \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

QS - Quantum Systems language @ CQTS

\rightsquigarrow full-blown Quantum Systems language emerges embedded in dLHoTT

Dependent Linear Homotopy Type Theory (dLHoTT)
for universal algorithmic quantum computation

Quantum Data Types via Linear HoTT presentation at:

Workshop on Quantum Software @ QTML 2022

Urs Schreiber (NYU Abu Dhabi)
on joint work at CQTS with
D. J. Myers, M. Riley, and Hisham Sati

